
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Large-scale network traffic monitoring with DBStream, a system for rolling big data analysis / Arian, Bar; Finamore,
Alessandro; Pedro, Casas; Lukasz, Golab; Mellia, Marco. - STAMPA. - 1:(2014), pp. 165-170. (Intervento presentato al
convegno Big Data (Big Data), 2014 IEEE International Conference on tenutosi a Washington, DC nel October 2014)
[10.1109/BigData.2014.7004227].

Original

Large-scale network traffic monitoring with DBStream, a system for rolling big data analysis

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/BigData.2014.7004227

Terms of use:

Publisher copyright

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2602579 since:

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

Large-Scale Network Traffic Monitoring with
DBStream, a System for Rolling Big Data Analysis

Arian Bär∗, Alessandro Finamore†, Pedro Casas∗, Lukasz Golab‡, Marco Mellia†

∗FTW Vienna, Austria - email: {baer, casas}@ftw.at
†Politecnico di Torino, Italy - email: {finamore, mellia}@tlc.polito.it
‡University of Waterloo, Canada - email: lgolab@uwaterloo.ca

Abstract—The complexity of the Internet has rapidly increased,
making it more important and challenging to design scalable
network monitoring tools. Network monitoring typically requires
rolling data analysis, i.e., continuously and incrementally up-
dating (rolling-over) various reports and statistics over high-
volume data streams. In this paper, we describe DBStream, which
is an SQL-based system that explicitly supports incremental
queries for rolling data analysis. We also present a performance
comparison of DBStream with a parallel data processing engine
(Spark), showing that, in some scenarios, a single DBStream node
can outperform a cluster of ten Spark nodes on rolling network
monitoring workloads. Although our performance evaluation is
based on network monitoring data, our results can be generalized
to other big data problems with high volume and velocity.

Keywords-Big Data Analysis; Data Stream Processing; Network
Data Analysis; System Performance.

I. INTRODUCTION

The complexity of large-scale, Internet-like networks is
constantly increasing. With more services being offered, the
massive adoption of Content Delivery Networks (CDNs) and
Cloud services for traffic hosting and delivery, and the contin-
uous growth of bandwidth-hungry video-streaming services,
network and server infrastructures are becoming extremely
difficult to monitor. In particular, the challenge faced by Net-
work Traffic Monitoring and Analysis (NTMA) is to process
big, heterogeneous and high-speed data. Network monitoring
data are heterogeneous by nature, containing multiple types of
measurements coming from different kinds of logging systems.
In addition, network monitoring data come in the form of
high-speed streams, which need to be continuously analyzed.
The notion of a data stream used in this paper is that of a
continuous flow of measurements coming in the form of short
time slices or batches, e.g., all the TCP flows captured in a
backbone link in the last minute. These batches can contain
a very large number of samples, given the high capacity of
network links and the dynamics of Internet traffic.

NTMA and other monitoring applications typically perform
what we refer to as rolling data analysis: results are peri-
odically and incrementally updated (rolled-over) as new data
arrive. In this paper, we describe DBStream, which is a system

The research leading to these results has received funding from the
European Union under the FP7 Grant Agreement n. 318627 (Integrated Project
“mPlane”.)

built upon the PostgreSQL database that explicitly supports in-
cremental queries for rolling data analysis. DBStream, recently
introduced in [2], ingests data streams coming in the form
of short time-scale aggregated batches (i.e., 1 minute) from
a wide variety of sources (e.g., passive network traffic data,
active measurements, router logs and alerts, etc.) and performs
complex continuous analysis, aggregation and filtering jobs.
DBStream can store tens of terabytes of heterogeneous data,
and allows both real-time queries on recent data as well as
deep analysis of historical data.

The technical contributions of this paper are as follows.
First, we present the Continuous Execution Language (CEL),
which is a declarative SQL-based interface for specifying
rolling data analysis in DBStream. CEL allows DBStream
users to rapidly implement advanced data analytics which run
in parallel and continuously over time using just a few lines
of code, accelerating the development of new applications.
Second, we compare the performance of DBStream with the
popular Spark parallel processing engine using real network
traffic data from an operational network. We show that rolling
queries can be easily implemented in CEL, and a single
DBStream node can, in some scenarios, execute them faster
than a cluster of ten Spark nodes.

