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Abstract 

 

In recent years, considerable attention has been given to chitosan (CS)-based 

biomaterials and their applications in the field of soft tissue engineering (TE). CS is a 

glycosaminoglycan derived from chitin, the primary structural polymer in crustacean 

exoskeletons. CS is biocompatible, biodegradable, easily formed into various structures 

(i.e. sponges, nanofibers and films) under mild processing conditions and can be 

chemically modified through graft copolymerization and crosslinking. However, the rapid 

degradation of CS and its low mechanical strength are concerns that may limit its use in 

clinical applications. 

In the first part of the thesis, different non cytotoxic crosslinkers were used aiming at 

improving the structural properties of CS. Genipin (GP), γ-

glycidoxypropyltrimethoxysilane (GPTMS), dibasic sodium phosphate (DSP) were selected 

as biocompatible CS crosslinkers as reported in literature. After a preliminary physico-

chemical and mechanical characterization, the proper crosslinking compounds were 

selected for the development of different typologies of CS scaffolds for both human and 

veterinary applications. 

CS- based scaffolds were developed as nerve guidance channels (NGCs)  and internal 

fillers fabrication to promote peripheral nerve regeneration in humans. Two CS based 

hollow NGCs were prepared and tested in vitro and in vivo (coded as CS flat membrane 

and bi-layer CS membrane) and a CS based nanostructured internal filler was optimized 

and characterized in vitro. 

i. CS flat membranes were prepared by solvent casting. According to the results 

obtained in the first part of the thesis, DSP alone (CS/DSP) or in association with the 

GPTMS (CS/GPTMS_DSP) were used as crosslinkers. CS crosslinked membranes 

showed permeation to nutrients and did not exert any cytotoxic effect on RT4-D6P2T. 

The higher mechanical stability of CS/GPTMS_DSP under wet state allowed to confirm 

the RT4-D6P2T attachment and proliferation as well as the neurite outgrowth of dorsal 

root ganglia (DRG) on CS substrates. Before in vivo implantation in rats, 

CS/GPTMS_DSP and CS/DSP membranes were easily rolled up to form a NGC. Then, 

membranes were used to bridge median nerve defects in rats. After 12 week post-

operative CS/GPTMS_DSP tubes were found to be detached from the distal suturing 

site and functional recovery did not occurred. On the other hand, crushed nerve 

encircled with CS/DSP membranes, allowed nerve fibre regeneration and functional 

recovery, showing similar results to autografts. 

ii. Bi-layer CS membranes were developed using a two-step coating technique. CS/DSP 

and CS/GPTMS_DSP flat membranes were combined to produce scaffold structures 

with good biocompatibility in the inner layer (CS/DSP) and with the desired mechanical 

strength imparted by the outer (CS/GPTMS_DSP, GPTMS 25% wt./wt.). Gradual water 



xvii 
 

uptake and permeation to small molecules was observed compared to single layers. 

From in vivo tests, median nerves treated with bi-layer tubes displayed regenerated 

and aligned fibres at the injury site. 

iii. CS crosslinked electrospun nanofibres were fabricated by electrospinning solutions 

containing CS, polyethylene oxide (PEO), and dimethylsulphoxide (DMSO). PEO and 

DMSO were introduced to allow the spinnability of CS solutions at high polymer 

concentration with controllable fiber size and increase fiber yields by relaxing CS chain 

entanglement. Optimization of the process and solution parameters allowed to obtain 

CS nanofibres with size of 128±17 nm. To increase CS stability in aqueous media, DSP 

was used as crosslinker After DSP crosslinking fibre size decreased to 109±17 nm while 

an increase in the mechanical strength (E, from 63±10 MPa to 113±8 MPa) was 

observed compared to uncrosslinked nanofibrous matrices. 

In the third part of the thesis, CS porous membranes with improved antimicrobial 

properties were prepared for veterinary application. The developed scaffolds were 

fabricated by freeze-drying to promote the wound healing process and to reduce the 

bacterial proliferation in chelonian shell injury site. Different ratios of silver nanoparticles 

(AgNPs, 5%, 10% and 15% wt. /wt.) and gentamicin sulphate (GS, 3.5 mg/ml) were loaded 

into the CS/GPTMS_DSP membranes to impart the proper antibacterial properties and to 

favor drug release avoiding the risk of systemic toxicity. After a preliminary in vitro 

characterization, CS/GPTMS_DSP loaded with AgNPs at a concentration of 10% wt./wt 

(CS/GPTMS_DSP_AgNP10) was selected as ideal candidate for this application field. GS 

release profile from CS/GPTMS_DSP_GS evidenced high burst release of the antibiotics in 

the first day (about 70%). Finally, GS and AgNPs (10 % wt./wt.) effect on bacterial 

inhibition was evaluated and confirmed against Gram+ and Gram-. 

The results reported in this thesis work demonstrate that CS is a promising candidate for 

applications in human and veterinary soft TE. Mechanical and physico-chemical 

properties of CS scaffolds can be tuned by using different crosslinking methods. By the in 

vitro characterization, GPTMS and DSP were selected as ideal compounds to the 

development of scaffolds for peripheral nerve regeneration (in human) and wound 

healing (in animals). Four different morphologies (3 for peripheral nerve regeneration and 

1 for wound healing application) were obtained by varying the fabrication methods and 

the final composition. All membranes were found to satisfy the requirements for the 

application of interest. CS based membranes developed for peripheral nerve regeneration 

were found to be biocompatible, and successful functional recovery was observed in case 

of CS/DSP and bi-layer membranes. Porous membranes with improved antimicrobial 

properties were prepared to enhance wound healing in chelonians and were found to be 

effective against a broad spectrum of bacteria following the release of two different 

investigated antimicrobial agents (AgNPs and GS). 
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Executive Summary 

 

Repair and regeneration of tissues and organs using biomaterials, cells and/or growth 

factors is the ultimate goal of tissue engineers. One of the main challenges in tissue 

regeneration is to closely mimic the structures and properties of native tissues. In this 

context, in recent years, considerable attention has been given to chitosan based 

materials and their applications in the field of soft tissue engineering. Chitosan (CS) is a 

natural polymer from renewable resources, obtained from shell of shellfish that exhibits 

outstanding properties such as a marked biocompatibility, biodegradability and 

antibacterial activity. Due to these promising biological features and its easy chemical 

modification and processability into 2D and 3D scaffolds (i.e. gel, films, nanofibers, 

sponges, nanoparticles), CS has been investigated for wound dressing, drug delivery 

system and soft tissue engineering among which cartilage, liver, peripheral nerve and 

vascular field applications [1]. CS matrices present few drawbacks that limit their use in 

clinical applications such as low mechanical strength and low structural integrity under 

physiological condition. The improvement of CS properties can be achieved by modifying 

CS with different crosslinking agents (i.e. glutaraldehyde, γ-

glycidoxypropyltrimethoxysilane, tripolyphosphate, genipin) [2-5] or by combining the 

natural polymer to synthetic ones (i.e. poly(ε-capolactone), poly(vinyl alcohol), 

polyethylenoxide) [6, 7]. Blending with synthetic polymers can introduce a residue of 

solvents and other compounds/impurities that can damage the natural polymers and 

consequently affect cell growth and proliferation. For this reason, in the first part of the 

thesis, CS was crosslinked using different ionic and covalent compounds with the aim to 

provide the basis for the selection of a crosslinking strategy able to impart the required 

properties to CS membranes in the design of a biomaterial. CS crosslinked flat 

membranes were prepared via solvent casting following the addition of different 

crosslinking agents: genipin (GP), γ-glycidoxypropyltrimethoxysilane (GPTMS), dibasic 

sodium phosphate (DSP) and a combination of GPTMS and DSP (GPTMS_DSP). The three 

crosslinkers were selected since literature data reported interesting biological properties 

using these agents compared to others (epoxy compounds, aldehydes and 

carbodiimides). Although many works reported the use of crosslinked CS membranes, a 

complete characterization and comparison of CS membranes crosslinked with different 

biocompatible agents is still lacking. 

A chemico-physical and mechanical characterization of CS crosslinked samples (CS/GP, 

CS/GPTMS, CS/DSP and CS/GPTMS_DSP) was performed. CS membranes showed that the 

presence of GP or GPTMS did not affect the surface wettability but improved the 

mechanical resistance and the stability of CS samples in aqueous environment. On the 

contrary, DSP addition contributed to increase the hydrophilicity, the water uptake and 

the flexibility of CS. The simultaneous use of GPTMS and DSP allowed to combine the 
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features obtained both from GPTMS and DSP crosslinkers. From the obtained results, the 

proper crosslinking agents were selected for the development of different typologies of 

CS scaffolds for both human and veterinary applications in soft tissue engineering (Fig. 1). 

In the second part of the thesis, biocompatible and biodegradable innovative devices 

based on CS were developed to promote peripheral nerve regeneration in humans. 

Peripheral nerve regeneration is a challenging scientific field with relevant clinical and 

socioeconomic implications, since nerve injuries may lead to a lifelong function 

impairment and pain that may seriously compromise the quality of life. Transected 

peripheral nerve fibres are able to regenerate reaching functional recovery when an 

appropriate microenvironment is provided. Unfortunately, severe trauma often cause 

abundant substance loss and inherent regeneration is not possible; therefore, alternative 

surgical techniques should be used to bridge the proximal and distal stumps. Modern 

bioengineering and TE approaches are currently focused on the development of devices 

that provide an appropriate microenvironment to support and enhance the regeneration 

process [8]. Nerve guidance channels (NGCs) are a promising growth permissive substrate 

having nanostructured topography, haptotactic cues (ECM proteins), chemotactic cues 

(neurotrophic factors) that support Schwann cells or stem cells. Advances in engineered 

NGCs are directed to mimic the properties of natural tissues using multifunctional 

materials and/or conduits that can solve the limitations associated with traditional 

surgical approaches (short gap length, lay regeneration time, possible neuroma 

formation). Among the various biomaterials investigated, CS seems to be an ideal 

candidate for nerve regeneration due to its similarity in the molecular structure to GAGs 

and its neuroprotective properties. 

For this purpose, three different CS crosslinked membranes were developed to favor 

Schwann cells adhesion and proliferation as well as nerve functional recovery. Different 

morphologies were obtained by varying the fabrication methods and the final 

composition. Two alternative for CS based hollow nerve guide channels were developed 

and tested in vitro and in vivo (coded as CS flat membrane and bi-layer CS membrane) 

while a CS based nanostructured internal filler was optimized and characterized in vitro. 

CS flat membranes were prepared using DSP alone (CS/DSP) or in association with the 

GPTMS (CS/GPTMS_DSP) as crosslinkers. The constituent ratio of crosslinking agents and 

CS was selected in the first part of the thesis to obtain a composite material having both 

proper mechanical properties and good biocompatibility. CS/DSP and CS/GPTMS_DSP flat 

membranes were produced by solvent casting and they could be easily enwrapped to 

form a NGC in wet state (Fig. 1A). The developed membranes allowed nutrient 

permeation and were found not to exert any cytotoxic effect on RT4-D6P2T. The higher 

mechanical stability of CS/GPTMS_DSP under physiological condition allowed to evaluate 

and confirmed the RT4-D6P2T adhesion, proliferation and function on the biomaterial. 

Moreover, CS/GPTMS_DSP showed to direct RT4-D6P2T attachment resulting in 

characteristic cell morphology typical of SCs, and to support the neurite outgrowth of 

dorsal root ganglia (DRG) cultured on this substrate. The easily manipulation and 
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suturability of both the developed conduits allowed to perform in vivo tests. Membranes 

were used for bridge implantation across 10-mm long median nerve defects in rats, and 

the outcome of peripheral nerve repair at 12 weeks post-implantation was evaluated by a 

combination of electrophysiological assessment, immunohistochemical and histological 

investigation. During in vivo tests CS/GPTMS_DSP tubes were detached from the distal 

suturing site and functional recovery did not occurred as confirmed by confocal laser 

microscopy which displayed poor axonal regeneration and irregular orientation. On the 

other hand, crushed nerve encircled with CS/DSP membranes, allowed nerve fibre 

regeneration and functional recovery, with effects approaching those elicited by nerve 

autografts, which are generally considered as the gold standard for treating large 

peripheral nerve defects.  

Bi-layer CS membranes were developed by combining two kinds of CS flat 

membranes. They were crosslinked with different agents to produce scaffold structures 

with good biocompatibility in the inner layer and with the desired mechanical strength 

(following the addition of GPTMS) imparted by the outer one. In detail, CS/DSP and 

CS/GPTMS_DSP were selected for the realization of the internal and external layer, 

respectively. The amount of GPTMS was lowered from 50 wt.% to 25wt.% to allow the 

rolling up, suturability of bi-layer membranes and to reduce the risk of distal detachment 

(Fig. 1B). The developed membranes were prepared by a two-step coating technique 

method, which allowed to control the wall thickness and to achieve a tight connection 

between the two distinct layers. The single layers interacted during the double layer 

fabrication process as confirmed physico-chemical analysis. The preliminary 

characterization of the developed membranes showed an increase in the surface 

wettability of the inner layer (41°±9°) and improved mechanical properties compared to 

CS/DSP, associated to the presence of GPTMS in the external layer. Bi-layer samples also 

exhibited slower swelling rate and permeation to model molecules (Stokes radius around 

14 Å) compared to single layer inferring that the developed scaffold may be suitable for 

slow release of GFs and drug delivery application. Finally, preliminary in vivo tests were 

carried out on the bi-layer fat membranes for bridge implantation across 10-mm long 

median nerve defects in rats. After 12 weeks post-operative, nerves treated with bi-layer 

tubes displayed regenerated and aligned fibers at the injury site through light and 

transmission electron microscopy and observation as well as immunohistochemistry 

analysis (Fig. 2). 

CS crosslinked electrospun nanofibres mimicking the complex biological structures of 

the natural extracellular matrix (ECM) were prepared from acetic acid solutions. CS 

nanofibres were fabricated by electrospinning solutions containing CS, polyethylene oxide 

(PEO), and dimethylsulphoxide (DMSO). PEO is a biocompatible synthetic polymer and 

was used to allow the spinnability of CS solutions at high polymer concentration with 

controllable fiber size; DMSO was introduced into the CS/PEO solution as a co-solvent to 

improve processing conditions and increase fiber yields by relaxing CS chain 
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entanglement. Optimization of the process and solution parameters allowed to obtain CS 

nanofibres with size around 130 nm. To increase CS stability in aqueous media, DSP was 

used as crosslinker (Fig. 1C). DSP crosslinking did not modify the nanofibre matrix 

morphology but decreased fibre size from 128±17 nm to and 109±17 nm, respectively. 

The presence of DSP increased the mechanical strength (E, from 63±10 MPa to 113±8 

MPa) and the structural integrity of CS crosslinked nanofibres compared to uncrosslinked 

nanofibrous matrices. 

In the third part of the thesis, the possibility to apply CS as biomaterial for antibacterial 

membranes for veterinary application was investigated. CS membranes were fabricated 

with the aim to promote wound healing in chelonians by reducing the bacterial 

proliferation at the wound site.  

Skin TE is an emerging field in veterinary application: the development of biodegradable 

membranes apart from their fundamental protective functions could be conductive in 

wound regeneration, and would be able to shorten the healing process of the epidermis 

and skin of animals. Moreover, application of dressing materials based on natural 

products with improved antimicrobial properties could stimulate the healing processes. 

Consequently the damaged skin will be regenerated, limiting the systemic use of 

antibiotics. Antibiotic side-effects often result in wrong action or even damage to the 

patient’s kidney and liver, and decrease of the bacterial proliferation at the wound site. In 

this thesis work, CS porous membranes with improved antimicrobial properties were 

fabricated by freeze-drying to promote the wound healing process and reduce the 

bacterial proliferation in injured chelonian shells. To increase CS mechanical properties 

and biocompatibility, GPTMS and DSP crosslinkers were added to the CS solution 

(CS/GPTMS_DSP). The constituent ratio of crosslinking agents and CS was selected 

according to the results of the first part of the thesis. Different ratios of silver 

nanoparticles (AgNPs, 5%, 10% and 15% wt./wt. respect to the total amount of CS) and 

gentamicin sulphate (GS, 3.5 mg/ml dosage selected according to the conventional 

veterinary treatment for chelonian carapace healing) were incorporated into the CS 

matrices to impart the proper antibacterial properties and guarantee drug controlled 

release in time and in space avoiding the risk of systemic toxicity. Mechanical 

characterization performed on samples showed that the incorporation of AgNPs or GS 

enhanced the stiffness of CS/GPTMS_DSP samples. Moreover, a strict correlation was 

observed between the Young modulus and the amount of AgNPs incorporated into the 

membranes: E increased as the AgNPs concentration shifted from 5% wt. to 15 wt.%. The 

high swelling degree was observed for all samples loaded with the antimicrobial agent 

reaching final values of about 1200-1300 % and 950% for AgNPs and GS loaded 

membranes, after 24 hours of incubation in physiological solution, respectively. The 

incorporation of the antimicrobial agents into CS/GPTMS_DSP affected the surface 

morphologies of porous membranes: pore occlusion on the surface of CS based 

membranes containing AgNPs was detected, by increasing the amount of AgNPs. For this 

reason, CS/GPTMS_DSP loaded with AgNPs at a concentration of 10% wt./wt 
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(CS/GPTMS_DSP_AgNP10) was selected as the ideal candidate for this application. GS 

release profile from CS/GPTMS_DSP loaded with the antibiotics evidenced a high burst 

release of the antibiotics in the first 24 hours (about 70% with respect to the GS loaded 

into the membranes), followed by a gradual release at a decreasing rate over time. 

Finally, the effect of GS and AgNPs (10 % wt./wt., optimized concentration) on bacterial 

inhibition was evaluated. The presence of either AgNPs or GS improved the antimicrobial 

activity of CS based porous membranes. GS loaded samples were highly efficient against 

E. coli, S. aureus and E. fecalis strains while CS/GPTMS_DSP_AgNP10 increased the 

inhibitory effect against P. aeruginosa and P. mirabilis bacteria compared to control and 

GS loaded samples (Fig. 3). 

 

Fig. 1 Different morphologies of CS based scaffolds for peripheral nerve regeneration (A, B, C) and 
wound healing (D). Image of CS/DSP (A) and bi-layer membranes (B) before in vivo implantation; 
B) SEM image of CS crosslinked nanofibres; D) SEM image of the fracture section of 
CS/GPTMS_DSP porous membranes loaded with GS. 

 

Fig. 2.Peripheral nerve regeneration using bi-layer membranes after 12 weeks post-operative. A) 
Bi-layer membrane after implantation. B) Electron microscope images of regenerated nerves and 
C) neurofilament staining on longitudinal sections confirmed peripheral nerve regeneration by the 
formation of aligned and oriented fibres form the proximal to the distal stump. 

 

Fig. 3. Kinetics of growth inhibition of S. Aureus, E. Coli, E. Fecalis, P. aeruginosa and P. mirabilis in 

presence CS/GPTMS_DSP, CS/GPTMS_DSP_GS and CS/GPTMS_DSP_AgNP10. AgNPs or GS loaded 

into CS porous membranes increased the antibacterial activity against five different bacteria 

strains. 
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DMEM: Dulbecco’s modified Eagle’s medium 
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Introduction to the Thesis Format 
 

This thesis is divided into V sections, containing globally 9 chapters (5 of them describing 

the experimental work performed): the content of each section is summarized below. 

Section I (Chapter 1) gives an overview of the current state of the art of chitosan-based 

materials focusing on their application in soft tissue engineering, wound dressing and 

drug delivery. The section finishes with the definition of thesis goals. 

Section II (Chapter 2) describes the preparation and characterization of chitosan flat 

membranes using different crosslinking agents that are applied to improve chitosan 

mechanical strength and stability under physiological conditions. Chitosan films are 

obtained by solvent casting of the polymer solution crosslinked using genipin, γ-

glycidoxypropyltrimethoxysilane, dibasic sodium phosphate and a combination of γ-

glycidoxypropyltrimethoxysilane and dibasic sodium phosphate. The possibility to tailor 

the final properties of CS scaffolds through crosslinking is a key strategy to apply CS in 

different biomedical and tissue engineering applications optimizing the materials features 

to the biological and surgical requirements. 

Section III presents an overview of the current state of the art on peripheral nerve tissue 

engineering, focusing on all the scientific and technological aspects, which have been 

demonstrated to be crucial for a successful approach within this field, as well as some 

brief insights on future trends (Chapter 3). Section III is also focused on the preparation 

and characterization of flat membranes (Chapter 4), bi-layer membranes (Chapter 5) and 

nanofibrous structures (Chapter 6) that can be applied as artificial conduits or internal 

fillers for peripheral nerve repair after injuries. In Chapter 4, chitosan flat membranes are 

prepared by solvent casting of a chitosan solution crosslinked with dibasic sodium 

phosphate and a combination of γ-glycidoxypropyltrimethoxysilane and dibasic sodium 

phosphate. The flat membranes show permeability to nutrients and suitable biological 

properties, both in vitro and in vivo, for their use in clinical application. Chapter 5 

describes the fabrication of bi-layer membranes by solvent casting with the aim to 

produce scaffold structures with good biocompatibility in the inner layer and with the 

desired mechanical strength protruded by the outer. The multi-component membranes 

show a tight connection between the two layers, permeability to nutrients and promote 

peripheral nerve regeneration. In Chapter 6 crosslinked chitosan nanofibres are prepared 

by electrospinning to be used as internal filler to favor Schwann cells adhesion and 

proliferation. 

  



xxix 
 

Section IV describes the current state of the art on wound healing and skin tissue 

engineering, focusing the attention on advanced wound management dressings, their key 

advantages and shortcomings, which have been demonstrated to be crucial for a 

successful approach within this field (Chapter 7). Within this section, the preparation and 

characterization of chitosan porous membranes with improved antimicrobial properties 

for the treatment of chelonian shell injuries is described (Chapter 8). Porous membranes 

loaded with silver nanoparticles and gentamicin sulphate are prepared via freeze-drying 

technique with the aim to promote wound healing and to reduce the bacterial 

proliferation in chelonians after carapace lesions. The membranes loaded with 

gentamicin or silver nanoparticles show good bactericidal activity against both of Gram+ 

and Gram- bacteria. Preliminary in vivo tests are carried out on Testudo Hermanni for 

both the two typologies of membranes. 

Finally, Section V (Chapter 9) presents the main achievements of the work against the 

scope of the present thesis drawing general conclusions and indications for future work.  

 



 
 

 
 

Section I 
 

Chitosan as a biomaterial 
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Chapter 1 
Chitosan based biomaterials: state of the 

art and future perspective in soft tissue 

engineering regeneration and repair 
 

1.1 Introduction 

Tissue engineering (TE) is a multidisciplinary field that combines fundamental principles 

from materials engineering and molecular biology in efforts to solve critical medical 

problems, as tissue loss and organ failure. It involves the fundamental understanding of 

structure–function relationships in normal and pathological tissues and the development 

of biological substitutes that promote tissue repair and/or functional restoration. 

In this regenerative approach, the biomaterial scaffolds provide not only temporary three 

dimensional frameworks to form the designed tissues, but essentially acts as an artificial 

extracellular matrix to support cell growth and proliferation. In this regard, considerable 

attention has been given to chitosan (CS), because of its unique biological properties 

including biocompatibility, biodegradability to harmless products, nontoxicity, 

physiological antibacterial, haemostatic, antitumoral and anticholesteremic properties [1-

6]. Furthermore, due to the cationic nature of CS molecules and the abundant functional 

amine and hydroxyl groups on the molecular chain, CS has been selected as a promising 

biomaterial for carrying proteins and other active molecules through physical or chemical 

means [7]. These properties, find several biomedical applications in soft tissue 

engineering [8-10], wound healing [11-13] and as excipients for drug delivery [14-18]. 

CS can be easily processed into gels [15, 19, 20], membranes [21, 22] , nanofibers [16, 23-

27], nanoparticles [7, 17, 28-30], scaffolds [11, 31-33] and sponges [18, 34-36]. 

The first part of chapter 1 discusses the chemical and physical properties of CS, including 

the structure and extraction method, and structure-property relationship. Then, a second 

part of chapter 1 reviews the biological properties of CS that are fundamental properties 

for the applicability of CS as potential biomaterial for fabrication of biomedical devices. In 

the last part, the attention is focused on the use of CS based biomaterials and system for 

soft tissue engineering, wound dressing and drug delivery applications. 
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1.2 Chitosan: structure 

CS derives from chitin that is the second most abundant natural biopolymer commonly 

found in shells of marine crustaceans and cell walls of fungi. CS is a linear, semi-crystalline 

polysaccharide composed of (1→4)-2-acetamido-2-deoxy-b-D-glucan (N-acetyl D-

glucosamine) and (1→4)-2-amino-2-deoxyb- D-glucan (D-glucosamine) units [37]. It is 

obtained by partial deacetylation of chitin in the solid state under alkaline conditions 

(concentrated NaOH) or by enzymatic hydrolysis in the presence of particular enzymes, 

among of chitin deacetylase [38]. Because of the semicrystalline morphology of chitin, CS 

occurs as a copolymer of N-acetylglucosamine and N-glucosamine structural units 

randomly or block distributed throughout the biopolymer chain. Generally, CS has three 

types of reactive functional groups, an amino group (C2 position) as well as both primary 

and secondary hydroxyl groups (C3 and C6 positions) which allow CS modification such as 

graft copolymerization for the production of scaffolds for different TE applications. The 

structure of chitin and CS are showed in Fig. 1.1. The two most important structural 

parameters that affect the properties of CS are the deacetylation degree (DD) and 

molecular weight (Mw). The Mw of CS is dependent on the initial source material (shrimp, 

crab, fungi, etc.) and can decrease during deacetylation processes [39, 40]. The DD of CS 

is calculated as the ratio of D-glucosamine to the sum of D-glucosamine and N-acetyl D-

glucosamine and gives indication of the number of amino groups along the chains. To be 

named ‘‘chitosan’’, the deacetylated chitin should contain at least 60% of D-glucosamine 

residues [41] (which corresponds to a DD of 60). The deacetylation process of CS is based 

on processing of the native polymer with alkali: increasing time and temperature the 

highest DD (>90%) materials can be obtained [40, 42]. CS Mw can range from 300 to over 

1000 kDa with a DD from 30% to 95%. However, commercially available CS has an average 

Mw ranging from 3.8 to 20 kDa and a DD from 66 to 95%. CS is semi-crystalline and the 

degree of crystallinity is a function of the DD. Crystallinity is maximal for both chitin (i.e. 

0% deacetylated) and fully deacetylated (i.e. 100%) CS. The DD governs important 

physical-chemical properties of the CS polymer such as solubility and conformation, being 

critical for the effectiveness of various technological applications. The CS solubilization 

occurs in diluted acidic aqueous solutions (pH <6) by protonation of the –NH2 function on 

the C2 position of the D -glucosamine repeat unit, leading to the repulsion between 

positively charged macromolecular chains, allowing water molecules to diffuse into the 

macromolecular chains and conferring the cationic nature to the polymer [43]. Organic 

acids such as acetic, lactic, and formic acid and inorganic acid such as hydrochloric acid 

are generally used to dissolve CS. Due to its polycationic nature, CS possesses the ability 

to process scaffolds into various forms, such as gels [9, 15, 19], films [44-46] and fibers 

[23, 25, 26] and can form ionic complexes with a wide variety of natural or synthetic 

anionic species, such as metal ions [47-49], proteins [50, 51], DNA [52, 53] and some 

negatively charged synthetic polymers as poly(acrylic acid) [54, 55]. 
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Fig. 1.1. Chemical structure of chitin and CS. 

1.3 Structure-property relationship 

The physical and biological properties of CS are largely dependent on two main structural 

parameters: Mw and DD, among a few others. As discussed in paragraph 1.2, cristallinity 

depends on the DD and a maximum value of cristallinity is obtained for fully deacetylated 

CS (i.e., 100% deacetylated) because of higher chemical regularity and more flexible 

polymer chains. Cristallinity, DD and Mw affect CS solubility. Crystallinity and DD are 

responsible for the hydration of the polymer, which determines the accessibility with 

respect to internal sites of the polymer and is directly related to the kinetics of hydration 

and adsorption behavior. In addition, the solubility of CS in acidic solution (pH below 6) 

increases with the decrease of the Mw [56]. 

DD and Mw control CS degradability and affected the mechanical properties. The in vitro 

degradation rate has been shown to decrease with an increasing DD (if DD is greater than 

50%, i.e., in the “chitosan” range) while an opposite trend has been observed for CS with 

DDs lower than 50% [57] (“chitin” range). CSs of higher Mw have been shown to degrade 

more slowly than those having lower Mws [58]. Ratajska et al. have investigated the 

biodegradation process of three CS samples characterized by similar values of DD (DD = 

82-87%) but strongly differentiated Mw values (ranging from 97 to 473 kD) in an aqueous 

medium. The results obtained indicate that the shortest time of biodegradation was 

observed in the CS sample with the lowest Mw [59]. CS with higher Mw and higher DD 

possessed a lower affinity for the enzyme and a slower degradation rate. 

As regard the mechanical properties, several studies investigated the relationship 

between the mechanical properties of CS films and CS Mw and DD. In general, higher Mw, 

and as a consequence higher cristallinity, improves the mechanical properties as 

evidenced by the enhanced tensile strength [60-62]. During the film formation, CS forms 
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hydrogen bonds between hydroxyl groups and amino groups in CS film which increase 

with the increasing amount of amino and hydroxyl groups, due to the increase in 

concentration of CS [63]. Increase in DD also has a positive effect on the tensile strength 

of CS films [40], because of higher DD in the CS range (when DD > 50%) resulted in higher 

crystallinity. 

Viscosity and swelling degree are also associated to Mw, DD and cristallinity. The viscosity 

of CS increases with an increase in Mw, DD and cristallinity and decreases when 

temperature increased. Viscosity also influences the enzymatic degradation: low DD and 

viscosity tend to degrade CS more rapidly [64]. 

CS with a lower Mw has been found to have a low crystallinity and higher swelling index 

and permeability [62, 65, 66]. Moreover, by lowering the charge density CS’s binding 

capacity for anionic compounds decreases [62]. 

Due to the fact that the physicochemical properties are greatly influenced by CS structural 

parameters, controlling Mw and DD could be a useful tool to design finely tuned CS-based 

devices for biomedical applications. 

1.4 Biological properties of chitosan 

CS offers unique opportunities to the development of many different applications 

because of its remarkable biological properties: biocompatibility, low toxicity, 

biodegradability to harmless products, antibacterial activity, mucoadhesive and its affinity 

to anionic components. In this regard, CS have been used in food [67], pharmaceutical 

[68], textile [69, 70], water treatment [71, 72] and biomedical industries. The biological 

properties make also CS a promising candidate for the purpose of drug delivery for a host 

of drug moieties (antiinflammatories, peptides etc.) [2, 28]. 

The elucidation of the biological properties will lead to a better understanding of CS 

medical and pharmaceutical interest. 

1. Biocompatibility and toxicity depend on the preparation method and on the DD 

(biocompatibility increases with DD increase). Several studies have been performed in 

vitro to evaluate the biocompatibility of CS using a variety of cell types such as 

fibroblasts [73-75], osteoblasts [74, 76], chondrocytes [76], keratinocytes [73-75, 77], 

neural cells [74, 78, 79], and hepatocytes [6, 80, 81]. Results have shown that CS is 

nontoxic and can support these types of cells to adhere and proliferate, which suggests 

that CS is compatible with these cell types. 

2. Biodegradability: CS has been shown to be degraded in vivo by enzymes such as 

lysozymes [82] and chitinases [83], to N-glucosamine oligosaccharide, which is 

endogenous to human body. This oligosaccharide can be incorporated in metabolic 

pathways or be further excreted [84]. As the Mw decreases, the absorption of CS by 

intestine increases [85]. The degradation rate is also inversely related to the degree of 

crystallinity which is controlled mainly by the DD [86]. Structural parameters (Mw, DD 

and crystallinity) could be used to finely tune the degradation rate for biomedical 

applications. 

http://www.sciencedirect.com/science/article/pii/S0887233310000081
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3. Antimicrobial activity: numerous studies have demonstrated broad-spectrum 

antimicrobial activities of CS against Gram+ (i.e. Staphylococcus aureus) and Gram- (i.e. 

Escherichia coli) bacteria [87, 88]. This biological property of CS relied on numerous 

intrinsic and extrinsic factors, such as pH, microorganism species, presence or absence 

of metal cations and Mw. The exact mechanisms of the antimicrobial activities of CS are 

not clear; however, two modes have been proposed as an explanation to this property. 

The first one is attributable to the polycationic nature of CS: the amino groups present 

in the polymeric chain of CS interact with the negative charges from the residues of 

macromolecules (lipopolysaccharides and proteins) in the membranes of bacterial cells 

leading to altered membrane permeability which interfere with the nutrient exchange 

between the exterior and interior of the cell [89]. In this model the NH3+ groups can 

also compete with Ca2+ for the electronegative sites on the surface, compromising its 

integrity and causing cellular death. The second mechanism proposes that CS acts as a 

chelating agent that selectively binds trace metals and thus inhibits the production of 

toxins and microbial growth [90]. Finally, CS of low Mw has been shown to be capable 

of entering the cell's nucleus itself, interacting with the DNA and affecting the 

synthesis of proteins and inhibiting the action of various enzymes [91]. 

4. Mucoadhesion: CS can be explained by the presence of negatively charged residues 

(sialic acid) in the mucin – the glycoprotein that composes the mucus. In acidic 

medium, CS amino groups are positively charged and can thus interact with the mucin. 

This mucoadhesion is directly related to the DD of CS: actually, if CS DD increases, the 

number of positive charges also increases, which leads to improved mucoadhesive 

properties [92]. 

5. Affinity to biological anionic components: CS can be complexed with negatively 

charged because of the cationic primary amino groups of CS. This property makes CS a 

good candidate in the field of gene [93, 94] and drug [17, 28, 29, 44] delivery systems. 

Also, the mucoadhesive property of CS potentially permits a sustained interaction 

between the macromolecule being “delivered” and the membrane epithelia, 

promoting more efficient uptake [44, 95] and the ability to open intercellular tight 

junctions, facilitating its transport into the cells [96]. 

CS also exerts a haemostatic [97, 98], hipocholesterolemic [99, 100] and hipolipidemic 

activity [101] and immunity-enhancing [102] and antitumor effects [103] which may be 

attributed to its cationic nature. 

1.5 Application of CS based biomaterials 

1.5.1 Soft Tissue engineering 

TE is a multidisciplinary field based on the application of biological, chemical, and 

engineering principles to the repair, restoration, or regeneration of living tissues by using 

biomaterials, cells, and factors alone or in combination [104]. Scaffold-based TE is one of 

the most well studied approaches to regenerate different types of tissues, which involves 
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seeding cells together with signaling molecules on a biodegradable matrix, culturing them 

in vitro and implanting them into in vivo defects. In this context, biomaterials, usually in 

the form of porous scaffolds, play multiple significant roles to provide structural 

maintenance of the defect shape, act as a delivery vehicle for bioactive molecules and 

cells and serve as temporary ECM for cell adhesion, proliferation, differentiation, and 

maturation. The bioinspired cell–scaffold interface must necessarily meet a variety of 

demanding and coupled requirements, such as biocompatibility and biodegradability of 

the materials, physico-chemical and mechanical properties and morphological 

characteristics, all at different length scales. 

After some advances and relatively successful clinical applications for hard tissues over 

the past decade [105], much of the effort is now being directed at soft tissue 

reconstruction. Engineering two-dimensional (2D) soft tissues (i.e. cornea [106] and skin 

[5]), and complex three-dimensional (3D) tissues (i.e. cardiac, muscular and neural) is a 

far more challenging task.  

Among different biomaterials, CS is an ideal candidate in soft TE applications since its 

combined promising biological features (controllable biodegradability, biocompatibility 

and antimicrobial activity) with easy processability into 2D or 3D scaffolds. CS has been 

widely applied as bulk materials for TE scaffold fabrication showing good biocompatibility 

with a variety of cell types such as osteoblasts [74, 76], chondrocytes [76], fibroblasts [73-

75], neural [74, 78, 79], and endothelial cells [73-75, 77] and has the potential to be 

applied in cartilage, liver, nerve, skin and blood vessels applications. 

1.5.1.1 Chitosan in cartilage tissue engineering 

Articular cartilage damage is among the most encountered musculoskeletal diseases, 

eventually leading to total joint replacement if not treated properly. The articular 

cartilage consisting of hyaline cartilage tissue has very little capacity for spontaneous 

healing because of the avascular nature of the tissue. 

Due to the limited potential for self-repair of the articular cartilage, surgical operations 

have been used by orthopedics including allograft osteochondral transplantation [107], 

autologous chondrocyte transplantation [108], allogeneic juvenile cartilage 

transplantation (DeNovo NT®) [109], mosaicplasty [110], and microfracture technique 

[111]. However, no current procedures for cartilage repair have successfully regenerated 

long-lasting hyaline cartilage tissue to replace a cartilaginous lesion. To solve this 

limitation, TE provides a new method for cartilage repair by culturing isolated 

chondrocytes on a variety of scaffolds. To structurally mimic the environments of the 

cartilage tissue, the fundamental structure of a scaffold should be a 3D system with 

adequate mechanical strength considering the articular cartilage mobility. Both synthetic 

[112] and natural [113-115] scaffolding materials have been used for cell delivery in 

cartilage regeneration. Synthetic polymers present many drawbacks: i) the creation and 

accumulation of acidic by-products; ii) low biocompatibility; and iii) a possible in vivo 

inflammatory foreign body reactions [78]. In contrast, natural materials often have high 

http://www.sciencedirect.com/science/article/pii/S1742706109004863#bib5
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levels of biocompatibility and biofunctional motives. Such biomaterials including collagen 

[116], cellulose [117], CS [76, 118], fibrin [119] and silk [120] maintain a differentiated cell 

phenotype and allow rapid cell expansion. However, they are not mechanically stable 

enough and the rate of their biodegradation is practically high [121]. To enhance 

mechanical stability specific components including natural or synthetic materials are 

generally used to fabricate composite structures which can offer biological cues to 

promote tissue-specific interactions, while providing desired mechanical properties. 

Among the natural polymers, CS can be easely molded in various forms (i.e. bulk porous 

scaffolds, films, hydrogels and beads) and it has a superior biocompatibility because of its 

structural similarity with glycosaminoglycans (GAGs), naturally present in the extracellular 

matrix of cartilage [122, 123]. Lahiji et al., have demonstrated that chondrocytes grown 

on CS film exhibit a spherical morphology and express type II collagen and aggrecan [76, 

118]. Zhang et al. performed a series of studies using adipose-derived stem cells loaded 

on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and CS to repair full 

thickness articular cartilage defects. Poly(l-glutamic acid) was conjugated with CS through 

electrostatic interaction to develop a porous scaffold by a phase separation method. The 

scaffolds with a pore size of 150–200 μm and a porosity of about 93% provided a 

favorable environment for the maintenance of adipose-derived stem cells proliferation, 

migration and chondrogenic differentiation achieving a successful hyaline cartilage 

regeneration over a period of 12 weeks [124]. 

CS hydrogels holds great potential as an artificial ECM to regenerate hyaline cartilage 

since they can be delivered to the defect site in a minimally invasive manner and have 

shown to be able to maintain the round phenotype of chondrocytes. Remya et al. 

developed a hydrogel based on CS and hyaluronic acid derivative and cultured 

chondrocytes encapsulated into the gel over a period of one month. CS hyaluronic acid 

hydrogel were found to mimic the GAG-rich ECM and to preserve the typical round 

morphology of chondrocytes throughout the course of the investigation period. 

Moreover, the developed hydrogels were found to allow the retention of anionic GAGs, 

proteoglycans and other negatively charged species secreted by the active chondrocytes 

that further increases the ECM concentration around the cells [125]. The formation of 

ionic complexes of CS with the negatively charged GAGs has regarded further important 

property in cartilage TE. This ion complexing mechanism can be used to immobilize 

chondroitin sulfates with hydrogel materials which mimic the GAG-rich ECM of their 

articulation because CS has a protective effect against GAGs hydrolysis by their specific 

enzymes [126]. 

In addition to the CS properties mentioned above, signaling molecules such as GFs and 

small peptide sequences and plasmid DNA encoding specific GFs can be incorporated into 

CS scaffolds for cartilage TE. DNA complexation with CS has been shown to protect 

plasmids from degradation by nucleases and also facilitates cellular transfection by poorly 

understood interactions with cell membranes [127]. The release of specific GFs in a 

controlled fashion has been shown to promote the ingrowth and biosynthetic ability of 
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chondrocytes. Lee et al. developed a three-dimensional 

collagen/chitosan/glycosaminoglycan (GAG) scaffold in combination with transforming 

growth factor-beta1 (TGF-β1)-loaded CS microspheres. TGF-β1 was loaded into CS 

microspheres using an emulsion-crosslinking method. Then chondrocytes were seeded in 

the scaffold and incubated in vitro for 3 weeks This scaffold exhibited controlled release 

of TGF-β1 and promoted cartilage regeneration [128]. 