The remainder of the paper is organized as follows. Sec. II
discusses the related work; Sec. III presents the rolling data
analysis capabilities of DBStream; Sec. IV compares DB-
Stream with Spark; and Sec. V concludes the paper.

II. RELATED WORK

There has been a great deal of effort to improve the per-
formance and scalability of traditional database management
systems by re-implementing the data processing engine, re-
laxing data consistency constraints and/or applying novel data
processing paradigms. Still, a major limitation is the inability
to cope with continuous/rolling analytics. Some relational
database systems support materialized views, but incremental
view maintenance over time is restricted to simple types of
queries such as filters and joins, which is not sufficient for
monitoring applications. Furthermore, NoSQL systems such as
Hadoop [16] have been considered in the context of network
monitoring [11], but they are suitable for off-line rather than
rolling analytics. However, there has been some recent work

on enabling real-time and/or incremental analytics in NoSQL
systems, such as Incoop [4], Muppet [10], SCALLA [12] and
Spark Streaming [18]. Additionally, Data Stream Management
Systems (DSMSs) such as Borealis [1], Gigascope [6] and
Streambase [15] support continuous processing, but they usu-
ally cannot support analytics over historical data.

Recently, Data Stream Warehouses (DSWs) have been
introduced, which extend traditional database systems with
(nearly) continuous data ingest and processing. DataCell [13]
and DataDepot [8] are two examples, as well as the DBStream
system presented in this paper. The novelty of DBStream is
that it enables users and applications to declaratively specify,
using arbitrary SQL, exactly how to update a view when a
new batch of data arrives at the system. These specifications
may even refer to previously generated results that are stored
in the same view, which, to the best of our knowledge, is not
declaratively supported by any other system.

Finally we note that there has been recent work in the
networking community on extending SQL with additional
functionalities required for network monitoring; examples in-
clude complex window expressions [5] and sequential patterns
[9]. However, none of these proposals include the declarative
rolling analytics that DBStream supports.

III. ROLLING ANALYTICS IN DBSTREAM

DBStream is a rolling analysis system implemented as a
Data Stream Warehouse (DSW). Its main purpose is to process
and combine data from multiple sources as they are produced,
create aggregations, and store query results for further process-
ing by external analysis modules or visualization. The system
targets, but is not limited to, continuous network monitoring.
For instance, smart grid, intelligent transportation systems, or
any other use case that requires continuous processing of large
amounts of data over time can take advantage of DBStream.

In this paper, we focus on the following two important
features of DBStream:
• It supports incremental queries defined using a declarative

interface based on SQL. Incremental queries are those which
update their results by combining newly arrived data with
previously generated results rather than re-computing them
from scratch (see Sec. III-A for more details). This enables
efficient processing of two interesting groups of queries.
First, aggregated variables can be kept for the elements of
the monitored set, e.g., the number of bytes uploaded and
downloaded by each client over a sliding window of time.
Second, a set of items can be monitored over time by looking
at the last state plus the new data, e.g., monitoring the set
of all server IP addresses that are accessed within a sliding
window of time such as in the last two weeks.
• In contrast to many other systems, DBStream does not

change the query processing engine. Instead, queries over data
streams are evaluated as repeated invocations of a process
that consumes a batch of newly arrived data and combines
them with the previous result to come up with the new result.
Therefore, DBStream is able to reuse the full functionality of

the underlying DBMS, including its query processing engine
and query optimizer.