Recently, the treatment of cartilage defects by combining CS based scaffold and 

autologous whole blood have been shown to promote hyaline repair cartilage because of 

CS thrombogenic activity could improve the stabilization of the clot formed in the lesion 

[129, 130]. 

TE approach with more expanded understanding of articular cartilage and associated 

pathologies may provide the chitosan-based material that supports chondrogenesis, 

which can improve the quality of neocartilage produced and the integration with the host 

tissue as well as the long-termoutcomes of cartilage repair in clinical settings. 

1.5.1.2 Chitosan in liver tissue engineering 

It is widely accepted that of the currently available therapeutic options, orthotopic liver 

transplantation (OLT) seems to be the best solution for patients suffering from severe 

liver dysfunction or terminal liver failure. However, the insufficient donor organs for OLT 

worldwide, the high cost and the requirement for life-long immunosuppressive drugs 

have urgently increased the requirement for new therapies for acute and chronic liver 

disease [131]. Various non biological approaches, such as hemodialysis, hemoperfusion, 

and plasmapheresis, have limited success because of insufficient replacement of the 

synthetic and metabolic functions of the liver in these systems [132, 133]. On the other 

hand, extracorporeal biological treatment, including whole-liver perfusion, liver-slice 

perfusion, and cross-hemodialysis, have shown some beneficial results, but they are 

difficult to implement in a clinical setting [134]. For these reasons, many researchers have 

developed various extracorporeal biohybrid artificial liver (BAL) systems which consist of 

functional liver cells supported by an artificial cell culture material. In particular, it 

incorporates hepatocytes into a bioreactor in which the cells are immobilized, cultured, 

and induced to perform the hepatic functions by processing the blood or plasma of liver-

failure patients. The BAL devices for liver TE require a suitable ECM for hepatocyte culture 

because hepatocytes are anchorage-dependent cells and are highly sensitive to the ECM 

milieu for the maintenance of their viability and differentiated functions [135]. 

Hepatocytes in vivo survive in a three-dimensional system that is formed by various kinds 

of ECM components of human liver such as collagen and GAG, which provide mechanical 

integrity to the liver tissues and harbor several bioactive signals and molecules for cells 

[136]. Porous scaffolds with large surface-to-volume ratio are relevant to hepatocytes 

attachment. 

Among the natural polymer, CS is a promising biomaterial in liver TE due to the similarity 

of its structure to GAGs which are component of the liver ECM. CS membranes would 
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allow the organization of hepatocytes into a three-dimensional architecture, providing 

mechanical integrity and a space for the diffusion of nutrients and metabolites to and 

from the cells [137]. Verma et al. showed that unmodified CS can be used as a synthetic 

matrix to induce the aggregation of human hepatocyte cell line, HepG2, into three 

dimensional spheroids with appropriate liver tissue-specific functions like albumin 

secretion and urea synthesis [138]. Moreover, the presence of both the reactive amino 

and hydroxyl groups in CS allow to chemically modify and physically manipulate the 

scaffolds into different pore structures [41]. Li et al. showed that the micro-structure of 

porous scaffolds provided large surface area for cells to adhere and facilitate nutrient and 

oxygen transportation [139, 140]. Another strategy in liver TE concerned with developing 

CS based scaffolds modified with galactose moieties as a specific adhesive ligand to the 

asialoglycoprotein receptor (ASGPR) expressed on the surface of hepatocytes [141, 142]. 

Park et al. demonstrated galactosylated CS as a new synthetic ECM for hepatocyte 

attachment through the specific interaction between ASGPR on hepatocytes and 

galactose ligands of galactosylated CS [142]. Seo et al. developed a highly porous sponge 

composed of alginate and galactosylated CS as a synthetic ECM for hepatocytes. The 

presence of galactose ligands facilitated hepatocyte aggregation in the developed scaffold 

resulting in the maintenance of high cell activity by the intercellular adhesion molecules 

in the 3D culture system [143]. Furthermore, Fan et al. suggested a potential ability to 

improve primary hepatocytes bioactivity and liver specific functions on galactosylated 

CS/hyaluronic acid (HA) sponges by co-culturing both primary hepatocytes and 

endothelial cells on the hybrid scaffold - thus closely mimicking the dominant cell 

populations in the intact liver. The binding of the galactose ligand to ASGPR induced liver-

targeted transfer of glycoproteins while HA provided anchorage sites for endothelial cells 

through the cell surface receptor, CD44. As a result, the contact of hepatocytes with 

endothelial cells appeared to stimulate higher hepatic-specific gene expression and urea 

production as compared to that achieved in the monoculture system of hepatocytes 

[144]. The nanotopography of the galactosylated CS based scaffold has also been shown 

to influence liver specific functions. Feng et al. developed a nanofibrous scaffold based on 

galactosylated CS and found that the nanofibrous matrix enhanced the maintainance of 

the albumin secretion and urea synthesis of hepatocytes but did not show much effect on 

cell attachment. Moreover, the balancing action between galactose ligands and 

nanotopography induced the formation of flat hepatocyte aggregates which were 

mechanically stable than spheroidal aggragates on GC films [145]. 

Although matrices composed of CS can provide an appropriate environment for the 

regeneration of liver cells, the low mechanical strength and the poor blood 

biocompatibility of the natural polymer have limited their use in liver TE. Considering that 

liver is a highly vascular inter-organ that must provide hepatocytes with sufficient oxygen 

and nutrients, thrombus formation can lead to occlusion and decreased membrane 

efficiency. Therefore, technologists have proposed a new method to fabricate a BAL with 

new composition in order to prevent the thrombus formation. Wang et al., developed an 
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ammonia-treated collagen–CS–heparin matrix for an implantable BAL and found that the 

presence of heparin into the ammonia- treated collagen–CS matrices could improve the 

blood biocompatibility respect collagene/CS based scaffolds and did not affect the 

porosity, the mechanical strength and the stability in an enzyme solution [146]. 

1.5.1.3 Chitosan in nerve tissue engineering 

The regeneration of traumatized peripheral nerve has been attempted in many different 

ways, which have in common the goal of directing the regenerating nerve fibres into the 

proper endoneurial tubes. To repair peripheral nerve injuries with neural gaps (more than 

20 mm), the current standard treatment uses conventional autologous nerve graft to 

bridge the neural gap and facilitate nerve regeneration and reconnection. However, due 

to the intrinsic limitations of autografts, recent advancements in nerve regeneration have 

involved the application of TE principles based on the regulation of cell behavior and 

tissue progression through the development of an engineered nerve grafts that mimics 

the natural ECM and can support three-dimensional cell cultures. Successful nerve 

regeneration requires TE scaffolds not only for mechanical support of growing neuritis 

and impediment of ingrowths of fibrous scar tissues, but also to send biological signals to 

guide the axonal growth cone to the distal stump. Among the various biomaterials that 

have been investigated, scaffolds made of CS based materials have drawn much attention 

[147]. CS has been studied as a candidate material for nerve regeneration due to its 

neuroprotective properties [148] in addition to the already mentionated properties of, 

biodegradability, biocompatibility and antibacterial activity. Recent in vitro studies 

revealed the suitability of CS membranes as substrate for survival and orientation of 

Schwann cell (SC) [78] as well as survival and differentiation of neuronal cells [57]. In 

addition, CS tubes alone or in combination with other biomaterials such as polyglycolic 

acid (PGA), collagen, alginate can efficiently bridge peripheral nerve defects [149-152]. 

Chew et al. showed that CS aligned nanofibrous tubes supported the adhesion, migration 

and proliferation of SCs, providing a similar guide for regenerating axons to Büngner 

bands in the nervous system [153]. However, CS matrices have been shown to have low 

mechanical strength under physiological conditions and to be unable to maintain a 

predefined shape for transplantation, which has limited their use as nerve guidance 

conduits in clinical applications. The improvement of their mechanical properties can be 

achieved by modifying CS with different crosslinking agents (i.e. glutaraldehyde, γ-

glycidoxypropyltrimethoxysilane, tripolyphosphate, genipin) [33, 154, 155] or by 

combining CS to synthetic ones [23, 156]. Furthermore, to enhance functional outcomes 

of peripheral nerve regeneration yielded by nerve conduits alone, biochemical cues, such 

as support cells, GFs and peptides, are usually incorporated into CS based nerve conduit. 

Recently, CS based, nerve growth factor (NGF)-loaded nerve conduits have been prepared 

with the aim of CS nerve cell affinity. 8 mg of NGF were first immobilized onto CS in 

solution (20 ml) by means of genipin, a crosslinking agent of natural origin, followed by 

fabrication of nerve conduits through a technique of injection molding (Fig. 1.2A and B). 
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Genipin was selected to exert both to crosslink CS for polymer modification and 

concurrently to immobilize NGF onto modified CS. The NGF loaded CS conduits were non-

cytotoxic to primary cultured SCs and showed in vitro neuro-affinity to PC12 cells in terms 

of keeping the activity of NGF within nerve conduits, i.e., the ability to stimulate neuronal 

differentiation of PC12 cells. More intriguingly, the continuous release profile of NGF 

from NGF loaded CS crosslinked nerve conduits, within a 60-days, consisted of an initial 

burst that was controlled by concentration gradient-driven diffusion, followed by a zero-

order release due to the degradation of CS (Fig. 1.2C) [155]. 

Few studies reported the blending of CS with a peptide to enhance nerve cell attachment. 

Mingyu et al. showed an improved attachment, differentiation and growth on the 

CS/poly(L-lysine) composite materials when compared to cells cultured on CS 

membranes. The improved nerve cell affinity on the CS/poly(L-lysine) composite materials 

had been attributed to the increased hydrophilicity by the abundant hydroxyl group and 

the positive surface charge of CS [157]. Hsu et al., fabricated a laminin (LN)-modified CS 

multi-walled nerve conduit combined with bone marrow stem cell (BMSC) to enhance 

axonal regeneration. The in vitro and in vivo approaches were used to analyze the 

complex interactions between CS scaffold, cells and cell regulatory molecules and to 

evaluate long-term biosafety and efficiency for clinical application. LN-CS multi-walled 

conduit embedded with stem cells supported the regeneration of functional connections 

between two ends of a severed sciatic nerve. This study also demonstrates the capacity of 

stem cell therapy to prevent the inflammatory responses caused by CS, resulting in long-

term maintenance of the regenerative capacity and to enhance the long-term restoration 

of motor functions [158]. CS support nerve cell adhesion and neurite outgrowth, making 

this material potential candidates for scaffolds in neural TE. 

 

Fig. 1.2. SEM images of CS nerve conduits [155]. Side view of the conduit (A), cross-section view of 

conduit (B), (C) Daily in vitro release of NGF from the CS based nerve conduit to PBS (pH 7.4) at 

37°C. Copyright © 2007 Elsevier, © 2005 & 2008 Wiley. 
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1.5.1.4 Chitosan in vascular tissue engineering 

Nowadays, vascular diseases are the largest causes of mortality in the industrialized 

society. Despite progresses in prevention and treatment, an increasing aging population, 

the global spread of smoking, and the growing epidemics of obesity and diabetes ensure a 

rising the incidence of cardiovascular diseases in the next decades. Reconstructive surgery 

using autologous vessel grafts, particularly small diameter vein or artery (<4 mm), is the 

conventional therapeutic approach for substitution of diseased vessels or for generation 

of bypass to improve blood supply downstream of stenosed vessels. Conversely, its 

disadvantages including the secondary site injure and the potential coexistent diseases of 

autologous vessel limited its use and, in some circumstances, the application of artificial 

grafts is necessary. Although some artificial vascular grafts have achieved success in 

clinical application, products with small diameters (<4 mm) are rarely commercialized, 

owing to their high failure rate. The transplantation of small-diameter artificial vascular 

grafts is often ascribed to the poor blood compatibility of artificial vascular grafts, which 

leads to the adhesion of platelets and plasma protein, and subsequent aggregation and 

thrombus formation [159, 160]. In this context, TE at the vascular level aims to generate 

biological substitutes of arterial and vein conduits with functional characteristics of native 

vessels, combining cellular components with biodegradable scaffolds. The scaffolds made 

of different materials, such as synthetic polymers, natural materials, and decellularized 

xenogenous tissues, have been utilized in blood vessel TE. CS has been widely 

investigated in this field due to its structure similar to GAGs, which are the components of 

the ECM. However, one disadvantage of CS is its poor hemocompatibility, because the 

cationic profile causes the unnecessary adhesion of negatively charged platelets, which 

limits its application in vascular TE. However, the cationic nature of CS can be exploited 

for pH-dependent electrostatic interactions with anionic GAGs distributed widely 

throughout the body and other negatively charged species. GAG-based materials hold 

promise because of their growth inhibitory effects on vascular smooth muscle cells and 

their anticoagulant activity. For example, CS has been complexed with heparin in order to 

control heparin release, thereby enhancing the anti-thrombogenic property and 

attracting an protecting many heparin binding GFs, such as bFGF [161], VEGF [162], and 

PDGF [163]. Chupa et al. incorporated GAG into porous CS scaffolds with the aim to 

overcome both incomplete endothelialization and smooth muscle cell hyperplasia, which 

are two main problems contributing to the failure of existing small-diameter vascular 

grafts [164]. Madihally et al. fabricated a family of CS scaffolds, including heparin 

modified porous tubes, which had the potential for application in blood vessel TE [41]. 

More recently, a hybrid small-diameter vascular graft was developed from synthetic 

polymer poly(ε-caprolactone) (PCL) and natural polymer CS by the co-electrospinning 

technique (Fig. 1.3A, B). Heparin was immobilized on the grafts through ionic bonding 

between heparin and CS fibers. Heparin functionalization was found to improve the 

hemocompatibility of the PCL/CS vascular grafts, by the reduction of platelet adhesion 

(Fig 1.3C, D), and moderately to inhibit the proliferation of vascular smooth muscle cells, 
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a main factor for neointimal hyperplasia [165]. In an another study, nanocoatings of CS 

and HA were deposited onto arteries through a layer-by-layer technique coating 

significantly reduced the adhesion of blood platelets, thus demonstrating a restored 

patency of the denuded arteries [166]. The complex of CS and anionic GAG is supposed to 

be a promising approach for the development of artificial vascular graft due to the 

anticoagulant activity and the inhibitory effects on vascular smooth muscle cells. 

 

Fig. 1.3: SEM images of CS nerve conduits of electrospun PCL/CS hybrid mats [165]. (A), PCL/CS 

fiber hybrid mats (B) cross section of tri-layered PCL/CS hybrid tubular grafts (insert shows the 

enlargement), platelets adhering on the surface of PCL/CS hybrid mats (C) before and (D) after 

heparin functionalization. Copyright © 2007 Elsevier, © 2005 & 2008 Wiley. 

1.5.2 Wound dressing 

Wound healing can be problematic in several clinical settings because of massive tissue 

injury (burns), wound healing deficiencies (chronic wounds), or congenital conditions and 

diseases. The healing of a skin wound is complicated courses, including a wide range of 

cellular, molecular, physiological, and biological processes. The skin plays an important 

role in homeostasis and the prevention of invasion by microorganisms. Immediate 

coverage with a wound dressing is generally necessary after the skin is damaged with the 

attempt to rapidly produce a construct that offers the complete regeneration of 

functional skin by fulfilling its many normal functions: barrier formation; pigmentory 

defence against UV irradiation; thermoregulation; and mechanical and aesthetic functions 

[167]. In past decades, many biological skin substitutes such as xenograft, allografts, and 

autografts have been employed for wound healing. However, due to the antigenicity or 

the limitation of donor sites, the skin substitutes cannot accomplish the purpose of the 

skin recovery. In this context, engineered skin substitutes have been developed to 

address the medical need for wound coverage and tissue repair. An ideal engineered 

wound dressing should be elastic and biocompatible and it should protect the wound 

from bacterial infection. Moreover, current strategies are focused on the acceleration of 

the wound repair at molecular and systemic levels. Efforts have been focused on the use 

of biologically derived materials such as, chitins and its derivatives, which are capable of 

accelerating the healing process. CS has been found to promote tissue granulation and 

accelerate wound healing through the recruitment of inflammatory cells such as 

polymorphonuclear leukocytes (PMN) and macrophages to the wound site [168]. 

Moreover, CS has many others useful and advantageous biological properties in the 

application as a wound dressing, such as biocompatibility, biodegradability, hemostatic 
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activity and anti-infectional activity [169-171]. CS and its derivative have been found to 

evoke a minimal foreign body reaction, with little or no fibrous encapsulation. It observed 

the typical course of healing with formation of normal granulation tissue, often with 

accelerated angiogenesis. Okamoto et al. reported that CS influenced all stages of wound 

repair in experimental animal models [172]. In the inflammatory phase, CS has unique 

hemostatic properties that are independent of the normal clotting cascades. In vivo this 

polymer can also stimulate the proliferation of fibroblasts and modulate the migration 

behavior of neutrophils and macrophages modifying subsequent repair processes such as 

fibroplasias and reepithelialization. Due to the ease of processability of this natural 

polymer, CS based skin substitutes can be fabricated in the form of non-wovens, 

nanofibrils, composites, films, scaffolds and sponges to mimic the stratified 

microstructure of skin tissue and to provide a temporary ECM for cell infilitration and 

vascularization. Various forms of wound dressing based on CS and its derivatives are 

actually commercially available (Table 1.1). 

Freeze-drying CS solutions has been frequently used to fabricate CS-based scaffolds for 

skin regeneration, which typically exhibit pore sizes of 100-200 µm and pore volume of 

more than 90% [173]. Asymmetric CS based scaffolds have also been prepared by a 

controlled freezing-lyophilization process or by applying an additional dense layer of 

biomaterials on top of the CS substitutes, producing a bilayer structure to mimic the 

native skin structure [174]. For example, Mi et al. prepared asymmetric CS membrane 

with skin surface layer supported on a macroporous sponge-like sublayer through 

immerse-precipitation phase-inversion method [175]. Ma et al. fabricated CS bilayer 

scaffold via the formation of a dense film by the casting method and a porous sponger 

layer lyophilized with porogens at −28°C [176]. Recently, the use of polymeric nanofibres 

has attracted considerable interest due to high surface area to volume ratio, high 

porosity, pore size distribution and morphology. Chen et al. reported that electrospun 

CS/collagen/polyethylene oxide nanofibrous membrane crosslinked by glutaraldehyde 

vapor is beneficial in wound healing application. They indicated non-cytotoxicity for these 

nanofibres regarding 3T3 fibroblast growth and in vitro biocompatibility [177]. Naseri et 

al., developed electrospun CS/polyethylene oxide-based randomly oriented fiber mats 

reinforced with 50 wt% of chitin nanocrystals and crosslinked using genipin. The 

crosslinked nanocomposite fiber mats enriched with chitin nanocrystals improved the 

moisture stability of the electrospun mats and facilitated water-mediated crosslinking 

processes. Moreover, the addition of chitin nanocrystals had a positive impact on the 

mechanical properties of the fibrous mats showing a tensile strength of 64.9 MPa and 

modulus of 10.2 GPa and allowing the membranes to maintain their flexibility. Developed 

mats were also compatible toward adipose derived stem cells after 7 days and can be 

considered as a potential candidate for wound dressing application [178]. CS based skin 

substitutes, having hydrogel-forming properties have been also considered to be 

advantageous in their application as a wound dressing material because of their high 

water content and biocompatibility. A hydrogel sheet composed of a blended powder of 
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alginate, chitin/CS and fuciodan (ACF-HS) has been developed as a functional skin 

scaffolds with the aim to create in vivo a moist environment with exudates environment 

for rapid wound healing [179]. Full thickness skin defects were made on the backs of rats. 

After a pretreatment of mitomycin solution, ACF-HS was applied to the healing-impaired 

wounds. Histological examination demonstrated significanty advanced granulation tissue 

and capillary formation in the skin damage treated with ACF-HS on day 7, as compared to 

those left untreated. Furthermore, antibiotic-loaded CS-based scaffolds have been used 

to treat severe skin injuries. For example, artificial skin substitutes made of CS membrane 

or porous scaffolds could be used to release antibacterial agents such as nanotitanium 

dioxide [180] or silver (Ag), in the form of metallic nanoparticles [181] or sulfadiazine 

cream [13], and exhibit good antimicrobial properties. Lee et al. designed a novel wound 

dressing by obtaining electrospun CS nanofibres containing various ratios of silver 

nanoparticles (AgNPs) (AgNPs contents=0, 4, 2, 1.3, and 0.7 wt. %) with the aim to 

investigate its antibacterial efficacy in a zone of inhibition antibacterial test system. 

AgNPs were synthesized directly by chemical reduction within the CS solution. In 

antibacterial testing, the pure CS nanofibres were observed to not substantially inhibit 

bacterial growth. But CS/AgNPs nanofibers displayed a high degree of effectiveness 

against Gram- Pseudomonas aeruginosa and Gram+ Methicillin-resistant Staphylococcus 

aureus. Additionally, the quantity of AgNPs was increased in the fibres and consequently 

antibacterial properties were enhanced against both microorganisms [182]. In addition, 

CS-based scaffold can be fuctionalized to carry GFs able to accelerate skin wound healing. 

For example, Mizuno et al. reported that CS was a good wound healing material and 

incorporation of that to basic fibroblast growth factor (BFGF) accelerated the rate of 

healing. 

Table 1.1 Commercialy available CS and its derivatives based wound dressing materials 

Material Trade name Manufacturer 

 Tegasorb® 3M 
 Tegaderm® 3M 
Chitosan and its derivatives HemCon Bandage TM HemCon 
 Chitodine® IMS 
 Trauma DEX® Medafor 

 

1.5.3 Drug delivery 

Apart from applications soft TE and wound dressing, CS has been applied for drug delivery 

system fabrication. Thanks to its unique feature of being positively charged in 

physiological condition, CS is especially advantageous in forming stable complex with 

negative compounds, which makes CS a good candidate for drug encapsulation and 

controlled release [183]. CS has also showed the ability to adhere to the mucosal surface 

and it is capable of penetrating the tight junctions between epithelial cells [96]. In 

addition, CS and its derivatives can be processed under mild conditions, avoiding GFs and 



18 
 

drug inactivation due to otherwise harsh processing conditions, and it can be fabricated 

into different forms and shapes to incorporate bioactive molecules for various in vivo 

applications. To date CS and its derivatives have been applied as carriers for drugs [184, 

185], peptides [186] or genes [187-189] delivery. Particularly, CS has been used in the 

preparation of mucoadhesive formulations [190, 191], improving the dissolution rate of 

the poorly soluble drugs [192], drug targeting [193, 194] and enhancement of peptide 

absorption [195]. 

Presently, a variety of CS-based drug delivery materials in the forms of gels [196], tablets 

[197], beads [198, 199], films [200] and particles [201, 202] have been developed and 

studied. Different types of CS-based drug delivery systems are summarized in Table 1.2. 

For example, Azab et al. developed a CS-based hydrogel cross-linked with glutaraldehyde 

and loaded with 131I-norcholesterol radioisotope for cancer therapy. CS hydrogels were 

tested in a breast cancer xenograft mouse model showing a reduction in the progression 

rate of the tumor, and preventing 69% of tumor recurrence and metastatic spread. 

Importantly, little or no systemic distribution of the radioisotope after hydrogel 

implantation was observed [203]. In another study, Senel et al. designed CS gels (at 1 or 

2% concentration) or film forms for local delivery of chlorhexidine gluconate, an 

antifungal agent, to the oral cavity. Due to bioadhesive property and high viscosity of the 

selected natural polymer, CS drug delivery systems were found to remain in the oral 

cavity and release the drug for a long period of time, thus enhancing the clinical effect. 

Release of the chlorhexidine gluconate from gel (2% concentration) and film was 

maintained for 3 hours and a higher antifungal agent release was observed from gels 

compared to film [204]. 

Among the different typologies of drug delivery system, CS based 

microspheres/nanoparticles are widely studied for controlled release of drugs, antibiotics, 

proteins, peptide drugs anti-inflammatory, steroids, antidiabetic, diuretics, amino acid 

and vaccines. Emulsion, chemical or ionic gelation [205], coacervation/precipitation [206, 

207] and spray-drying [208] have been used for CS- based drug delivery system 

fabrication;  these techniques were selected since they reduce the risk of drug, peptide 

and gene denaturation. Method selection depends upon factors such as particle size 

requirement, thermal and chemical stability of the active drug molecule, reproducibility 

of the release kinetic profiles, stability of the final product and residual toxicity associated 

with the final product. Pan et al. prepared insulin-loaded CS nanoparticles by ionotropic 

gelation of CS with tripolyphosphate (TPP) anions. The positively charged, stable CS 

nanoparticles showed particle size in the range of 250-400 nm. Insulin association was up 

to 80%. In vitro release experiments indicated initial burst release which is pH-sensitive. 

CS nanoparticles enhanced the intestinal absorption of insulin to a greater extent than 

the aqueous solution of CS in vivo. After administration of 21 iu/kg insulin in the CS 

nanoparticles, hypoglycemia was prolonged over 15 hours. The average pharmacological 

bioavailability relative to subcutaneous injection of insulin solution was up to 14.9 [209]. 

Preparations of CS nanoparticles loaded with plasmid DNA encoding surface protein of 

http://www.sciencedirect.com/science/article/pii/S0168365904003803#tbl1
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Hepatitis B virus using the complex coacervation technique have been reported [207]. 

The attempt of this work was to provide plasmid DNA carrier system for nasal mucosal 

immunization against hepatitis B. The loading efficiency, the transfection efficacy and the 

ability of CS nanoparticles to protect DNA against nuclease digestion were demonstrated. 

Huang et al. prepared CS microspheres by the spray-drying method using type-A gelatin 

and ethylene oxide–propylene oxide block copolymer as modifiers. Shape, size and 

surface morphology of the microspheres were significantly influenced by the 

concentration of gelatin. Betamethasone disodium phosphate-loaded microspheres 

demonstrated a good drug stability (less 1% hydrolysis product), high entrapment 

efficiency (95%) and positive surface charge (37.5 mV) [210]. 

Self- assembly technique is a feasible and cost effective strategy to prepare CS drug 

carriers. The self assembly process of CS is similar to many other biological molecules 

(DNA, RNA and proteins) that occur in water phase normal conditions. This process leads 

to the formation of polyelectrolyte-complexes by electrostatic interaction, which is 

optically homogeneous, stable nano-dispersion at colloidal level. Self-assembled 

nanostructures display excellent properties such as protein encapsulation efficiency and 

prolonged drug release process [211]. Moreover, through self-assembly CS-based micelles 

have gained attention owing to their ability to solubilize many poorly water-soluble drug 

[211]. Therefore, various CS derivatives have been prepared via modifications to enhance 

CS solubility in aqueous solution as well as to provide a hydrophobic portion for the core 

and a hydrophilic portion for the shell by micelle formation [212-214]. Many studies have 

reported that CS based self-assembled nanostructures significantly improved the delivery 

efficiency of therapeutic proteins [215], genes [216] and small molecules [217, 218]. For 

example, CS self-assembly nanostructures have shown to significantly enhance insulin 

delivery [215, 219]. Mukhopadhyay et al. prepared CS/insulin nanoparticles by self-

assembly method and showed self assembled nanoparticles were 200–550 nm in size 

with almost 85% insulin encapsulation efficiency. Additionally, the in vivo oral 

administration of nanoparticles in diabetic mice indicated significant intestinal absorption 

of insulin, reducing the blood glucose level within 4 hours in comparison with 

subcutaneous injections [220]. In another study, Bisht et al. reported an easy method to 

encapsulate doxorubicin-dextran in CS self assembly nanoparticles for cancer therapy. 

Thanks to the conjuction with dextran and the enclosure in CS nanoparticles, the 

cardiotoxicity of doxorubicin was alleviated in normal heart cells [221]. 

  

http://www.sciencedirect.com/science/article/pii/S0928493112004316
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Table 1.2. CS based drug delivery systems prepared by different methods for various kinds of 

drugs 

Type of system Method of preparation Drug 

Tablets matrix diclofenac sodium, 
pentoxyphylline, salicylic acid, 
theophylline 

 coating propranolol HCl 
Microspheres/ 
Microparticles 

emulsion cross-linking theophylline, cisplatin, 
pentazocine, phenobarbitone, 
theophylline, insulin, 5-
fluorouracil, diclofenac sodium, 
griseofulvin, aspirin, diphtheria 
toxoid, pamidronate, 
suberoylbisphosphonate, 
mitoxantrone, progesterone 

 coacervation/precipitation prednisolone, interleukin-2, 
propranolol-HCl 

 spray-drying cimetidine, famotidine, 
nizatidine, vitamin D-2, 
diclofenac sodium, ketoprofen, 
metoclopramide-HCl, bovine 
serum albumin, ampicillin, 
cetylpyridinium chloride, 
oxytetracycline, betamethasone 

 ionic gelation felodipine 
Nanoparticles emulsion-droplet 

coalescence 
gadopentetic acid 

 coacervation/precipitation 
  

DNA, doxorubicin 

 ionic gelation nsulin, ricin, bovine serum 
albumin, cyclosporin A 

 reverse micellar method doxorubicin 
Beads coacervation/precipitation adriamycin, nifedipine, bovine 

serum albumin, salbutamol 
sulfate, lidocaine–HCl, riboflavin 

Films Solution casting sosorbide dinitrate, 
chlorhexidine gluconate, 
trypsin, granulocyte-
macrophage colony-stimulating 
factor, acyclovir, riboflavine, 
testosterone, progesterone, 
beta-oestradiol 

Gel Crosslinking chlorpheniramine maleate, 
aspirin, theophylline, caffeine, 
lidocaine–HCl, hydrocortisone 
acetate, 5-fluorouracil 
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1.6 Thesis goal 

The main purpose of this work is the development of chitosan (CS) based membranes for 

human and veterinary soft tissue regeneration and repair. In this work, different 

typologies of CS scaffolds are prepared varying the chemical composition by using 

different crosslinking mechanisms and the membrane structure through different 

fabrication techniques. 

CS has been selected as a candidate material for the development of bioartifical 

constructs in the field of soft TE because of its attractive properties in terms of 

biocompatibility, biodegradability, non-antigenicity, antibacterial activity and low cost 

[222]. Moreover, CS matrices of various forms such as films [75] porous scaffolds [223], 

hydrogels [15], nanofibers [224-226] can be easily fabricated. However, the main 

limitations of CS for TE applications are its inadeguate mechanical strength and low 

stability in biological environment. The improvement of CS properties can be achieved by 

modifying CS with ionic or covalent crosslinking agents (i.e. glutaraldehyde, γ-

glycidoxypropyltrimethoxysilane, tripolyphosphate, genipin) [227-230]. 

In the first part of this thesis, CS based compact films are crosslinked using different 

compounds with the aim to provide the basis for the selection of a crosslinking strategy 

able to impart the required properties to CS membranes in the design of a biomaterial. 

Three non cytotoxic compounds, genipin (GP), γ-glycidoxypropyltrimethoxysilane 

(GPTMS), dibasic sodium phosphate (DSP), widely used as CS crosslinking agents, have 

been selected. GP is a biocompatible crosslinking agent, and it is less-toxic than 

traditional chemical agents, such as formaldehyde, glutaraldehyde and epoxy compounds 

[227, 228]. GPTMS is a silane coupling selected for its oxygen permeability [231], 

biocompatibility and biodegradability [229]. DSP is a non-toxic polyanion which can 

interact with CS via electrostatic forces to form ionic crosslinked membrane [230]. The 

effect of crosslinking on CS based biomaterials and scaffolds performances in terms of 

physico-chemical, thermal and mechanical properties, as well as degradation and water 

stability is described in the first part of this thesis. 

The aim of the second part of the thesis is the development of different CS based 

membranes for peripheral nerve TE in human applications. Membranes chemical 

composition is selected in order to i) provide suitable mechanical and physico-chemical 

properties (ii), favour wrapping and suturing at the implant site, (iii) avoid the risk of 

compression of the regenerating nerve and (iv) ensure the supply of oxygen and 

nutrients. Different CS based scaffold morphologies are obtained by varying the 

fabrication methods. Two alternatives for CS based hollow nerve guide channels (coded 

as CS flat membrane and bi-layer CS membrane) and a CS based nanostructured as 

internal filler are prepared. 

- CS flat membranes crosslinked with DSP alone (CS/DSP) or in association with the 

GPTMS (CS/GPTMS_DSP) are fabricated with a solvent casting technique. The 

constituent ratio of crosslinking agents and CS are selected in the first part of this 
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thesis to obtain a composite material having both proper mechanical properties and 

good biocompatibility. At first, permeability study on the crosslinked flat samples is 

necessary to ensure the diffusion of nutrients through the CS/DSP and CS/GPTMS_DSP 

flat films. Then, the cellular response of glial-like cells, the rolling up and the 

suturability are evaluated on CS/GPTMS_DSP and CS/DSP flat membranes. In vivo tests 

are carried out on both the two types of nerve scaffolds for bridge implantation across 

10-mm long median nerve defects in rats, and the outcome of peripheral nerve repair 

at 12 weeks post-implantation is investigated. 

- Bi-layer CS membranes are prepared by a two-step coating technique. By this method, 

two kinds of CS flat membranes crosslinked with different compounds (optimized in 

the first part of the thesis) are combined to produce scaffold structures with good 

biocompatibility in the inner layer and with the desired mechanical strength protruded 

by the outer one. In detail, CS/DSP is selected as inner layer due to its biocompatibility 

and its capability to promote peripheral nerve functional recovery (results confirmed 

by in vivo test performed on CS flat membranes), while CS/GPTMS_DSP (GPTMS 25 % 

wt./wt.) is used for the realization of the outer layer. GPTMS addition increases 

mechanical strength and water stability of samples. The amount of GPTMS is optimized 

to allow the rolling up, suturability of bi-layer membranes and to reduce the risk of 

distal detachment. The two steps coating technique allows to control the wall 

thickness and to achieve a tight connection between the two layers. The initial studies 

are focused on a general physico-chemical, mechanical, dissolution and water uptake 

analysis of the CS bi-layered membranes. Permeability to nutrients using model 

molecules is evaluated and confirmed. Preliminary in vivo analysis of peripheral nerve 

recovery is carried out by rolling the developed membranes to form hollow conduits 

used to bridge 10 mm median nerve defects in rats. 

- Chitosan electrospun nanofibres are obtained starting from a 0.5 M acetic acid 

solution and using the electrospinning equipment. A first part of this work is focused 

on the optimization of the processing parameters to obtain CS based nanofibres from 

CS acetic acid solutions. Polyethylene oxide (PEO) and dimethylsulphoxide (DMSO) are 

added to the CS solution: PEO is a biocompatible synthetic polymer used to allow the 

spinnability of CS solutions at high polymer concentration with controllable fiber size; 

DMSO is introduced into the CS/PEO solution as a cosolvent to improve processing 

conditions and increase fiber yields by relaxing CS chain entanglement [226]. Process 

parameters are selected to prepare nanofibres in the range of 100-200 nm that have 

been reported to be advantageous for glial cell adhesion and proliferation as 

compared to fibres with 700 nm dimensions [232]. The use of DSP (the constituent 

ratio has been selected in the first part of this thesis) as a crosslinker of the nanofibres 

allows to neutralize CS/PEO_DMSO solution and does not influence the nanofibre 

structure. After preliminary morphological, physico-chemical and mechanical 

characterisation of DSP crosslinked CS based nanofibres (CS/PEO_DMSO_DSP), the 
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structural integrity of nanofibres in physiological solution is examined under 

physiological conditions. 

The aim of the third part of this thesis is the development of CS based porous 

membranes for the treatment of wound injuries in veterinary applications. Due to the 

similarity of animal wound healing process with humans, skin TE seems to be a promising 

alternative approach to treat wound injuries compared to conventional treatments 

adopted by veterinarians. The developed membranes should: i) absorb exudates and toxic 

components from the wound surface; ii) maintain a high humidity at the wound/dressing 

interface in order to avoid dessication and to promote re-epithelialization and cellular 

migration; iii) protect the wound from bacterial penetration; iv) allow gaseous exchange, 

necessary for the introduction of oxygen to the wound site as well as the elimination of 

carbon dioxide and v) be biodegradable, avoiding to periodically remove the device 

causing trauma to the wound.  

CS has been selected for the current study because of its widely use in wound 

management both in humans and animals: CS stimulates the migration of PMNs and 

macrophages [233], explicating an anti-inflammatory effect and is a hemostatic effect 

[234-238]. 

The goal of this part of the thesis is the design of CS porous membranes with improved 

antimicrobial properties able to promote the wound healing process and to reduce the 

bacterial proliferation in chelonian shell injury site. On the basis of the results obtained in 

the first part of the thesis, CS membranes are crosslinked with GPTMS and DSP and are 

fabricated by freeze-drying. Silver nanoparticles (AgNPs) and gentamicin sulphate (GS) are 

incorporated into the CS matrices to impart the proper antibacterial properties and to 

guarantee drug controlled release in time and in space avoiding the risk of systemic 

toxicity. Three different concentrations for the incorporation of AgNPs (5%, 10% and 15% 

wt./wt) are investigated while GS dosage is selected according to the conventional 

veterinary treatment for chelonian carapace healing. After a preliminary analysis on 

morphological, mechanical and water absorption properties, AgNPs with intermediate 

concentration is selected as ideal candidate. GS release analysis from CS porous 

membranes loaded with the antibiotics is evaluated. Antibacterial efficacy against Gram+ 

and Gram- bacteria is investigated. Finally preliminary in vivo tests on Testudo Hermanni 

are conducted. 

This thesis work addresses the research activities of: BICONERVE (“Biomimetic constructs 

for nerve regeneration”) financed Regional project, and a collaboration with the 

Department of Veterinary Sciences, Università di Torino and the “Clinica per animali 

esotici” in Roma. 
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Chapter 2 
Chitosan membranes for tissue 

engineering: comparison of different 

crosslinkers 
 

Abstract 

Chitosan (CS), a derivative of the naturally occurring biopolymer chitin, is an attractive 

material for biomedical applications because of its biocompatibility, biodegradability and 

immunological, antibacterial and wound-healing properties. However, the physical and 

mechanical stability of CS based materials are strongly influenced by the crosslinking 

method. In this work, the effect of the three crosslinking agents genipin (GP), γ-

glycidoxypropyltrimethoxysilane (GPTMS), dibasic sodium phosphate (DSP) and a 

combination of GPTMS and DSP (GPTMS_DSP) on CS physicochemical, thermal, 

morphological, mechanical properties, swelling and degradation behavior at physiological 

condition was investigated. The possibility to tailor the final properties of CS scaffolds 

through crosslinking is a key strategy to apply CS in different biomedical and tissue 

engineering applications. The obtained results reveal that the optimization of the 

crosslinking mechanism provide CS membrane properties required in different biomedical 

applications. 

2.1 Introduction 

Tissue engineering (TE) provides a novel way to assist and accelerate the regeneration 

and repairing of defective and damaged tissues based on the natural healing potential of 

humans. A major goal of TE is the design of biomaterial-based scaffolds containing cells 

and signaling molecules, as transplantable constructs, to enable the recovery of 

physiological functions in the host alternatively to conventional surgical techniques. In 

this context, biomaterial composition and processing technologies play a pivotal role in 

the field of TE. Among the various biomaterials, polysaccharides have recently gained 

interest as materials for scaffold fabrication, since their carbohydrate moieties interact 
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with or are integral component of several matrix glycoproteins and cell adhesion 

molecules [1]. Chitosan (CS), a copolymer of glucosamine and N-acetyl-glucosamine, is 

obtained by alkaline deacetylation of chitin, which is the main component of the 

exoskeleton of crustaceans, such as shrimps [2]. CS has attracted considerable interests 

for biomedical applications due to its attractive properties in terms of biocompatibility, 

biodegradability, non-antigenicity, antibacterial activity and low cost [3]. Moreover, CS 

offers several advantages that make it particularly enticing for TE applications: CS can be 

easily molded into matrices of various forms such as films [4], porous scaffolds [5], 

hydrogels [6], nanofibers [7-9] and drug carriers [10]. As a result of the protonation of 

free amino groups under acidic conditions (pH <6), CS exhibits a pH-dependent cationic 

nature and has the ability to interact with anionic components (glycosaminoglycans and 

proteins) [11, 12]. 

For most medical application, CS has been crosslinked in order to improve its mechanical 

strength and its structural integrity under physiological conditions. Commonly used 

chemical crosslinkers in literature include epoxy compounds [13], aldehydes 

(formaldehyde, glyceraldehyde and glutaraldehyde) [14, 15] and carbodiimides [16, 17]. 

They all exhibit a certain degree of cytotoxicity and may therefore impair biocompatibility 

of CS scaffolds. For this reason, increasing interest has been recently gained by less 

cytotoxic crosslinking agents such as enzymes [18] or naturally derived crosslinking 

agents, having a lower toxicity [19-22]. The effect of crosslinking strongly influences the in 

vivo performance of the scaffolds in terms of mechanical properties, degradation, water 

stability and cellular response. An analysis and comparison of different CS crosslinkers is 

however not currently available and is the aim of this study. Three compounds, widely 

used as CS crosslinkers, were selected. Genipin (GP), a natural cross-linker, is an aglucone 

of geniposide extracted from Gardenia jasminoides and obtained from geniposide via 

enzymatic hydrolysis. GP is 10,000 times less toxic than glutaraldehyde [20, 23] although 

its crosslinking mechanism is similar to other synthetic chemical crosslinking agents. 

Glycidoxypropyltrimethoxysilane (GPTMS) is a silane coupling agent, which has epoxy and 

methoxysilane groups. The epoxy groups react with the amino groups of CS molecules 

while the methoxysilane groups are hydrolyzed and form silanol groups [24]. GPTMS has 

been largely used to crosslink CS films and membranes for different TE applications [25, 

26]. Introduction of silica into the biomaterials has been shown to increase its oxygen 

permeability [27], biocompatibility, biodegradability [28] and to improve the flexibility of 

the CS based samples [25]. Dibasic sodium phosphate (DSP) is a non-toxic polyanion 

which can interact with CS via electrostatic forces to form ionic crosslinked membrane 

[29]. A novel in situ forming CS formulation has been recently developed via coupled ionic 

and covalent co-cross-linking [30]. The addition of DSP (as ionic crossilinker) neutralizes 

CS based samples avoiding the need of a rinsing step in sodium hydroxide solution. By 

combining DSP with GP, porous scaffolds were also fabricated by chemical cross-linking 

showing higher mechanical and chemical properties compared to those obtained using 

the single crosslinkers [30]. 
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Despite the numerous reports on the potential applications of CS scaffolds as biomaterials 

in clinics and pharmaceutical field, reports that compare the effect of different 

crosslinkers on the physicochemical, thermal and mechanical properties are still lacking. 

For this reason, this work compares the effects of various crosslinking methods (through 

covalent or ionic bonding) on the physicochemical, thermal and mechanical properties of 

CS flat membranes. The crosslinking agents used included GP, GPTMS, dibasic sodium 

phosphate (DSP), and a combination of GPTMS and DSP. The GP, GPTMS and DSP 

amounts were selected on the basis of data from literature analysing the use of different 

crosslinking agents [19, 25, 30]. 

2.2 Experimental 

2.2.1 Materials 

CS (medium molecular weight, 75%-85% deacetylation degree), GPTMS and DSP were 

supplied from Sigma Aldrich. GP was purchased from Challenge Bioproducts Ltd. Taiwan. 

All solvents used were of analytical grade and used without further purification. 

2.2.2 Methods 

CS was dissolved in acetic acid solution 0.5 M at room temperature by continuous stirring 

to obtain a 2.5 % (w/v) solution. The crosslinked membranes were prepared according to 

the following procedures: 

I. GP-crosslinked samples (CS/GP) were obtained by adding GP (2.5% w/w) to the CS 

solution. The resulting solution was kept under moderate stirring until a green-bluish 

gel started to form as suggested by visual inspection and by the viscosity increase of 

the mixture. 

II. GPTMS-crosslinked samples (CS/GPTMS) were prepared by adding GPTMS (75% w/w) 

to CS solution. The amount of GPTMS was selected according to literature [25] in 

order both to obtain the maximum crosslinking degree of CS chains and to increase 

the mechanical properties. The resulting solution was kept under stirring at room 

temperature for 1 hour. 

III. DSP-crosslinked samples (CS/DSP) were obtained by adding DSP 1M (one drop per 

second) to the CS solution with a concentration of 7.5 % v/v with respect to the 

natural polymer solution volume. The mixed solution was kept under stirring at room 

temperature for about 10 minutes.  

IV. GPTMS_DSP-crosslinked samples (CS/GPTMS_DSP) were obtained adding GPTMS 

(50% w/w) to the CS solution. The resulting CS/GPTMS solution was kept under 

stirring for 1 hour, followed by the dropwise addition (one drop per second) of DSP 

1M (concentration 7.5 % v/v) and maintained under moderate stirring for 10 

minutes. 

Then, 10 ml of each solution (CS/GP , CS/ GPTMS, CS/DSP and CS/GPTMS) was poured 

into 6 cm Petri dishes and air-dried for 48 h to obtain flat membranes. All crosslinked 
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dried samples were dipped into demineralised water for 10 minutes and then the water 

pH values were measured to evaluate the presence of acidic residues. Uncrossilinked CS 

flat membranes were prepared as control following the procedures described above 

without adding any crosslinker. Acid pH were obtained for CS, CS/GP, CS/GPTMS films. 

Consequently, CS, CS/GP, CS/GPTMS samples were neutralized by rinsing in a 0.1M NaOH 

solution followed by 5 washing in distilled water to obtain physiological pH.  

2.2.3 Sample characterization 

2.2.3.1 Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR) 

The FTIR-ATR spectra of CS, CS/GP, CS/GPTMS, CS/DSP, CS/GPTMS_DSP samples were 

recorded at room temperature in a Perkin Elmer Spectrometer in the range 2000-600 cm-

1 at a resolution of 4 cm-1. 

2.2.3.2 Surface wettability 

The static contact angle of CS, CS/GP, CS/GPTMS, CS/DSP and CS/GPTMS_DSP films were 

measured at room temperature using a KSV instrument equipped with a CAM 200 

software for data acquisition. Sessile drop method was applied, using a 5 μL double 

distilled water droplet. For each angle reported, at least five measurements on different 

surface locations were measured and results were expressed as average value ± standard 

deviation. 

2.2.3.3 Swelling and dissolution test 

The swelling and dissolution behavior of the uncrosslinked and crosslinked CS samples 

were evaluated by immerging the samples in PBS (pH 7.4) at 37°C. The swelling degree 

was measured after 1, 3, 6, 9 and 24 hours while the dissolution degree was evaluated 

after 1, 3, 5, 7, 14, 28 and 56 days. The swelling percentage was calculated as: 

ΔWs (%) = (Ws-W0)/W0*100 

where W0 and WS are the sample weights before and after swelling respectively. The 

dissolution percentage was calculated as: 

ΔWd (%) = (W0-Wd)/W0*100 

where Wd is the dried sample weight after dissolution. The solution pH was measured at 

the same time intervals during the swelling and the dissolution tests, and its stable value 

at around 7 (physiological pH) was verified. For each experimental time, three samples 

were measured and the results were expressed as averages value   standard deviation. 
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2.2.3.4 Morphological characterization and element distribution 

The external surface morphology of CS, CS/GPTMS, CS/DSP and CS/GPTMS_DSP flat 

membranes was observed by scanning electron microscopy (SEM LEO – 1430, Zeiss). 

Using an energy dispersive spectrometer (EDS), qualitative compositional analysis was 

performed and punctual elemental composition of materials with high spatial resolution 

was accomplished. Samples were sputter coated with gold in a undervacuum chamber 

prior to SEM-EDS examination. 

2.2.3.5 Thermogravimetric analysis (TGA) 

Thermal degradation was measured using a TA INSTRUMENT Q500 equipment. The 

experiments were performed with a 10-15 mg sample in aluminum pans under a dynamic 

nitrogen atmosphere between 40°C and 800 C. The experiments were run at a scanning 

rate of 10°C/min and obtained results were analyzed using TA Universal Analysis 

software. 

2.2.3.6 Differential scanning calorimetry (DSC) 

DSC was performed on CS based membranes using a TA INSTRUMENT DSC Q20. 

Accurately weighted (6-10 mg) samples were placed into aluminum cups and sealed. A 

small hole was done at the top of the cup in order to allow the release of water. An empty 

cup was used as reference. The samples were detected in the first heating scan run in the 

temperature range of 30–200 °C. The experiments were run at a scanning rate of 

10°C/min. Water evaporation temperature (Twe) and enthalpy (ΔHwe) were calculated as 

the temperature of the maximum value of the endotherm and the peak area, 

respectively. For CS/GP, CS/GPTMS, CS/DSP and CS/GPTMS_DSP samples, the enthalpy 

values were normalized based on the contents of uncrosslinked CS.  

2.2.3.7 Mechanical properties 

The tensile mechanical properties were performed on dry and wet flat membranes using 

MTS QTest/10 device equipped with load cells of 50N and of 10N, respectively. 

Rectangular strips of 30 mm x 10 mm size were cut from each films and strained to break 

at a constant crosshead speed of 2 mm/min. Using the associated software Test Works, 

break stress and strain were determined. The elastic modulus was calculated from the 

slope of the linear portion of the stress–strain curve. To measure the thickness of the 

films, digital calibrator was used. Prior to tensile testing in wet state, samples were 

immersed in phosphate buffered saline (PBS, pH 7.4) for 10 min at 25°C. Four specimens 

for each kind of material were tested. The results were expressed as average values ± 

standard deviation. 
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2.2.3.8 Statistics 

Experiments were repeated three times and results expressed as an mean ± standard 

deviation. Statistical significance was calculated using analysis of variance (ANOVA). A 

comparison between two means was analyzed using Tukey's test with statistical 

significance level set at p <0.05. 

2.3 Results and discussion 

2.3.1 Membrane preparation 

Crosslinked CS membranes were obtained from casting the CS acetic acid aqueous 

solution containing GP, GPTMS, DSP or a combination of GPTMS and DSP respectively. In 

all processes, in situ crosslinking and sample preparation were performed with the 

conventional fabrication technique in order to provide a convenient way of preparing 

crosslinked CS membranes. Fig. 2.1 schematizes the different crosslinking mechanisms. 

The GP reaction is influence by the pH value. In acetic acid solution (acidic condition), a 

nucleophilic attack by the amino groups of CS on the olefinic carbon atom at C-3 occurs, 

followed by opening the dihydropyran ring and attachment of the secondary amino group 

on the newly formed aldehyde group while the short chains of condensed GP act as 

crosslinking bridges. The dark-blue coloration that appears in the samples exposed to air 

is associated with the oxygen radical induced polymerization of GP as well as its reaction 

with amino groups (Fig. 2.1A). GPTMS reacts with the amino groups of CS chains through 

its oxirane ring. Meanwhile the hydratation of the trimethoxy groups of GPTMS moiety 

forms silantriol pendent through acid-catalyzed reaction. Dehydration reaction among the 

silantriol groups occurs during the drying process and forms inter-chain linkages between 

CS chains [20] (Fig. 2.1B). DSP is a sodium salt of phosphoric acid able to increase the pH 

value of CS solution to around neutrality (pH≈7). DSP is negatively charged in solution and 

thus may interact with CS via electrostatic forces to form ionic crosslinked membrane 

(Fig. 2.1C). The combination of GPTMS and DSP exploit both the chemical and ionic co-

crosslinking mechanism (Fig. 2.1D). 
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Fig. 2.1. Chemical structure of CS crosslinked with: GP (A), GPTMS (B), DSP (C) and a combination 

of GPTMS and DSP (D). 

2.3.2 Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR) 

In Fig. 2.2, the FTIR-ATR spectra of CS, CS/GP, CS/GPTMS, CS/DSP and CS/GPTMS_DSP are 

reported. The five spectra showed the typical adsorption bands of CS: peaks at 1151 cm-1 

(C-O-C stretching) and at 1019 cm-1 (C-O stretching) were associated to vibrational modes 

typical of the saccharide structure of CS [31]; absorption bands at 1637 cm-1 and 1542 cm-

1 resulted from axial stretching of C=O in amide group (amide I band) and NH2 bending 

vibration of amino groups and N-H bending of amide groups, respectively; the vibration 

modes at 1414 cm-1 and at 1319 cm-1 were assigned to O-H bending (originating from CS 

deacetylation) and C-H bending vibrations [31]. No significant differences were detected 

between the CS and CS/GP spectra, as also described by Mi et al. [32]. The introduction of 

silane groups by GPTMS crosslinker (CS/GPTMS samples), caused the appearance of new 

bands at 920 cm-1, at 1020 cm-1 and 1150 cm-1 in FTIR spectra, associated with the 

stretching of Si-OH bonds and Si-O-Si vibrations, respectively [25, 26]. In addtion, the peak 

at 1000- 1100 cm-1 broadened and increased its intensity owing to the absorption from Si-

O-C stretching bonds [33]. As regard the CS/DSP FTIR spectra, new peaks were detected 

at 1150 cm-1 and 1000 cm-1 which could be attributed to the PO3 out-of-phase stretching. 

Bands at 989 cm-1 and 943 cm-1 were associated with PO3 in-phase-stretching. The 

detected peaks at 861 cm-1 and at 814 cm-1 were associated with P-OH stretching and P-

O-P asymmetric stretching vibration respectively [34]. The FTIR spectra of CS/GPTMS_DSP 

hybrid sample showed the typical adsorption bands of both the ionic and covalent 

crosslinkers: bands at 1200 cm-1, due to the Si-O-Si bonds, confirmed the crosslinking of 

CS by GPTMS; peaks at 1150 cm-1 and 1000 cm-1 (PO3 out-of-phase stretching), 861 cm-1 
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(P-OH stretching) and 814 cm-1 (P-O-P) asymmetric groups evidenced the presence of 

DSP. The absorption band at 1720 cm-1 was observed in CS/GPTMS, CS/DSP and 

CS/GPTMS_DSP spectra and could be attributed to the stretching vibration of C=O groups, 

probably due to acetic acid residuals [35]. 

 

Fig. 2.2. FTIR-ATR spectra of CS, CS/GP, CS/GPTMS, CS/DSP and CS/GPTMS-DSP films. 

2.3.3 Surface wettability 

The static water contact angles of both crosslinked and uncrosslinked CS flat membranes 

are reported in Fig. 2.3. Uncrosslinked CS samples displayed a slightly hydrophilic 

behavior with a contact angle in the 83°–88° range. Crosslinking with GP or GPTMS did 

not change the surface wettability significantly (85.1°±0.9° for CS/GP and 85.8°±1.0° for 

CS/GPTMS). On the other hand, CS/DSP based samples presented a significant higher 

hydrophilicity respect to the CS, CS/GP and CS/GPTMS samples. The enhanced 

hydrophilicity caused by the addition of DSP is attributed to the presence of hydrophilic 

phosphate groups in DSP. Water contact angles of CS/DSP and CS/GPTMS_DSP film 

samples were not significantly different (66.0°±9.7° for CS/DSP and 57.7±9.2° for 

CS/GPTMS_DSP). The presence of DSP is expected to effort in vitro and in vivo cells 

response since cell adhesion, which depends on various parameters, is known to be 

maximised on surfaces with an intermediate wettability (with 50–70° water contact 

angle) [36, 37]. 
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Fig. 2.3. Static water contact angle of CS, CS/GP. CS/GPTMS, CS/DSP and CS/GPTMS_DSP film 

samples. Histograms reported the  average values and the standard deviations. **p <0.001 and 

***p < 0.0001. 

2.3.4 Swelling and dissolution tests 

The swelling and dissolution of CS network greatly depend on the internal structural 

parameters of the swelling network such as the amounts of constituent polymers present, 

crosslink density of the membrane, presence of hydrophilic and/or hydrophobic 

functional groups, etc. Fig. 2.4A reports the swelling degrees of CS, CS/GP, CS/GPTMS, 

CS/DSP and CS/GPTMS_DSP samples, respectively. A comparison of the swelling 

percentage of CS crosslinked samples reveals that the water uptake of uncrosslinked 

samples is significantly higher than for all CS crosslinked specimens at each time point 

(***p<0.0001). CS is a hydrophilic, cationic polymer, which causes CS flat membranes to 

have a higher water uptake respect to ionic and covalent crosslinked samples: CS/GP, 

CS/DSP, CS/GPTMS and CS/GPTMS_DSP contain less free NH3
+ moieties and decrease the 

ability of CS to form hydrogen bonds with water molecules. Moreover, the presence of 

GPTMS causes a maximum reduction in the swelling degree of CS associated to the 

formation of a well-organized polymer structure [25]. In detail, CS and CS/DSP films 

increased considerably their weight immediately after 1 h of immersion in PBS solution 

showing a significantly higher degree of water uptake of 1366±189% and 532±25%, 

respectively (***p<0.0001). By contrast, the swelling degree of CS/GPTMS and 

CS/GPTMS_DSP reached values of 7±4% and 29±12% respectively, after 1 h incubation in 

PBS. Both films achieved equilibrium swelling degree after immersion for 3 h and the 

maximum degree of water uptake was about 30±2% for CS/GPTMS and 48±2% for 

CS/GPTMS_DSP after 24 h. No significant differences were observed between CS/GPTMS 

and CS/GPTMS_DSP samples at each time step. The presence of many Si-OH and Si-O-Si 

groups, which depends on the degree of polymerization of GPTMS has been shown to 

influence water uptake: an increase in the GPTMS content contributes to an increase in 



47 
 

number of hydrophilic silicate units, and reduces as a consequence CS water uptake [25]. 

An increase of swelling degree was observed by adding DSP to CS/GPTMS and could be 

attributed to the presence of hydrophilic phosphate groups in DSP. This behaviour is 

confirmed for CS/DSP samples where a higher water uptake is observed. An intermediate 

behavior was observed for CS/GP specimens reaching a stable value swelling degree of 

280±30% after 1 h of immersion in PBS. CS/GP crosslinked films showed low swelling ratio 

as compared to uncrosslinked CS that could be due to the formation of molecular linkages 

(heterocyclic amino linkage) by GP.  

Dissolution tests were performed on crosslinked CS films, with the aim to study their 

stability in aqueous environment. The degradation profiles of crosslinked CS samples after 

56 days of immersion in PBS are presented in Fig 2.4B. The stability of the CS based 

samples in PBS solution increased when GPTMS and GP were used as crosslinking agents. 

Analyzing the weight loss degree, CS/GPTMS_DSP and CS/DSP membranes presented a 

significant dissolution after 1 day immersion in PBS reaching values of 38% and 44%, 

respectively. CS/GPTMS and CS/GP films showed lower weight loss respect to CS/DSP and 

CS/GPTMS_DSP specimens, with 15% and 18% degradation respectively after 1 day and 

reached a final value of about 35% and 21% after 56 days incubation in PBS. Compared to 

the CS/DSP and CS/GPTMS_DSP samples that lost the 67% and 50% of the initial weight 

after 8 weeks, chemical crosslinking by the addition of GPTMS or GP agents enhanced the 

stability in aqueous media. CS/GP samples reached a stable value of weight loss after 1 

day in immersion in PBS solution. On the contrary, the presence of DSP as ionic 

crosslinking increased the weight loss 1 day after immersion in PBS and was associated to 

the release of salts into the PBS solution.  
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Fig. 2.4. Swelling (A) and dissolution (B) degrees for CS/GP, CS/GPTMS, CS/DSP and 

CS/GPTMS_DSP films. Measurements were carried out in PBS at pH 7.4, at 37 °C. Column heights 

correspond to the mean values. Bars indicate standard deviations (n = 3). *p< 0.05, **p < 0.001 

and ***p < 0.0001. 
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2.3.5 Morphological characterization and chemical composition 

SEM-EDS analysis was performed on the surfaces of films to evaluate the effect of the 

different crosslinking methods on sample morphology and chemical composition. EDS 

elemental mapping is a powerful method to identify the elemental composition in distinct 

region of a material [38, 39]. No phase separation between CS and crosslinking agents 

was observed (data not shown). Fig. 2.5 reports the EDS element-mapping on the surface 

for CS/GP, CS/GPTMS, CS/DSP and CS/GPTMS_DSP films. EDS spectra of crosslinked 

samples (insert in Fig. 2.5 A, B, C, D) showed the characteristic elements of CS: carbon (C) 

and oxygen (O) and also the peak relative to silicon (Si) for CS/GPTMS and to sodium (Na) 

and phosphate (P) for CS/DSP, respectively; moreover, characteristic peaks corresponding 

to Si, Na and P elements were found on the CS/GPTMS_DSP films and were associated 

both to the presence of both the ionic and covalent crosslinkers (insert in Fig. 2.5). No 

compositional differences were found between CS and CS/GP samples (data not shown). 

The green and the red spots corresponding to silicon (Si) and phosphorus (P) elements 

(Fig. 2.5) were found homogeneously distributed in the CS/GPTMS and CS/DSP samples, 

respectively while both spots were observed to be uniformly dispersed in CS/GPTMS_DSP 

films. The EDS mapping results suggested uniform CS crosslinking for all the analysed 

compositions.  

 

Fig. 2.5. EDS spectra of compact films: surface of (A) CS/GP, (B) CS/GPTMS, (C) CS/DSP and 

CS/GPTMS_DSP. 
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2.3.6 Thermogravimetric analysis (TGA) 

The decomposition profile of CS, CS/GP, CS/GPTMS, CS/DSP and CS/GPTMS_DSP 

membranes was evaluated by TGA analysis in a temperature range from 40°C to 800 °C. 

The derivative of TGA curves (DTG), as shown in Fig. 2.6, revealed two separate 

degradation phenomena both for crosslinked and uncrosslinked CS samples: the first 

decomposition step started from 50°C and continued to above 150 °C and was related to 

the water evaporation; the second weight loss was observed in the 180-400 °C 

temperature range and was attributed to the decomposition of CS main chains. Pure CS 

showed a first thermal degradation at around 103 °C and a second stage, associated to 

the thermal and oxidative decomposition of CS and to the vaporization and elimination of 

volatile products, starting at 181 °C and reaching a maximum at 265 °C with a total weight 

loss of 35% [40]. In CS/GP samples, the second degradation step started at about 190 °C 

and degradation was completed at 497 °C. The temperature of the maximum degradation 

rate was measured at 264 °C. No relevant differences in the weight loss associated to this 

second step were observed for CS/GP samples respect to pure CS. According to literature 

[41], the obtained result confirmed that GP addition had no influence on thermal stability 

of CS membranes. CS/GPTMS hybrids exhibited improved thermal stability respect to 

pure CS and CS/GP film samples. The initial weight loss of CS/GPTMS samples was 

attributed to water evaporation. The second degradation step resulted from the thermal 

degradation of the crosslinked material. The temperature of maximum rate of 

degradation was shifted to a higher value respect to CS and CS/GPTMS (281 °C) and 

associated with a weight loss of 27%. A new weight loss was observed in a temperature 

range between 330 °C and 550 °C. Such changes might indicate the hybridization between 

the organic and inorganic parts, as suggested by a previous study [42]. The weight loss at 

281 °C might be due to the cleavage of relatively unstable parts of the polymeric 

compound and the structural reorganization of the polysiloxane, while the third weight 

loss stage might correspond to the complete decomposition of the backbone of the 

polymeric matrix. In CS/DSP samples the first degradation step was observed at around 

80 °C and the corresponding weight loss was higher than CS, CS/GP and CS/GPTMS due to 

superior hydrophilicity of CS/DSP. Polymer pyrolysis was detected in the 250-500 °C range 

temperature with the maximum rate of degradation at 271 °C. During the degradation 

step, weight loss was also associated to DSP reactions: at higher temperatures than 

210°C, DSP starts to condense forming disodium pyrophosphate and above 300 °C 

metaphosphates form, leading to an additional weight loss [43] (31%). For 

CS/GPTMS_DSP the first degradation stage started at about 100 °C and the second stage 

showed a rapid weight at about 273 °C due to degradation of CS. Complete degradation 

occurred at 550 °C confirming an increase of the thermal stability of CS films caused by 

the hybridization between the organic and inorganic parts of CS/GPTMS_DSP samples. 

The total weight loss of the crosslinked and uncrosslinked CS samples at about 550 °C was 

in a range between 50% and 58%. The remaining solid residue is mostly due to the 

formation of inorganic compounds containing C, N and O. Similar multi-degradation 
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behavior of CS film was reported in the literature [44, 45]. Table 2.1 collects the maximum 

degradation rate temperature (Td) of CS based samples and the corresponding weight 

losses. The Td values of CS and CS/GP films were similar, while for the other crosslinked 

samples, the Td was shifted to higher temperatures. Moreover, the final weight loss of the 

CS/GPTMS, CS/DSP and CS/GPTMS_DSP samples was lower than that of CS and CS/GP 

specimens. TGA analysis confirmed the improvement of the thermal stability of 

crosslinked CS, especially when both GPTMS and DSP crosslinking agents were used. 

 

Fig. 2.6. First derivative of TGA curves of CS, CS/GP, CS/GPTMS, CS/DSP and CS/GPTMS_DSP films. 

Table 2.1. Maximum degradation rate temperature (Td) and corresponding weight loss for CS and 

crosslinked CS. 

Sample Td (°C) Weight loss (%) 

CS 265 35 

CS/GP 264 34 

CS/GPTMS 281 28 

CS/DSP 271 31 

CS/GPTMS_DSP 273 32 
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2.3.7 Differential scanning calorimetry (DSC) 

DSC analysis was performed to analyze the thermal behavior of CS based materials as it is 

influenced by the different crosslinking treatments. The DSC thermograms, shown in Fig. 

2.7, compare the first heating traces for pure CS and CS crosslinked samples in the 

temperature range from 30°C to 200°C. The maximum temperature of 200°C was selected 

in order to limit possible CS degradation, as confirmed by thermogravimetric analysis (see 

paragraph 2.3.6). All DSC traces presented an endothermic event in the temperature 

range of 90°C-100°C which features were collected in Table 2.2. For all CS based 

membranes, the endothermic event was not directed in the second DSC run (data not 

shown in Fig. 2.7), confirming the hypothesis that water evaporation occurred during the 

first cycle [40, 46]. A detailed examination of Fig. 2.7 revealed differences among the 

samples in the endothermic peak enthalpy and temperature. This result is attributable to 

different water holding capacity and to water–material interactions ascribed to the 

physical and molecular changes as a consequence of the crosslinking process. CS heating 

trace showed an endothermic peak at 95°C while the DSC heating trace of CS/GPTMS was 

characterized by the presence of a splitted endothermic event at around 100°C. CS and 

CS/GPTMS possess polar groups, which are able to adsorb water and establish onto 

hydrogen bonds with it. According to literature [47], upon heating, the thermally 

activated water molecules tend to be released: water molecules which are bound to 

amino groups are removed easier than those bound to hydroxyl groups. In CS/GPTMS 

films, some amino groups reacted with the oxirane group of GPTMS and, thus the number 

of amine groups available to interact with the water molecules decreased. Therefore, the 

amount of released water was lower than CS. Furthermore, as the hydrogen bonds 

between water molecules and CS hydroxyl groups were stronger compared to the ones 

with CS amino groups, CS/GPTMS endothermic peak shifted to a higher temperature 

value compared to the case of pure CS. On the contrary, for CS/GP samples, the DSC 

endothermic peak was shifted to lower temperature compared to the case of pure CS, in 

agreement with scientific literature [48]. The DSC heating traces of CS/DSP and 

CS/GPTMS_DSP films were characterized by an endothermic peak centered at around 85-

88°C. This event, again associated with the evaporation of water molecules, was shifted 

to lower temperatures compared to uncrosslinked CS due to weaker water–material 

interactions caused by the addition of DSP. The enthalpy value measured for 

uncrosslinked CS was 140 J/g. CS/GP enthalpy value did not change significantly upon 

crosslinking showing that GP did not affect the water holding capacity of CS. Following the 

introduction of GPTMS, DSP and GPTMS_DSP, enthalpy value changed indicating a 

definite correlation between the water holding capacity and chemical and supramolecular 

structures of this natural polymer. CS/GPTMS showed the lowest enthalpy value (80.8 J/g) 

compared to other CS membranes (Table 2.2); the use of GPTMS as crosslinker forms 

ordered and organized structures that significantly contribute to the decrease in the 

content of adsorbed water. On the contrary, the presence of DSP in CS/DSP and 

CS/GPTMS_DSP films led to higher enthalpy values of about 208 J/g and 184 J/g 
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respectively, indicating a stronger interaction with water molecules (and consequently an 

higher water uptake) due to the higher hydrophilicity associated with the ionic 

crosslinker. 

 

Fig. 2.7. The first heating scan DSC curve of CS, CS/GP, CS/GPTMS, CS/DSP and CS/GPTMS_DSP. 

Table 2.2. Differential scanning calorimetry (DSC) measurements for cross-linked films. 

Sample Peak temperature (°C) Enthalpy (J/g) 

CS 95.0 140.0 

CS/GP 85.0 160.0 

CS/GPTMS 100.0 80.8 

CS/DSP 85.0 208.2 

CS/GPTMS_DSP 87.0 184.4 

 

2.3.8 Mechanical properties 

Tensile tests were performed on control and crosslinked CS flat films both in dry and in 

wet conditions to determine the effect of crosslinking on sample stiffness. Dried CS based 

samples had a uniform thickness in the range of 60-90 μm while wet CS samples showed 

an increase in thickness reaching values within 90-130 μm. For all samples, at low strains 

(lower than 6%) the stress increased linearly with an increase in the strain. In this region, 

the ɕ-ɛ slope was calculated to obtain the elastic modulus. At strains >6%, the stress 

increased slowly with increasing strain until failure occurred (data not shown). Table 2.3 

shows the elastic moduli of CS samples in dry and wet state. In dry condition, the Young’s 

modulus of CS was around 1900-2800 MPa and the typical ɕ- ɛ behavior of a brittle and 

rigid material was observed [49]. The elastic modulus for CS/GP films did not show 

significant difference compared to pure CS confirming the brittleness and the poor 

flexibility of the CS membranes crosslinked with GP. The introduction of GPTMS, DSP or a 

combination of both in CS samples significantly decreased the Young’s modulus compared 
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to CS (**p<0.001) by obtaining values of 1643±92 MPa, 1090±72 MPa and 1250±100 

MPa, respectively. These results revealed that the mechanical resistance and flexibility of 

CS based films were altered by the addition of different crosslinkers because of the 

reorganization of the polymer structure. Furthermore, more hydrophilic CS membranes 

(CS/DSP and CS/GPTMS_DSP) showed a less bridle behavior thanks to the ability of water 

to plasticise the CS matrix. In wet condition the elastic modulus of CS significantly 

decreased and an opposite trend was observed compared to dry samples. The Young’s 

modulus of wet CS samples was about 0.212 MPa suggested a dramatical loss of stiffness. 

On the contrary, the crosslinking of CS films enhanced the mechanical resistance in wet 

state, and the elastic modulus calculated was 5.7±0.8 MPa for CS/GP, 21.3±2.9 MPa for 

CS/GPTMS, 3.5±1.1 MPa for CS/DSP and 23.0±2.7 MPa for CS/GPTMS_DSP samples. The 

significant stiffening of the crosslinked specimens was associated to the formation of a 

more organized structure following the addition of GP and GPTMS (statistical significant 

compared to CS, CS/GP and CS/DSP samples, ***p<0.0001) respect to pure CS. By adding 

DSP, an improved deformability of the samples was observed probably due to a water 

adsorption behaviour. CS/GPTMS_DSP showed an intermediate behavior compared to 

CS/GPTMS and CS/DSP films and samples (statistical significance, *p<0.05 and 

***p<0.0001 respectively) were found to be both highly elastic and resistant. 

Table 2.3. Elastic modulus calculated from the corresponding stress-strain curves of dry and wet 

CS based samples (average value ± standard deviation). 

Sample Edry (MPa) Ewet (MPa) 

CS 2300±438 0.22±0.06 

CS/GP 2030±208 5.73±0.84 

CS/GPTMS 1465±172 18.10±4.14 

CS/DSP 1402±300 3.47±1.06 

CS/GPTMS_DSP 1300±126 23.03±2.62 

 

2.4 Conclusion 

The results obtained in the present study provides the basis for choosing a crosslinking 

reagent that could impart the requisite properties to the CS membranes in the design of a 

biomaterial for different biomedical application. CS based matrices were treated with 

different crosslinking agents (GP, GPTMS, DSP and a combination of GPTMS and DSP) to 

investigate the effect on the physical and mechanical properties of CS following the 

chemical or the ionic crosslinking treatment. In details: 

 GP and GPTMS did not affect the surface wettability and the thermal degradation 

kinetics of samples respect to uncrosslinked CS. Both GPTMS and GP based crosslinking 

treatments allowed to significantly reduce the CS swelling and dissolution behavior 

and to enhance its mechanical resistance under wet condition; 
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 DSP contributed to increase the hydrophilicity of CS/DSP and CS/GPTMS_DSP samples 

as compared to CS, CS/GP and CS/GPTMS. The stronger interaction existing between 

water and CS chains after ionic crosslinking was confirmed by a higher water uptake 

degree and higher enthalpy values. Moreover, the higher water–material interaction 

following the addition of DSP to CS and CS/GPTMS solutions allowed to obtain more 

flexible membranes. The simultaneous use of GPTMS and DSP permitted to combine 

the features obtained both from GPTMS and DSP crosslinkers. Lower degree of 

swelling and dissolution respect to pure CS and CS/DSP were associated to the addition 

of the covalent crosslinker while the improved surface wettability for CS/GPTMS_DSP 

samples was attributable to the ionic agent. Concerning the mechanical properties, 

GPTMS enhanced the resistance of CS while DSP allowed to obtain more flexible 

specimens. 

In summary, these different crosslinkers for CS based membranes could offer a broad 

range of choices to be potentially used in biomedical applications such as biomaterial, 

drug delivery vehicles and skin tissue engineering. 
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Chapter 3 
Peripheral nerve tissue engineering: 

state of the art and 

chitosan based biomaterials 
 

3.1 Introduction 

Regeneration in the peripheral nervous system offers unique opportunities and 

challenges to medicine. Compared to the central nervous system (CNS), peripheral axons 

can regenerate resulting in functional recovery, especially if the distance to target is 

shorter than 3 cm as in distal limb injuries. However, this regenerative capacity is often 

incomplete and functional recovery with proximal lesions is limited. Autologous nerve 

graft transplantation is a feasible treatment in several clinical cases, but it is limited by 

donor site morbidity and insufficient donor tissue, impairing complete functional 

recovery. TE has introduced innovative approaches to promote and guide peripheral 

nerve regeneration by using biomimetic constructs inducing favorable 

microenvironments for nervous ingrowth. Promising strategies using nanotechnology 

have been recently proposed, such as the use of scaffolds with functionalized cell-binding 

domains, the use of guidance channels with cell-scale internally oriented fibers, and the 

possibility of sustained release of GFs and encapsulation of SCs. This chapter addresses: i) 

an overview of the biology of peripheral nerve and type of injuries and ii), the most recent 

TE approaches in view of future solutions for peripheral nerve repair. 

3.2 Biology of the peripheral nerve and injuries 

3.2.1 Central and peripheral nervous systems 

The nervous system is composed of organized group of cells specialized for the 

conduction of electrochemical stimuli from sensory receptors through a network to the 

site at which a response occurs. The nervous system includes both the CNS and peripheral 

nervous system (PNS). The two systems work together to collect information from inside 

the body and from the environment outside it. The CNS and PNS process the collected 

http://www.britannica.com/EBchecked/topic/131654/conduction
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information and then dispatch instructions to the rest of the body, making it respond. The 

CNS is the primary control center for the body and is made up of the brain and spinal 

cord. Injuries in these locations have only a very limited capacity to heal, because nerve 

regeneration tends not to occur. The PNS consists of a network of nerves that connect the 

CNS to the limbs and peripheral organs. The PNS is divided into: 

- the sensory nervous system which sends information to the CNS from internal organs 

or from external stimuli;  

- the motor nervous system which carries information from the CNS to organs, muscles, 

and glands. This latter one is divided into: i) the somatic nervous system (responsible 

for coordinating the skeletal muscle movements, and also for controlling external 

sensory organs such as the skin; it is the system that regulates activities that are under 

conscious control); ii) the autonomic nervous system (responsible for coordinating 

involuntary functions, such as breathing and digestion). This system is also called the 

involuntary nervous system. The autonomic nervous system can further be separated 

into the parasympathetic and sympathetic divisions. The parasympathetic division 

controls various functions including inhibiting heart rate, constricting pupils, and 

contracting the bladder. The nerves of the sympathetic division often have an opposite 

effect when they are located within the same organs as parasympathetic nerves. 

The CNS is contained within the dorsal cavity, with the brain in the cranial cavity and the 

spinal cord in the spinal cavity. Both the brain and the spinal cord are protected by bones: 

the brain by the bones of the skull, and the spinal cord by a set of ring-shaped bones 

called vertebrae. Unlike the CNS, the PNS is not protected by bones, leaving it exposed to 

toxins and mechanical injuries. 

The PNS has a much greater capacity than the CNS for natural regeneration after an 

injury, in large part because the glial microenvironment both secretes inhibitory factors 

preventing myelin and neuronal regeneration and lacks the ability to express necessary 

GFs [1]. Therefore, in response to small injuries, peripheral nerves can regenerate on their 

own over relatively short distances under appropriate conditions. 

3.2.2 Nervous tissue cells types 

The nervous system is primarily composed of two categories of cells: neurons and glial 

cells. 

The neuron is the basic unit in the nervous system. It is a specialized conductor cell that 

receives and transmits electrochemical nerve impulses. Chemical signaling occurs via 

synapses, specialized connections with other cells. Neurons connect to each other to form 

networks. This type of cell is highly specialized and amitotic. Functionally, neurons are 

classified as: 

- motor (efferent) neurons transmit impulses from the CNS to the effector organs such 

as muscles and glands. They usually have short dendrites and long axons;  
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- sensory (afferent) neurons respond to touch, sound, light and numerous other stimuli 

effecting sensory organs and transfer impulses from peripheral sense receptors to the 

CNS. They usually have long dendrites and relatively short axons; 

- interneurons (association neurons) are located entirely within the CNS in which they 

form the connecting link between afferent and efferent neurons. They have short 

dendrites and they may have either short or long axon. 

A typical neuron possesses a cell body (often called the soma), dendrites, an axon, and 

synapses (Fig. 3.1). Dendrites are short extensions that arise from the cell body, often 

extending for hundreds of µms and branching multiple times, giving rise to a complex 

"dendritic tree". They receive information from another cell and transmit the message to 

the cell body. The soma ensures the vital functions of the neuron and integrates signals 

from the dendrites. The cell body has a nucleus with at least one nucleolus and contains 

many of the typical cytoplasmic organelles typical of eukaryotic cells. However, it lacks 

centriols. The axon is a special cellular protrusion that arises from the cell body at a site 

called the axon hillock and travels for a distance, as far as 1 m in humans or even more in 

other species. Its main function is to carry the electrical signals produced by the cell body. 

The cell body of a neuron frequently gives rise to multiple dendrites, but never to more 

than one axon, although the axon may branch hundreds of times before it terminates. 

The synapses are branched terminations responsible for the transmission of the signals 

from the axon of one neuron to a dendrite of another. They release neurotransmitters. 

Glial cells compose a voluminous support system that is essential to the proper operation 

of nervous tissue and the nervous system. Unlike neurons, glial cells do not conduct nerve 

impulses. Their main functions include providing support for the brain, assisting in 

nervous system repair and maintenance, assisting in the development of the nervous 

system, and providing metabolic functions for neurons. They are far more numerous than 

neurons (in the human brain glia are estimated to outnumber neurons by about 10 to 1) 

and, unlike neurons, are capable of mitosis. There are four types of glial cells in the 

human body depending on their location in the body and their function. The 

oligodendrocytes, the astrocytes and the microglia are three kind of glial cells located in 

the CNS. The astrocytes (also called astroglia) have numerous projections that anchor 

neurons to their blood supply. They regulate the external chemical environment of 

neurons by removing excess ions (notably potassium) and recycling neurotransmitters 

released during synaptic transmission. The current theory suggests that astrocytes may 

be the predominant "building blocks" of the blood-brain barrier. The microglia are 

extremely small cells of the central nervous system that remove cellular waste and 

protect against microorganisms. The oligodendrocytes are central nervous system 

structures that wrap some neuronal axons to form a specialized membrane called myelin, 

producing the so-called myelin sheath. The SCs are the glial cells located in the PNS. They 

surround the peripheral nerve axon and maintain the vitality of peripheral nerve fibers 

(both myelinated and unmyelinated). In myelinated axons, SCs form the myelin sheath.  
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The myelin sheath, both in the CNS and in the PNS, provides insulation to the axon that 

allows electrical signals to propagate more efficiently. This type of layer is not continous 

but interrupted (at intervals corresponding to the length of the SCs and the uncovered 

parts of the axon are called nodes of Ranvier. Due to the presence of the nodes of 

Ranvier, impulses propagate by saltation. 