A. Continuous Execution Language (CEL)

In this section we describe the user and application interface
to DBStream, based on SQL, to define rolling analytics. We
give a high-level overview of CEL using examples from the
networking domain. Let us assume we have a stream of data
coming from a router. It sends one row per minute and per TCP
flow1 with information about the uploaded and downloaded
bytes typical for NetFlow [14] compliant routers. The schema
of input data is thus known. We are interested in how many
bytes are uploaded and downloaded per hour on that link. In
CEL, this can be expressed as the following job:

<job inputs="A (window 60min)"
output="B"

schema="serial_time int4, total_download int8,
total_upload int8">

<query>
select _STARTTS, sum(download),

sum(upload) from A group by _STARTTS
</query></job>

The inputs attribute defines the input window and the
output attribute defines the destination for the result. Here,
a 60-minute window over A is specified, meaning that for
each new hour of data in A, the query specified in the query
element will run and its results will be appended to table B.
DBStream supports all SQL queries that are supported by the
underlying DBMS, which is PostgreSQL at the moment. In
this example, the query sums up the uploaded and downloaded
bytes for each hour. The query includes a “from A” statement,
which does not actually read all of A, only the window of
A that was specified in the inputs statement (i.e., the most
recent 60 minutes). The schema of the output stream B is
defined using the schema statement, for which the first field
must be a timestamp called serial time. In the above example,
the timestamp field is the start time of a window, denoted by
_STARTTS.

Fig. 1 illustrates the supported window definitions. For each
job, one window is defined to be the primary window and is
marked with the primary keyword. After a job instance is
done, the state of the job is shifted by the size of the primary
window. As soon as there is a full new primary input window,
the next instance of the job is executed. The other important
keyword is delay, which shifts a window into the past by a
given amount of time.

Part A) of Fig. 1 shows the simplest window definition,
similar to the previous example. Only a single window exists,
which is also the primary window. Therefore, the defined query
is executed for every minute of the input stream. In Part
B), we have two windows. Every three minutes (the length

1Although more complex definitions can be used, here a flow can be
identified by the 5-tuple: source IP, destination IP, source port destination
port and IP protocol.

t
Stream A window 1min

primary

nowA) Single window Query

t
Stream A

Stream B
window 3min

primary

window 3min

nowB) Two window query

t
Stream A

window 1min
primary

Stream A window 3min

nowC) Sliding window query

Stream A
window 1min

delay 1min

t
Stream A

window 1min
primary

nowD) Incremental query

Fig. 1. Multiple input window definitions possible in DBStream’s Continuous
Execution Language (CEL).

of the primary window), the query for this job reads data
from each of the two input windows. Part C) shows how to
independently define the window length and the frequency of
query execution. The primary window is one minute long,
meaning that the query is executed every minute. However,
the query can access the last three minutes of the same
stream A through the other window, enabling many interesting
kinds of queries, such as a rolling average, sum or any other
aggregation. Part D) explains the delay keyword. Here, the
same input stream is referenced twice, but for the second
window, a delay of one minute is specified. As a result, the
query can read data from both the current minute (window
1min) and the previous minute (window 1min delay 1min) of
stream A. This makes complex incremental queries possible,
such as a rolling/moving set or median, by being able to
reference the previous state of the data and compare it with
the current state.

The main difference between DBStream’s CEL and stream
processing languages is the handling and definition of
windows and sliding windows in particular. For example,
in StreamBase [15], windows are specified as [SIZE x
ADVANCE y TIME], where x defines the length of the
window and y the query execution frequency. In CEL, the
primary keyword corresponds to ADVANCE, but is specified
only once regardless of the number of inputs to make it clear
how often to re-compute the query.

Although Fig.1 shows several possible window types, it still
covers only a small fraction of possible window definitions.
Since data in DBStream are always stored on non-volatile
storage, windows can reference past history. It is possible to
reference data from one week or even one month ago, e.g., to
compare the current state of the network with the past.

B. Examples of Rolling Analytics

We now give two more complex incremental job examples,
detailing how rolling analytics can be implemented in CEL.

We start with a rolling window average shown below, in
which every minute, we calculate the average uploaded and
downloaded bytes over the last three minutes.

<job inputs="A (window 1min primary) as A,
A (window 3min) as A2"

output="B"
schema="serial_time int4, avg_download float8,
avg_upload float8">

<query>
select _STARTTS, avg(download),
avg(upload) from A2

</query></job>

The first window A is the primary window that denotes the
query execution frequency. The second window, A2, is used
to run the actual average calculation. Fig. 2(a) illustrates how
the windows over stream A correspond to results appended to
B; the output of the above job is a sequence of new results
generated every minute, all of which are stored in B and
identified by their _STARTTS (window start time) timestamps.