 

-  

Fig. 3.1. Scheme of a neuron. Each neuron has three basic parts: cell body called soma, one or 

more dendrites and a single axon. SCs (in PNS) and oligodendrocytes (in CNS) surround the axon 

forming not continuous myelin sheath. 

3.2.3 Structure of the nerve 

The PNS is composed of nerves, which are cylindrical bundles of fibers that start at the 

brain and central cord and branch out to every other part of the body forming the 

communication network between the CNS and the surrounding (muscles, organs of the 

digestive system…). 

The primary function of a peripheral nerve is to transmit signals from the spinal cord to 

the rest of the body (motor nerves), or to transmit sensory information from the rest of 

the body to the spinal cord (sensory nerves). The peripheral nerve is made up of 

connective tissue and nerve components. These connective tissue structures the 

endoneurium, perineurium, and epineurium, all form the framework that organizes and 

protects the nerve fibers and the axons (Fig. 3.2). The epineurium is a layer of dense 

connective tissue that covers and holds together the outer surface of nerves. The main 

function of the epineurium is to maintain the structural continuity of the nerve and to 

protect the nerve. Each bundle of nerve fibers is called a fasciculus (set of 10-100 axons) 

and is enclosed by the perineurium, a connective tissue sheath formed mainly of 

collagenous fibers. Important functions of the perineurium are to maintain the 

intrafascicular pressure and to regulate the local environment in the intrafascicular space 

by acting as a diffusion barrier to several substances. Within the fasciculus, each 
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individual nerve fiber, with its myelin and neurolemma, is surrounded by connective 

tissue called the endoneurium. 

The peripheral nerve is supplied by both an external segment blood supply and an 

intrinsic longitudinal blood supply. The intrinsic blood supply exists in the epineurium, 

perineurium, and endoneurium. Whereas large vessels can be found in the epineurium 

and endoneurium, only capillaries are found in the endoneurium. 

A nerve conveys information in the form of electrochemical impulses (known as action 

potentials) carried by the individual neurons that make up the nerve. These impulses are 

extremely fast, with some myelinated neurons conducting at speeds up to 120 m/s. The 

impulses travel from one neuron to another by crossing a synapse, the message is 

converted from electrical to chemical and then back to electrical. 

 

Fig 3.2. Section of a spinal nerve: see the epineurium surrounding the nerve, each bundle of 

nerve is called fasciculus and is surrounded by the perineurium. Each nerve fiber of the fasciculus 

is surrounded by the endoneurium. 

3.2.4 Nerve injuries classification 

Nerve injuries can be produced by various mechanisms such as crush trauma, direct 

laceration, stretching and compression. The two most widely accepted classifications of 

nerve injuries are Seddon and coworker’s [2] and Sunderland’s classification [3]. The 

latter one expanded the previous classification of Seddon, which described three types of 

lesion named neuropraxia, axonotmesis, and neurotmesis, into a more detailed 

subdivison according to the connective and fibrous structures that are damaged. 

Neurapraxia and axonotmesis, or first- and second- degree Sunderland injury, have a 

good prognosis. Neurapraxia (Fig. 3.3A) involves a local conduction block at the site of 

injury along the course of the nerve, with normal conduction both proximal and distal to 

the site of injury. The nerve remains in continuity and no axonal injury is present. In more 

severe instances of neuropraxia, local myelin abnormalities or even segmental 

demyelination may be involved. This type of injury may result from exposure to a wide 
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range of conditions including heat, cold, irradiation or electrical injuries, but is most 

commonly due to mechanical stress, such as concussion, compression or traction injuries, 

and is often associated with some degree of ischemia. Full functional recovery is to be 

expected within a few days to a few weeks. Axonotmesis (Fig. 3.3B), involves severance 

or destruction to peripheral axons, but connective tissue structures remain intact thus 

facilitating nerve regeneration and functional recovery. The SCs enveloping the injured 

axons also remain intact, which allow regeneration to restore full motor and sensory 

function. The interruption of axons is often the result of nerve pinching, crushing or 

prolonged pressure. Recoveries in these injuries will occur at the classic rate of nerve 

regeneration of approximately 1mm/day to 1.5 mm/day [2]. 

The neurotmesis (Fig. 3.3C-E) is a complete transection of the nerve and can range from a 

disruption of a subset of endoneurial tubes to a complete transection of the nerve. 

Therefore, axons must regenerate through some degree of scar tissue. This can lead to 

incomplete regeneration, as some of the regenerating fibers do not achieve contacts 

with distal receptors or end organs because of interposed scarring within the 

endoneurium. The basal lamina of the SCs is also damaged in this type of injury which can 

lead to mismatching of regenerating nerve fibers to inappropriate distal receptors. In this 

case, the functional recovery does not easily occur because of the extent of endoneurial 

tube disruption. Nonetheless, successful regeneration into appropriate (or the original) 

endoneurial tubes might result in the re-establishment of target reinnervation. In 

neurotmesis the spontaneuos re-innervation is often incomplete and absent. 

 

Fig. 3.3. Schematic representation of the five degrees of nerve injury according to Sunderland [3]. 

Grade 1: conduction block indicated by red arrow (neurapraxia), Grade 2: transection of axon 

with an intact endoneurium (axonotmesis), Grade 3: transection of the nerve fiber (axon and 

endoneurium) within an intact perineurium (neurotmesis), Grade 4: transection of funiculi, 

epineurial tissue maintains nerve trunk continuity (neurotmesis +), Grade 5: transection of the 

whole nerve trunk (neurotmesis ++). 
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3.2.5 Peripheral nerve regeneration after injuries 

Functional recovery after nerve injury involves a complex series of pathophysiologic 

changes, including morphologic and metabolic alterations, each of which may delay or 

impair the neuronal regenerative process. These complex changes occur: i) in the nerve 

cell body, ii) in the segments proximal and distal to the injury site, iii) at the site of injury 

itself and iv) in the distal endings of both muscle end-plates and sensory receptors. The 

regeneration and repair phase following nerve injury may last for many months. In detail, 

following axonal disruption, degenerative changes, including axon and myelin 

breakdown, are initiated proximally and distally to the injury site (Fig. 3.4A). Retrograde 

axonal degeneration in the proximal nerve stump may extend for several millimeters, or 

even several centimeters following severe injuries. The remaining axons in the proximal 

nerve may also demonstrate a reduction in diameter, the extent of which depends on the 

time taken to re-establish functional connections (Fig. 3.4B). Pathophysiologic alteration 

can be seen in the nerve cell body as early as several hours after injury. The series of 

morphological changes that ensue in the cell body after injury are known as 

chromatolysis, and entail cell body and nucleolar swelling, and nuclear eccentricity. This 

is accompanied by the loss of Nissl substance from the cytoplasm (Fig 3.4B). Such 

changes represent reactive alterations in neuronal biochemistry and function and they 

are indispensable for subsequent axon regeneration. Chromatolytic changes involve an 

alteration of metabolic machinery from being primarily concerned with transmitting 

nerve impulses to fabricating structural components for reconstruction of the injured 

nerve. Recovery from such changes takes a number of weeks (or even months) and has 

been reported to depend on the re-establishment of appropriate functional connections 

in the periphery [4]. Failure of axotomised neurons to re-establish appropriate 

connections may result in them persisting in an atrophic, chromatolytic state (Fig. 3.4E) 

or even in their degeneration. After nerve transection, the distal nerve undergoes a slow 

process of degeneration known as Wallerian degeneration which starts immediately after 

injury and involves myelin breakdown and proliferation of SCs. SCs and macrophages are 

recruited to the injury site, and over a period of 3 to 6 weeks, they phagocytize all the 

myelin and cellular debris, and ultimately leave endoneurial tubes, which essentially 

consist of the basement membrane of these SCs (Figure 3.4A-B). The newly generated 

SCs, together with pre-existing SCs that survived the nerve injury form the bands of 

Bϋngner (Fig. 3.4C). The bands of Bϋngner in the distal nerve segment are highly aligned 

and this topographical property is thought to be crucial for the direction of axon growth. 

Apart from their orientated topography, the molecular characteristics of SCs afford them 

their axon-growth promoting properties. SCs produce a basal lamina, which is a 

specialized and complex network of ECM proteins capable of supporting axon regrowth. 

The growth cones of sprouting axons use these tubes, delineated by the continuous SC 

basal laminae, as a regenerative substrate through which they extend at an average rate 

of 1–3 mm/day. Changes in the levels of neurotrophins within both the proximal and 

distal stump occur, too. Neurotrophin 4/5 mRNA, nerve growth factor (NGF), brain 
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derived neurotrophic factor (BDNF) and in the distal stump are increased. NGF is known 

to be secreted by SCs after axotomy [5]. 

In neurotmesis (Fig. 3.4C-E), the severity of disorganisation to local ECM or cellular 

architecture can range from a disruption of a subset of endoneurial tubes to a complete 

transection of the nerve. In this case, endoneurial SCs and fibroblasts proliferate and 

migrate from both ends of the damaged nerve in an attempt to form a cellular and 

connective tissue bridge across the lesion site. Distal nerve stumps, as well as denervated 

target tissues, such as skeletal muscle, exert an attractive influence on axonal sprouts, 

presumably by providing chemotactic cues. However, functional recovery does not easily 

occur because of the extent of endoneurial tube disruption. Nonetheless, successful 

regeneration might result in the re-establishment of target reinnervation with, in the 

case of skeletal muscle, neurotransmission at the neuromuscular junction, reversal of 

muscle fiber atrophy as well as of motoneuronal chromatolysis (Fig. 3.4C). The maturing 

SC–axon interactions in the regenerated distal nerve stump include the formation of 

myelin with significantly shorter internodes (Fig. 3.4C). Since these types of peripheral 

nerve injuries also involve connective tissue scarring, regenerative attempts of severed 

axons are often destined to fail and aberrant sprouting is frequently observed, often 

leading to the development of a neuroma at the proximal nerve stump that causes 

neuropathic pain symptoms (Fig. 3.4E). 

 

Fig. 3.4. Schematic representation of the degenerative and regenerative events associated with 

peripheral nerve injury. A: During the early phase (first few days) after axonal injury (arrowhead), 

local degenerative events are accompanied by both retrograde and anterograde degeneration of 

axon and myelin. B: During the intermediate phase (a few days to weeks), the anterograde 

pattern of Wallerian degeneration proceeds to completion with infiltrating macrophages 

contributing to the removal of tissue debris and SC undergoing mitosis. The axotomised neuronal 

cell body undergoes reactive, chromatolytic changes and the severed proximal end of the axon 

develops regenerative axonal sprouts. C: Of the numerous axonal sprouts that successfully 

traverse the injury site (during the first fewweeks tomonths), some re-enter appropriate 
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endoneurial tubes and continue to extend through the distal nerve stump, supported by SC in the 

bands of Büngner. The target organ/tissue (in this case skeletalmuscle) undergoes disuse atrophy. 

D: Successful axon regeneration through the bands of Bungner and the re-establishment of 

neurotransmission at the neuromuscular junction results in the retraction or dying-back of 

unsuccessful axon sprouts, the reversal of muscle fiber atrophy, of neuronal cell body 

chromatolysis and the establishment of maturing SC–axon interactions (including reduced 

internodal spacing). E: Failure of regenerating axonal sprouts to cross the injury site (possibly due 

to the formation of a physical scarring barrier or the loss of a large segment of nerve) results in 

neuroma formation. The permanently denervated muscle fibers demonstrate severe atrophy, 

loss of their characteristic striations and pyknotic nuclei. 

3.2.6 Surgical approaches 

Peripheral nerve injury greatly compromises the quality of life of affected individuals and 

has a significant socioeconomic impact [6]. Nerve gaps caused by neurotmesis is 

undoubtedly the most challenging type of peripheral nerve lesion repair and requires 

surgical intervention. Satisfactory results are obtained when the nerves are purely motor 

or purely sensory and when the amount of intraneural connective tissue is relatively 

small. For optimal nerve regeneration after repair, nerve stumps must be properly 

prepared, aligned without tension, and repaired atraumatically with minimal tissue 

damage and minimal number of sutures. For nerve gaps of a few millimeters in length, 

end to-end tension-free nerve suture repair is preferred clinically [7]. This surgical process 

consists of primary anastomosys of a divided nerve at the epineural or fascicular level, 

through end-to-end or end-to side and is applicable to short nerve gaps because the 

fascicular coaptation may cause excessive tension over the suture line, which would 

inhibit nerve regeneration [8]. In such cases, the regenerative process can be enhanced 

surgically through the use of nerve conduits, either using autologous or engineered 

tissue, that bridge the gap in the damaged nerve. Entubulization minimizes unregulated 

axonal growth at the site of injury by providing a distinct environment, and allows 

diffusion of trophic factors emitted from the distal stump to reach the proximal segment, 

which recreates the physiological conditions for nerve regeneration. Among the 

entubulization choices, autograft is still the gold standard technique in repairing injured 

peripheral nerve as it provides a scaffold containing both SCs and their basal lamina. The 

basal lamina contains many adhesion molecules, such as laminin, fibronectin, 

proteoglicans, that can promote neurite elongation. The sural, lateral antebrachial 

cutaneous, and terminal branch of the posterior interosseus nerve are common donor 

sites for nerve grafts. However, autograft is limited by the inherent drawbacks, such as 

limited availability of donor nerves, the need for a second surgery to obtain the donor 

nerve, donor site morbidity and secondary deformities, as well as mismatch between the 

injured nerve and the donor nerve [9]. Allografts and xenograft have also been used, but 

they are accompanied by the need for immunosuppression and have very poor success 

rate [10]. Autologous and autogenous blood vessel have also been used as conduits for 

nerve regeneration because of vein similarity to that of nerve tissue including the ability 
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to furnish important neurotrophic and neurotropic factors [11]. Although veins have 

shown good results, their parameters are limited and should be used only in sensory 

nerves with a defect of less than 30 mm [11]. Muscle-in-vein conduit (a vein segment 

filled with a skeletal muscle) has been developed to prevent the collapse of the lumen of 

the blood vessel [12]. The muscle offers strut to the vein and its basal lamina attract the 

regenerating axons. When the muscle degenerates, the gap is filled by the proliferation of 

SCs. Although such combined vein-muscle nerve conduits show the good biocompatible, 

the shortage of these materials limit the use of them in clinic, because these tissue must 

be removed from the patients. 

Avoiding the problems of availability and immune rejection, artificial nerve guidance 

channels (NGCs) seems to be a promising alternative to autologous choices for extending 

the length over which nerves can successfully regenerate. In the next paragraph, the 

current status and future development directions of TE NGCs will be discussed. 

3.2.7 Tissue engineering in peripheral nerve injury 

Developments in the field of TE offer the possibility to use artificial NGCs for 

reconstruction of nerve gaps. NGCs are small cylindric structures composed of either 

natural or synthetic biomaterials that are used to facilitate axon regeneration: the ends of 

the damaged nerve are inserted into either end of the cylinder, and the NGC acts both as 

a connecting bridge for the severed nerve ends as well as a protective shelter for the 

regenerating nerve. Artificial NGCs seems to be a promising alternative to conventional 

treatments since these conduits serve to: i) direct axons sprouting from the proximal to 

distal nerve stump; ii) maintain adequate mechanical support for the regenerating nerve 

fibers; iii) provide a conduit channel for the diffusion of neurotropic and neurotrophic 

factors secreted by the damaged nerve stump and a conduit wall for the exchange of 

nutrients and waste products; iv) avoid the risk of fibroblasts infiltration and scar tissue 

formation that hinders axonal regeneration; and v) create an optimal microenvironment 

for nerve regeneration through the accumulation and release of exogenous and 

endogenous biochemical effects [10, 13]. In addition, the efficiency of NGCs can be 

improved by the presence of internal matrices inside the conduit which acts as physical 

guidance for axonal growth by providing a structured environment for cell regeneration 

and organization. Moreover, the conduits can also be functionalized with contact-

mediated cues, such as proteins and peptides, chemotactic cues, such as neurotrophic 

factors and biological or cellular cues, such as SCs, neural stem cells and astrocytes 

(satellite cells of the PNS and CNS) [14]. An ideal neural scaffold should satisfy many 

biological and physicochemical requirements, among which biocompatibility, 

biodegradability into nontoxic products, permeability to ensure supply of nutrients, low 

degree of swelling, sufficient mechanical stability during nerve regeneration, flexibility 

(with a Young’s modulus close to that of nerve tissues to prevent compression of the 

regenerating nerve) are the major concerns. Moreover, the neural scaffold is hoped to be 

easy to fabricate and sterilize, and simple to implant in the body by microsurgical 
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techniques. These required properties are mainly determined by the scaffold material and 

scaffold structure. As regard the former, a wide variety of biomaterials have been 

attempted, which are of either natural or synthetic origin. Moreover, both non-

degradable [15] and (bio)degradable [13] materials have been used for NGC fabrication. 

The main objection for using non-degradable conduits is that they remain in situ as 

foreign bodies after the nerve has regenerated showing a higher risk of infection, a 

possible chronic inflammatory response, and having the potential to compress the nerve 

after regeneration. A second surgery might then be necessary to remove the conduits, 

causing possible damage to the nerve. Biodegradable materials offer several advantages, 

such as the possibility of attaching bioactive molecules or cells on the biomaterial surface 

through physicochemical modifications and to deliver them during biodegradation. 

Biodegradable polymers, both synthetic and natural polymers, have been extensively 

investigated as biodegradable polymeric biomaterials. Biodegradation of polymeric 

biomaterials involves cleavage of hydrolilytically or enzymatically sensitive bonds in the 

polymer leading to polymer erosion. Depending on the mode of degradation, polymeric 

biomaterials can be further classified into hydrolytically degradable polymers and 

enzymatically degradable polymers. Hydrolytically degradable polymers are generally 

preferred as implants due to their minimal site-to-site and patient-to patient variations 

compared to enzymatically degradable polymers [16]. However, most of the naturally 

occurring polymers undergo enzymatic degradation. Natural biomaterials are useful for 

nerve TE as they stimulate adhesion, migration, growth and proliferation of cells, and 

enable avoidance of toxic effects [17, 18]. Although the use of these natural materials 

would be ideal, there are some inherent difficulties generally associated to the necessity 

of extensive purification and characterization of the extracted materials and to the lack of 

adequate mechanical strength and water stability of the natural based material [19]. 

Synthetic polymers constitute another class of promising biomaterials for fabricating 

neural scaffolds due to their tunable chemical and physical properties. However, some 

synthetic materials, shows poor biocompatibility in terms of cell adhesion and tissue 

repair. Some natural and synthetic based NGCs have been approved by regulatory 

authorities for use in human [20]; they include, e.g., NeuraGen® (Integra) and 

NeuroMatrix®/Neuroflex® (Stryker) both made of the cross-linked collagen, Neurotube® 

(Synovis) made of poly(glycolic acid), SaluBridge® and SaluTunnel® (SaluMedica) made of 

Salubria® hydrogel, and Neurolac® (Ascension) made of poly(d,l-lactide-co-caprolactone). 

The main advantages and disadvantages of the more commonly investigated polymers for 

NGCs (including both non-biodegradable and biodegradable synthetic and natural 

polymers) will be evidenced hereafter. In Table 3.1 biomaterials, both of synthetic or 

natural origin, used in peripheral nerve regeneration are reported. 
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3.2.7.1 Biomaterials in nerve regeneration 

3.2.7.1.1 Synthetic biomaterials used for NGCs 

Nonbiodegradable materials 

Silicone rubber has been studied since 1960s for peripheral nerve repair, and silicone 

tubes represent one of the first and most frequently used NGCs prepared with synthetic 

materials because of the bioinert and elastic properties of silicone. Although they are 

nondegradable in the body and impermeable to large molecules, silicone tubes provide 

an important model system for studying nerve regeneration under controlled conditions 

of nerve tubulization, and have been applied in clinical trials to bridge short nerve gaps 

(few mm in length) with some success [21, 22]. Chen et al. have recently shown that 

silicone rubber tubes containing a gel of collagen, laminin and fibronectin led to a 

successful nerve regeneration across the gap as compared to a empty silicone tube [23]. 

Non-degradable scaffolds have also been fabricated using plastic such as acrylic polymer, 

polyethylene, elastomer, etc.[16, 24, 25]. Disadvantages of the use of nondegradable 

NGCs include chronic foreign body reaction, inflexibility, and lack of stability. Particularly, 

the inflammatory response of nonbiodegradable NGCs may lead to fibrotic capsule 

formation around the guide and consequent nerve compression [26]. 

Biodegradable synthetic materials 

In order to overcome the disadvantages associated with non-degradable materials, 

research has been concentrated on biodegradable synthetic materials used to prepare 

neural scaffolds. Materials applied should degrade within the regeneration period and 

degradation products should be no toxic and they should be absorbed by the body with 

no foreign body reaction. Moreover, the physiochemical and biological properties of 

biodegradable synthetic materials can be tailored to match different application 

requirements, and some chemical modifications enable the materials effectively to 

entrap support cells or bioactive molecules for controlled delivery during nerve 

regeneration. Among the bioresorbable materials, aliphatic polyesters and copolyesters 

have been frequently used for nerve regeneration. Aliphatic polyesters represent a class 

of the common degradable synthetic polymers, among which poly(L-lactic acid) (PLLA) 

[27], poly(glycolic acid) (PGA) [28], polycaprolactone (PCL) [29, 30] and their copolymers, 

including poly(lactic acid-ɛ-caprolactone) [31], poly(L-lactic-co-glycolic acid) (PLGA) [32] 

and poly(1,3-trimethylenecarbonate-ɛ -caprolactone) [33], have become the U.S. FDA-

approved biomaterials used in the field of medical devices. Thanks to the possibility of 

finely tuning their properties by varying the block structure, copolymers are gaining more 

and more attention. Several investigations have been also focused on other copolymers, 

such as poly(DL-lactic-co-ε-caprolactone) (poly(DLLA-CL)), synthesized poly(ester-

urethane)s (PU) with polyester macrodiols, poly(trimethylenecarbonate-co-ε-

caprolactone) (poly(TMC-CL)), and microbial polyhydroxyalkanoates (e.g., 
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poly(hydroxybutyrate-co-hydroxyhexanoate), PHBHHx). PGA, PLA, and PCL degrade 

primarily via hydrolysis in aqueous medium, but they can be cleaved enzymatically upon 

implantation by esterases as well. 

The biocompatibility of PLLA has been demonstrated in vitro by the survival of SCs that 

were seeded onto the polymer surface and their subsequent expression of a range of 

ECM-related proteins, e.g. collagen IV, laminins-I and –II [34]. PLLA NGCs degradation 

products, particularly crystalline debris and lactic acid , may adversely cause long-term 

problems, affecting axon growth and nerve function [35]. In a recent study, Koh et al. 

have developed a new functionalized scaffold by coupling laminin onto PLLA nanofibers. 

Laminin was successfully added to nanofibers using covalent binding, physical adsorption 

or blended electrospinning procedures. The new functionalized fibers were able to 

enhance axonal extension by PC12 cell viability and neurite outgrowth assays [36]. 

PCL has been widely used in medical devices and drug delivery systems. However, the 

relatively slow degradation rate has resulted being sub-optimal for some tissue-

engineering applications. The in vitro affinity of this polymer has been recently 

demonstrated toward the adhesion and proliferation of PC12 cells [37], SCs and rat 

cortical neurons [38]. In a recent study, Ciardelli et al. [30] have shown that PCL supports 

the in vitro adhesion and proliferation of S5Y5 neuroblastoma cells and neonatal 

olphactory bulb ensheating cells and can be shaped into tubular guides by dip-coating of 

a rotating mandrel. Interstingly, adding mesenchymial stem cells in a PCL conduit have 

been shown to enhance median-nerve regeneration, prevent decrease of creatine 

phosphokinase levels in muscle and improve functional recovery in mice [39]. 

PGA conduits filled with laminin-soaked collagen scaffolds have been shown to promote 

axonal regeneration over the 8 cm gaps with the same efficiency as the PGA-collagen 

fiber-filled conduits [40, 41]. Hollow guides made from PCL and poly(DLLA-CL) have also 

demonstrated promise of full morphometric and functional recovery at levels similar to 

autograft controls in 10-mm rat sciatic nerve defects [42]. In particular, poly(DLLA-CL) 

scaffolds have been found to be advantageous for peripheral nerve repair, as they are 

transparent and possess suitable mechanical properties allowing to accommodate 

movements over surrounding tissues. Poly(DLLA-CL) NGCs degrade completely within 1 

year from implantation; however, this type of  scaffold is suitable for the repair of short 

nerve gaps (e.g. digital nerves) because of their brief mechanical performance (negligible 

after only 2 months) and their high swelling during degradation , especially during the 

first 3 months [43]. Innovative biocompatible PUs have been investigated because they 

can be synthesized by a proper selection of block composition which allows a fine tuning 

of their mechanical properties, degradation rate, biocompatibility, and biomimickly [44]. 

An alternative method of stimulating neuronal tissue regeneration includes the 

application of electrical stimulation treatments through nerve conduits made from 

electrically conductive materials. Hence some important electrically conducting 

polymers, including polypyrrole (Ppy), polyaniline and polythiophene, have been tried to 

prepare neural scaffolds due to their tailored electrical and antioxidant properties [45-
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47]. Ppy possesses good electrical conductivity, biocompatibility, high electrical stability, 

and it can be easily sinthetized. When electrically stimulated in vitro, Ppy may attract 

serum proteins, such as fibronectin, which promote neurite expression: this provides a 

means for controlled chemical stimulation. However, its poor mechanical properties, lack 

of biodegradability, and difficulties associated with processing it into complex three-

dimensional shape. In a recent study, Morover, Moroder et al. have investigated the 

mechanical and electrical properties of polycaprolactone fumarate–polypyrrole (PCLF–

Ppy) scaffolds under physiological conditions. PC12 cells cultured on PCLF–Ppys scaffolds 

were electrically stimulated with regimens of 10 μA of either a constant or a 20 Hz 

frequency current passed through the scaffolds for 1 h per day. PCLF–Ppy scaffolds 

exhibited excellent mechanical properties at 37°C which would allow suturing and 

flexibility. The scaffolds were electrically stable during the application of ES. In vitro 

studies showed the capability to significantly enhance and direct neurite extension by 

passing an electrical current through PCLF–PPy scaffolds [48]. 

3.2.7.1.2 Natural polymers for NGCs 

Natural polymers are advantageous materials for TE of nerves as they are biocompatible, 

favour the migration of supporting cells, and avoid the occurrence of toxic effects. 

However, the poor mechanical properties, the high swelling behavior, and the relatively 

fast in vivo biodegradation rate of natural polymers generally limit their applications as 

constituent materials of the external tubular structure of NGCs. In some cases, blends 

between natural and synthetic polymers have been proposed for neural guides, to 

combine the biocompatibility of the natural component with the advantageous 

processing properties and mechanical performance of the synthetic material. Insoluble 

ECM molecules, such as collagen, gelatin, laminin, and fibronectin, play an important role 

in the development and growth of axons [49, 50], and many other proteoglycans and 

glycosaminoglycans of the ECM can modulate neural activity and neuritis extension, 

providing either stimulatory or inhibitory effects [51, 52]. As a result, ECM components 

have become very important candidate materials for neural scaffolds, and they were 

predominantly processed into lumen fillers of NGCs in the form of fibers, channels, 

porous sponges, or hydrogels to serve as delivery vehicles for support cells, GFs, or drugs. 

Collagen is one of the major ECM proteins, accounting for up to 30% of the total body 

protein. In its native environment, collagen interacts with cells in connective tissues and 

transduces essential signals for the regulation of cell anchorage, migration, proliferation, 

differentiation, and survival [53]. Biomaterials made from collagen offer several 

advantages, including biocompatibility, non-toxic degradation and a weak antigenic 

activity, due to its phylogenetically conserved primary sequence and a helical structure. 

Disadvantages of collagen include its relatively high cost and mechanical weakness. 

Among the realized NGCs based on natural polymers, collagen conduits, such a 

NeuroMatrix®, Neuroflex® [Collagen Matrix Inc.], and NeuraGen® [Integra Life sciences 

Corp.] have been approved by FDA. Collagen conduits have been reported to be as 
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effective as autografts when repairing peripheral nerve defects as small as 4 mm in 

length [54]. However, Stang et al., showed that axon regeneration across the 2 cm 

resection injury was relatively poor in comparison to the autographs [55]. Collagen, in the 

form of a hydrogel, has been used to fill the lumen of conduits made from a range of 

materials to promote improved axon regeneration and tissue repair [56]. Collagen gel 

filled conduits were found to improve the extent of functional recovery across 4 mm and 

6 mm lesions of the mouse sciatic nerve when compared to saline filled conduits. 

Interestingly, the concentration of the gel significantly affected the extent of the repair 

process; lower concentration gels supported the best degree of functional recovery. 

Moreover, collagen filaments have been found to guide axon repair. Madison et al. 

reported bridging of nerve gap distances of 3 cm in rat sciatic nerve [57]. In a recent 

work, collagen-based microstructured three-dimensional NGC containing numerous 

longitudinal guidance channels with dimensions resembling natural endoneurial tubes 

have been produced [58]. The NGCs have been functionalized by SC seeding. Viable SCs 

within the guidance channels formed cellular columns reminiscent of bands of Bϋngner, 

which are crucial structures in the natural process of peripheral nerve regeneration 

during the Wallerian degeneration. The orientated 3D nerve guides (decorated with SCs) 

with their physical and molecular properties showed great promise in the repair of 

peripheral nerve lesion.  

Gelatin (GL) is a protein derived from collagen by thermal denaturation or physical and 

chemical degradation. GL does not express antigenicity in physiological conditions and is 

cheaper and easier to obtain in concentrated solutions than collagen. Other interesting 

properties of GL are its biocompatibility, biodegradability, and adhesiveness. The 

mechanical and chemical properties of GL can be modulated by proper crosslinking. GL 

conduits have been produced using crosslinked GL by photocuring [59] or genipin (GP) 

treatment [60, 61]. In both cases, NGCs have been implanted for the repair of a 10 mm 

nerve gap in the rat sciatic nerve. Neural regeneration was assessed in terms of 

functional recovery, electrophysiological responses, and tissue morphological 

regeneration. GL-based neural scaffolds can be covalently incorporated with additional 

bioactive cues, which are gradually released during the scaffold biodegradation [62]. 

Laminin is the first ECM protein expressed during embryogenesis, and can guide 

developing neuritis and promote neurite outgrowth. Found in the basal lamina 

(basement membrane) and produced by SCs, it is an important adhesion molecule for 

growth and regeneration of neural tissue. Laminin plays a crucial role in the developing 

and maturing central nervous system, for example, in cell migration, differentiation, and 

axonal growth [63]. 

Fibronectin is an ECM protein that is dispersed in interstitial matrices. It is composed of 

several rod-like domains, one of which contains a repeating sequence of peptides that 

regulates cell adhesion, the RGDS sequence (L-arginine, L-glycine, L-aspartic acid, and L-

serine). Fibronectin has been found to play a role in axonal growth and cell migration. 

Tong et al. have shown that the presence of laminin and fibronectin in collagen grafts can 
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dramatically increase the ability of neural components to regenerate effectively over 

long nerve gaps [64]. In a recent study, the incorporation of fibronectin into hollow 

conduits was able to improve axon regeneration across 18 mm gaps of the adult rat 

sciatic nerve. Greater numbers of regenerated axons and more retrogradely labeled 

motoneurons and dorsal roat ganglia sensory neurons could be detected 4 months after 

implantation when compared to the saline filled hollow conduits. 

Other naturally derived molecules investigated for their application in nerve repair 

include hyaluronic acid, alginate, agarose, CS and silk fibroin. 

CS, has been investigated for a variety of TE applications because it is structurally similar 

to naturally occurring GAGs and it is degradable by enzymes in humans. It is a linear 

polysaccharide of (1–4)-linked d-glucosamine and N-acetyl-d-glucosamine residues 

derived from chitin. The similarity in the molecular structure between CS and 

glycosaminoglycans allows interactions between CS and ECM molecules including 

laminin, fibronectin and collagen. CS possesses favorable TE properties as biomaterials. 

This is due to its antibacterial activity, biodegradability, and biocompatibility [65]. Since 

CS is fragile in its dry form, it has to undergo chemical crosslinking or to be used jointly 

with other materials before scaffold fabrication. The biocompatibility of CS-based 

biomaterials with the cells in CNS or PNS has been investigated [66, 67]. Yuan et al. 

showed that CS fibers supported the adhesion, migration and proliferation of SCs [17]. 

Blending CS with a protein (or a peptide) has been proposed as an effective method to 

enhance nerve cell attachment and to make the mechanical properties of scaffolds more 

similar to those of nerve tissues. In a recent study, CS/poly(L-lysine) composite materials 

with various compositions have been prepared with the aim of enhancing CS nerve cell 

affinity. PC12 cells cultured on the composite substrates showed an improved 

attachment, differentiation and growth when compared to cells cultured on CS 

membranes. The effectiveness of CS/poly(L-lysine) composite materials in the nerve 

regeneration field has been attributed to the increased hydrophilicity and positive 

surface charge of blends with respect to pure CS [68]. Recently, NGCs have been 

obtained consisting of CS conduits filled with porous collagen sponges simulating the 3D 

structure of ECM [69]. The inner sponge was imbibed with NGF. Conduits have been 

tested for the repair of a 10 mm defect in the rabbit facial nerve: in one case, a 

suspension of neural stem cells (NSCs) has been injected into the tube during in vivo 

implantation, whereas, in the control test, a saline solution has been used. Autograft has 

been employed as a positive control. After 12 weeks from implantation, nerves treated 

with autografts have shown similar recovery as compared to the ones treated with NGCs 

containing NSCs. 

Alginate is a biodegradable polysaccharide with repeat units of mannuronic acid and 

glucuronic acid. It is extracted from brown sea-weed and bacteria [70]. The physical 

properties of alginate gels vary widely depending on the proportion of guluronic to 

mannuronic acid residues and the overall molecular weight of the polymer. Matsuura et 

al., have demonstrated the potential of alginate as a scaffold for promoting autonomic 
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nerve regeneration [71]. The alginate foam has been developed and implanted into a 7-

mm sciatic nerve gap in rats or a 50-mm sciatic nerve gap in cats [72]. The results suggest 

that alginate foams could promote peripheral nerve regeneration even without being 

sutured to nerve stumps. Recently, alginate has been also used to deliver GFs such as FGF 

over a number of weeks [73]. 

Agarose is a polysaccharide derived from red algae. Agarose hydrogel has been found to 

support neurite extension in vitro [74]. The advantage of agarose derives from the 

possibility to easily couple proteins and GAGs to the polymer, resulting in improved cell 

response. In a recent study polysulfone NGCs have been filled with anisotropic agarose 

hydrogels containing gradients of laminin and NGF and used for the repair of 2 cm 

defects in the rat sciatic nerve. The NGCs investigated were than compared with syngenic 

grafts and NGCs filled with isotropic agarose hydrogels with uniform concentration of 

NGF and laminin. After 4 months from surgery, NGCs containing anisotropic agarose 

hydrogels with gradients of both laminin and NGF have shown much better results than 

for isotropic fillers [75]. 

Silk fibroin (SF), a core protein of natural silk, has found rapidly increasing applications in 

TE because of its biocompatibility, high resilience, and slow biodegradation. SF is water 

soluble and becomes water insoluble by physical induction of -sheet formation. Besides 

serving as a biochemical delivery substrate, SF has also been used to prepare NGCs for 

investigating the in vitro biocompatibility of SF with neural tissues and cells, and for 

bridging a sciatic nerve gap in a mouse model [76, 77]. Recently, Yang et al., have 

developed a novel biomimetic design of the SF-based nerve graft which was composed of 

a SF-NCG inserted with oriented SF filaments, serving as a skeleton for regrowing nerve 

tissues. The SF-NGC was used for bridge implantation across a 10-mm long sciatic nerve 

defect in rats, and the outcome of peripheral nerve repair at 6 months post-implantation 

was evaluated. The examined functional and morphological parameters show that SF 

grafts could promote peripheral nerve regeneration with effects approaching those 

elicited by nerve autografts. Just like silk fibroin, keratins and other matrix proteins 

extracted from human hair, wool, nail and feather have also been tried as new scaffold 

materials in the clinical repair of damaged tissues. It has been reported that they are 

likely to become candidate materials for neural scaffolds as well [78]. 
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Table 3.1 Most widely studied materials for NGCs with related properties and selected studies 

where they were used. 

 

  

NGC material Characteristics Reference 

Synthetic   
Silicone  Highly elastomeric polymer, non-biodagrable, 

bioinert, impermeable, hydrophobic 
[21-23, 26] 

Poly(ε-
caprolactone) 

Aliphatic polyester, biodegradable by hydrolysis, 
commercial NGC (CultiGuide®) 

[29, 30, 37-
39] 

Poly(glycolic acid) Aliphatic polyester, biodegradable by hydrolysis, 
commercial NGC approved by FDA (Neurotube®) 

[28, 40, 41] 

Poly(DL-lactic-co-ɛ-
caprolactone) 

Aliphatic polyester, biodegradable by hydrolysis, 
commercial NGC approved by FDA (Neurolac®) 

[31, 43] 

Poly(L-lactic acid) Aliphatic polyester, very slowly biodegradable by 
hydrolysis 

[27, 34-36] 

Polyester urethane Elastomeric polymer, biodegradable [44] 

Polypyrrole Electrically conducting polymer, biocompatible, 
high electrical stability, lack of biodegradability 

[47] 

Natural   

Alginate Polysaccharide, water-soluble, biodegradable by 
hydrolysis 

[70-73] 

Agarose  Polysaccharide, water-soluble, biodegradable by 
hydrolysis 

[74, 75] 

Chitosan  Polysaccharide, enzymatically degradable, 
positively charged, good cell interactions 

[65-69, 79] 

Collagen ECM protein, enzimatically degradable, good cell 
interaction, commercial NGC approved by FDA 
(Neuroflex®, Neuromatrix®, Neurogen®) 

[53-58] 

Fibronectin ECM protein, enzimatically degradable, good cell 
interaction 

[64] 

Gelatin  ECM protein, enzimatically degradable, good cell 
interaction 

[59-62] 

Laminin ECM protein, enzimatically degradable, good cell 
interaction 

[63] 

Silk fibroin  Silk protein, enzimatically degradable [76, 77] 
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3.2.7.2 The structure of a neural scaffold 

The structure of a neural scaffold, as well as the scaffold material, is a critical factor that 

determines the efficacy of neural guides to aid peripheral nerve regeneration. The neural 

scaffold can be simply fabricated into a basic structure, that is a tubular NGC with a single 

hollow lumen. Single hollow lumen NGCs are fabricated with natural or synthetic 

biomaterials by a range of polymer processing methods, among which a common 

technique is melt extrusion [30], the process of converting a thermostable polymer into a 

product by forcing it through a die of desired shape. Alternative techniques suitable for 

those polymers with low thermal stability are dipping spinning-mandrel into the polymer 

solution followed by air-drying to obtain a tube [80], injection molding, physical film 

rolling, crosslinking braiding, and electrospinning. All these processes have been 

employed for preparing neural scaffolds with the basic structure, i. e., hollow NGCs [81, 

82]. Inappropriate target reinnervation following the dispersion of regenerating axons is 

the main drawback associated to hollow lumen NGC [83]. As a result, this type of conduit 

is mostly used for the repair of small injuries of sensory nerves with a less than 30-mm 

long nerve gap, such as digital nerve lesions [84]. Therefore, considerable efforts have 

been focused on the development of more complex scaffold structures in which the NGC 

lumen shows an intricate internal architecture, and then physical fillers are introduced 

into the NGC lumen, or a multichannel NGC is created to replace a single hollow lumen 

NGC. These modifications to the basic structure, shown in Fig 3.5, attempt to generate a 

substrate able to reproduce several of the important physical and molecular 

characteristics of nerves observed during nerve spontaneous regeneration. 

The development of multichannel NGCs, through the incorporation of one or more 

intraluminal channels into the hollow conduit, is mainly based on the idea of mimicking 

the architecture of nerve fascicles. Multichannel NGCs are commonly fabricated by an 

injection-molding technique [85]. Multi-channel NGCs provide greater surface areas for 

cell attachment [86] and local release of GFs [87]. Multichannel conduits, fabricated from 

PLGA, have shown promising results in directing nerve growth over short observation 

times (six weeks) and limited gap size (7 mm) [86]. However, the extra internal structure 

may interfere with some important properties of the neural scaffold, such as 

permeability, bending and deformation properties, swelling, and degradation. Swelling 

has been shown in vitro and in vivo studies to close the conduit cavities and block axonal 

growth overlong-term study (12 weeks) and larger gap sizes (10 mm) [85, 88]. In a recent 

study, Yao et al. have investigated the influence of channel number on the axonal 

regeneration using a series of 1-,2-,4 , and 7-channel collagen conduits and commercial 

(NeuraGen®) single channel conduits. The multichannel collagen conduits were 

fabricated by molding and crosslinking (with 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS)). Crosslinking 

led to control the biodegradation rate and to limit swelling. The results of this study 

clearly demonstrated the potential influence that multichannel nerve tube structure have 



80 
 

on limiting axonal dispersion across the conduit without decreasing the quantitative 

results of regeneration [89]. 

The incorporation of physical lumen fillers, typically supportive GFs or accessory cells, has 

been largely investigated with the aim to provide a permissive environment which mimic 

the endoneurial-like substructure by the presence of an adequate amount of SCs to 

support, through the release of neurotrophic factors and the formation of bands of 

Bϋngner, the axonal regeneration inside the NGCs. The failure of non-neuronal cells, such 

as SCs, to migrate across lesion gaps (longer >15 mm) is often the reason for the poor 

regeneration outcome in non-filler-containing nerve conduits. An array of biomaterial-

based fillers with different physical forms (such as fibers, filaments, gel, or sponges) have 

been included into the lumen as topological cues [40, 41, 56, 74, 75]. For all these 

different types of biomaterial-based fillers, there seems to be a need to create an 

internal aligned architecture of matrix within the NGC lumen. To do this, a range of 

method including polymer extrusion or polymer alignment by magnetic fields, injection 

molding, phases separation and micropatterning have been used to orient the fiber, 

filament or gel fillers inside the NGC lumen [57, 90, 91]. Magnetically aligned collagen (or 

other ECM protein) matrices within the NGC lumen have been shown to promote axonal 

outgrowth in vitro and in vivo as compared to random isotropic counterparts that are 

usually prepared in a handmade way [92, 93]. Moreover, the number of filaments or 

fibers and the gel concentration introduced to the NGC lumen should be optimized 

because dense intraluminal matrices may impede the migration of regenerating axons 

and non neuronal cells, and occupy space within the NGC lumen where new initial 

regenerative cables are formed and distributed [56]. 

Longitudinally oriented filaments or fiber bundles, both of synthetic [32, 94, 95] or 

biological materials [57, 59], have been inserted into the NGC lumen to guide the 

longitudinally directed growth of regenerating axons. Several manufacture methods, 

including electrospinning, phase separation, and self-assembly, have been used for the 

fabrication of such biofunctional nanofibrous scaffolds. Wang et al. prepared a 

microporous CS NGC with internal oriented filaments of PGA. This NGC was used to 

bridge 30-mm dog sciatic nerve gap, achieving the repair outcome similar to that by 

autologous nerve grafting [96]. In vitro studies have demonstrated the influence of fiber 

diameter on the orientation of process outgrowth. The greater surface curvature of small 

diameter fibers prompted an increasing tendency for neurite outgrowth to follow the 

longitudinal axis of the fibers. Thus, small caliber fibers (5–30 µm diameter) supported a 

greater degree of orientated process growth than large caliber fibers (up to 500 µm 

diameter) [97]. Interstingly, Ribeiro-Resende et al. have reported that PCL NGCs inserted 

with laminin-coated PCL filaments (22 µm diameter) or with poly-D-lysine-coated fibers 

(22 µm diameter) could support nerve regeneration [90]. In this study, researchers have 

also shown that the alignment of SCs can be induced more efficiently by physical means, 

i.e. polymer filament topography, than by biological means such as the application of 

individual soluble factors. 
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Besides being processed into the physical form of fibers or filaments, the ECM protein-

based intraluminal matrix is also shaped as gels or three-dimensional sponges due to the 

ease of fabrication. In a recent work, Tonda-Turo et al. have developed artificial NCGs 

consisting of porous PCL hollow tube and an internal GP-crosslinked GL sponge (GL/GP). 

GP crosslinking increased the GL-sponge stability in water and improved the mechanical 

properties under compression, as compared to uncrosslinked GL sponge. GL/GP films 

were found to support the in vitro adhesion, the survival and the proliferation of NOBEC 

and PC12 cells [98]. Hydrogels, serving both as space lumen filler and as delivery vehicles 

for bioactive molecules and cells, have been developed by using natural based 

biomaterial such as collagen, GL, and laminin gels, showing an improve in the recovery of 

neural gaps in rat or mouse sciatic nerve [40, 41, 68]. In a recent study, Pawar et al., have 

developed an alginate-based anisotropic hydrogels [99]. The incorporation of GL into 

hydrogel, by simple immersion of alginate gels in 2g/l GL solution, has been shown to 

promote directed axon outgrowth and SC migration in vitro. The author has recently 

collaborated to the development of a agar/gelatin based hydrogel for the loading and 

release of growth factors (Tonda Turo et al) The prepared developed showed shear-

thinning properties and was applied as filler of NGCs. In vitro experiments showed that 

the GL based hydrogel was able to promote Schwann- like cell adhesion, proliferation 

and migration.  

 

 

Fig. 3.5. Schematic representation of structural repair strategies used for improving existing 

hollow nerve guidance conduits. Repair strategies include the use of intraluminal guidance 

structures and multichannel designs to provide additional structure support and topographical 

guidance to regenerating axons and migrating SCs. 
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3.2.7.3 Cellular therapy: support cells 

The success of simple tubulization is dependent on the length of the gap between the 

two nerve stumps. When the length of nerve gaps is consistent (>30 mm in primate ulnar 

nerve), empty NGCs alone will not suffice unless support cells or GFs are incorporated 

into them [100]. Support cells implanted into the injury nerve may clearly act as the 

source of a range of particular neurotrophic factors, and may also generate beneficial, 

axon growth promoting environments by the production of important ECM molecules 

such as collagen, laminin and fibronectin. Moreover, the donor cells obtained from 

patients themselves may be acutely dissociated from the injured nerve and added to an 

implant or expanded in tissue culture prior to implantation [101]. SCs, neural stem cells 

(NSCs) and marrow stromal cells (MSCs) are the most studied candidates of support cells 

among others.  

SCs are the first and most widely used support cells in peripheral nerve TE because of 

their pivotal role in the neuronal process of regeneration (see paragraph  3.2.5) [102]. 

SCs are also able to produce a high level of different GFs, such as NGF, BDNF, and 

erythropoietin in the sensory system and glial derived GFs in the motor system [103, 

104]. SCs suspended in GL within PGA conduits and autogenous SC suspension in venous 

grafts have supported nerve regeneration over a 30 mm gap in rabbits [105]. Hadlock et 

al. developed artificial NGCs consisting of multichannel conduits seeded with SCs isolated 

from neonatal Fisher rats. The NGCs seeded with SCs increased the average fiber 

diameter in the polymer conduits, as compared to autografts, favouring regeneration of 

myelinated motor fibers [86]. As well, neural scaffolds with different structures are 

attempted to include SCs, it has been reported that SCs introduced into NGCs with lumen 

fillers or multiple channels, could form the ordered arrangement of SC columns to 

imitate Bands of Bunger [106]. However, the long-term effects have, so far, proved 

unremarkable [107].  

Since isolation and culture of primary SCs is a time-consuming process, the growing 

applicability of stem cells has opened new frontiers to nerve regeneration: the advantage 

of using these cell lines is that cell differentiation may be stimulated by advancing axons 

and pluripotency, allows multiple differentiation paths, which can create a positive 

environment for axonal regenerationhas been taken into account by researchers. Among 

the multipotent stem cells, NSCs have the potential to differentiate into three major 

cellular elements of the nervous system, including neurons, astrocytes and 

oligodendrocytes; moreover they can proliferate unlimitedly and undergo rapid cellular 

expansion in response to nerve injuries. Markedly increased functional and 

morphological recovery has been observed following the incorporation of NSCs into 

conduits [108]. In a recent study, CS based NGCs seeded with NSCs have been used as a 

nerve graft to bridge 10-mm facial nerve gaps in rabbits. Nerve regeneration at 12 weeks 

after implantation was similar to that by autologous nerve grafting [69]. MSCs are 

pluripotent stem cells easily obtained through the aspiration of the bone marrow and 

expanded in a large scale by in vitro culture [109]. Several in vitro studies have reported 
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that MSCs can be induced to differentiate into non-mesenchymal cells, such as SCs, 

improving myelin formation and nerve regeneration in vivo after their transplantation 

into different models of peripheral nerve injury [110-113]. Moreover, morphological and 

functional recovery have been observed following the tubulazation with a PCL conduit 

filled with MSC in a mouse median nerve [39]. 

3.2.7.4 Biomolecular therapy 

Because nerve regeneration is modulated by many complex interactions between cells, 

ECM molecules and GFs, the local presence of neurotrophic factors at the nerve injury 

sites plays a vital and complex role in controlling the survival, proliferation, migration and 

differentiation of various cell types involved in nerve regeneration. After nerve injury the 

endogenous GFs secreted by neural cells in the distal nerve stump can support axon 

regeneration, but this supportive action may not be sustained indefinitely due to an 

obvious decline with time in cellular production of GFs [114]. Besides the neurotrophic 

actions that are indirectly provided by support cells within the neural scaffold, exogenous 

GFs may be ideally combined with a NGC. Nerve regeneration has been found to be 

enhanced by filling nerve guides with the neurotrophins, such as nerve growth factors 

(NGF) [75, 115-118], brain-derived neurotrophic factor (BDNF) [116, 119] and 

neurotrophin -3 (NT-3) [114, 116], the glial cell line-derived neurotrophic factor (GDNF) (a 

member of the glial cell line-derive neurotrophic factor family ligands)[117, 120], and 

cytokines as fibroblast growth factor-1 and -2 (FGF) [73]. Vascular endothelial growth 

factor (VEGF) has been fully investigated in terms of its promoting actions on peripheral 

nerve regeneration [121]. NGF and GDNF are two prominent used GFs. They differ in their 

spectrum of action when applied as a single factor. While NGF promotes primarily survival 

and axonal outgrowth of sensory neurons, both in vitro and in vivo [122], GDNF is a key 

factor for motor axonal regeneration [123]. Another striking difference between NGF and 

GDNF relates to their effects on axonal branching, as primarily induced by NGF, and 

axonal elongation, as mostly promoted by GDNF [124, 125]. However, the sustained 

delivery of either GDNF or NGF from synthetic NGC have been found to enhance nerve 

regeneration over long gaps in vivo [117]. In a recent work, Bloch et al. demonstrated the 

ability of ethylene-vinyl acetate based NGC to promote sensory nerve regeneration in the 

rat transected dorsal root by releasing bioactive NGF, BDNF, or NT-3. By comparing the 

effects of the three different types of neurotrophins, NGF was found to powerfully 

promote regeneration of both myelinated and unmyelinated axons after dorsal root 

axotomy, while NT-3 significantly increase regeneration of myelinated axons only; BDNF 

has no significant effect on either myelinated or unmyelinated axons [116]. 

GFs must be locally administered to ensure an adequate effect with little adverse 

reactions because the factors have several traits, including high biological activity, 

pleiotrophic effects (acting on various targets), short half-lives, slow tissue penetration, 

and potential toxicity at high systemic levels [126, 127]. Moreover, the inherent 
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instability of GFs is generally a very limiting factor so that denaturation and partial or 

complete loss of biological activity are frequently events observed in processing and 

formulating these compounds [128]. Therefore, GFs require mild processing conditions 

such as ambient or low temperatures, little exposure to organic solvents or chemical 

reagents, and presence of stabilizing additives. Moreover, to obtain sterile dosage forms 

or delivery systems for GFs, all processes have to be performed aseptically because 

terminal sterilization through γ-rays or heat would destroy the proteins. 

For all these reasons, a variety of delivery systems (Fig. 3.6) with sustained neurotrophic 

factors release have been tested in peripheral nerve injury models. Direct delivery of GFs 

from the NGC has been implemented by either conjugating [129] or physically adsorbing 

[130] the proteins to the NGC wall. For example, PLA-based NGCs for delivery of FGF-2 

fabricated with a relatively simple design consisting of an inner porous PLA layer loaded 

with FGF-2 and an outer densely structured PLA tube. The FGF-2 releasing NGCs 

promoted sciatic nerve regeneration in a 15 mm nerve gap in rats [131]. Prolonged 

delivery of GFs has been also achieved by embedding the drug substances into gel 

structures filled into the lumen of NGCs. Often used gel forming materials include 

alginate, Matrigel®, collagen, heparin, laminin, and fibronectin [132, 133]. Tonda Turo et 

al. developed an injectabale hydrogel based on GL for delivery of VEGF-A165 into the NGC 

lumen [134]. In vitro results confirmed a sustained VEGF-A165 release in a bioactive form, 

inducing capillary-like tube formation and axonal outgrowth ex vivo [135]. To control GF 

release independently of NGC wall type and structure, the proteins can be 

microencapsulated into microspheres embedded in the NGC wall or into elecrospun 

nanofibers. Kokai et al. developed double-walled PLGA microspheres for localized release 

of GDNF [136]. The microspheres were embedded into the wall of PCL based NGCs during 

fabrication. The NGCs with embedded microspheres sustained the GDNF release over the 

study period of 16 weeks and exhibited no initial burst release. The NGCs with improved 

release kinetics ameliorated also axonal regeneration and functional recovery. As regard 

the loading of nanofibres with proteins, the main advantage is based on the combination 

of localized release of growth promoting compounds and immediate axonal guidance. GFs 

can be added into the polymer solution prepared to produce nanofibres [137] or by co-

axial spinning [138], which affords embedding of GFs in the core of the fibres.  

Another approach for loading and releasing GFs in NGCs is by using the binding affinity of 

GFs to heparin or heparin sulfate and to ECM components like collagen or laminin. 

Recently, Sakiyama-Elbert et al. developed a drug delivery system consisted of heparin-

binding peptides covalently immobilized within a fibrin matrix. NGF was bound by affinity 

to the immobilized heparin [139]. Collagen or laminin binding domain were bound to NGF 

or CNTF domains and used as a delivery strategy to support sciatic nerve regeneration in 

rat [140, 141]. The scaffolds provided slow release of the GFs at the site of nerve injury. 

All the studies demonstrated that prolonged release of GFs over several days or weeks 

can be achieved by NGC-integrated, polymer-based delivery systems. 
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Table 3.2 GFs used in peripheral nerve regeneration are reported. 

Growth factor Major target References 

NGF  Sensory neurons, small axons [75, 115-118] 

NT-3 Sensory neurons, small-and medium size axons [114, 116] 

BDNF  Sensory neurons, large axons [116, 119] 

GDNF  Motor neurons [117, 120, 136] 

FGF-1 (acidic FGF) Vascular endothelial cells [142] 

FGF-2 (basic FGF) Vascular endothelial cells [73, 131] 

VEGF  Vascular endothelial cells [121, 143] 

IGF-1  Inflammatory cells (anti-inflammatory) [144] 

 

 
Fig. 3.6 Design of delivery systems for neurotrophic factors inside NCs: A) NGC empty wall; B) 

neurotrophic factors embedded in NC wall; C) neurotrophic factors  embedded in polymeric 

coatings of NGC wall; D) neurotrophic factors encapsulated in biodegradable microspheres 

embedded in NGC wall; E) neurotrophic factors embedded in ECM material in NGC lumen; F) 

neurotrophic factors entrapped in biodegradable nanofibres that are mounted on the NGC wall. 
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Chapter 4 
Chitosan crosslinked flat membranes 

as scaffolds for 

peripheral nerve regeneration 
 

Abstract 

Chitosan (CS) has been widely used in a variety of biomedical applications including 

peripheral nerve repair because of its excellent biocompatibility, biodegradability, readily 

availability and antibacterial activity. In this study, CS flat membranes, crosslinked with 

dibasic sodium phosphate (DSP) alone (CS/DSP) or in association with the γ-

glycidoxypropyltrimethoxysilane (CS/GPTMS_DSP) were fabricated with a solvent casting 

technique. The constituent ratio of crosslinking agents and CS was previously selected to 

obtain a composite material having both proper mechanical properties and good 

biocompatibility. Furthermore, the diffusion of nutrients through the CS/DSP and 

CS/GPTMS_DSP flat films were tested.  

In vitro cytotoxicity tests showed that CS membranes were not cytotoxic. CS/GPTMS_DSP 

provided a favorable environment for nerve RT4-D6P2T adhesion, proliferation, and 

function. Moreover, developed CS based membranes showed to direct cell attachment 

resulting in characteristic cell morphology typical of SCs and to support the neurite 

outgrowth of dorsal root ganglia (DRG) cultured on this biomaterial. Finally, in vivo tests 

were carried out on both the two types of nerve scaffolds made by CS/DSP and 

CS/GPTMS_DSP flat membranes due to their easily manipulation and suturability. 

During in vivo tests CS/GPTMS_DSP tubes were detached from the distal suturing site and 

functional recovery did not occurred. On the other hand, crushed nerve encircled with 

CS/DSP membranes, allowed nerve fiber regeneration and functional recovery, obtaining 

results comparable to median nerve repaired with reversed autologous graft, used as 

control. 
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4.1 Introduction 

Peripheral nerve injuries (PNI) are a serious health problem. Generally, an end-to-end 

anastomosis method can be used to bridge the PNI with small gaps, however, it is still 

difficult to completely cure the long nerve gaps [1]. Autologous nerve grafts is the “ gold 

standard” technique in bridging peripheral nerve defects [2]. However there are 

unavoidable drawbacks associated to it such as the limited availability and donor-site 

morbidity. In recent years, a variety of biomaterials for better recovery of nerve functions 

have been developed as previously described in chapter 3. CS, as a natural 

polysaccharide, has attracted more and more attention due to its good biocompatibility, 

biodegradability, non-toxicity, readily availability and unique physicochemical properties 

[3-5]. 

Recent in vitro studies revealed the suitability of CS membranes as substrate for survival 

and oriented SC growth [6] as well as survival and differentiation of neuronal cells [7, 8]. 

CS NGCs alone or in combination with other biomaterials have been found to efficiently 

bridge peripheral nerve defects [9]. For example, CS/gelatin nerve grafts have been 

developed for delivering SCs and NGF to explore the feasibility of improving sciatic nerve 

regeneration, the results showed that the nerve conduction velocity, average regenerated 

myelin area, and myelinated axon count were all promoted [10, 11]. In addition, the 

differentiation of induced pluripotent stem cells into neuron-like cells was found to be 

accelerated by the chitin–CS–gelatin scaffolds [12]. However, pure CS is brittle and 

degrades rapidly [13, 14]: improved technologies and different crosslinking methods have 

been developed to overcome the poor mechanical strength of CS nerve guide channel 

under physiological conditions, which is one of the main factors limiting the use of such 

for neural clinical applications until now [11]. In the first section of this thesis (Chapter 2), 

CS flat membranes, crosslinked with DSP and GPTMS_DSP were prepared and 

characterized to have suitable properties for peripheral nerve TE. 

In this work, DSP and GPTMS _DSP crosslinked CS flat membranes were prepared by 

solvent casting technique and biologically characterized by in vitro and preliminary in vivo 

tests. Permeability to nutrients was evaluated using FITC-dextran as a model of nutrients 

having a Stokes radius of 14 Å that is superior to glucose Stokes radius (3.8 Å) [15] and 

NaCl Stokes radius (1.4 Å) [16]. Culture studies of RT4-D6P2T cells were also performed 

on these degradable CS based flat membranes to ensure their potential applicability as 

nerve repair conduits.  

In addition to the fine-tuned manufacturing of the CS samples and their evaluation with 

regard to biocompatibility, CS flat membranes were used to bridge a 10 mm defect in rat 

sciatic nerves: in vivo studies were performed by analyzing the outcome of peripheral 

nerve repair at 12 weeks post-implantation through a combination of electrophysiological 

assessment, immunohistochemical and histological investigations. 
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4.2  Experimental 

4.2.1 Materials 

CS (medium molecular weight, 75%-85% deacetylation degree), GPTMS and DSP were 

supplied from Sigma Aldrich. All solvents used were of analytical grade and used without 

further purification. RT4-D6P2T schwannoma cell line was purchased from American Type 

Culture Collection (ATCC- catalog number CRL-2768) and cultured following 

manufacturer’s instruction. 

4.2.2 Methods 

CS was dissolved in acetic acid solution 0.5M at room temperature by continuous stirring 

to obtain a 2.5 % (w/v) solution. The crosslinked membranes were prepared according to 

the following procedures as previously described in chapter 2. Briefly: 

I. DSP-crosslinked samples (CS/DSP) were obtained by adding DSP 1M (one drop per 

second) to the CS solution with a concentration of 7.5 % v/v with respect to the 

natural polymer solution volume. The mixed solution was kept under stirring at 

room temperature for about 10 minutes.  

II. GPTMS_DSP crosslinked samples (CS/GPTMS_DSP) were obtained adding GPTMS 

(50% w/w) to the CS solution. The resulting CS/GPTMS solution was kept under 

stirring for 1 hour, followed by the dropwise addition (one drop per second) of 

DSP 1M (concentration 7.5 % v/v) and maintained under moderate stirring for 10 

minutes. 

Then, 10 ml of each solution (CS/DSP and CS/GPTMS_DSP) was poured into 6 cm Petri 

dishes and air-dried for 48 h to obtain flat membranes. All crosslinked dried samples were 

dipped into demineralised water for 10 minutes and then the water pH values were 

measured to evaluate the presence of acidic residues. 

4.2.3 Sample characterization 

4.2.3.1 Evaluation of CS based membranes permeability 

Permeability of CS flat membranes for FITC-labelled dextrans (Sigma Aldrich) of 4400 Da 

(FD-4) was determined in the following way. First, CS/DSP and CS/GPTMS_DSP 

membranes were rolled and glued to obtained a tube having a 3 mm diameter and a 1.5 

cm length, then one end of the tube was closed with cyanoacrylate glue. A 10% w/v 

solution of FD-4 in phosphate buffer saline (PBS) was prepared, and 180 µl of FD-4 

solution were inserted into the lumen, then the second opening was closed with a 

cyanoacrylate glue. The tube was then placed in 3 ml of PBS at pH 7.4, and FITC–dextran 

concentration in the incubation medium was measured through UV spettroscopy (CARY 

500 SCAN UV-VIS-NIR Spectrophotometer) after 1, 3, 6, 24, 48 and 96 hours. The FD-4 

release concentration in the external PBS solution was reported as a percentage respect 
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to the initial concentration (10% w/v) in the tube (Fig. 4.1). Five measures for samples 

were used and the data were reported as mean value and standard deviation. The 

concentration of FD-4 was calculated from the absorption values using the calibration 

curves that was prepared starting from FD-4 solution of known concentrations. 

 

Fig. 4.1. Sample preparation for permeability test: A) solution of FD-4 in PBS was prepared, B) 

CS/DSP and CS/GPTMS_DSP films were rolled and glued to obtained a tube and one end of the 

tube was closed with cyanoacrylate glue; FD-4 solution was inserted into the lumen, then the 

second opening was closed with a cyanoacrylate glue; C) the tubes was placed in PBS. 

4.2.3.2 In vitro cell tests on CS based samples 

In vitro cell tests were performed using RT4-D6P2T, a schwannoma cell line derived from 

N-ethyl-N-nitrosourea (ENU) induced rat peripheral neurotumor RT4 [17]. Cytotoxicity 

test was carried out on both CS/DSP and CS/GPTMS_DSP while, RT4-D6P2T adhesion, 

proliferation and function were evaluated on CS/GPTMS_DSP due to the higher 

mechanical stability of the biomaterial under physiological condition and because they 

were considered as “the worst case” (biomaterials employed for CS/GPTMS_DSP 

fabrication were the same of CS/DSP supplemented with GPTMS). Neurite outgrowth of 

dorsal root ganglia (DRG) cultured on CS/GPTMS_DSP was examined. 

4.2.3.2.1 Cytotoxicity study on CS/GPTMS_DSP and CS/DSP 

The effect of the CS based material extracts was studied on RT4-D6P2T. CS/DSP and 

CS/GPTMS_DSP samples were first sterilized with a 20 minutes exposure to ultraviolet 

(UV) irradiation (UV lamp, wavelength 254 nm; Technoscientific Co., El- Haram Giza - 

Egypt). Material extracts were prepared by incubating both crosslinked CS samples in 

Dulbecco’s Modified Eagle Medium (DMEM, Sigma Aldrich) supplemented with 100 U/ml 

penicillin (Sigma), 0.1 mg/ml streptomycin (Sigma), 1 mM sodiumpyruvate (Sigma), 4 mM 

L-glutamine (Sigma) and 10% heat-inactivated fetal bovine serum (FBS; all from 

Invitrogen) and stored at 37 °C in a humidified atmosphere of 5% CO2 for 13 days. As 

control media, samples of culture medium without CS were maintained in the same 

conditions of CS/DSP and CS/GPTMS_DSP samples and then collected after 13 days. Then 

proliferation assay on cell line was carried out using media collected. In details, RT4-
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D6P2T cells were seeded in the previous prepared extract media, at a density of 2x103 

cells/cm2 on Petri dishes. After 2, 3, 5 and 7 days in vitro (DIV), cells were trypsinized and 

counted in a Burker’s hemocytometer chamber. Experiments were performed as 

technical and biological triplicates. The counts obtained from assays were analysed, 

averaged and expressed as logarithmic scale of viable cells/mm2 ± SD. 

4.2.3.2.2 Cell adhesion on CS/GPTMS_DSP samples 

Immunocytochemistry analysis was performed to qualitatively evaluate cell adhesion and 

morphology. RT4-D6P2T were seeded at a density of 1.05x104/cm2 on films and control 

glass slides. After 24 hours of culture, culture medium was removed, substrates with 

attached cells were rinsed with PBS and fixed by the addition of 4% paraformaldehyde 

solution (PAF; Sigma-Aldrich). After 20 min the PAF was removed and each plate was 

washed with PBS. Fixed cells were permeabilized with 0.1% Triton X-100 and blocked with 

1% Normal goat serum in 0.01M PBS (pH 7.4) for 1 h at room temperature. F-actin was 

detected using fluorescein isothiocyanate (FITC)- conjugated phalloidin diluted 1:1000 in 

blocking solution (Chemicon-Millipore) by 1 h incubation at room temperature following 

three wash steps of 5 min each. Vinculin was detected by overnight incubation with 

vinculin monoclonal antibody (Millipore) diluted 1:200 in PBS followed by 1-h incubation 

with goat-anti-mouse Alexa 488 secondary antibody (Invitrogen) diluted 1:200 in PBS. All 

the fluorescently-labeled cells were examined under a LSM 510 confocal laser microscopy 

system (Zeiss, Jena), which incorporates two lasers (argon and HeNe) and is equipped 

with an inverted Axiovert 100 M microscope. 

4.2.3.2.3 Proliferation assay on CS/GPTMS_DSP samples 

RT4-D6P2T cells were seeded in DMEM containing 10% FBS, at a density of 2.5x103 

cells/cm2 on both CS/GPTMS_DSP and poly-d-lysine coated glass plates (positive control). 

After 1, 3 and 4 DIV, culture medium was removed, substrates with attached cells were 

rinsed with PBS and fixed by the addition of 4% PAF. After 20 min the PAF was removed 

and each plate was washed with PBS. RT4-D6P2T cells were stained with 1% crystal violet 

(a deep purple nucleic acid stain) solution in 200 mM boric solution (pH 9) for 10 min at 

room temperature. Cells were photographed at DFC 320 Leica microscope with a 30 

images were taken at a low magnification (10X) for each sample. The images were then 

acquired through the program Image Manager IM50 (Leica). The counts obtained from 

proliferation assay were analysed, averaged and expressed as logarithmic scale of viable 

cells/mm2 ± SD. 

4.2.3.2.4 Real Time Reverse-Transcriptase-Polymerase-Chain-Reaction (Real Time RT-

PCR) analysis on CS/GPTMS_DSP 

RT4-D6P2Ts were cultured in DMEM containing 10% FBS on polystyrene plates and 

CS/GPTMS_DSP flat membranes and were allowed to reach confluence. The total RNA 

was isolated from the confluent culture by extraction with TRIzol (Invitrogen). The RNA 
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concentration was quantified by measuring the absorbance at 260/280 nm. The total RNA 

(1 µg per sample) was reverse-transcribed in a reaction volume of 25 µl with 7.5 mM of 

random hexamers (Thermo Scientific). Each reaction consisted of cDNA synthesis buffer 

(50x10-3 M Tris-HCl, pH 8.3, 75x10-3 M KCl, 3x10-3 M MgCl2), 1 mM deoxynucleotide 

triphosphate (dNTP), Thermo Scientific), 1.3 U/µl ribonuclease inhibitor (RNAsin, Ribolock 

Thermo Scientific) and 8 U/µl Moloney murine leukaemia virus (M-MLV) reverse 

transcriptase (RevertAid Thermo Scientific). The samples were then exposed to a first 

cycle: 25°C for 10 min, 42°C for 90 min and 90°C for 10 min. Specific primers designed to 

amplify B cell lymphoma 2 (Bcl2)-associated X protein (BAX), Bcl2 (two proteins involved 

in the cascade of caspases, which regulates cellular apoptosis), superoxide dismutase 

(SOD, an important antioxidant defense in nearly all living cells exposed to oxygen) and 

mammalian target of rapamycin (mTor, a protein encoded by the MTOR gene involved in 

the regulation of cell growth, cell proliferation, cell motility, cell survival, protein 

synthesis, and transcription) are listed in Table 4.1. For normalisation to multiple 

housekeeping genes, ubiquitin gene C (UBC) and TATA-binding protein (TBP) were used. 

The reaction mixture of PCR included 7.5μg forward and reverse primers, 12.5 μl SYBR 

Green (Life Technologies) and 5 μl cDNA. The PCR conditions were as following: initial 

step at 95°C for 25 s, then 40 cycles at 95 °C for 15 s, 60 °C for 1 min. The results were 

obtained from three independent experiments. 

Table 4.1. Primers designed to amplify BAX, Bcl2 and G3PDH cDNA. 

cDNA Primer Oligonucleotide primers 
Annealing temperature 

(°C) 

BAX 
Forward 5’-TTGCTGATGGCAACTTCAAC-3’ 

60 
Reverse 5’-GATCAGCTCGGGCACTTTAG-3’ 

Bcl2 
Forward 5’-GCATCTGCACACCTGGATC-3’ 

60 Reverse 5’-GGGCCATATAGTTCCACAAAGG-3’ 

SOD 
Forward 5’-GAGGCCATCCCTTATCCAAG 

60 Reverse 5’-GATGCCACAGGCCAACC-3’ 

mTOR 
Forward 5’-GCAGCAACAGTGAAAGTGAAG-3’ 

60 Reverse 5’-GCCTCTCGACAAGGAGATAG-3’ 

UBC 
Forward 5’-CCACCAAGAAGGTCAAACAGG-3’ 

60 Reverse 5’-CCCATCACACCCAAGAACAAG-3’ 

TBP 
Forward 5’-GATCAAACCCAGAATTGTTCTCC-3’ 

60 
Reverse 5’-GGGGTAGATGTTTTCAAATGCTTC-3’ 

  

http://en.wikipedia.org/wiki/Antioxidant
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Cell_proliferation
http://en.wikipedia.org/wiki/Motility
http://en.wikipedia.org/wiki/Protein_synthesis
http://en.wikipedia.org/wiki/Protein_synthesis
http://en.wikipedia.org/wiki/Transcription_%28genetics%29
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4.2.3.2.5 Neurite outgrowth assay on CS/GPTMS_DSP 

DRGs explants were harvested from adult female Wistar rats, weighing approximately 250 

g, reduced and maintained in Ham’s nutrient mixture F12 (Gibco) for 1 hour under sterile 

conditions. Experiment was performed in technical and biological triplicate. Rats were 

sacrificed by a lethal i.m. injection of tiletamine + zoletil, according with the Ethics 

Committee and the European Communities Council Directive of 24 November 1986 

(86/609/ EEC). Adequate measures were taken to minimize pain and discomfort taking 

into account human endpoints for animal suffering and distress. DRG explants were 

cultured onto matrigel-coated coverslips (BD Biosciences) and CS/GPTMS_DSP flat 

membranes and incubated at 37 °C for 1 hour. The matrigel was diluted 1:1 in the culture 

medium. Explants were maintained for 4 days in defined serum-free medium (SFM) at 37 

°C with 5% CO2 [18] supplemented with 50 ng/ml of NGF. As control no 50 ng of NGF/ml 

of medium were added according to literature data [19, 20]. After 4 days, explants were 

fixed with 4% PAF for 15 minutes at room temperature. For the immunohistochemistry, 

briefly, the specimens were incubated overnight in a solution containing both anti-

neurofilament-H (anti-NF-H, monoclonal mouse, 1:200, Sigma) that specifically recognizes 

both phosphorylated and non-phosphorylated NF-H subunits, and anti-peripherin 

(polyclonal rabbit, 1:1000, Chemicon International) primary antibodies. After washing in 

PBS, double immunolabeling was carried out by incubating sections for 1 h in a solution 

containing two secondary antibodies: anti-rabbit IgG Cy3 (Jackson Immunoresearch 

Laboratory) and anti-mouse IgG Alexa-Fluor-488-conjugated (Molecular Probes). All 

samples were observed with a LSM 510 confocal laser microscopy system (Zeiss, Jena), 

which incorporates two lasers (argon and HeNe) and is equipped with an inverted 

Axiovert 100 M microscope. For quantification, the whole explants were acquired through 

an optical video-confocal microscope and the supporting software ImageJ. 

4.2.3.3 In vivo tests on CS/GPTMS_DSP and CS/DSP 

All procedures were performed in accordance with the Ethics Committee and the 

European Communities Council Directive of 24 November 1986 (86/609/ EEC). 

4.2.3.3.1 In vivo qualitative analysis on: biocompatibility, rolling up and suturability 

Prior to their use on crushed median nerves, the biocompatibility, the rolling up and the 

suturability of CS/DSP and CS/GPTMS_DSP flat membranes were tested in vivo in 2 adult 

female Wistar rats, weighing approximately 250 g. First, CS/DSP and CS/GPTMS_DSP 

membranes were immersed in PBS solution, rolled up and glued with biomedical 

cyanoacrylate glue to obtain a tube having a 1.1 mm diameter and a 1 cm length (Fig 4.2 

A, B,C, D). Under general anesthesia, 1-cm-long incisions was made on the median nerve 

of the left forelimb and CS tubes were implanted (Fig. 4.2 E,F). Throughout the 8-week 

follow-up time, animals remained healthy, and none developed local or systemic signs of 

infection and/or inflammation. 

http://www.sciencedirect.com/science/article/pii/S0142961208005437#fig1
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Fig. 4.2 Sample preparation for in vivo qualitative analysis on biocompatibility, rolling up and 

suturability: A) CS/DSP film was immersed in PBS solution, B), C), D) CS/DSP film was rolled and 

glued with a cyanoacrylate glue to obtain a tube; E) F) CS/DSP tube immediately before and after 

implantation. 

4.2.3.3.2 Animals and surgery 

In vivo nerve regeneration assays were carried out with both CS/DSP and CS/GPTMS_DSP 

membranes because of their higher elasticity which proved to facilitate surgery. A total of 

12 adult female Wistar rats weighing approximately 250 g at the start of the experiment 

were used. The animals were divided by three experimental groups of 4 animals each. 

The experimental groups were set according to treatment after nerve median crush 

injury. In two groups, the crushed median nerve was encircled by CS/DSP or 

CS/GPTMS_DSP films. Finally, in an additional group, the median nerve was repaired with 

reversed autologous graft. The surgery procedure was the one previously described by 

Tos et al. [21]. Similar to the procedure used for rats [22], in order to prevent 

interferences with the grasping test device during testing due to the use of the contra-

lateral forepaw, the contra-lateral median nerve was transected at the middle third of the 

brachium and its proximal stump was sutured in the pectoralis major muscle to avoid 

spontaneous reinnervation. After 12-weeks post-operative, rats were sacrificed: 

CS/GPTMS_DSP were found to be detached from the distal suturing site (Fig. 4.3E). For 
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this reason, light and transmission electron microscope analysis was carried out on 

CS/DSP samples. 

 

Fig. 4.3 Pictures taken from CS/DSP (A, D), CS/GPTMS_DSP(B,E) and autograft (C, F) in situ 

immediately after post-operatory (A, B, C) and 12 weeks post-injury (D, E, F). 

4.2.3.3.3 Postoperative assessment of functional recovery 

Grasping test sessions were carried out every 3 weeks until week 12. Grasping test was 

performed following the same procedure previously described [22] using the BS-GRIP 

Grip Meter (2Biological Instruments, Varese, Italy). Equipment for grasping test is 

basically represented by a precision balance connected to a grid. The test is carried out by 

holding the mouse by the tail and lowering it towards the device and then, when the 

animal grips the grid, pulling it upward until it loses its grip. When the median nerve 

function is impaired, the animal’s paw approaches the grid in complete finger extension. 

The balance records the maximum weight that the animal manages to hold up before 

losing the grip. Each animal was tested three times and the average value was recorded. 

Since assessment of animal welfare was one of the main objectives of this study, a careful 

daily animal surveillance was adopted for passive and active movement, auto-mutilation 

and joint contracture, especially during early post-operative times. 

4.2.3.3.4 Resin embedding and electron microscopy 

After the 12-week follow-up time, animals were euthanatized and a 10-mm long segment 

of the median nerve distal to the site of lesion was collected, fixed, and prepared for 

design-based stereological analysis of myelinated nerve fibers and for electron 

microscopy. The week-12 end-point was chosen since functional recovery measured by 

the grasping test was stabilized by this post-operative time. Nerve samples were fixed by 

immediate immersion in 2.5% purified glutaraldehyde and 0.5% saccarose in 0.1 M 

Sorensen phosphate buffer for 6–8 hours. Specimens were then washed in a solution 

containing 1.5% saccarose in 0.1 M Sorensen phosphate buffer, post-fixed in 1% osmium 

tetroxide, dehydrated and embedded in resin. From each nerve, series of semi-thin 

javascript:void(0);
javascript:void(0);
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transverse sections (2-μm thickness) were cut starting from the distal stump of each 

median nerve specimen, using an Ultracut UCT ultramicrotome (Leica Microsystems, 

Wetzlar, Germany) and stained using Toluidine blue for high resolution light microscopy 

examination and design-based stereology. For transmission electron microscopy, ultra-

thin sections (50–90-nm thick) were cut using the same ultramicrotome and stained with 

saturated aqueous solution of uranyl acetate and lead citrate. Ultra-thin sections were 

analyzed using a JEM-1010 transmission electron microscope (JEOL, Tokyo, Japan). 

4.2.3.3.5 Design-based quantitative morphology of nerve fiber regeneration 

In each nerve treated with reversed autograft or encircled with CS/DSP, design-based 

stereological analysis was carried out using one randomly selected toluidine blue stained 

semithin section. A DM4000B microscope equipped with a DFC320 digital camera and an 

IM50 image manager system (Leica Microsystems, Wetzlar, Germany) was used for 

stereology. The final magnification was 6600X enabling accurate identification and 

morphometry analysis of myelinated nerve fibers. One semi-thin section from each nerve 

was randomly selected and the total cross-sectional area of the nerve was measured. The 

sample of fibers in each nerve was then randomly selected using a previously described 

stereological method [23]. Mean fiber density was then calculated by dividing the total 

number of nerve fibers within the sampling field by its area (N/mm2). Total fibers number 

(N) was finally estimated by multiplying the mean fiber density by the total cross-

sectional area of the whole nerve cross section. 

Two-dimensional disector probes were also used to select an unbiased representative 

sample of myelinated nerve fibers. In each fiber, both fiber and axon area were measured 

and the circle-fitting diameter of fiber (D) and axon (d) were calculated. These data were 

used to calculate myelin thickness [(D−d)/2], myelin thickness/axon diameter ratio 

[(D−d)/2d], and axon/fiber diameter ratio, the g-ratio (D/d). The precision of the 

estimates was evaluated by calculating the coefficient of error (CE) as previously 

described [24, 25]. The sampling scheme was designed in order to keep the CE below 

0.10, which assures enough accuracy for neuromorphological studies [26]. 

4.2.3.3.6 Immunohistochemistry and confocal laser microscopy 

From all animals, a 3-mm long nerve specimen withdrawn proximal to the segment was 

used for resin embedding, was fixed in PAF 4% and PBS and routinely embedded in 

paraffin for immunohistochemistry and confocal laser microscopy. Series of 8–10 μm 

thick sections were cut by a RM2135 microtome (Leica Microsystems, Wetzlar, Germany). 