There is a simple performance optimization that can easily
be expressed in CEL: we can pre-aggregate each minute of
the data in A using one query, and then write a second query
to add up the three most recently pre-aggregated windows and
compute the three-minute aggregates.

In the next example, we compute the distinct set of IP
addresses active in the last hour, updated every minute. A naive
approach is to always scan the last hour of data from scratch
whenever the result is to be updated. A more efficient approach
is to keep an intermediate state of distinct IP addresses of the
last hour in memory. Then, we can compute the distinct set
of IP addresses for the current minute as the union of the set
of IP addresses from the current minute and those from the
last 59 minutes. However, since state is kept in memory, it
must be re-built in case of a system crash. In CEL, we can
implement the latter via a job that uses its own past output as
input. This approach is not only more efficient, but also, as
we show in Sec. IV-C, it is more fault-tolerant since the state
of the computation is actually stored in the output table.

The corresponding CEL job definition is shown below. The
input is a stream C, which contains, among other things, the
IP addresses of active terminals. We now want to transform
stream C into a new stream D containing, for each minute, the
distinct set of active IP addresses in the last hour. To achieve
this, we first add a new timestamp last to D recording the
time of the last activity of a IP address. Now, from the current
minute of C, we produce a new tuple for each distinct IP
address and we set the last activity to the start of the current
window using the _STARTTS keyword. From the previous
minute of D we select those IP addresses which where active
less than one hour ago. We then combine those two results
using the SQL UNION ALL operator and select for each

-4 now

Stream A
1min

Stream A
1min

Stream A
1min

Stream A
1min

Stream B
1min

Stream B
1min

Stream B
1min

Stream B
1min

-3 -2 -1

Window
3 Window

1

Window
3 Window

1

Window
3 Window

1

Window
3 Window

1

(a) Rolling average over the last 3 minutes, updated every minute.

-4 now

Stream C
1min

Stream C
1min

Stream C
1min

Stream C
1min

Stream D
1min

Stream D
1min

Stream D
1min

Stream D
1min

-3 -2 -1

Window 1
delay 1

Window 1
delay 1

Window 1
delay 1

Window 1Window 1 Window 1 Window 1

(b) Complex data processing flow for an incremental query.

Fig. 2. Data flow of two example incremental jobs; the windows of the current task are marked in black.

distinct IP address, the current time, the maximum value of
the last activity timestamp, and the IP address itself. By using
this feedback loop, we can efficiently compute the set of IP
addresses active in the last hour per minute, without keeping
any additional state information. The windows used in this
computation are visualized in Fig. 2(b).

<job inputs="C (window 1min primary),
D (window 1min delay 1min)"

output="D"
schema="serial_time int4, last int4, ip inet">

<query>
select _STARTTS, max(last), ip
from (
select _STARTTS as last, ip
from C
group by 1,2
union all

select last, ip
from D where last <= _STARTTS-60
group by 1,2)

group by 1,3
</query></job>

IV. PERFORMANCE ANALYSIS

We now compare DBStream with respect to the state-of-
the-art Big Data framework Spark. Spark is an open-source
MapReduce solution proposed by the UC Berkley Amplab.
It exploits Resilient Distributed Datasets (RDDs), i.e., a dis-
tributed memory data abstraction which allows in-memory
operations on large clusters in a fault-tolerant manner [17].
This approach has been demonstrated to be particurlarly
efficient [3] enabling both iterative and interactive applications
in Scala, Java or Python. Spark does not strictly require
the presence of Hadoop cluster to run. In fact, despite the
system is commonly used in combination with Hadoop and
HDFS, it also offers a simple, standalone resource manager to
coordinate the activities of different hosts and supports direct
access to the Linux file system.

A recent evolution of Spark is Spark Streaming [18]. Differ-
ently from Spark, which is a pure batch processing solution,

Spark Streaming enables real time analysis through processing
of short batches. Of particular interest are the system primi-
tives for defining sliding windows and developing incremental
queries similarly to what was discussed in Sec. III-A. However,
Spark Streaming targets mainly real time analysis scenarios
and offers limited support for processing historical data, which
is also required by NTMA. Recent discussions on the Spark
Streaming mailing list suggest that some workarounds may
be possible2. However, we were unable to implement these
and therefore we leave the evaluation of Spark Streaming for
rolling analytics as future work.