Sections were then incubated overnight in a solution containing anti-neurofilament-

200kD (α-NF) primary antibody (monoclonal, mouse, which recognizes the 200 kD subunit 

of neurofilaments, dilution 1:200, Sigma) and then, after washing in PBS, incubated for 1 

hour in a solution containing TRITC-conjugated anti-rabbit IgG (dilution 1:200, Dako). The 

sections were finally mounted with a Dako fluorescent mounting medium and analyzed 

by a LSM 510 confocal laser microscopy system (Zeiss, Jena, Germany), which 

javascript:void(0);
javascript:void(0);
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incorporates two lasers (Argon and HeNe) and is equipped with an inverted Axiovert 

100M microscope. To visualize TRITC, we used excitation from 543 nm HeNe laser line 

and emission passing through a high-pass (LP) 560 filter which passes wavelengths 

superior to 560 nm to the detector. 

4.2.3.4 Statistics 

For vitro experiments, data were expressed as mean ± SEM. For in vivo studies, the 

number of animals used in the experiments (12) was calculated in order to meet the 

Ethical Committee requirements for a minimum number of animals used with the ‘Three 

Rs’ (replacement, reduction and refinement of animal studies) concept put forward by 

Russel and Burch and adopted by the European Community. Statistical analysis was 

carried out using single-factor analysis of variance (ANOVA) post hoc Bonferroni. Values 

of *p≤0.05, **p≤ 0.01, ***p≤0.001 were considered as statistically significant. 

4.3 Results and discussion 

4.3.1 Evaluation of CS based membranes permeability 

One critical properties of NGCs is the wall permeability for solutes and nutrients. The 

NGCs have to facilitate the permeation of small molecules from the outside to the inside 

of the tube and viceversa to allow cell metabolism and growth. The FD-4 was used as a 

model of nutrients having a Stokes radius of 14 Å that is superior to glucose Stokes radius 

(3.8 Å) [15] and NaCl Stokes radius (1.4 Å) [16]. In Fig. 4.4 the release concentration of the 

FD-4 in the PBS after 1, 3, 6, 24, 48 and 96 hours are reported. Results showed that the 

release of FD-4 from CS crosslinked tubes increased with time: an initial burst release 

(about 50%) from the inside to the outside of CS/DSP and CS/GPTMS_DSP conduits was 

followed by a sustained release stage of FD-4 contained into CS tubes, reaching a final 

value of 80% of model molecule released in 96 hours. The prolonged release observed 

after the initial burst release can be ascribed to the penetration of the FD-4 inside the 

tubes after PBS absorption during CS swelling. Moreover, different crosslinking method 

slightly influenced the FD-4 release kinetics. CS/DSP showed an easier permeation of the 

model molecules from the inside to the outside of the tube respect to CS crosslinked with 

both covalent (GPTMS) and ionic (DSP) agents. In detail, after 3 hours, a higher 

permeation of FD-4 was observed for CS/DSP compared to CS/GPTMS_DSP. This trend is 

also confirmed after 6, 24, 48 and 96 hours where a higher release was observed for 

CS/DSP. The addition of the covalent crosslinker in CS/GPTMS_DSP could slow down the 

FD-4 release in time for the hydrophobic properties of the GPTMS and for formation of a 

more organized structure as a consequence of a double crosslinker. 
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Figure 4.4. FITC–dextran release concentration in the incubation medium reported as a 

percentage respect to the dextran initially loaded into CS/DSP and CS/GPTMS_DSP tubes. 

4.3.2 In vitro cell tests on CS based samples 

4.3.2.1 Cytotoxicity study on CS/GPTMS_DSP and CS/DSP 

The effect of the CS based material extracts was studied by RT4-D6P2T proliferation assay 

counting the number of proliferating cells after 2, 3, 5 and 7 DIV (Fig 4.5). RT4-D6P2Ts 

treated with extracts of CS/DSP and CS/GPTMS_DSP showed no cytotoxic effects as no 

significant differences in the cells numbers were evidenced in these two culture 

conditions compared to the control used as reference. 

 

Fig.4.5. Logarithmic scale of RT4-D6P2Ts/mm2 proliferated after 1, 3, 5 and 7 DIV seeded in 

control, CS/DSP and CS/GPTMS_DSP extract media. Cells were counted in a Burker’s 

hemocytometer chamber. 
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4.3.2.2 Cell adhesion on CS/GPTMS_DSP samples 

RT4-D6P2Ts were seeded on CS/GPTMS_DSP and on control glass; immunocytochemistry 

analysis was performed after 24 hours of culture to qualitatively evaluate cell adhesion 

and morphology. The actin cytoskeleton is a highly dynamic network composed of actin 

polymers and a large variety of associated proteins. The function of the actin cytoskeleton 

is to mediate a variety of essential biological functions, including intracellular and 

extracellular movement and structural support. The orientation distribution of actin 

filaments within a cell is, therefore, an important determinant of cellular shape, adhesion 

and motility. In order to obtain a more detailed evaluation of cell adhesion, the actin 

cytoskeleton and focal adhesion complex were stained using FITC-conjugated phalloidin 

and antivinculin antibody, respectively. RT4-D6P2T cells interacted and integrated well 

with both the control and CS/GPTMS_DSP substrates. However, differing morphologies 

and dimensions were seen when RT4-D6P2T cells were cultured on control glass and 

CS/GPTMS_DSP (Fig. 4.6). Cells on control glass displayed a higher dimension and more 

spreading with no particular orientation of the actin cytoskeleton (Fig. 4.6A and C), while 

RT4-D6P2Ts cultured on CS/GPTMS_DSP displayed a more condensed and elongated 

morphology characterized by a typical oval-shaped cell body with long extensions, giving 

an overall spindle shape that is typical with SCs morphology (Fig. 4.6B and D). Vinculin 

immunostaining was performed for RT4-D6P2T cells to visualize the exact location of focal 

adhesion sites. Vinculin-positive sites were observed on cells seeded both on control and 

CS/GPTMS_DSP. However CS/GPTMS_DSP presented an higher accumulation of vinculin 

around the nucleus of RT4-D6P2T cells (Fig. 4.6F) while protein accumulation at the edges 

of cells was also showed in control (Fig. 4.6E). 

These data provide qualitative information about cell adhesion, morphology and 

spreading on the biomaterial surface: 24 hours after seeding cells are still attached to the 

CS/GPTMS_DSP and display a different morphology and vinculin accumulation compared 

to RT4-D6P2Ts cultured on control glass, allowing to hypothesize a lower adhesion and a 

higher motility of cells on the developed biomaterial. 
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Fig. 4.6. Confocal fluorescence microscopy images of RT4-D6P2T cells attached on control glass (A, 

C, E) and CS/GPTMS_DSP (B, D, F) after 24 hours of cell culture. Representative pictures of RT4-

D6P2T, cultured after phalloidin staining (A, B, C, D) and anti-vinculin (E, F). Scale bar 20 μm. 

4.3.2.3 Proliferation assay on CS/GPTMS_DSP samples 

As for cell adhesion (paragraph 4.3.1.2.2), proliferation assay was performed on 

CS/GPTMS_DSP samples. RT4-D6P2T cells were cultured on both CS/GPTMS_DSP and 

poly-d-lysine coated glass plates (positive control). The number of proliferating cells was 

then counted after 1, 3 and 4 DIV. RT4-D6P2Ts seeded on CS/GPTMS_DSP showed lower 

cell proliferation rate and significant differences in the cells numbers were evidenced in 

this culture condition after 3 (**p<0.01) and 4 DIV (***p<0.001) compared to the positive 

control. However, an increase in cell number on CS/GPTMS_DSP samples was observed at 

each time point. The obtained results are probably correlated with the lower adhesion 

and higher motility of RT4-D6P2T on the biomaterial at initial culture time. 
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Fig.4.7 RT4-D6P2T proliferation ratio after 1, 3 and 4 DIV on poly-d-lysine coated glass plates 

(control) and on CS/GPTMS_DSP films. RT4-D6P2T significant differences between CS/GPTMS_DSP 

substrates and control samples were observed (**p<0.01; ***p<0.001). 

4.3.2.4 Real Time Reverse-Transcriptase-Polymerase-Chain-Reaction (Real Time RT-PCR) 

analysis on CS/GPTMS_DSP 

Bax, Bcl2, mTOR and SOD mRNA expression changes were evaluated to study 

proapoptotic and cell survival signaling after 3 and 6 days of culture. Bax is a cytosolic 

protein that plays a pro-apoptotic role, whereas Bcl2 is a pro-survival protein that has 

been shown to heterodimerize with BAX, which counters the death-repressor activity of 

Bcl2 [27]. SOD enzyme participates in the first line of defence against superoxide anions 

(O2−) generated in different cell compartments. mTOR is a protein encoded by the MTOR 

gene involved in the regulation of cell growth, cell proliferation, cell motility, cell survival, 

protein synthesis, and transcription. 

The relative values of BAX, mTOR and SOD mRNA expression were not significantly 

different to RT4_D6P2T cells seeded on the CS/GPTMS_DSP samples and control 

condition both after 3 and 6 days of culture, providing confirmation of the viability of the 

cells cultured on CS/GPTMS_DSP (Fig. 4.8A, B, E, F, G and H). Significant difference in the 

Bcl2 mRNA expression was evidenced in the culture condition after 3 days of culture 

(*p<0.05) compared to the positive control. However, this difference was not observed 

after 6 days. 
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Fig.4.8. RT PCR expression profiles of BAX (A, B), Bcl2 (C, D), SOD (E, F) and mTOR (G, H) 

messengers in RT4-D6P2T seeded respectively on control plates, and CS/GPTMS_DSP films after 3 

and 6 days of culture. Significative difference between the biomaterial and control was observed 

for Bcl2 after 3 days of culture (*p<0.05). 
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4.3.2.5 Neurite outgrowth assay on CS/GPTMS_DSP 

DRG explants were harvested from adult female Winstar rats and cultured for 4 days onto 

matrigel-coated coverslips and CS/GPTMS_DSP flat membranes. The cultures were fixed 

and immunostained for neurofilaments NF-H (yellow) and pheriperin (red) and then 

analyzed in toto using the laser confocal microscopy. Neurofilaments are the 

intermediate filaments of neurons and in mature neurons comprise neurofilament light, 

middle and heavy chains (NF-L, NF-M and NF-H) as their major proteins; peripherin is a 57 

kDa type III neuronal intermediate filament protein particularly expressed in the 

peripheral nervous system [28-30]. In common with other members of the intermediate 

filament protein family, each neurofilament subunit comprises a central α-helical rod 

domain of 310–352 amino acids that is flanked by an N-terminal globular head domain 

and non-α-helical C-terminal domains. The C-terminal domains are the most variable with 

those of NF-H being the longest and forming side-arms that project from the filament and 

which appear to form crossbridges between neurofilaments and between neurofilaments 

and other cytoskeletal organelles. Moreover, previous data in literature have suggested 

that all DRG neurons express NF-H [31]. Peripherin immunolabeling has been employed 

for the study of peripheral nerve development and regeneration, since this intermediate 

filament protein is highly over-expressed during axon elongation [32]. Both peripherin 

and all NF-H have been reported to co-existing in several neuronal types [31, 33, 34]. A 

double labeling in immunofluorescence revealed that these two neuronal intermediate 

filament proteins were both expressed within the DRG stained neurons (Fig. 4.9). High 

magnification showed that the axonal outgrowth onto CS/GPTMS_DSP flat membranes 

(Fig. 4.9D) apparently exceeds in length compared to that of the matrigel-coated 

coverslips (Fig. 4.9C). 

 

Fig. 4.9 Representative immunostaining image of axonal outgrowth at 4 days after co-culture onto 

matrigel-coated coverslips (A, C) and CS/GPTMS_DSP flat membranes (B, D) using anti-NF-H 

antibody (yellow) and anti-peripherin (red). Scale bar 100 μm. 
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4.3.3 In vivo tests on CS/GPTMS_DSP and CS/DSP 

4.3.3.1 Postoperative assessment of functional recovery 

In vivo nerve regeneration experiments were carried out with both CS/DSP and 

CS/GPTMS_DSP flat membranes. The crushed median nerve of female Winstar rats were 

encircled by CS/DSP or CS/GPTMS_DSP films or repaired with reversed autologous graft, 

used as control. Functional recovery of the left forepaw was assessed every 3 weeks until 

the end of the experiment at week-12 postoperative using the grasping test. Grasping test 

was performed following the same procedure previously described [22] using the BS-GRIP 

Grip Meter (2Biological Instruments, Varese, Italy). Fig. 4.10 reports the post traumatic 

time course of functional recovery for rats treated using CS/DSP and autologous graft. At 

week-3 post-crush, animal performance in the behavioral test dropped to zero confirming 

a complete nerve fiber transection from the crush lesion. The function of finger flexor 

muscles innervated by the median nerve started to recover faster for autograft reaching a 

performance statistically different from CS/DSP at week-6 after lesion (*p<0.05). 

However, functional recovery also started for CS/DSP at week-9 and progressively 

increased arriving at 60% and 80% of the pre-operative values by week-9 and until the 

end of the experiment (week-12), respectively. No significant differences were evidenced 

between autograft and CS/DSP treatment at these time points (week-9 and 12). 

CS/GPTMS_DSP tubes were detached from the distal suturing site and functional recovery 

of finger flexor muscles did not occurred. 

 

Fig. 4.10 Line graph reporting the posttraumatic time course of functional recovery as assessed by 

the grasping test. Values are mean ± standard deviation. Significant difference between CS/DSP 

and autograft treated functional recovery was observed after 6 weeks (*p<0.05). 
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4.3.3.2 Light and transmission electron microscope analysis 

Fig. 4.11 shows high-resolution light photomicrographs of rat median nerves injured, 

treated with reversed autologous graft or encircled by CS/DSP film and harvested at 12 

weeks post-operative. Distal median nerves treated with CS/GPTMS_DSP were not 

harvested because conduits were found to be detached from the distal suturing site 

(Fig.4.3E). From each nerve, series of semi-thin transverse sections (2-μm thickness) were 

cut starting from the distal stump of each median nerve specimen and stained using 

Toluidine blue. Small myelinated axons and microfasciculation typical of regenerated 

nerve fibers was detected both on samples treated with CS/DSP (Fig. 4.11A, B) and 

autologous graft (Fig. 4.11C, D) through light microscopy observation. 

Small nerve fibers at different myelinization stages (unmyelinated in Fig. 4.12C, D; in early 

stages of myelinization in Fig. 4.12E, F and myelinated in Fig. 4.12 G, H) were detected 

both on the median nerve encircled with the biomaterial or repaired with reversed 

autologous graft through transmission electron microscopy observations. The presence of 

fibers that were still in the very early phase of myelinazation (Fig. 4.12E, F) suggested that 

at week-12 post-crush injury the process of maturation of regenerated nerve fibers is still 

incomplete. 

 

Fig. 4.11 Photomicrographs of semi-thin sections cut transversely to the main axis of treated 

median nerves using CS/DSP (A,B) and autologous graft (C, D) after 12 weeks post- operative. 

Scale bar: 20 µm. 



112 
 

 

Fig. 4.12 Electron microscope images of regenerated nerves treated using CS/DSP (A, C, E, G) and 

autologous graft (B, D, F, H) after 12 weeks post- operative. Scale bars: A, B, C, D, E, G and H = 1 

µm: F=0.5 µm. 
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4.3.3.3 Design-based quantitative morphology of nerve fiber regeneration 

At 12-week post injury, design-based stereological analysis of regenerated median nerves 

using CS/DSP tubes or reversed autologous grafts (Table 4.2) showed comparable results 

in terms of total number of myelinated fibers, fiber diameters and myelin thickness . 

Regarding density of fibers and axon diameters, both parameters decreased significantly 

(*p<0.05) for median nerve encircled with CS/DSP tubes compared to control. 

Interestingly, the mean g-ratio was not significantly different from both the surgical 

approaches. 

Table 4.2. Comparison of stereological parameters of myelinated nerve fibers in regenerated 

median nerve (12-week post-injury) using autograft and CS/DSP tubes. Values are expressed as 

mean ± S.D. Significant differences between the bioengineered and the gold standard approach 

were observed for the density of fibres and axons diameter (*p<0.05). 

Regenerated median nerve Autograft CS/DSP 

Total number of myelinated fibers 6916±817 7059±219 

Density of fibers (#/mm2) 37763±2450 26677±2766* 

Fibers diameter (µm) 2.98±0.11 2.62±0.14 

Axons diameter (µm) 2.08±0.09 1.68±0.04* 

Myelin thickness (µm) 0.45±0.02 0.47±0.05 

g-ratio 0.68±0.01 0.63±0.02 

 

4.3.3.4 Immunohistochemistry and confocal laser microscopy 

Axonal regeneration onto CS/GPTMS_DSP and CS/DSP conduits was examined by 

confocal laser microscopy on longitudinal nerve frozen sections (Fig. 4.11) after 

neurofilaments staining. After 12-week post-injury, in middle segments of regenerated 

nerves, CS/DSP conduit exhibited NF200-positive axons that were linearly oriented in the 

longitudinal sections (Fig. 4.13B). The CS/GPTMS_DSP treated rats displayed poor axonal 

regeneration, irregular orientation, or disordered but NF positive staining for axons in the 

longitudinal sections (Fig. 4.13A). 

 

 

javascript:void(0);


114 
 

 

Fig. 4.13 Neurofilament staining on longitudinal sections at 12 weeks revealed that CS/DSP and 

CS/GPTMS_DSP were densely populated with axons. Properly linearly aligned NF axons were 

found in CS/DSP (B) while CS/GPTMS_DSP displayed axons that were haphazardly oriented and 

disorder (A). 

4.4 Conclusion 

In this chapter CS/GPTMS_DSP and CS/DSP flat membranes were studied in vitro and in 

vivo for the development of CS based nerve conduit scaffolds. Both the crosslinked films 

were fabricated by solvent casting technique and they can be easily enwrapped to form a 

NGC in wet state. CS/DSP and CS/GPTMS_DSP showed a good permeability to molecules 

having a Stokes radius around 14 Å guarantying the permeation of nutrients and 

metabolites from the outside to the inside of the tube and viceversa. 

In vitro characterization performed on model membranes showed that CS/DSP and 

CS/GPTMS_DSP do not exert any cytotoxic effects on RT4-D6P2T. The higher mechanical 

stability of CS/GPTMS_DSP under physiological condition allowed to evaluate the RT4-

D6P2T proliferation on the CS materials: a high tendency to RT4-D6P2T to migrate 

emerged, phenomenon that is crucial in the lesion site for promoting nerve regeneration. 

Moreover, the compatibility of CS/GPTMS_DSP with axonal regrowth was tested culturing 

explants of rat dorsal root ganglia (DRG): the presence of neurite outgrowth in the 

samples grown on the CS films was assessed after only four days of culture with 

pheripherin and neurofilament positive axons. 

Finally, in vivo tests were carried out on both the two types of nerve scaffolds made by 

CS/DSP and CS/GPTMS_DSP flat membranes due to their easily manipulation and 

suturability. CS/DSP and CS/GPTMS_DSP nerve membranes were used for bridge 

implantation across 10-mm long median nerve defects in rats, and the outcome of 

peripheral nerve repair at 12 weeks post-implantation was evaluated by a combination of 

electrophysiological assessment, immunohistochemical and histological investigation. 

During in vivo tests CS/GPTMS_DSP tubes were detached from the distal suturing site and 

functional recovery did not occurred. This result was confirmed by confocal laser 

microscopy which displayed poor axonal regeneration and irregular orientation but NF 

positive staining for axons in the longitudinal nerve sections. However, the examined 
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functional and morphological parameters showed that CS/DSP grafts could promote 

peripheral nerve regeneration with effects approaching those elicited by nerve autografts 

which are generally considered as the gold standard for treating large peripheral nerve 

defects, thus raising a potential possibility of using these newly developed nerve grafts as 

a promising alternative to nerve autografts. 
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Chapter 5 
Bi-layer CS membranes for 

nerve tissue engineering 
 

Abstract 

The purpose of this study was to develop bi-layer CS flat membranes that can be easily 

manipulated and rolled to obtain flexible nerve guidance channels (NGCs). These bi-layer 

membranes were prepared via solvent casting technique and their chemical composition 

was optimized to realize malleable membranes to be enwrapped for NGC formation.Two 

kinds of CS films crosslinked with different crosslinking agents were combined to produce 

scaffold structures with good biocompatibility in the inner layer and with the desired 

mechanical strength imparted by the outer. A tight connection between the two layers 

was achieved and the physicochemical, thermal, mechanical properties of CS bi-layer 

membranes were investigated. Additionally, bi-layer membranes were used for bridge 

implantation across 10-mm long median nerve defects in rats, and the outcome of 

peripheral nerve repair at 12 weeks post-implantation was evaluated by a combination of 

electrophysiological assessment, immunohistochemical and histological investigations. 

5.1 Introduction 

Despite over 150 years of experience in modern surgical management of the peripheral 

nerve, repair of a nerve gap remains a problem in microsurgery [1]. Usually, peripheral 

nerve injuries that result in gaps or defects require surgical implantation of a bridge or 

guidance channel between the proximal nerve end and the distal stump in order to 

restore full function and organ regeneration [2]. Autologous nerve grafts have been 

commonly used in bridging peripheral nerve defects [3, 4]. However, unavoidable 

disadvantages, such as the limited availability and donor-site morbidity of autografts, still 

remained. Although allografts have also been used, these were accompanied by the usual 

need for immunosuppression and have lower success rates [5]. Due to the shortcomings 

associated with these approaches to nerve repair, artificial NGCs have been widely 

accepted as a method to create a favorable micro-environment for nerve regeneration. 
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However, there are many requirements for an ideal nerve scaffold, including proper 

mechanical strength to avoid local guide collapse and detachment at guide/nerve 

interface, porosity in the range of few microns to allow nutrients exchange minimizing the 

infiltration of fibrous tissue, good biocompatibility to avoid inflammation and other 

adverse reactions, desirable degradable rate to avoid long-term foreign body existence 

and internal porous structures to encourage nerve fibers or cells to grow inside [6]. To 

satisfy these requires, a bi-layer CS flat membrane with CS/DSP film as inner layer and 

CS/GPTMS_DSP as outer layer was developed. The two layers were selected on the basis 

of results reported in the second section of this thesis. In chapter 4, CS/DSP films were 

proved to enhance nerve fibre regeneration and functional recovery, obtaining results 

comparable to the autologous graft which is consider the gold standard technique, while 

CS/GPTMS_DSP samples showed improved mechanical resistance under wet condition 

due to the presence of the covalent crosslinker (see chapter 2) and were found to be 

permeable to nutrients and biocompatible (see chapter 4). The composition of the bi-

layer membrane was selected since the CS/DSP provides a substrate to promote cell 

adhesion, proliferation and migration as a template to guide the formation of new neural 

tissue and the CS/GPTMS_DSP membrane works as a temporary scaffold, which imparts 

the desired mechanical strength to the conduits.  

In this chapter the development of CS bi-layer membranes was described. The obtained 

membranes were analyzed for their physicochemical properties by FT-IR analysis and 

static contact angle measurements, their water stability was studied by swelling and 

dissolution tests in PBS, their mechanical properties were evaluated by tensile tests. 

Finally, conduits were fabricated by rolling the developed membranes to bridge the 10 

mm defects in the median nerve of female Winstar rats, and autograft nerves were taken 

as positive controls. 

5.2 Experimental 

5.2.1 Materials 

CS (medium molecular weight, 75%-85% deacetylation degree), GPTMS and DSP were 

supplied from Sigma Aldrich. All solvents used were of analytical grade and used without 

further purification. 

5.2.2 Methods 

CS was dissolved in acetic acid solution 0.5 M at room temperature by continuous stirring 

to obtain a 2.5% (w/v) solution. Single (CS/DSP and CS/GPTMS25_DSP) layer membranes 

were prepared according to the procedures described in paragraph 2.2.2. For the 

realization of CS/GPTMS25_DSP membrane, the amount of GPTMS was decreased from 

50% to 25% w/w compared to CS/GPTMS_DSP samples (developed in chapter 2) with the 

final aim to reduce compositional differences and optimize the adhesion among the inner 

and outer side in the bi-layer structure. 
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Bi-layer flat membranes were prepared by a two-step coating technique. CS/DSP samples 

were obtained following the procedures described in chapter 2 and were used as the base 

component of the bi-layer films, whereas CS/GPTMS25_DSP solutions were poured on 

top of them. Finally, samples were air-dried for 48 hours to obtain bi-layered membranes. 

5.2.3 Sample characterization 

5.2.3.1 Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-

ATR) 

The FTIR-ATR spectra of CS/GPTMS25_DSP, CS/DSP and bi-layer samples were recorded 

at room temperature in a Perkin Elmer Spectrometer in the range 2000-600 cm-1 at a 

resolution of 4 cm-1. 

5.2.3.2 Surface wettability 

The static contact angle of CS/DSP, CS/GPTMS25_DSP and bi-layer films were measured 

at room temperature using a KSV instrument equipped with a CAM 200 software for data 

acquisition. Sessile drop method was applied, using a 5 μL double distilled water droplet. 

For each angle reported, at least five measurements on different surface locations were 

measured and results were expressed as average value ± standard deviation. 

5.2.3.3 Mechanical properties 

The tensile mechanical properties were performed on wet flat membranes using MTS 

QTest/10 device equipped with load cells of 10 N, respectively. Rectangular strips of 

30x10 mm size were cut from each films and strained to break at a constant crosshead 

speed of 2 mm/min. Prior to tensile testing, samples were immersed in PBS for 10 min at 

25°C. Using the associated software Test Works, break stress and strain were determined. 

The elastic modulus was calculated from the slope of the linear portion of the stress–

strain curve. To measure the thickness of the films, digital calibrator was used. Four 

specimens for each kind of material were tested. The results were expressed as average 

values ± standard deviation. 

5.2.3.4 Swelling and dissolution tests 

The swelling and dissolution behavior of single and double layer samples were evaluated 

by immerging the samples in PBS (pH 7.4) at 37°C. The swelling degree was measured 

after 1, 3, 6, 9 and 24 hours while the dissolution degree was evaluated after 1, 3, 5, 7, 14, 

28 and 56 days. The swelling percentage was calculated as: 

ΔWs (%) = (Ws-W0)/W0*100 

where W0 and WS are the sample weights before and after swelling respectively. The 

dissolution percentage was calculated as: 

ΔWd (%) = (W0-Wd)/W0*100 
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where Wd is the dried sample weight after dissolution. The solution pH was measured at 

the same time intervals during the swelling and the dissolution tests, and its stable value 

at around 7 (physiological pH) was verified. For each experimental time, three samples 

were measured and the results were expressed as averages value   standard deviation. 

5.2.3.5 Permeability of bi-layer CS based membranes 

Permeability of CS/DSP, CS/GPTMS25_DSP25 and bi-layer membranes for FITC-labelled 

dextrans (Sigma Aldrich) of 4400 Da (FD-4) was determined following the procedure 

described in paragraph 4.2.3.1. Briefly, all samples were rolled and glued with a 

cyanoacrylate glue to obtained a tube closed to one end. A 10% w/v solution of FD-4 in 

PBS was prepared, and 180 µl of the solution were inserted into the lumen, then the 

second opening was with a cyanoacrylate glue. The tube was then placed in 3 ml of PBS at 

pH 7.4, and FITC–dextran concentration in the incubation medium was assayed 

fluorimetrically (CARY 500 SCAN UV-VIS-NIR Spectrophotometer) after 1, 3, 6, 24, 48 and 

96 hours. The FD-4 release concentration in the external PBS solution was reported as a 

percentage respect to the initial concentration (10% w/v) in the tube (Fig. 5.1). Five 

measures for samples were used and the data were reported as mean value and standard 

deviation. The concentration of FD-4 was calculated from the absorption values using the 

calibration curves that was prepared starting from FD-4 solution of known 

concentrations. 

 

Figure 5.1. Sample preparation for permeability test: A) solution of FD-4 in PBS was prepared, B) 

CS/DSP, CS/GPTMS25_DSP and bi-layer membranes were rolled and glued to obtained a tube and 

one end of the tube was closed with cyanoacrylate glue; FD-4 solution was inserted into the 

lumen, then the second opening was closed with a cyanoacrylate glue; C) the tubes was placed in 

PBS. 

5.2.3.6 Preliminary in vivo tests 

5.2.3.6.1 Animals and surgery 

In vivo nerve regeneration assay was carried out with CS/DSP, CS/GPTMS25_DSP and bi-

layer membranes. A total of 16 adult female Wistar rats weighing approximately 250 g at 

the start of the experiment were used. The animals were divided by three experimental 

groups of 4 animals each. The experimental groups were set according to treatment after 

nerve median crush injury. In three groups, the crushed median nerve was encircled by 
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CS/DSP, CS/GPTMS25_DSP and bi-layered films. Finally, in an additional group, the 

median nerve was repaired with reversed autologous graft. The surgery procedure was 

the one previously described by Tos et al. [7]. After 12-weeks post-operative, rats were 

sacrificed: CS/GPTMS_DSP25 were found to be detached from the distal suturing site (Fig. 

5.2F). For this reason, light and transmission electron microscope analysis was carried out 

on CS/DSP and bi-layer samples. 

 

Fig. 5.2 Pictures taken from CS/DSP (A, E), CS/GPTMS25_DSP (B, F) and bi-layer (C, G) nerve 

conduits and autograft (D, F) in situ immediately after post-operatory (A, B, C, D) and 12 weeks 

post-injury (E, F, G, H). 

5.2.3.6.2 Resin embedding and electron microscopy 

After the 12-week follow-up time, animals were euthanatized and a 10-mm long segment 

of the median nerve distal to the site of lesion was collected, fixed, and prepared for 

design-based stereological analysis of myelinated nerve fibers and for electron 

microscopy. Nerve samples were fixed by immediate immersion in 2.5% purified 

glutaraldehyde and 0.5% saccarose in 0.1 M Sorensen phosphate buffer for 6–8 hours. 

Specimens were then washed in a solution containing 1.5% saccarose in 0.1 M Sorensen 

phosphate buffer, post-fixed in 1% osmium tetroxide, dehydrated and embedded in resin. 

From each nerve, series of semi-thin transverse sections (2-μm thickness) were cut 

starting from the distal stump of each median nerve specimen, using an Ultracut UCT 

ultramicrotome (Leica Microsystems, Wetzlar, Germany) and stained using Toluidine blue 

for high resolution light microscopy examination and design-based stereology. For 

transmission electron microscopy, ultra-thin sections (50–90-nm thick) were cut using the 

same ultramicrotome and stained with saturated aqueous solution of uranyl acetate and 

lead citrate. Ultra-thin sections were analyzed using a JEM-1010 transmission electron 

microscope (JEOL, Tokyo, Japan). 
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5.2.3.6.3 Immunohistochemistry and confocal laser microscopy 

From all animals, a 3-mm long nerve specimen withdrawn proximal to the segment was 

used for resin embedding, was fixed in PAF 4% and PBS and routinely embedded in 

paraffin for immunohistochemistry and confocal laser microscopy. Series of 8–10 μm 

thick sections were cut by a RM2135 microtome (Leica Microsystems, Wetzlar, Germany). 

Sections were then incubated overnight in a solution containing α-NF-200kD primary 

antibody (monoclonal, mouse, which recognizes the 200 kD subunit of neurofilaments, 

dilution 1:200, Sigma) and then, after washing in PBS, incubated for 1h in a solution 

containing TRITC-conjugated anti-rabbit IgG (dilution 1:200, Dako). The sections were 

finally mounted with a Dako fluorescent mounting medium and analyzed by a LSM 510 

confocal laser microscopy system (Zeiss, Jena, Germany), which incorporates two lasers 

(Argon and HeNe) and is equipped with an inverted Axiovert 100M microscope. To 

visualize TRITC, we used excitation from 543 nm HeNe laser line and emission passing 

through a high-pass (LP) 560 filter which passes wavelengths superior to 560 nm to the 

detector. 

5.2.3.7 Statistics 

Experiments were repeated three times and results expressed as a mean ± standard 

deviation. Statistical analysis was carried out using single-factor analysis of variance 

(ANOVA) post hoc Bonferroni. Values of *p≤0.05, **p≤ 0.01, ***p≤0.001 were considered 

as statistically significant. For in vivo tests, the number of animals used in the experiments 

(16) was calculated in order to meet the Ethical Committee requirements for a minimum 

number of animals used with the ‘Three Rs’ (replacement, reduction and refinement of 

animal studies) concept put forward by Russel and Burch and adopted by the European 

Community. 

5.3 Results and discussion 

5.3.1 Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR) 

In fig. 5.3 the FTIR-ATR spectra of CS based film samples are reported. CS/DSP, 

CS/GPTMS25_DSP, internal and external side bi-layer spectra showed the characteristics 

bands of both CS and DSP, as described at paragraphs 2.3.2. In details, the peak at 1674 

cm-1, 1542 cm-1and 1414 cm-1 were associated respectively to the C=O stretching bond, 

the amide and amine bending vibrations and O-H bending vibrations typical of CS. DSP 

crosslinking was confirmed by the detection of bands at 1000 cm-1 and at 989 cm-1 and 

943 cm-1 due to the PO3 out-of-phase and in-phase stretching; typical absorption peaks at 

861 cm-1 and at 814 cm-1 were associated with P-OH stretching and P-O-P asymmetric 

stretching vibration, respectively [8]. Moreover, the CS/GPTMS25_DSP and external side 

of the bi-layer FTIR-ATR spectrum showed bands at 1196 cm-1 due to the Si–O–Si bonds of 

the covalent crosslinking chains, confirming the successful crosslinking of CS by GPTMS. 
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The absorption band at 1720 cm-1 was observed in all spectra and could be attributed to 

the stretching vibration of C=O groups, probably due to acetic acid residuals [9]. 

 

Fig. 5.3. FTIR-ATR spectra of CS/DSP (A), CS/GPTMS25_DSP (B), external (C) and internal side (D) 

bilayer membrane. 

5.3.2 Surface wettability 

The static water contact angles of model CS/DSP, CS/GPTMS25_DSP, internal and external 

side of bi-layer samples are reported in Fig. 5.4. The average contact angles of CS/DSP and 

CS/GPTMS_DSP were 66°±9° and 65°±11°, respectively. The development of a double 

layer flat membranes significantly modified the wettability of the inner layer as compared 

to CS/DSP and CS/GPTMS_DSP25 films. Static water contact angles of the internal and 

external side of the bi-layer samples were also significantly different (41°±9° for inner and 

64°±16° for outer layer). 

The enhanced hydrophilicity of the internal part of the double layer membrane could be 

attributed to the physicochemical interactions between the inner and outer layer that 

occurs during the fabrication process that increased the amount of phosphate groups and 

consequently the surface wettability. The measured contact angle of the bi-layer flat 

membrane could favour cell attachment on the studied materials [10, 11]. 
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Fig. 5.4 Static water contact angle of CS/DSP, CS/GPTMS25_DSP, internal and external side of bi-

layered film samples. Histograms reported the average values and the standard deviations. 

**p<0.01. 

5.3.3 Mechanical properties 

CS based samples were tested under wet state since wet membranes are flexible enough 

to be rolled up to fabricate hollow guide. All specimens showed an elasto-plastic 

behaviour; the ɕ-ɛ slope was calculated to obtain the elastic modulus. Wet 

CS/GPTMS25_DSP and CS/DSP samples had a uniform thickness in the range of 90-130 

μm while bi-layer membrane showed thickness values within 300-350 μm. The presence 

of GPTMS enhanced the E values (E, from 3.47±1.06 MPa for CS/DSP to 9.29±0.85 MPa 

and 11.01±2.08 MPa for CS/GPTMS25_DSP and bi-layer respectively): the increment of 

the elastic modulus of CS/GPTMS25_DSP and bi-layer samples (statistical significant 

compared to CS/DSP samples, **p<0.01 and ***p<0.001) was a consequence of the 

mechanical reinforcement associated with covalent crosslinking process and indicated the 

superior elastic behaviour of CS/GPTMS25_DSP and double layer membranes compared 

to the ionic crosslinked samples. No significant differences were observed between 

CS/GPTMS25_DSP and bi-layer. Moreover, the developed bi-layer samples showed an 

intermediate behaviour in terms of elongation at break compared to CS/GPTMS25_DSP 

and CS/DSP (Fig. 5.5), indicating that the double layer is a highly elastic and resistant 

membrane, properties imparted by the CS/DSP internal side and CS/GPTMS25_DSP 

external side respectively. 

Biomaterials used to fabricate NGCs are expected to possess mechanical flexibility to 

favour their surgical application and the in vivo permanence in the body and to not 

collapse under compression during axonal outgrowth. The elastic modulus of the mouse 

sciatic nerve has been reported to be 7 MPa [12]. A nerve guide able to mimic the 

behaviour of the natural nerve tissue should possess a similar elastic modulus. In this 

work, elastic modulus values of around 10 MPa were measured for CS/GPTMS25_DSP and 

bi-layer samples and showed superior mechanical properties respect to CS/DSP samples. 
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Moreover, the development of a bi-layer membranes allowed to improve the elongation 

at break compared with CS/GPTMS25_DSP. Additionally, all the crosslinked scaffolds 

could be easily wrapped around the trunked nerve stumps, allowing the use of the 

different typologies of membranes for the preparation of NGCs during the surgical 

intervention and with the appropriate diameter size depending on the treated nerve size 

(data not shown). 

 

Fig. 5.5 Stress-strain curves of the CS/DSP, CS/GPTMS25_DSP and bi-layer flat membranes tested 

in wet state. 

5.3.4 Swelling and dissolution tests 

The CS based membranes prepared by solvent casting increased their weight when 

immersed in PBS and after 1 hour the water uptake was around 530%, 70% and 135% for 

CS/DSP, CS/GPTMS25_DSP and bi-layer samples, respectively (Fig. 5.6). The 

CS/GPTMS25_DSP and CS/DSP swelling values stabilized after 3 hours, while a slightly and 

continuous increase was measured for the bi-layer membranes reaching a water uptake 

value of around 130% after 24 hours. This gradual increase in swelling degree could be 

attributed to the higher thickness of the double layer membranes compared to single 

layers which slows down the water absorption in time. Moreover, an intermediate value 

of water uptake for the bi-layer membranes was observed and could be associated to the 

combination of single component behaviour: the high swelling degree attributed to the 

presence of phosphate groups for the inner layer and the moderate water absortion 

capacity of the external layer due to the presence of a GPTMS (see paragraphs 2.3.4). A 

comparison of the swelling percentage of CS based samples revealed that the water 

uptake of CS/DSP samples was significantly higher than for CS/GPTMS25_DSP and bi-layer 

specimens at each time point (***p<0.001).  

The dissolution profiles of CS based samples after 56 days of immersion in PBS are 

presented in Fig. 5.7. All membranes decreased their weight of 44.6±5.6 %, 34.5±1.9 % 

and 38.2±5.2 % for the CS/DSP, the CS/GPTMS25_DSP and the bi-layer after 1 day 

incubation in PBS. CS/GPTMS25_DSP samples showed significant lower weight loss 
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respect to CS/DSP specimens at this time point. The initial high weight loss was due to the 

release of salts into PBS solution, as described in chapter 2. CS/DSP, CS/GPTMS25_DSP 

and bi-layer weight loss reached final values of 67.3±6.6%, 54.7±1.5 % and 54.2±3.6% 

after 56 days incubation in PBS. Compared to the CS/DSP membranes, chemical 

crosslinking by the addition of GPTMS agents enhanced the stability in aqueous media of 

CS/GPTMS25_DSP and bi-layer membranes.  

 

Fig. 5.6. Swelling degree of CS/DSP, CS/GPTMS25_DSP and bi-layer flat membranes in PBS as a 

function of time. Column heights correspond to the mean values. Bars indicate standard 

deviations (n = 3). *p< 0.05, **p < 0.001. 

 

Fig. 5.7. Dissolution degree of CS/DSP, CS/GPTMS25_DSP and bi-layer samples in PBS as a function 

of time. Columns are the average values; bars represent the standard deviation. *p< 0.05, **p < 

0.001 and ***p < 0.001. 
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5.3.5 Permeability of bi-layer CS based membranes 

Fig. 5.8 reports the release concentration of the FD-4 in the PBS after 1, 3, 6, 24, 48 and 

96 hours. Results showed that the different structures (single or bi-layer) influenced the 

FD-4 release kinetics. The release of FD-4 from CS/DSP and CS/GPTMS25_DSP tubes was 

characterized by an initial burst release (about 50% and 65% for CD/DSP and 

CS/GPTMS25_DSP respectively) from the inside to the outside of conduits which was 

followed by a sustained release stage of FD-4 contained into CS tubes, reaching a final 

value of around 80% of model molecule released in 96 hours for both the single layer 

samples. No significant differences were observed between CS/DSP and 

CS/GPTMS25_DSP membranes at each time point. As regard bi-layer samples, a more 

gradual and controlled release of FD-4 was observed in time. In detail, multi-layer tubes 

released about 28% of the model molecule in the earlier time (6 hours) of incubation in 

PBS. Then, a burst release was observed from 24 hours reaching a FD-4 release value of 

about 72% after 4 days (96 hours). This behavior can be ascribed to the higher thickness 

of double layer specimens compared to CS/DSP and CS/GPTMS25_DSP conduits which 

slows down the penetration of the FD-4 inside the bi-layer tubes after PBS absorption 

during CS swelling, as observed in paragraph 5.3.4. However, no significant difference of 

model molecule release was observed between the different typologies of structure 

(single and by-layer) after 96 hours of immersion in PBS confirming the permeability of 

the bi-layer membrane for solutes and nutrients. 

 

Fig. 5.8. FITC–dextran release concentration in the incubation medium reported as a percentage 

respect to the dextran initially loaded into the tube. Columns are the average values; bars 

represent the standard deviation (n = 4). *p< 0.05, **p < 0.01 and ***p < 0.001. 

5.3.6 Preliminary in vivo tests 

All procedures were performed in accordance with the Ethics Committee and the 

European Communities Council Directive of 24 November 1986 (86/609/ EEC). 
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5.3.6.1 Light and transmission electron microscope analysis 

Fig. 5.9 shows high-resolution light photomicrographs of rat median nerves injured, 

treated with reversed autologous graft or encircled by CS/DSP (previously described in 

paragraph 4.3.1.2.6.2) or by bi-layer flat membranes and harvested at 12 weeks post-

operative. From each nerve, series of semi-thin transverse sections (2-μm thickness) were 

cut starting from the distal stump of each median nerve specimen and stained using 

Toluidine blue. Distal median nerves treated with CS/GPTMS25_DSP were not harvested 

because conduits were found to be detached from the distal suturing site (Fig. 5.2F). 

Small myelinated axons and microfasciculation typical of regenerated nerve fibers were 

detected on samples treated with bi-layer membranes through light microscopy 

observation. These results were comparable to nerve regenerated using autologous graft 

(Fig. 5.9A, B) and CS/DSP (Fig. 5.9C, D) (see chapter 4). As described in paragraph 

4.3.1.2.6.2, small nerve fibers at different myelinization stages were detected both on the 

median nerve encircled with CS/DSP (Fig 5.10A, D, H) or repaired with reversed 

autologous graft (Fig. 5.10B, E, H) through transmission electron microscopy 

observations. Nerve treated with bi-layer membranes showed unmyelinated (Fig. 5.10F) 

and myelinated fibers (Fig.5.10I) which organized into small bundles following the 

perineural cells activity (Fig. 5.10 C, I). 

 

Fig. 5.9 Photomicrographs of semi-thin sections cut transversely to the main axis of treated 

median nerves using autologous graft (A,B), CS/DSP (C, D) and bi-layer membranes (E, F) after 12 

weeks post- operative. White arrows indicated the presence of myelinated axons.Scale bar: 20 

µm. 
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Fig. 5.10 Electron microscope images of regenerated nerves treated using CS/DSP (A, D, G), 

autologous graft (B, E, H) and bi-layer membranes (C, F, I) after 12 weeks post- operative. Scale 

bars: 1 µm. 

5.3.6.2 Immunohistochemistry and confocal laser microscopy 

Axonal regeneration onto bi-layer, CS/DSP and CS/GPTMS25_DSP conduits was examined 

by confocal laser microscopy on longitudinal nerve frozen sections (Fig. 5.11) after NF 

staining. After 12-week post-operative, in middle segments of regenerated nerves, all 

samples exhibited a densely population of NF axons. Properly linearly alignment of NF 

axons was observed in CS/DSP (Fig. 5.11B) and bi-layer (Fig. 5.11C) while 

CS/GPTMS25_DSP treated rats (Fig. 5.11A) displayed poor axonal regeneration and 

disordered orientation in the longitudinal sections. Moreover, an increase of axon 

alignment was observed for bi-layer membranes compared to CS/DSP single layer. These 

results allows to confirm that the presence of CS/DSP internal side of the bi-layer 

structure could be beneficial for axon regeneration from the proximal to the distal stump.  
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131 
 

 

Fig. 5.11 Neurofilament staining on longitudinal sections at 12 weeks revealed that bi-layer, 

CS/DSP and CS/GPTMS_DSP were densely populated with axons. Properly linearly aligned NF 

axons were found in CS/DSP (B) and bi-layer (C) while CS/GPTMS25_DSP displayed axons that 

were haphazardly oriented and disorder (A). 

5.4 Conclusion 

In the present study, a novel bi-layer flat membrane based on CS was developed to 

enhance peripheral nerve regeneration. The bi-layer was composed of a CS/DSP inner 

layer and a CS/GPTMS25_DSP outer layer with the aim to improve nerve regeneration at 

the internal site and to impart the desired mechanical strength to the membrane. The 

scaffold was fabricated by a two-step coating technique where one layer was formed for 

solvent casting and then the polymer solution of the second layer is poured directly on 

top of the previously dried layer. In the present case, CS/DSP film was used as the base 

component of the bi-layer membrane, whereas CS/GPTMS25_DSP solution was poured 

on top of it and left dried. CS/DSP and CS/GPTMS25_DSP single layer were used as 

controls. 

The physico-chemical results showed that the two single layers interacts during the 

double-layer fabrication process: an increase in the surface wettability of the structure 

was observed and could be associated to the strong hydrogen bonding and the higher 

amount of phosphate groups. The bi-layer samples tested under wet condition showed 

improved mechanical properties compared with the CS/DSP and higher elongation at 

break characteristic of CS/DSP film was also observed. Bi-layer samples permeation to 

small molecules and an intermediate swelling degree compared to the single layers. 

Finally, preliminary in vivo tests were carried out on the bi-layers fat membranes for 

bridge implantation across 10-mm long median nerve defects in rats. After 12 weeks 

post-operative, nerves treated with bi-layer tubes displayed regenerated and aligned 

fibers at the injury site through light and transmission electron microscopy and 

observation as well as immunohistochemistry analysis. 

These attractive results, together with all the previous reported positive characteristics of 

CS/DSP and CS/GPTMS_DSP based conduit (see chapter 2 and 4) indicate that the double-

layer CS based conduit should be investigated further as a guide conduit for promoting 

peripheral nerve regeneration. 
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Chapter 6 

CS electrospun nanofibres 

for nerve tissue engineering 
 

Abstract 

Polymeric nanofibres that mimic the structure and function of the native extracellular 

matrix (ECM) are of great interest in tissue engineering as scaffolding materials. Chitosan 

(CS) has been investigated for biomedical applications because of its good 

biocompatibility, biodegradability, and wound healing effect. In this work, CS based 

nanofibers were fabricated by electrospinning solutions containing CS, polyethylene oxide 

(PEO), and dimethyl sulfoxide (DMSO). Spinnable CS-based solution was prepared by 

dissolving CS and PEO in 0.5M acetic acid with a concentration of 5% and 3% (w/v), 

respectively. Then, the two solutions (CS and PEO) were mixed in order to obtain blends 

with volume ratios of 50/50 and finally 5% (v/v) of DMSO was added. The set of 

electrospinning parameters composed by a voltage of 30 kV, a 30 μL/min flow rate and a 

temperature of 37 – 39 °C allowed to obtain homogenous nanofibres with an average 

fiber diameter of 120 nm. Lastly, dibasic sodium phosphate (DSP) was introduced into CS 

based solution as ionic crosslinker to improve the mechanical and physiological stability 

of the developed nanofibres and to neutralize the electrospun membranes. Crosslinked 

nanofibres showed an increase in the mechanical strength (E, from 63±10 MPa to 113±8 

MPa) and on water stability until 7 days in aqueous environment compared to 

uncrosslinked CS nanofibres. 

6.1 Introduction 

In artificial nerve guidance conduits (NGCs) designed, it is essential to introduce an 

internal filler for large nerve gaps (> 30 mm in humans). Internal fillers act as a physical 

axonal guidance enhancing the regeneration process and the functional recovery of 

injured nerves [1]. Fibrous substrates have gained increased interested in recent years 

since they mimic the structure of the ECM. Random or aligned fibrous matrices with fibre 

diameters ranging from tens of nanometres to several microns can be easily prepared by 

electrospinning [2-4] which is a simple and versatile method, which allows the deposition 
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of nanofibrous mats through the extrusion of the solution from a needle by an high 

voltage electric field. By tuning electrospinning processing parameters is possible to 

modify fibres morphology and dimension to maximize the morphology- mediated cellular 

response [3].  

In nerve regeneration, the choice of an appropriate biomaterial is essential to satisfy the 

requirements of a proper biological response and scaffold processability. Among currently 

available polymers, natural polymers, such as proteins (gelatin, collagen and silk fibroin) 

and polysaccharides (chitosan, hyaluronic acid and cellulose) are functionally superior to 

non- informational synthetic polymers: as components of natural ECM or having a similar 

composition to ECM components, natural polymers provide chemical cues which facilitate 

cell attachment [5]. 

As discussed in previous chapters, CS offers many advantages and it is a promising 

material for TE applications (see chapter 1 and 3). The possibility to fabricate nanofibrous 

scaffold through electrospinning using CS have few drawbacks since processing conditions 

have to be carefully selected as the use of high temperatures and organic solvents may 

cause CS denaturation [6]. On the other hand, CS electrospinning is also critical due to the 

relative high viscosity of CS solutions, which limits the spinnability [7]. 

Studies reported in literature strongly suggest that nanofibre-based scaffolds hold a great 

potential as a new class of synthetic NGCs for repairing peripheral nerve injuries and 

defects in vivo since CS nanofibers not only promoted the adhesion of Schwann cells, but 

also helped to maintain their characteristic cell morphology and cell phenotype, providing 

a new class of scaffolds for neural tissue engineering [8]. 

Although many studies have been reported, the use of electrospun nanofibres remains 

largely unexplored and further experiments are necessary to define the effect of CS 

nanofibres on peripheral nerve repair. 

In this work, CS based solution were electrospun to produce internal filler for NGCs. Low 

amounts of acetic acid (0.5M) were applied for CS solubilization in order to reduce the 

risk of polymer degradation and citotoxicity. Different blends of medical grade highly 

deacetileted chitosan (CS M.G.) and polyethylene oxide (PEO) were analyzed in order to 

identify the ideal solution for the deposition of homogeneous and uniform nanofibres 

suitable for peripheral nerve regeneration. PEO solution (3% w/v) and CS solutions 

(ranging from 3 to 7% w/v) were prepared separately by dissolving CS and PEO in 0.5M 

acetic acid. Then, the two solutions (CS M.G. and PEO) were mixed in order to obtain 

blends with volume ratios of 50/50. Among the mixtures analysed, the optimal 

nanofibrous scaffolds were obtained electrospinning the blend CS/PEO 50/50 vol/vol with 

a CS concentration of 5% w/v. Furthermore, the influence of different process parameters 

on fibre deposition and morphology was analyzed. Moreover, dibasic sodium phosphate 

(DSP) was used as CS crosslinker to increase the nanofibres stability in aqueous 

environment and to neutralize the electrospun membrane. The crosslinked nanofibrous 

mats developed were characterized from a physicochemical point of view, through 
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infrared spectroscopy (FTIR) analysis, then thermal, mechanical and dissolution properties 

were studied by thermogravimetric analysis, tensile and dissolution tests. 

6.2 Experimental 

6.2.1 Materials 

Medical grade CS (molecular weight 200 – 400 kDa, deacetylation degree ≥ 92.6 % ) was 

purchased by Kraeber GmbH & Co. PEO (Mw 900000 Da), DSP, DMSO and solvents were 

supplied from Sigma Aldrich. All solvents used were of analytical grade and used without 

further purification. 

6.2.2 Electrospun membrane preparation 

6.2.2.1 Preparation of solutions for electrospinning 

3, 5 or 7 % (wt/vol) CS and 3% (wt/vol) PEO solutions were prepared separately by 

dissolving CS or PEO in 0.5M acetic acid solution at room temperature by continuous 

stirring. After complete solubilisation of each components, a 50/50 (v/v) CS/PEO solution 

was prepared by mixing equal volumes of CS and PEO solutions to obtain the mixtures 

with weight ratios of CS to PEO of 50/50, 62/38 and 70/30; the resultant mixtures were 

kept under stirring for about 2 hours. A 5% (v/v) of DMSO was added to the CS/PEO 

solution as a cosolvent to relax CS chain entanglements and increase the fiber yields and 

consequently improving the spinnability of the CS-based solution [9]. Finally, ionically 

crosslinked samples were prepared by adding DSP 1M (one drop per second) to the 

CS/PEO solution with a concentration of 7.5 % vol./vol. with respect to the natural 

polymer solution volume as previously described (Chapter 2). The CS/PEO_DSP mixed 

solution was maintained under magnetic stirring at room temperature for about 10 

minutes. Not crosslinked solutions were prepared as control. 

6.2.2.2 Electrospinning of CS nanofibres 

The electrospinning system used for fibre preparation was previously described [10]. 

Briefly, the system consists of a high voltage generator (PS/EL30R01.5-22 Glassman High 

Voltage), providing a voltage of 0 to 30 kV; a volumetric pump (KDS210 of KD Scientific); a 

mobile syringe support and a 1.5 mm-thick flat aluminium collector for random fibres. 

6.2.3 Membrane preparation and optimization of solution and process parameters 

6.2.3.1 Solution parameters and viscosity tests 

Preliminary tests were performed to optimize CS based solution concentration. Different 

CS concentrations were tested (3%, 5% and 7%) using a MCR302, Anton Paar GmbH 

rheometer having 50 mm parallel plate and a temperature controller. Measurements 

were performed by pouring 5 ml of solution on pre-heated plate (40°C), then the shear 

rate was set in the range of 1 to 100 s-1. 
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6.2.3.2 Process parameters 

Continuous nanofibres were obtained only for 5% CS solution concentration while process 

parameters (62/38 w/w CS/PEO mixture) were varied to reduce fibre defects and 

maximize the amount of collected fibres. The parameter values allowing spinnability 

were: (i) temperature from 25 °C to 39°C, (ii) flow rate of 25 µl min-1 to 50 µl min-1, (iii) 

nozzle-collector distance of 12 cm and (iv) voltage of 30 kV. The effect of temperature 

and flow rate was evaluated to optimize the process and the fibre morphology. 

6.2.3.3 Fibres morphology and element distribution 

The surface morphology of crosslinked and uncrosslinked CS based nanofibrous 

membranes was observed by scanning electron microscopy (SEM LEO – 1430, Zeiss). 

Qualitative compositional analysis and punctual elemental composition of materials were 

performed using an energy dispersive spectrometer (EDS). Samples were sputter coated 

with gold in a undervacuum chamber prior to SEM-EDS examination. SEM micrographs 

were then analysed through ImageJ software. Fibre diameters and pore size were 

measured on three different images and they were reported as average value ± standard 

deviation. 

6.2.4 Electrospun membranes characterization 

6.2.4.1 Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-

ATR) 

FTIR-ATR spectra of CS, PEO, CS/PEO, CS/PEO_DSP electrospun matrices were recorded at 

room temperature in a Perkin Elmer Spectrometer in the range 4000-600 cm-1 at a 

resolution of 4 cm-1. 

6.2.4.2 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis was performed using a TA INSTRUMENT Q500 equipment. 

Thermal degradation was measured on a 10-15 mg sample in aluminum pans under a 

dynamic nitrogen atmosphere between 40°C and 800 C. The experiments were run at a 

scanning rate of 10°C/min and obtained results were analyzed using TA Universal Analysis 

software. Three samples were analyzed both compositions. 

6.2.4.3 Mechanical properties 

The tensile mechanical properties were evaluated on crosslinked and uncrosslinked CS-

based nanofibrous scaffolds in dry condition using a MTS QTest/10 device equipped with 

load cells of 10N. Rectangular speciments of 30x5 mm size were cut from each 

membranes and their thickness were measured using a digital calibrator. Samples were 

then strained at a constant crosshead speed of 1 mm/min until breaking. Break stress and 

strain were determined using the associated software Test Works 4 while the elastic 
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moduli (E) were calculated from the slope of the linear portion of the stress–strain curve 

of each sample. Five specimens for each kind of material were tested. The results were 

expressed as an average values ± standard deviation 

6.2.4.4 Fibres dissolution 

The dissolution behavior of the uncrosslinked and crosslinked CS samples was evaluated 

by immerging the samples in PBS (pH 7.4) at 37°C. Qualitative tests after immersion were 

performed analyzing the nanofibres morphology by SEM. For each sample, five 

rectangular nanofibrous membranes deposited on the rectangular metal collector (1 cm x 

3 cm) were soaked in 5 ml of PBS and maintained at 37°C. After 1, 24 and 168 hours, 

samples were collected, freeze-dried and then analyzed by SEM. 

Quantitative analysis were performed on crosslinked CS based nanofibres. After 1, 3, 5, 7 

days immersions, samples were dried and the dissolution percentage was calculated as: 

ΔWd (%) = (W0-Wd)/W0*100 

where W0 and Wd are the sample weights before and after degradation respectively.  

The solution pH was measured at the same time intervals during the dissolution tests 

confirming a stable value at around 7.2 (physiological pH). For each experimental time, 

three samples were measured and the results were expressed as averages value ± 

 standard deviation. 

6.2.5 Statistical Analysis 

Statistical analysis was performed applying t-Student for two group comparisons and one-

way ANOVA for multiple analysis using GraphPad Prism 6.0 software. Data were 

considered statistically difference for p value < 0.05. 

6.3 Results and discussion 

6.3.1 Optimization of the electrospinning parameters 

6.3.1.1 Solution viscosity and its effect on electrospun nanofibres 

The effect of CS solution concentration on viscosity and, consequently, spinnability was 

evaluated. The three mixed solutions showed a non-newtonian behavior and an increase 

in viscosity for more concentrate CS solutions (Fig.6.1). Homogenous nanofibres were 

obtained only for CS/PEO solutions obtained with a 5% CS solution (Fig 6.2B), while less 

viscous solution (3% CS) caused the formation on beads instead of fibres (Fig. 6.2A) and 

highly concentrated CS solution impeded the flow of the solution from the needle (Fig 

6.2C).  
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Fig. 6.1. Viscosity versus shear rate for three different CS concentration of the CS/PEO solutions. 

 

Fig. 6.2. SEM micrographs of electrospun CS/PEO solutions obtained with a 3% (A), 5% (B) and 7% 

(C) CS solutions (Parameters: 30kV, temperature 39°C, distance 12 cm, flow rate 30 μL/min). 
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6.3.1.2 Process parameters 

The optimization of the process parameters required to vary the parameters in a wild 

range of sets. For the fabrication on randomly oriented nanofibres, the voltage applied 

was fixed at 30kV and the distance between needle and collector was at 12 cm. The 

influence of temperature and flow rate was analyzed to maximize the formation of 

homogeneous fibres. The CS/PEO solution obtained with a 5% CS solution was spinnable 

in the range of 25 to 50 μL/min and highly homogenous fibres with a diameters of 118±16 

nm were observed for flow rate of 30 μL/min (Fig. 6.3C). Concerning temperature, an 

increase in temperature allowed to increase the spinnability and to reduce the number of 

defects on the fibres as reported in Fig. 6.4. The electrospinning process was set at 

38±1°C. 

 

Fig. 6.3 . SEM micrographs at different flow rates: 25 μL/min (A), 27,5 μL/min (B), 30 μL/min (C). 

Bars: 2 μm. 

 

Fig.6.4. SEM micrographs at different temperatures: 25 °C (A), 32°C (B), 39 °C (C). Bars: 2 μm. 

6.3.2 Characterization of CS based nanofibres 

6.3.2.1 Fibres morphology and element distribution 

Fibres with optimized parameters were visualized through SEM and qualitative analysis of 

phosphorus (P) element was performed using EDS. Phosphorous was homogeneously 

distributed within both the samples confirming the presence of DSP into the nanofibres 

(Fig. 6.5) and consequently the effectiveness of the crosslinking process. No green spots 

were detected on uncrosslinked samples (data not shown). 
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Crosslinked and uncrosslinked CS based nanofibres showed a comparable fiber diameter 

of 109±17 nm and 128±19 nm, respectively.  

 

Fig.6.5. EDS spectra and SEM images of randomly oriented CS-based nanofibres. Green spots 

correspond to phosphorus (P) elements. Bars 10 μm. 

6.3.2.2 Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-

ATR) 

Fig. 6.6 reports the spectra of CS-based nanofibres and crosslinked CS-based nanofibres. 

Both spectra presented the peaks related to CS and PEO which are present in the CS-

based nanofibres. Peak wavenumbers and their relative bond vibrations are reported in 

table 6.1. For CS-based nanofibres, the appearance of the peak at 1074 cm-1 is related to 

the stretching of S=O bonds (νS=O) due to the presence of DMSO residues in the 

nanofibres [11]. Furthermore, in the crosslinked nanofibres the effectiveness of the 

crosslinking was confirmed by the appearance of peaks at 1059 cm-1, 944 cm-1 and 858 

cm-1 related to PO3 stretching (νPO3), O-P-O bending (δO-P-O) and P-OH bending (νP-OH), 

respectively [12]. 

 

Fig.6.6. FTIR spectra of aligned CS-based nanofibres (A) and crosslinked CS-based nanofibres (B). 
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Table 6.1. FTIR peaks and their relative bond vibrations 

Bond vibration Wavenumber (cm-1) Material ref 

νO-H 

νN-H 
3222 CS [13] 

νC-H 2883 CS and PEO [14, 15] 
νC=O 1634 CS [13, 14, 16] 
δN-H 1547 CS [13, 14, 16, 17] 

δCH2 1466 PEO [18] 
νC-N 1410 CS [17] 
ωCH2 1360 PEO [18] 
τCH2 1280; 1241 PEO [18] 

νC-O-C 114; 1095; 1060 CS and PEO [14, 19] 
ρCH2 959; 947 PEO [18] 

δC-O-C 842 PEO [19] 

 

6.3.2.3 Thermogravimetric analysis (TGA) 

The derivative of TGA curves (DTG) revealed four separate degradation phenomena both 

for crosslinked and uncrosslinked CS nanofibres. The first decomposition step, started at 

around 80°C, was related to the water evaporation; the second and then third weight loss 

were observed at 140°c and 290°C and were attributed to the decomposition of CS main 

chains, while the weight loss at 417°c was related to PEO [19-21]. The presence of the 

DSP did not modify the thermal phenomena significantly. Compared to results obtained in 

chapter 2, the use of a different CS (having an increased degree of deacetylation) showed 

a different thermal behavior with two decomposition temperatures related to CS instead 

of one at 238°C. 

 
Fig 6.7. DTG curves of CS-based nanofibres (A) and crosslinked CS-based nanofibres (B). 
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6.3.2.4 Mechanical properties 

The mechanical properties of both the uncrosslinked and crosslinked randomly oriented 

CS fibrous matrices were determined using a MTS QTest/10 device; after tensile test, 

samples were examinated through SEM . Figure 6.8 displays a typical stress-strain plot for 

both the CS based nanofibres and crosslinked CS based nanofibres. The average Young’s 

modulus (tensile elastic modulus) of the CS electrospun matrices were determined from 

the slope of the linear elastic region of the stress-strain curve. The E value of the 

crosslinked CS based nanofibres was found to be significantly higher (113.03±8.35 MPa) 

compared to the uncrosslinked nanofibrous matrices (63.28±9.87 MPa). However, the 

crosslinked mats showed a decreased in ultimate tensile strength and elongation at break 

in comparison with the as-spun nanofibres (Fig. 6.8), indicating that the individual fibres 

following DSP addition to the CS/PEO solution become locked together and therefore 

they can not slip past each other. 

The previously described distinct difference in the elasticity of the uncrosslinked versus 

crosslinked CS nanofibres was also supported by the SEM images (Fig. 6.9). These images 

were taken in close proximity to the failure point of the nanofibrous matrices so that 

changes in individual fibre morphology could be observed. Uncrosslinked CS nanofibres 

after mechanical testing displayed both aligned fibres and a multitude of cracks or 

locations where extensions occurred on the fibres prior to their ultimately breaking (Fig. 

6.9B). On the contrary, crosslinked CS nanofibres retained their randomly oriented fibre 

composition and did not demonstrate alignment prior to their failure (Fig. 6.9D), 

confirming the lower elasticity compared to uncrosslinked CS nanofibres. 

 

 

Fig. 6.8 Stress-strain curves of CS-based nanofibres and crosslinked CS-based nanofibres. 
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Fig. 6.9. SEM images of CS-based nanofibres (A, B) and crosslinked CS-based nanofibres (C, D) CS-

based nanofibres before (A, C)and after (B, D) tensile testing. 

6.3.2.5 Fibres dissolution 

To confirm the efficiency of the crosslinking process and to evaluate the stability of CS 

based nanofibres in aqueous environment, a qualitative analysis of the dissolution 

behaviour crosslinked and uncrosslinked of CS-based nanofibres was performed in PBS at 

37°C. After 7 days incubation in PBS, the uncrosslinked nanofibres showed a not fibrous 

structures (Fig. 6.10G). On the other hand, crosslinked nanofibres showed a stable 

morphology at 7 days confirming the effect of crosslinker on nanofibres water stability 

(Fig. 6.10H). Quantitative analysis showed a weight loss around 50% after 1 day 

immersion probably due to the dissolution of PEO, then the nanofibres weigh did not 

significantly vary until 7 days (Fig. 6.11). 
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Fig. 6.10. SEM images of CS-based nanofibres (A, C, E, G) and crosslinked CS-based nanofibres (B, 

D, F, H) CS-based nanofibres before immersion in PBS (A, B) and after 1 hour (C, D), 1 day (E, F) 

and 7 days dissolution in PBS. 
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Fig. 6.11. Quantification of crosslinked CS-based nanofibres at different time points. 

6.4 Conclusion 

Innovative substrates for peripheral nerve regeneration were developed within this 

chapter. CS electrospun nanofibres acting as NGCs internal fillers were prepared in 0.5M 

acetic acid solutions in the form of non-woven nanofibrous matrices with high specific 

surface areas and relatively small pores. Compared to previous work in literature, in this 

work CS was solubilized with a reduced amount of acid solution and without the use of 

potentially cytotoxic organic solvents. Furthermore, an innovative ionic crosslinker (DSP) 

able to neutralize the CS nanofibres without further process was successfully applied. 

Crosslinked CS-based nanofibres were produced showing a fibre dimensions of 109±17 

nm which has been reported to be advantageous for glial cell adhesion and proliferation 

as compared to fibres characterized by a diameter of 700 nm [9, 22]. Furthermore, an 

increase in mechanical properties and water stability was observed for crosslinked 

nanofibres compared to uncrosslinked one. 

The developed crosslinked CS based nanofibres are currently evaluated for their 

application as NGC internal filler in collaboration with the Neuroscience University 

Cavaliere Ottolenghi (Torino, Italy). In vitro cell tests were performed using primary 

Schwann cells and dorsal root ganglia (DRG) extracted from rats. Encouraging preliminary 

in vitro results were obtained confirming the ability of cells to adhere and proliferate on 

CS nanofibrous matrices.  

Furthermore, the fabrication of aligned crosslinked CS-based nanofibres is in progress. 

Aligned nanofibres can improve the regeneration process by mimicking the structure of 

axons and by giving directional cues to cells growth.  
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Chapter 7 
Wound healing dressing: 

state of the art 
 

7.1 Introduction 

The amount of knowledge and understanding concerning the wound healing process and 

dressing practices has expanded and changed dramatically over the past four decades. 

Wound care dressings aim to restore the milieu required for skin regeneration and to 

protect the wound from environmental threats and penetration of bacteria. Any single 

type of wound dressing can not address the need and management of all types of 

wounds. For an effective design of a functional wound bandage, characteristics of the 

wound type, wound healing time, physical, mechanical, and chemical properties of the 

bandage must be taken into consideration. This chapter offers a review of the common 

and advanced wound management dressings, their key advantages and shortcomings. It 

also reviews many of the dressings and novel polymers used for the delivery of drugs to 

acute, chronic and other types of wound. These include hydrocolloids, alginates, 

hydrogels, polyurethane, collagen, chitosan, pectin and hyaluronic acid. The definition 

and classification of wounds together with the different stages of wound healing are also 

briefly described, as they directly affect the choice of a particular dressing. In addition to 

that this chapter also compiles the list of wound care product available in the market. 

7.2 Structure and function of the skin 

The skin is a complex, multilayered organ, which produces several specialized derivative 

structures called appendages (hair follicles, eccrine sweat glands, sebaceous glands, 

apocrine glands) and consists of heterogeneous cell types and extracellular components. 

The skin constitutes about the 15% of total human weight and in adult it shows a surface 

of about 2 m2. It is important to recognize, when considering either normal or abnormal 

skin structure and function, that there also regional variation in the skin which is primarily 

manifested in terms of thickness, composition and density of appendages. Skin is made of 

three overlapping layers: epidermis, dermis and hypodermis (Fig. 7.1). Interaction among 
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these layers is important during development and for maintenance of homeostasis in the 

adult. 

The epidermis or outer layer is composed for the 95% of only one kind of cells, the 

keratinocytes; the remaining 5% of the tissue is made of melanocytes, Langerhans and 

Merkel cells. Epidermis is made up of stratified layers of keratinocytes (basal, spinous, 

granular, lucidum and cornified layers). The differentiation of keratinocytes toward a 

terminally differentiated corneocyte is very tightly regulated. Basal keratinocytes divide 

with daughter cells, migrating into the overlying spinous layer. Keratinocytes in the 

spinous layer subsequently move into a granular layer, and eventually move into the 

outer cornified layer of the epidermis (Fig.7.1). The epidermis is a barrier, preventing the 

penetration in the wound bed of water, microorganisms, extraneous substances and in 

the same time, avoiding the loss of water and electrolytes from the injured tissue. 

Average thickness of epidermis is 70-120 μm, but it can reach values of 1-2 mm in some 

regions of the body, such as on the hand palm; this layer is separated from the dermis 

below by the basement membrane zone (BMZ), which has a thickness of about 200 nm 

and is composed of a complex network, in which macromolecules, proteins and 

glycoproteins guarantee the adhesion between the two superimposed layers. The dermis 

or middle layer is the thick layer (average thickness of about 0.55 mm) of collagen rich 

connective tissue component of the skin and provides its pliability, elasticity and tensile 

strength. It protects the body from mechanical injury, binds water, aids in thermal 

regulation and includes receptor of sensory stimuli. The dermis is less cellular than the 

epidermis, being composed primarily of fibrous and amorphous ECM surrounding the 

epidermally derived appendages, neurovascular networks, sensory receptor and dermal 

cells. About the 70% of the dermis is made of collagen, mainly type I and III, which 

supports the tissue and assures mechanical resistance; whereas the 5% of dermis weight 

derives from elastin fibers which provide elasticity to the tissue. Epidermis and dermis are 

separated by the basement membrane, a sheet composed of specialized collagens and 

matrix proteins such as laminins and collagen IV. The hypodermis is the deepest 

cutaneous layer, situated between the dermis and the muscular and adipose tissues. As 

dermis, the hypodermis is composed of connective tissue and it is particularly rich of 

mesenchymally adipocytes, which are cells responsible of fats synthesis. Due to the 

presence of this kind of cells, the hypodermis insulates the body, serves as a reserve 

energy supply and allows for its mobility ever underlying structures. In this stratum, 

follicles and sudoriferous glandes originate. 
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Fig.7.1. Stratified structure of the skin. 

7.3 Wounds and wound healing process 

A wound can be described as a defect or a break in the skin, resulting from physical or 

thermal damage or as a result of the presence of an underlying medical or physiological 

condition. According to the Wound Healing Society, a wound is the result of ‘disruption of 

normal anatomic structure and function’ [1]. On the basis of wound healing processes, 

there are two types of wounds: acute and chronic wounds. Acute wounds are usually 

tissue injuries that heal completely, with minimal scarring usually in 8–12 weeks [2]. 

Acute wounds are generally caused by mechanical injuries but can be also formed by 

burns and chemical injuries which arise from a variety of sources such as radiation, 

electricity, corrosive chemicals and thermal sources. Chronic wounds on the other hand 

arise from specific diseases such as diabetes, tumors, and persistent infections [3]. They 

also include decubitis ulcers (bedsores or pressure sores) and leg ulcers (venous, 

ischaemic or of traumatic origin). Healing of chronic wounds could take more than 12 

weeks [4] and recurrence of the wounds is not uncommon [5]. Wounds are also classified 

based on the number of skin layers and area of skin affected [5, 6]. Injury that affects the 

epidermal skin surface alone is referred to as a superficial wound, whilst injury involving 

both the epidermis and the deeper dermal layers, including the blood vessels, sweat 

glands and hair follicles is referred to as partial thickness wound. Full thickness wounds 

occur when the underlying subcutaneous fat or deeper tissues are damaged in addition to 

the epidermis and dermal layers. 

The healing of a wound is defined by the Wound Healing Society as “a dynamic and 

complex process leading to the re-establishment of the structure and the functionality of 

the injured tissue” [1]. A healed wound shows peculiar characteristics, connective tissue 

appears completely restored and the epithelium is regenerated; skin structure and 

functionality are re-established, without requiring continuous drainage and tissue 

protection with a dressing. Wound healing progresses through a series of interdependent 

and overlapping stages in which a variety of cellular and matrix components act together 
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to reestablish the integrity of damaged tissue and replacement of lost tissue. There are 4 

major stages of wound healing after a full-thickness skin wound: hemostasis, 

inflammation, proliferation and remodeling (Fig. 7.2). Hemostatisis is the first stage of 

wound healing. Wounds cause leakage of blood from damaged blood vessels. The 

formation of plasma clot is necessary to stop local hemorrhages immediately. It is 

initiated by proteolytic conversion of fibrinogen into fibrin by thrombin. As fibrin 

molecules assemble into fibrin fibers, platelets and neutrophils are entrapped in a mesh 

of fibrin fibers. It act as a temporally shield protecting the denuded tissue [7, 8]. The 

process of clotting induces platelet degranulation and release of cytokines and GFs, 

including platelet derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), 

epidermal growth factor (EGF) and transforming growth factor-β (TGF-β) [9]. Plasma clot 

is served as a provisional matrix for invading cells as well as a reservoir of cytokines and 

GFs that are released from activated platelets [9]. These GFs act as chemotactic factors 

for lymphocytes, fibroblasts and keratinocytes, and promote various processes of 

reepithelialization and wound contraction. Inflammatory occurred simultaneously with 

homeostasis, sometimes from within a few minutes of injury to 24 hours and lasts for 

about 3 days. The main goal of the inflammatory phase is the removal of bacteria, foreign 

debris and other microorganism from wound bed. This process is activated by a variety of 

mediators released by cells and capillaries of the injured tissue, platelets, cytokines and 

products of hemostasis. Neutrophilis and polymorphonuclear leukocytes (PMN) infiltrate 

at injured sites from the surrounding microvasculature and start the elimination process 

of microorganisms and wound repair by activating local fibroblasts and epithelial cells. 

Neutrophilis appear first at the wound site and are predominant for the first few days, 

then disappear when the wound is no more infected. In presence of infection, neutrophil 

infiltration continues until the wound is not completely clean and the infective process is 

controlled; in absence of infection, the existing monocytes differentiate into 

macrophages, which become predominant phagocytic cells at the wound bed. 

Macrophage tasks include phagocytosis of any remaining pathogenic organisms and other 

cell and matrix debris; in addition they stimulate two fundamental mechanisms of 

inflammatory stage: angiogenesis and fibroplasias. The first one, that is the physiological 

process involving the growth of new blood vessels and the formation of capillary buds, 

starts 3 days after injury and are essential for providing metabolic substances that wound 

needs for a complete healing. The fibroplasia, that is the formation of fibrous tissue and 

collagen synthesis, starts by the third to the fifth day after injury. Moreover, macrophages 

synthesize nitric oxide and secrete different cytokines to initiate the wound repair 

process, including GFs involved in migration, proliferation and organization of new 

connective tissue and vascular beds. As they can secrete cytokines over time, they assure 

the continuity of the tissue repair process. In this phase the release of the protein-rich 

exudates from the wound site causes vasodilatation through the release of histamine and 

serotonin. Histamine and serotonin allows phagocytes to enter the wound and engulf 

dead cells (necrotic tissue). At the end of the inflammation stage, bleeding is controlled 
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and the wound bed is clean and moist, obtaining suitable conditions for the next stage of 

cell proliferation and repair. In the proliferation phase (3-21 days), angiogenesis, 

fibroplasia, and re-epithelialization occur [10]. Within this phase, fibroplasia and 

angiogenesis take place concurrently in a closely orchestrated manner to form ECM and 

granulation tissue. By the fifth day, maximum formation of blood vessels and formation of 

granulation tissue occur. Mesenchymal cells transform into fibroblasts, which lay fibrin 

strands to act as a framework for cellular migration. Fibroblasts and keratinocytes play a 

pivotal role in this stage. Fibroblasts produce collagen and proteoglycans and the 

neovasculature forms granulation tissue which fills wound defects. The early collagen 

secretion results in an initial rapid increase in wound strength, which continues to 

increase more slowly as the collagen fibers reorganize according to the stress on the 

wound. During this phase, the wounded tissue contracts, reducing the size of defect and 

approaching wound edges. This process is mediated by special fibroblasts with contractile 

properties called myofibroblasts. Finally, epithelial cells migrate over the granulation 

tissue and cover the wound bed, providing in this way a barrier to bacterial invasion and 

preventing fluid loss. Basal epithelial cells flatten and migrate across the open wound. The 

epithelial cells may slide across the defect in small groups, or “leapfrog” across one 

another to cover the defect. Migrating epithelial cells secrete mediators, such as 

transforming GFS α and β, which enhance wound closure. Although epithelial cells 

migrate in random directions, migration stops when contact is made with other epithelial 

cells on all sides (i.e., contact inhibition). Epithelial cells migrate across the open wound 

and can cover a properly closed surgical incision within 48 hours. In an open wound, 

epithelial cells must have a healthy bed of granulation tissue to cross. Epithelialization is 

retarded in a desiccated wound [11]. Remodeling, also called maturation, is the final stage 

of wound healing and begins 21 days after injury and can last until 1 or 2 years. This phase 

involves the formation of cellular connective tissue and strengthening of the new 

epithelium which determines the nature of the final scar. During this period, the newly 

laid collagen fibers and fibroblasts reorganize along lines of tension. Fibers in a 

nonfunctional orientation are replaced by functional fibers. The density of cells such as 

macrophages, keratinocytes, fibroblasts and myofibroblasts is reduced by apoptosis. 
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Fig. 7.2. The phases of cutaneous wound healing. 

7.4 Factors which impair wound healing chronic wounds 

Although most wounds will heal uneventfully, the failure of the wound to heal or a 

prolonged healing time usually results in a chronic wound. A chronic wound fails to heal 

because the orderly sequence of events is disrupted at one more of the phases of wound 

healing. Excessive production of exudates can cause maceration of healthy skin tissue 

around the wound [12] and inhibit wound healing. In addition, exudate from chronic 

wound differs from acute wound fluid with relatively higher levels of tissue destructive 

proteinase enzymes [13] and therefore more corrosive. Furthermore, the presence of 

foreign bodies into the wound injury site can cause chronic inflammatory responses 

delaying healing and sometimes leading to granuloma or abscess formation. Other 

problems associated with wound healing include the formation of keloid (raised) scars 

resulting from excess collagen production in the latter part of the wound healing process 

[7]. Pathogenic bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, 

Streptococcus pyrogenes and some Proteus, Clostridium and Coliform species can be 

detrimental to the healing process. P. aeruginosa and S. aureus have been shown to 

significantly reduced skin graft healing [14]. Inadequate control measures to manage 
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infected wounds can lead to cellulitis (cell inflammation) and ultimately bacteraemia and 

septicaemia, both of which can be fatal. 

Krasner et al., outlined the necessity to control factors that could impair wound healing: 

preventing infection, optimising exudate control and removing foreign bodies have to be 

satisfied on order to manage efficiently the wound injury and to promote healing [15]. 

Poor nutritional status and ageing also reduce the ability to fight infection [16]. Protein, 

vitamin (e.g. vitamin C) and mineral deficiencies impair the inflammatory phase and 

collagen synthesis, leading to prolonged healing times [17]. In addition, underlying 

diseases such as diabetes [18] and anaemia delay wound healing because compromised 

circulation results in the delivery of inadequate nutrients, blood cells and oxygen to the 

wound. Treatment with drugs such as steroids suppress the body’s inflammatory 

responses and thereby impede the inflammatory stage of wound healing, which 

eventually leads to a compromised immune system [19]. Glucocorticoids for example 

have been shown to impair wound healing in both rats and humans [20]. 