A. System Setup and Datasets

We installed DBStream and Spark on a set of 11 machines
having the same hardware (6 core XEON E5 2640, 32 GB
of RAM and a 5 HD of 3TB each). One machine has been
dedicated to DBStream, recombining 4 of the available HDs
in a RAID10 and installing PostgreSQL v9.2.4 as a underlying
Database Management System (DBMS). The remaining 10
machines compose a production Hadoop that runs CDH 4.6
with Map Reduce v1 Job Tracker enabled. On the cluster we
also installed Spark v1.1.0 where we could only enable the
standalone resource manager3.

All machines are located within the same rack connected
through a 1Gb/s switch. The rack also contains a 40TB NAS
used to collect historical data. In particular, we use four 5 day-
long datasets, each collected at a different network Vantage
Point (VP) in a real ISP network between February 3 and
February 7, 2014. Each VP is instrumented with Tstat [7] to
produce per-flow text log files from monitoring the traffic of
more than 20,000 households. For the purpose of this work we
focus only on TCP traffic for which Tstat reports more than
100 network indexes and generates a new log file each hour.
Overall, each VP generated a dataset of about 160 GB of raw

2http://apache-spark-user-list.1001560.n3.nabble.com/
window-analysis-with-Spark-and-Spark-streaming-td8806.html#a9185

3Apparently, the implementation of Yarn provided in CDH 4.6 has some
incompatibilities with Spark. These seem be solved in CDH 5 providing
Yarn by default and a parcel for Spark v1.1.0. Unfortunately, testing such
a configuration requires an upgrade of the node operating systems, which
was not possible to do in our production environment.

data (i.e., about 5 times the memory available on each node)
for a total of about 640 GB (i.e., twice the memory available
on the whole cluster).

B. Benchmark Definition

We use a set of 7 jobs, representing daily operations
performed on a production Hadoop cluster we are considering.

J1: for every 10 minutes, i) map each destination IP address
to its organization name (orgname for short) through the Max-
mind Orgname database (www.maxmind.com/en/geoip2-isp),
and ii) for each Orgname found, compute aggregated traffic
statistics (min/max/average Round-Trip Time (RTT), num-
ber of distinct server IP addresses, total number of up-
loaded/downloaded bytes).

J2: for every hour, i) compute the orgname-IP mapping as in
J1, ii) filter all orgname’s related to the Akamai CDN, and iii)
compute some aggregated statistics (min/max/average RTT).

J3: for every hour, i) compute the orgname-IP mapping as
in J1, and ii) select the top 10 orgname having the highest
number of distinct IP addresses.

J4: for every hour, i) transform the destination IP address
into a /24 subnet, and ii) select the top 10 /24 subnets having
the highest number of flows.

J5: for every minute, for each source IP address, compute
the total number of uploaded/downloaded bytes and flows.

J6: for every minute, i) find the set of distinct destination
IP addresses, and ii) use it to update the set of IP addresses
that were active over the past 60 minutes.

J7: for every minute, i) compute the total
uploaded/downloaded bytes for each source IP address,
and ii) compute the average over the past 60 minutes.

Overall, these jobs define performance indexes related to
CDN (J1 to J4), statistics related to the monitored households
(J5), and two incremental queries (J6 and J7).

C. Benchmark implementation

Each analysis engine has different peculiarities, properties
and tuning options. Different implementations are therefore
possible for the defined benchmark. We define a possible im-
plementation that we consider reasonable, discussing possible
modifications that can affect performance.
DBStream benchmark: All queries are expressed in the
Continuous Execution Language (CEL). The fact that the
output of a job is stored on disk and can be used as input
to another job is exploited to achieve better performance.
Fig. 3 shows the resulting job dependencies, where the nodes
represent the jobs and an arrow from e.g. job J1 to J2 means
that the output of J1 is used as input to J2. The number next
to an arrow indicates the size of the input window in minutes.
For instance, J4 and J5 are implemented in a single step using
a input window of 60 minutes of imported data. Conversely,
J6 is implemented using an intermediate step J6 prepare
which pre-aggregates the set of active IP addresses per minute
in windows of 10 minutes of imported data. Now, J6 can
utilize the output of J6 prepare and combine it with its
own past as output, as indicated by the reflexive arrow starting

Import

J1

J4 J5 J6 prepare

J1 prepare

J2 J3

J7 J6

160

10

60 60 10

110

10

1

6060

Fig. 3. Job inter-dependencies for the DBStream implementation. Nodes
represent jobs and arrows precedence constraints.

from and going back into J6, to compute the final result.
Please note that each minute of J6 contains the active IP
addresses of the last 60 minutes along with a timestamp
indicating when those IPs was last active. In each one minute
step of J6 this timestamp is checked and IPs which were last
active longer than 60 minutes ago are removed.
Spark benchmark: Each job is implemented as a separate
Spark application using Scala. Each application receives a list
of files located on HDFS as input and processes them sequen-
tially. The first 5 jobs have a straightforward implementation,
since the do not present strong data dependencies and data are
already split per hour. The two incremental queries, J6 and
J7, instead are more complex to implement. In fact, we need
to implement the logic to store and update the data in windows.
We consider a simple approach, creating an RDD collecting
per-minute data bins on which we then loop to compose
60 minute windows. Our implementation processes data in a
stream of hourly batches, where the results are available after
each the processing for each batch has finished.

D. Results

Fig. 4 shows the results of running Spark on our cluster
of 10 machines. The labels “1VP” and “4VP” correspond
to the number of vantage points collecting data, i.e., 4VP
corresponds to four times as much data as 1VP. For the jobs
J1 to J5, Spark offers excellent performance and the whole
cluster is perfectly able to parallelize processing, leading to
very good results. However, jobs J6 and J7 do not scale well.
J6 in particular cannot be parallelized very well, since data
have to be synchronized and merged in one single location
after each minute. We also tried different implementations
of J6 using more complex strategies and higher number of
map/reduce tasks aiming to utilize further cluster resources,
which turned out to be even less performing. Also for J7, the
computation has to be synchronized for every minute, but here
the amount of data is smaller since the output for every minute
is only a single number. This might be the reason why J7

Import J1 J2 J3 J4 J5 J6 J7
0

50
100
150
200
250
300
350
400

Ex
ec

ut
io

n
Ti

m
e

[m
in

ut
es

] Spark, 10 node, 1 VP
Spark, 10 node, 2 VP
Spark, 10 node, 4 VP
Spark, 1 node, 1 VP

Fig. 4. Performance numbers for different setups using Spark.

1 VP 2 VPs 4 VPs
0

100

200

300

400

500

600

Ex
ec

ut
io

n
Ti

m
e

[m
in

ut
es

]

Spark, 10 nodes, J1J7
Spark, 10 nodes, Import + J1J7
DBStream, 1 node, Import + J1J7

Fig. 5. Scalability comparison of DBStream and Spark.

does show a better performance than J6. Whereas we can not
exclude the possibility of more performance implementation
in Spark for J6 and J7, these results show that obtaining
good performance with Spark in such scenarios is not at all
straightforward. Typical optimization used for such a problem
such as skip lists or complex tree structures are hard to
parallelize and would not be a fair comparison to a declarative
language like CEL.

In Fig. 5, we compare the performance of Spark and
DBStream. In DBStream, the total execution time is measured
from the start of the import of the first hour of data until
all jobs finished processing the last hour of data. For Spark,
all jobs were started at the same time in parallel. We report
the total execution time of the job finishing last, which was
J6 in this experiment. Since for Spark, data import and data
processing is separated, we also report the solve job processing
time without data import.

For DBStream, the execution time increases nearly linearly
with the number of VPs and indicating a linear scalability,
at least up to the used amount of VPs.In contrast, for Spark
the main bottleneck is the execution time of J6. The total
execution time does not increase much with more VPs, since
multiple instances of J6 run in parallel. Therefore, Spark is
able to utilize its parallel nature better, the more jobs are
running, whereas DBStream shows better performance for
incremental jobs. Notably, for the 1 VP case, Spark takes 2.6
times longer to finish importing and processing the data.

V. CONCLUSION

In this paper, we presented the DBStream system for
rolling big data analysis. We focused on the way in which
DBStream allows a declarative specification of incremental
queries, including those which access their previous results in
order to compute new results. When tested with real network
monitoring datasets and workloads, a single DBStream node
performed as well as a cluster of ten Spark nodes due to the
performance advantages of incremental processing.

There are several interesting directions for future work. One
is to develop DBStream on top of a parallel database engine
such as Greenplum so that it can scale-out as well as or better
than Spark on cluster implementations. Another option is to
use Spark (in particular, its latest version that can directly
execute SQL queries) as DBStream’s processing engine, and
compare the two architectures. Finally, since network monitor-
ing (and other monitoring applications) often involves complex
machine learning that cannot be easily expressed in SQL, we
will investigate how to implement rolling machine learning
operators in DBStream.

REFERENCES

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, M. Tatbul, S. Zdonik, “Aurora: a new model
and architecture for data stream management”, THe VLDB Journal
12(2):120-139 (2003).

[2] A. Bär, P. Casas, L. Golab, A. Finamore, “DBStream: an Online Aggre-
gation, Filtering and Processing System for Network Traffic Monitoring”,
in IWCMC 2014 - 5th TRAC Workshop, 2014.

[3] Berkeley AMPLab, “Big Data Benchmark”, https://amplab.cs.berkeley.
edu/benchmark/, 2014.

[4] P. Bhatotia, A. Wieder, R. Rodrigues, U. Acar, R. Pasquin, “Incoop:
MapReduce for Incremental Computations”, in SOCC 2011, 1-14.

[5] K. Borders, J. Springer, M. Burnside, “Chimera: A Declarative Language
for Streaming Network Traffic Analysis”, in USENIX Security Symp.,
2012.

[6] C. Cranor, T. Johnson, O. Spatscheck, V. Shkapenyuk, “Gigascope: a
stream database for network applications”, in SIGMOD 2003, 647-651.

[7] A. Finamore, M. Mellia, M. Meo, M. Munafo, P. D. Torino, D. Rossi,
“Experiences of internet traffic monitoring with tstat”. IEEE Network
25(3): 8-14 (2011)

[8] L. Golab, T. Johnson, J. S. Seidel, V. Shkapenyuk, “Stream Warehousing
with DataDepot”, in SIGMOD 2009, 847-854.

[9] L. Golab, T. Johnson, S. Sen, J. Yates, “A sequence-oriented stream
warehouse paradigm for network monitoring applications”, in PAM
2012, 53-63.

[10] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, A. Doan, “Muppet:
MapReduce-style processing of fast data”, PVLDB 5(12):1814-1825,
2012.

[11] Y. Lee, Y. Lee, “Toward Scalable Internet Traffic Measurement and
Analysis with Hadoop”, in SIGCOMM Comput. Commun. Rev. (CCR)
43(1):5-13, 2012.

[12] B. Li, E. Mazur, Y. Diao, A. McGregor, P. Shenoy, “SCALLA: A
platform for scalable one-pass analytics using MapReduce”, ACM Trans-
actions on Database Systems 37(4):1-43, 2012.

[13] E. Liarou, S. Idreos, S. Manegold, M. Kersten, “MonetDB/DataCell:
online analytics in a streaming column-store”, PVLDB 5(12):1910-1913,
2012.

[14] RFC 3954 - Cisco Systems NetFlow Services Export Version 9”, 2004.
[15] StreamBase. “Streambase: Real-time, low latency data processing with

a stream processing engine.” http://www.streambase.com, 2014.
[16] T. White, “Hadoop: the definitive guide”, O’Reilly, 2012.
[17] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, I. Stoica, “Spark:

Cluster Computing with Working Sets”, in HotCloud workshop, 2010.
[18] M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica, “Discretized Streams:

An Efficient and Fault-Tolerant Model for Stream Processing on Large
Clusters“, in HotCloud workshop, 2012.