Dressings used to protect wounds may establish and maintain favorable conditions for 

the healing process. Before applying the dressing on the injure, foreign matter, necrotic 

tissue, contaminating microorganisms should be removed from the wound site, in order 

to reduce the risk of infection. This can be carried out applying a sterile, atraumatic 

surgical technique and, in case of traumatic wounds, performing initial debridement and 

irrigation. The dressing has the function of protecting the wound site from further 

contamination and it may be produced in order to stimulate the rapid complete 

regeneration of the injured tissue and healing of the wound. 

7.5 Wound dressing 

7.5.1 Classification of wound dressings 

For years, different materials such as linen, honey, animal fats, and vegetables fibers have 

been used for wound dressing [21, 22]. However, most plants, could have many 

drawbacks associated to the presence of microorganism or chemicals which might be 

detrimental to the wound healing process. For this reason, continuous developments 

have led to extensive use of new bandages with improved performance. The attention 

has been focused on finding biocompatible materials, mainly polymers, able to help the 

restoration of the tissue and, once the healing process is terminated, degrading without 

releasing toxic products. Wound dressing are classified in a number of ways depending on 

their function in the wound (debridement, antibacterial, occlusive, absorbent,adherence) 

[23], type of material employed to produce the dressing (e.g. hydrocolloid, 

alginate,collagen) [24] and the physical form of the dressing (ointment, film, foam, gel) 

[25]. Dressings are further classified into primary, secondary and island dressings [26]. 

Dressings which make physical contact with the wound surface are referred to as primary 

dressings while secondary dressings cover the primary dressing. Island dressings possess a 

central absorbent region that is surrounded by an adhesive portion. 
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In this chapter, dressing are classified according to traditional or modern (moist wound 

environment) dressings. Modern dressings are discussed under the type of material 

(hydrocolloid, alginate, hydrogel) employed to produce the dressing and the physical 

form (film, foam) of the dressing. 

7.5.1.1 Traditional dressings 

Ordinary dressings, such as cotton wool, natural or synthetic bandages and gauzes, act as 

a common cover on a wound so that the wound can rehabilitate underneath. Cotton wool 

is used to absorb exudate and applied over a primary wound dressing to avoid 

contaminating the wound with cellulose fibres. Bandages are made from natural (cotton 

wool and cellulose) and synthetic (e.g. polyamide) materials which perform different 

functions (i.e. retention of light, sustained compression in the treatment of venous 

insufficiency, leg ulcers). Gauze dressings are made from woven and nonwoven fibres of 

cotton, rayon polyester or a combination of both. Sterile gauze pads are used for packing 

open wounds to absorb fluid and exudates with the fibres in the dressing acting as a filter 

to draw fluid away from the wound. Gauze dressings need to be changed regularly to 

prevent maceration of the healthy underlying tissue and have been reported to be less 

cost effective compared with the more modern dressings. [27]. Though gauze dressings 

can provide some bacterial protection, this is lost when the outer surface of the dressing 

becomes moistened either by wound exudate or external fluids. All these dressings are 

dry and do not provide a moist wound environment. They may be used as primary or 

secondary dressings, or form part of a composite of several dressings with each 

performing a specific function. The conventional wound dressing materials are not 

suitable for acute and chronic wounds as far as rapid healing of a wound is concerned. 

Moreover, traditional wound dressings can adhere to wounds as exudate dries, and 

capillary loops and granulation tissue can grow through the dressing fabrics causing 

trauma and pain to wounds upon removal [28]. Despite these limitations, many 

conventional dressing are actually available on market in the form of bandeges and 

gauzes [27]. 

7.5.1.2 Modern dressings 

Modern dressings have been developed as an improvement upon the traditional wound 

dressing because they aim to: i) maintain the most suitable environment at the 

wound/dressing interface, ii) absorb excess exudates without leakage to the surface of a 

dressing, iii) provide thermal insulation, iv) mechanical and bacterial protections, v) allow 

gaseous and fluid exchanges and vi) be non adherent to the wound and easily removable 

without trauma. The modern dressing are mainly classified according to the materials 

from which they are produced including hydrocolloids, alginates and hydrogels, and 

generally occur in the form of gels, thin films and foam sheets. 
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7.5.1.2.1 Hydrocolloids 

Hydrocolloids dressing are among the mostly wide used dressings. The term 

‘hydrocolloid’ describes the family of wound products obtained from colloidal materials 

(gel forming agents) combined with elastomers and adhesives. Typical colloidal materials 

are carboxymethylcellulose (CMC), gelatin and pectin. They occur in the form of thin films 

and sheets (Fig. 7.3). Hydrocolloid has the ability to form gels upon contact with wound 

exudates and the high absorption occurs via strong hydrophilic gel formation [29]. The 

formation of gel allows excess fluid to escape without permitting wound desiccation. 

However, the fluid handling capacity of hydrocolloid dressings depends on many factors 

such as the physicochemical properties and the design of the dressing [30]. For their 

intrinsic properties, hydrocolloids dressing are clinically useful for partial- or full-thickness 

acute and chronic wounds [31]. As they are occlusive, hydrocolloid dressings do not allow 

water, oxygen, or bacteria into the wound. This may help facilitate a wound to granulate 

or epithelialize and encourage autolytic debridement in wounds with necrotic or sloughy 

tissue present. However, because of their occlusive nature, hydrocolloids should not be 

used if the wound or surrounding skin is infected and are not recommended for use in 

diabetic foot ulceration. Hydrocolloids also cause the pH of the wound surface to drop; 

the acidic environment can inhibit bacteria growth. Hydrocolloid dressings are 

conformable to the patient's body and adhere well to high-friction areas, such as the 

sacrum and heels. Examples of hydrocolloids dressing include GranuflexTM and AquacelTM 

(Conva Tec, Hounslow, UK), ComfeelTM (Coloplast, Peterborough, UK) and TegasorbTM (3M 

Healthcare, Loughborough, UK). 

 

Fig. 7.3 A typical hydrocolloid dressing. The dressing combines moisture vapour permeability with 

absorbency ad conformability. 

7.5.1.2.2 Alginates 

Alginate dressings are produced from the calcium and sodium salts of alginic acid, a 

polysaccharide comprising mannuronic and guluroinic acid units. Various alginate 

dressings are available which possess different chemical and physical properties 

dependent upon the proportion and arrangement of mannuronic and guluronic acid 



159 
 

residues and the content of calcium and sodium ions. They occur in the form of porous 

sheets or as flexible fibers. When the alginate dressing comes into contact with wound 

exudate, ion exchange occurs between the calcium ions of the dressing and the sodium 

ions in the exudate resulting in the formation of a gel on the surface of the wound [32]. 

This gel absorbs moisture and maintains an appropriately moist environment which is 

considered to promote optimal healing [33], limit wound secretion and minimize bacterial 

contamination [31]. As alginates are highly absorbent, they should not be used with dry 

wounds or those covered with hard necrotic tissue. Alginates require a secondary 

dressing; foams or hydrocolloids will secure the alginate and keep it from drying out. 

Moreover, the calcium component of the dressing have been found to improve many 

cellular aspects of wound healing [34]. The role of calcium alginate in the wound healing 

process was investigated by Schmidt who suggested that it may help in the production of 

mouse fibroblast [34]. Thomas et al., have reported that some alginate dressings activate 

human macrophages to produce tumour necrosis factor-α (TNF-α) which initiates 

inflammatory signals, as part of the wound healing process. Calcium ions present in 

alginate dressings, when released into the wound, also play a physiological role aiding in 

the clotting mechanism (haemostat) during the first stage of wound healing [35]. 

7.5.1.2.3 Synthetic hydrogels 

Synthetic hydrogel dressings are insoluble, swellable hydrophilic materials made from 

synthetic polymers such as poly(methacrylates) and polyvinylpyrrolidine. Hydrogel 

dressings are commonly available in two forms: amorphous gel and sheet hydrogel and 

can be useful when managing painful wounds. When applied to a wound as a gel, 

hydrogel dressing usually require a secondary covering such as gauze and need to be 

changed frequently [36]. On the contrary, the sheets do not need a secondary dressing as 

a semi-permeable polymer film nacking controls the transmission of water through the 

dressing. Hydrogel dressings contain significant amounts of water (70–90%) and as a 

result they cannot absorb much exudate, thus they are used for light to moderately 

exuding wounds (i.e. pressure ulcers, skin tears, surgical wounds, and burns). Fluid 

accumulation can lead to skin maceration and bacterial proliferation which produces a 

foul smell in infected wounds. Hydrogels have been found to promote moist healing, to 

be malleable, non adherent and  improve reepithelisation of wounds [36]. 

7.5.1.2.4 Semi-permeable adhesive films 

Film dressings are flexible sheets of transparent polyurethane coated with an acrylic 

adhesive. They can be used as a primary or secondary dressing. These dressings are 

semipermeable, vary in size and thickness, and have an adhesive that holds the dressing 

on the skin. They conform easily to the patient’s body. As films are transparent, the 

wound can be easily monitored. Film dressings generally require a border of dry, intact 

skin for the adhesive edge of the dressing; film dressings will not adhere to moist skin or 

moist wound beds because the moisture inactivates the adhesive. Therefore, the 
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condition of the periwound skin should be assessed before application to determine if a 

film dressing is appropriate. As film dressings are semi-occlusive and trap moisture, they 

allow autolytic debridement of necrotic wounds and create a moist healing environment 

for granulating wounds. Most of the existing brands differ in terms of vapour 

permeability, adhesiveness, conformability and extensibility [37]. OpsiteTM (Smith and 

Nephew, Hull, UK) which is a thin semi-permeable film made from polyurethane covered 

with hypoallergenic acrylic derivatives and is more porous and permeable to water 

vapour and gases but no liquid from exudates [38]. 

7.5.1.2.5 Foam dressings 

Foam dressings are semipermeable and either hydrophilic or hydrophobic with a bacterial 

barrier. They consist of porous polyurethane foam or polyurethane foam film and are 

capable of handling moderate to high volumes of wound exudates [39]. Foam dressings 

provide thermal insulation to the wound, maintain a moist environment around the 

wound, are non-adherent, and allow atraumatic dressing removal [40]. They are highly 

absorbent, property that can be controlled by foam texture, thickness and pore size. The 

open pore structure also gives a high moisture vapour transmission rate [41]. Foam 

dressing are used as primary wound dressings for absorption and insulation and a 

secondary dressing is usually not required due to their high absorbency and moisture 

vapour permeability but they can be used in conjunction with a topical antimicrobial for 

infected wounds. Foam dressings may be manufactured with an adhesive border, which 

eliminates the need for a securing device or without an adhesive boarder. Foam dressings 

are also available which release agents such as antimicrobials, moisturizers or anti-

inflammatory analgesics into the wound. Examples of foam dressing include: Lyofoam 

(Conva Tec), POLYDERM (DeRoyale) and Allevyn1 (Smith and Nephew). 

7.5.1.2.6 Tissue engineered skin substitutes  

Traditional and modern dressings though useful, cannot replace lost tissue, particularly 

missing dermis as occurs in severe burns. Advances in the fabrication of biomaterials, 

mainly polymers, and the culturing of skin cells have led to the development of a new 

generation of engineered skin substitutes (biosynthetic dressing) [42]. Nanofibrous 

matrices, microspheres, hydrogels, films and solid foams obtained from polymeric 

materials should not simply protect and cover the wound site but also allow tissue 

regeneration and cell proliferation, stimulating the physiological processes on which the 

complete healing of the wound is based [43]. For this reason, TE skin substitutes seems to 

be a promising alternative to conventional treatments since these scaffolds aim to: i) 

provide a tough and self- maintaining surface to the body; ii) provide initial contact 

between the outside world and the defensive systems of the body; iii) allow physiological 

functions such as temperature control and neurological sensing; iv) host to structures 

such as sweat glands and hair follicles; and v) create an optimal microenvironment for 

skin regeneration through the delivery of bioactive molecules. Skin substitutes are 
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developed starting from biocompatible and bioresorbable polymeric dermal scaffolds 

such as CS–gelatin composite films, poly(d,L-lactic acid), poly(d, L-lactic acid)–

polyethylene glycol–poly(d, L-lactic acid), poly(lactic co-glycolic acid) membranes 

containing (1→3),(1→6)-β-d-glucans [44, 45], porous scaffolds composed of gelatin, 

hyaluronic acid and (1→3),(1→6)-β-d-glucans crosslinked with 1-ethyl-(3-3-

dimethylaminopropyl) carbodiimide hydrochloride for artificial dermis [46].The use of 

these polymers either in the natural biological form or semi-synthetic forms are reported 

to be able to mimic normal physiologic responses during wound healing [47]. Moreover, 

engineered scaffolds are potentially useful for the release of additional bioactive 

molecules, such as GFs and genetic materials [48, 49], as well as, for the accommodation 

of living cells [50, 51]. 

Two major matrices are employed in TE skin substitutes: acellular and cell containing 

matrices. Acellular matrices are produced either from synthetic collagen and ECM 

combinations such as hyaluronic acid [52] for example IntegraTM , or native dermis with 

the cellular components removed but preserving the dermal architecture [41] for 

example AllodermTM. Cell containing TE dressings include biodegradable films formed 

from, for example, collagen and GAGs (e.g. ApligrafTM) as scaffolds onto which skin cells 

(patient derived or from recombinant sources) can be seeded for the growth of new 

tissues. Some of the developed TE products and skin substitutes available are summarized 

in Table 7.1. Though these advanced dressings have great potential for treating chronic 

wounds and third degree burns, they are still limited by the high costs involved, the risk of 

infection carry over and antigenicity as well as having to create a second wound in the 

case of harvesting patient’s own cells to aid wound healing. These shortcomings in 

addition to the legal and ethical issues surrounding stem cell research have probably 

contributed to the slow adoption of these dressings in routine clinical practice [53]. 
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Table 7.1 Tissue engineered skin substitutes available commercially. 

7.5.1.2.6.1 Biocompatible polymers for wound dressings 

Dressings for wound healing can be produced using different materials, generally both 

natural and synthetic polymers. In this biomedical field, the use of biodegradable 

materials is preferred because skin substitutes should remain on the wound bed until the 

healing process is over, then they are resorbed without requiring the removal of the 

dressing, avoiding to traumas to the healing new tissue. In the last years, starting from 

natural or synthetic polymers, the production of biomimetic ECM micro/nanoscale fibers 

(80 nm–1.5 µm) through electrospinning process has been found to be effective for 

Dressing Type Major components Manufacturers 

IntegraTM Artificial skin Collagen/chondroitin-6 
sulphate matrix overlaid with a 
thin silicone sheet 

Integra LifeScience 
(Plainsborough, NJ) 

BiobraneTM Biosynthetic 
skin substitute 

Silicone, nylon mesh, collagen Dow Hickham/Berte 
Pharmaceuticals 
(Sugar Land, TX) 

AllodermTM Acellular 
dermal graft 

Normal human dermis with all 
the cellular material removed 

Lifecell Corporation 
(Branchberg, NJ) 

DermagraftT

M 
Dermal skin 
substitute 

Cultured human fibroblasts on 
a biodegradable polyglycolic 
acid or polyglactin mesh 

Advanced Tissue 
Sciences (LaJolla, CA) 

EpicelTM Epidermal skin 
substitute 

Cultured autologous human 
keratinocytes 

Genzyme Biosurgery 
(Cambridge, MA) 

MyskinTM Epidermal skin 
substitute 

Cultured autologous human 
keratinocytes on medical 
grade silicone polymer 
substrate 

Celltran Limited 
(University of 
Sheffield, Sheffield, 
UK) 

TranCyteTM Human 
fibroblast 
derived skin 
substitute 
(synthetic 
epidermis) 

Polyglycolic acid/polylactic 
acid, ECM proteins derived 
from allogenic human 
fibroblasts and collagen 

Advanced Tissue 
Sciences 

Hyalograft 
3-D TM 

Epidermal skin 
substitute 

Human fibroblasts on a laser-
microperforated membrane of 
benzyl hyaluronate 

Fidia Advanced 
Biopolymers (Padua, 
Italy) 

BioseedTM Epidermal skin 
substitute 

Fibrin sealant and cultured 
autologous human 
keratinocytes 

BioTissue 
Technologies 
(Freiburg, Germany) 
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wound healing [54, 55]. Natural macromolecules show a relatively low mechanical 

strength compared to synthetic polymers. By cross-linking or blending with synthetic 

polymers, the mechanical properties of natural polymers can be improved; however, their 

biocompatibility is somewhat affected. Modern bandage materials, such as electrospun 

nanofibrous polymeric bandages, hydrogels, porous scaffolds and foams are also used for 

active wound dressings by releasing local active principles such as antimicrobial and 

antiinflammatory drugs [56]. In Table 7.2 biodegradables materials, both of synthetic or 

natural origin, used in wound dressing application are reported. 

7.5.1.2.6.1.1 Natural polymers for wounds healing 

Natural polymers are widely used in the regenerative medicine field, for wounds and 

burns dressing because of their biocompatibility, biodegradability and similarity to the 

ECM [57]. Inducing and stimulating the wound healing process, natural polymers are 

involved in the repair of damaged tissues and consequently in skin regeneration [58]. For 

the regeneration of full-thickness wounds, polysaccharides and proteins are the most 

common natural polymers used.  

Polysaccharides are extensively used for the management of wounds and burns: neutral 

(i-e. glucans, dextrans, cellulose), acidic (alginic acid, hyaluronic acid), basic (chitin, 

chitosan) or sulfated polysaccharides (heparin, chondroitin, dermatan sulfate, keratan 

sulfate) [59]. Among dextrans, carboxymethyl benzylamide sulfonate dextran (CMDBS) is 

a soluble polymer structurally similar to GAG heparin which stimulates wound healing in 

various in vivo experimental models, controls the proliferation of S. aureus biofilm and 

affects proliferation and metabolism of endothelial cells [60]. Moreover, hydrated 

cyclodextrins are used for modern odor-control dressings because of their peculiar 

(bucket-shaped) conformation. Cellulose is used especially as healing scaffold/matrix for 

chronic wound dressings, reducing pain and shortening healing time. For partial and full 

thickness wounds, it stimulates the granulation and epithelialization process. Wound 

dressings with modified cellulose can incorporate by co-immobilization different active 

molecules such as enzymes, antioxidants, hormones, vitamins, antimicrobial drugs [61]. 

Biosynthesized in high amounts by Acetobacter xylinum (Acetobacteraceae), microbial 

cellulose (MC) is a biocompatible, biodegradable, antimicrobial, hypoallergenic and non-

toxic polymer which exhibits a great potential for wound dressings and tissue engineered 

skin due to its similarity with ECM [62-64]. MC is an innovative product, recommended as 

an alternative dressing for superficial partial thickness burn wounds [65, 66]. In a recent 

study, different composites were prepared through impregnation of MC sheets with 2% 

and 4% suspensions of montmorillonite (MMT), Na-MMT, Ca-MMT and Cu-MMT. 

Modified MMTs were obtained through cation exchange technique. MC–MMTs 

nanoreinforced composite films are novel wound dressing materials showing a powerful 

antibacterial effect against Escherichia coli and S. aureus and a potential therapeutic 

importance for wound healing and tissue regeneration [67]. Chitin is the most abundant 

natural amino polysaccharide (poly-N-acetyl-glucosamine) produced annually almost as 
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much as cellulose while CS is a poly N-acetyl-glucosaminoglycan obtained by alkaline 

deacetylation of chitin (see chapter 2). Different formulations of chitin and CS have been 

obtained: water-soluble chitin ointment as a wound healing assistant [68], 

microcrystalline partially deacetylated chitin hydrochloride as promising hemostatic 

material [69], bactericidal films based on chitin and silver nanoparticles for wound 

dressing applications [70], chitin hydrogel–nano zinc oxide composite bandage [71], 

bioactive chitin/CS hydrogel membranes and scaffolds cocultured with keratinocyte and 

fibroblast cells [72], films, sponges and hydrogels of microcrystalline CS with antimicrobial 

and wound-healing effects for wounds and burns [73], CS–gelatin sponge like/composite 

films for wound-healing dressing [74], ciprofloxacin loaded chitosan–gelatin composite 

films [75], CS gel formulation containing epidermal growth factor (EGF) for burn wound 

healing [76]. Alginates are linear unbranched polysaccharides which contain different 

amounts of (1→4’)-linked β-D-mannuronic acid and α-L-guluronic acid residues. Alginate-

based wound dressings are commonly used for their haemostatic properties in 

exudation/bleeding wounds and burns and for their high capacity to absorbe exudates as 

previously described in paragraph 7.5.1.2.2. Glycosaminoglycans (hyaluronic acid, heparin 

and chondroitin sulfate) are the most important components of ECM, essential to skin 

regeneration. According to the structure (polymer length, degree of sulfation), they 

modulate the attraction of skin precursor cells and their potential in TE for wounds and 

burns is well known [77]. Hyaluronic acid (HA) is a naturally occurring non-immunogenic 

linear polysaccharide made from N-acetyl-dglucosamine and glucuronic acid. It has 

remarkable effects in scar-free wound healing, supporting angiogenesis and neuritis out 

growth/repair [78]. HA and silver sulfadiazine-impregnated polyurethane foams have 

been used for wound dressing applications. After one week of foams application in 

experimental model, the wound size decreased around 77% at the rat skin level without 

inflammation [79]. Heparin-coated aligned nanofibers increase endothelial cell infiltration 

in three-dimensional structures and tissue remodeling in vitro and in vivo, in a full-

thickness dermal wound model [80]. 

Among the proteins, collagen and gelatin are widely used in skin TE. Collagen is the most 

abundant protein in the human body and the skin. It is produced by fibroblasts and 

stimulates the wound healing cellular and molecular cascade, development of new tissue 

and wound debridement. Collagen dressings are recommended for the treatment of 

partial and full-thickness wounds with minimal to moderate exudates. Different collagen 

dressings formulations have been developed for wounds and burns: collagen sponges in 

the healing of experimental deep skin wounds [81], collagen–GAG complex (Glycagen), 

collagen–minocycline based hydrogels potentially applicable for the treatment of 

cutaneous wound infections [82], denatured collagen microfiber scaffold seeded with 

human fibroblasts and keratinocytes for skin grafting [83], electrospun collagen 

nanofibrous scaffolds for wound repair [84]. Gelatin is administered in various 

formulations: crosslinked gelatin–alginate and gelatin–hyaluronate sponges with wound 

healing properties on the full-thickness dorsal skin defects of Wistar rat [85], EGF 
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containing gelatin based wound dressings in case of bulk loss of tissue or non-healing 

wounds such as burns, trauma, diabetic [86]. Keratin defines all intermediate filament-

forming proteins found in vertebrate epithelia and corneous tissues like horns, claws, 

hooves [87, 88]. Keratin derivatives are used for chronic wound dressing because of their 

interaction with the proteolytic wound environment facilitating the healing process. 

Novel keratin-based wound dressings with improved properties have been found to the 

release of antibiotics and GFs in a controlled manner [89]. Silk fibroin is widely used for 

wound dressings due to its unique properties such as biocompatibility, biodegradability, 

flexibility, adherence, absorption of exudates and minimal inflammatory reaction. 

Different types of dressing based on SF have been developed: CS blend three dimensional 

scaffolds for tissue regeneration [90], electrospun SF nanofibers with multiwalled carbon 

nanotubes for wound dressing [91, 92], SF–alginate-blended sponges/membranes with 

wound healing effect in full-thickness skin defect of rat [93]. 

7.5.1.2.6.1.2 Synthetic polymers for wound healing 

Synthetic polymers (composite nanobiomaterials with small pores, 2-3 µm diameter, and 

very high specific surface area) used for wounds and burns dressing are obtained by 

various techniques but mainly by electrospinning [54, 55]. Among the bioresorbable 

synthetic materials, PUs, aliphatic polyesters (PLGA, PLA, PGA, PCL), polyvinylpyrrolidone 

(PVP), polyvinyl alcohol (PVA) and polyethylene glycol (PEG) have been frequently used 

for wound healing applications [94, 95]. Some of these polymeric materials can overcome 

the problems typically associated with natural polymers as they can be synthesized and 

processed in a highly controlled way, thus leading to homogeneous materials that will 

present constant and reproducible chemical and physical properties [56]. PUs are 

synthesized by condensation and polymerization methods from a wide range of 

bifunctional or higher-order functional monomers. PUs can lead to hard, flexible or 

elastomeric materials and are also non-toxic, sterilizable, non-adherent and non-

allergenic [96]. They are frequently used in wound dressings because of their good barrier 

properties and oxygen permeability [97]. Research has reported that semi-permeable 

dressings, many of which are PUs, enhance wound healing [98]. Wound-dressing 

materials with antibacterial activity from electrospun PU-dextran nanofiber mats 

containing ciprofloxacin hydrochloride [99], novel absorptive and antibacterial PU 

membranes [100], PU foam combined with pH-sensitive alginate/bentonite hydrogel 

[101], fatty acid-based PU films [102] have been recently developed for wound dressing 

applications. Unnithan et al., prepared an antibacterial electrospun nanofibrous scaffolds 

by physically blending PU with two biopolymers such as cellulose acetate and zein. 

Desirable properties such as better hydrophilicity, excellent cell attachment, proliferation 

and blood clotting ability were obtained by combining PU with natural components [103]. 

Tegaderm™ (3M Medical) is an available polyurethane wound dressing. 

PLA, PGA and PLGA aliphatic polyesters have been extensively investigated because they 

demonstrate good toxicological safety and biodegradability [104]. These polymers when 

http://www.sciencedirect.com.ezproxy.biblio.polito.it/science/article/pii/S0144861713010990
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degraded through hydrolysis of their ester bonds result in the formation of lactic and 

glycolic acids, which are safely metabolized into carbon dioxide and water in vivo. As 

such, they have been widely studied for wound dressing [105]. These polymers are 

administered in various formulations for wound dressing applications: curcumin-loaded 

PLA [106] and PLGA/collagen nanofibers [107], fusidic acid-loaded PLGA ultrafine fibres 

[108], collagen–PLLA composite material [109]. 

PCL has been studied for tissue regeneration and wound healing applications since it 

promotes a faster healing and reduced inflammatory infiltrate [110]. Extensive research 

had been conducted on its biocompatibility and efficacy, both in vitro and in vivo, 

resulting in FDA approval of a number of medical and drug delivery devices that are 

composed of PCL. At present, PCL is being regarded as a soft- and hard-tissue-compatible 

bioresorbable material [111] non-woven matrices from PCL homopolymers and poly-L-

lactide–ε-caprolactone [112], silicone-coated non-woven polyester dressing have been 

found to enhance re-epithelialization in a sheep model of dermal wounds [113]. 

PVA is a water-soluble synthetic polymer obtained from vinyl acetate by alcoholysis, 

hydrolysis or aminolysis. It has been applied in several advanced biomedical applications 

among which wound dressing [114] and wound management [115]. However, PVA 

exhibits some unfavorable mechanical properties (e.g. strength and flexibility), as well as 

a relatively poor thermal stability [116] which restrict its use alone as a wound dressing 

polymeric material. Blending PVA with natural polymers (polysaccharides or proteins) and 

some other synthetic polymers is attractive because of the abundance of such polymers, 

easy for chemical derivatization or modification, and in most cases good biocompatibility 

[117]. Different PVA dressings formulations have been developed for wounds and burns: 

PVA–gelatin esterified hydrogel membrane for wound dressing compatible with the L929 

fibroblast cell line and mice splenocytes [118], PVA–sodium carboxymethylcellulose 

membranes loaded with fucidic acid [119], novel porous cryo-foam for potential wound 

healing application starting from PVA and polyacrylic acid based hydrogels [120]. 

PEG is a hydrophilic, biocompatible, flexible, non-toxic and non-immunogenic polyether. 

PEG is widely used in various TE applications and applied as co-solvents, lubricants and 

stabilizers, bases in topical products, precipitants and crystallization agents for proteins, 

and as chemical agents for pegylation of proteins. PEG macromers have low toxicity, and 

can be coupled with peptides or GFs and placed in situ to fill irregular sites [121]. 

Ciprofloxacin hydrochloride loaded PEG/CS scaffold [122], PEG functionalized with low 

molecular weight heparin [123], PEG–protein conjugates was evaluated as an occlusive 

wound dressing material [124], PEG–gelatin based semi-interpenetrating networks [125] 

have been recently investigated for the development of wound dressings. Like PVA and 

PEG, PVP has been extensively used for a wide variety of pharmaceutical and biomedical 

applications (including wound dressings). This is mostly due to its water absorption and 

oxygen permeability properties  [126, 127]. Like the two above-described hydrophilic 

synthetic polymers (i.e. PVA and PEG), PVP is usually blended with other polymers (e.g. 

agar, cellulose or PEG) or cross-linked with carbodiimides in order to modify its solubility, 
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delivery and erosion profiles, mechanical properties, softness and elasticity [128]. PVP–

alginate hydrogel containing nanosilver [129], resveratrol in immobilization on PVP 

hydrogel dressing [130] have been developed for drug delivery and accelerating wound 

healing. 

Table 7.2 Most widely studied biodegradable materials for wound dressings with related 

properties and selected studies where they were used. 

 

 

Wound dressing 
material 

Characteristics Reference 

Natural   
Cellulose Polysaccharide, water-soluble, 

biodegradable by hydrolysis 
[59-65] 

Chitosan  Polysaccharide, enzymatically degradable, 
positively charged, good cell interactions 

[66-74] 
[143][145] 

Alginates Polysaccharide, enzymatically degradable, 
highly absorbent 

[32-35] [131] 

Hyaluronic acid Glycosaminoglycan, ECM component, 
enzymatically degradable, non 
immunogenic,  

[76, 77] 

Collagen ECM protein, enzimatically degradable, 
good cell interaction 

[79-82] 
[141][132] 

Gelatin  ECM protein, enzimatically degradable, 
good cell interaction 

[83, 84] 

Keratin Fibrous structural proteins, enzymatically 
degradable 

[85-87] 

Silk fibroin  Silk protein, enzimatically degradable [88-91] 
   
Synthetic   

Polyester urethane Elastomeric polymer, biodegradable [96-103] [140] 
Poly(L-lactic acid) Aliphatic polyester, very slowly 

biodegradable by hydrolysis 
[106, 
109][144] 

Poly(glycolic acid) Aliphatic polyester, biodegradable by 
hydrolysis 

 

Poly(lactic-co-glycolic 
acid) 

Copolymer of poly(L-lactic acid) and 
poly(glycolic acid), biodegradable by 
hydrolysis 

[107, 108] 

Poly(ε-caprolactone) Aliphatic polyester, biodegradable by 
hydrolysis 

[110-113] 

Polyvinyl alcohol Hydrophilic polymer obtained from vinyl 
acetate biodegradable by hydrolysis 

[114-120] 
[133] 

Poly(vinyl pyrrolidone) Hydrophilic polymer, water-soluble [128-130] 
Poly(ethylene glycol) Polyether, water soluble [122-130] 

http://en.wikipedia.org/wiki/Glycosaminoglycan
http://en.wikipedia.org/wiki/Fibrous_protein
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7.6 Medicated dressings for wound delivery 

Despite advances in the development of wound dressings, no single dressing is suitable 

for all types of wounds, and often, different types are needed during the healing of a 

single wound [134]. Current strategies for wound dressings have aimed at the 

development of the medicated dressings, which combines the use of pharmaceutical and 

bioactive agents and dressings used to deliver them. Topical pharmaceutical agents in the 

form of solutions, creams and ointments are generally applied to wound sites. For 

example, solutions such as thymol and hydrogen peroxide used commonly for cleansing 

and debridement, also possess antiseptic and antibacterial actions [135]. The new 

generation of medicated dressings incorporate new chemicals which have therapeutic 

value, and overcome some of the disadvantages associated with topical pharmaceutical 

agents such as short residence times on the wound area. The modern dressings used to 

deliver active agents (both therapeutic and GFs) to wounds include hydrocolloids, 

hydrogels, alginates, polyurethane foam/films and gels [136]. Incorporated drugs and 

proteins play an active role in the wound healing process either directly or indirectly as 

cleansing or debriding agents for removing necrotic tissue, antimicrobials which prevent 

or treat infection or growth factors to aid tissue regeneration.  

Moreover, the development of medicated dressing aims to prolong the action of active 

agents over time by allowing consistent and sustained release from a polymeric matrix 

without the need for frequent dressing change [137]. Drug release from polymeric 

dressings is generally controlled by: i) hydration of the polymer by fluids, ii) swelling to 

form a gel, iii) diffusion if drug through the swollen gel and iv) dissolution of the polymer 

[138-141]. Swelling, drug diffusion and dissolution kinetics are typical of hydrocolloids, 

alginates, hydrogels and PU. Upon contact of a dry dressing with a moist wound surface, 

wound exudates penetrates into the polymer matrix. This causes hydration and 

subsequent swelling of the dressing to form a gel over the wound surface [142]. In 

aqueous medium, the polymer also undergoes a relaxation process resulting in slow, 

dissolution of the hydrated polymer containing the drug [143]. Hydrolytic activity of 

enzymes present in the wound exudates [144] or from bacteria in the case of infected 

wounds [145] could also influence the mechanism of release of drug from polymeric 

dressings. Some of the commonly used active compounds and the dressings (and novel 

polymer systems) used to deliver them to wound sites are described below. 

7.6.1 Antimicrobials 

The purpose of applying antibiotics and other antibacterials is mainly to prevent or 

combat infections especially for diabetic foot ulcers [146] surgical and accident [147] 

wounds. In some cases, the delivery of certain antibiotics from paraffin based ointments 

such as bismuth subgallate are known to take active part in the wound healing process 

[148]. The delivery of antibiotics to local wound sites may be a preferred option to 

systemic administration since aims to: i) reduce the risk of systemic toxicity such as the 
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cumulative cell and organ toxicity of the aminoglycosides in the ears and kidneys [149, 

150], ii) provide tissue compatibility, low occurrence of bacterial resistance and reduced 

interference with wound healing [151] and iii) overcome the problem of ineffective 

systemic antibiotic therapy resulting from poor blood circulation at the extremities in 

diabetic foot ulcers.  

Common antibiotics incorporated into available dressings for delivery to wounds include 

dialkylcarbamoylchloride which is incorporated into Cutisorb® a highly absorbent cotton 

wool dressing, povidone-iodine used with fabric dressing and silver used with most of the 

modern dressings [152]. Other antibiotics delivered to wounds include gentamycin from 

collagen sponges [153], ofloxacin from silicone gel sheets [154] and minocycline from CS 

film dressings [155]. Some of the reported novel antimicrobial wound healing dressings 

reported include lactic acid based system for the delivery of ofloxacin and the inhibition 

of S. aureus and P. aeruginosa in split-thickness wounds in rats [156]. A CS-PU film 

dressing incorporating minocycline has also been developed for treating severe burn 

wounds [142]. Nanofibrous mats composed of PVA and poly(vinyl acetate) fibres loaded 

with ciprofloxacin HCl (CipHCl) have been also investigated for controlled drug release at 

targeted sites of injury [133]. 

The antimicrobial effects of silver are well established, and dressings designed to elute 

silver ions have been shown to be effective at reducing bacterial colonisation of wounds 

[157-159]. In particular silver dressings are extensively used in the management of burn 

wounds following surgical excision [160]. Several products incorporate silver for use as a 

topical antibacterial agent, such as silver nitrate, silver sulphadiazine (Flammazine™) 

[161], silver sulphadiazine/chlorhexidine (Silverex®,), and silver sulphadiazine-

impregnated lipidocolloid wound dressing Urgotul SSD® [159, 162]. Silver impregnated 

modern dressings available on the UK Drug Tariff include various forms such as fibrous 

hydrocolloid, PU foam film and silicone gels [152]. Moreover, newly developed products 

such as Acticoat™ and Silverlon® have a more controlled and prolonged release of 

nanocrystalline silver to the wound area. This mode of silver delivery allows the dressings 

to be changed with less frequency, thereby reducing risk of nosocomial infection, cost of 

care, further tissue damage and patient discomfort [163]. However, consideration of the 

cytotoxic effects of silver and silver-based products should be taken when deciding on 

dressings for specific wound care strategies. 

7.6.2 Growth factors 

GFs take a physiological role in the wound healing process because they are involved with 

cell division, migration, differentiation, protein expression and enzyme production. The 

wound healing properties of GFs are mediated through the stimulation of angiogenesis 

and cellular proliferation, which affects both the production and the degradation of the 

ECM and also plays a role in cell inflammation and migratory phases of wound healing 

[164]. A variety of GFs have been reported to participate in the process of wound healing 

including EGF, PDGF, fibroblast growth factor (FGF), TGF- β, IGF-1 and granulocyte-
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macrophage colony-stimulating factor (GM-CSF) [165]. Different formulation of dressings 

have been developed to topically administer some of the above GFs to wound sites. 

These include hydrogel dressings for delivering TGF- β1 [166], collagen film for delivering 

PDGF [132], alginate dressings in the form of beads used to deliver EGF [131] PU and 

collagen film dressings for delivery of EGF [167]. Morever, the combined use of 

antimicrobials and GFs has been found to significantly enhance wound healing compared 

with dressing containing only the antibiotic agents [168]. 

7.6.3 Supplements 

Other active compounds applied to enhance the wound healing process are vitamins (A, C 

and E) and curcumin [169]. The dressings employed for the delivery of vitamins and 

curcumin include oil based liquid emulsions, creams, ointments, gauze, hydrogels and 

sheets. 

Vitamin A is involved with epithelial cell differentiation [170], collagen synthesis and bone 

tissue development [171]. It has also been shown to facilitate normal physiological wound 

healing [172]. Vitamin C is an essential compound for the synthesis of collagen and other 

organic components of the intra cellular matrix of tissues such as bones,skin and other 

connective tissues [170]. It is also involved with normal responses to physiological 

stressors such as in accident and surgical trauma and the need for ascorbic acid increases 

during times of injury [173]. In addition, vitamin C aids in improving immune function 

particularly during infection [174]. Lazovic et al., have reported the application of collagen 

sheet dressings wetted with vitamin A and C solutions over burn wounds and showed 

significant improvements in the healing of wounds [175]. Vitamin E is an antioxidant and 

an intermediary in arachidonic acid and prostaglandin metabolism, which are important 

in inflammatory processes, including burns [176, 177] Vitamin E also promotes angiogenis 

and reduces scarring [178]. Aloe vera/vitamin E/ CS microparticles loaded into HA 

hydrogels have been used for the treatment of skin burns [179]. The release of vitamin E 

from the polymeric matrices allowed to make one oxidative interruption in the healing 

cascade thus leading to an improvement of the structural quality and a reduction in the 

time of healing compared to HA hydrogels alone [179]. Although the delivery of vitamins 

seems to promote wound healing, these compound are generally administerd orally to 

supplement body stores. 

Curcumin (diferuloylmethane) is a yellow crystalline compound and the active ingredient 

of turmeric, a traditional Asian spice. Curcumin has been reported as a promising wound 

healing agent both in normal and diabetic-impaired wounds when used topically [180]. 

Curcumin promotes wound healing by increasing granulation tissue and enhancing the 

biosynthesis of TGF-β1 and proteins in ECM [181, 182]. Also, it scavenges the free 

radicals, a major cause for the inflammation and inhibits the peroxide induced oxidative 

damage in human keratinocytes and fibroblasts [183]. Curcumin has potential antioxidant 

and anti-infective properties. However, there many drawbacks associated with curcumin 

administration such as its poor water solubility, photosensitivity and low stability [184]. 
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Hence, several strategies including nanoparticles [185, 186], micelles [187], hydrogels 

[188] and films [189], have been adopted to improve the water solubility as well as 

bioavailability of curcumin. Chereddy et al., investigated the combined activity of PLGA 

and curcumin on topical wound healing. The developed curcumin loaded PLGA 

nanoparticles were capable to control and maintain the release of the natural compound 

and lactic acid and significantly accelerated the wound closure by comprehensive healing 

which included down regulation of inflammatory responses, expedited re-epithelialization 

and improved granulation tissue formation [185]. 
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Chapter 8 
Porous CS based membranes with 

improved antimicrobial properties for 

the treatment of chelonian shell injuries 
 

Abstract 

Recently, much attention has been given to the use of CS in veterinary applications, as a 

wound healing agent, antimicrobial agent, bandage material, skin grafting template, 

hemostatic agent and drug delivery vehicle. In this chapter, CS crosslinked porous 

membranes with improved antimicrobial properties were prepared via freeze-drying 

technique to promote wound healing and to reduce the bacterial proliferation in 

chelonians after carapace injuries. Silver nanoparticles (AgNPs) and gentamicin sulphate 

(GS) were incorporated into the CS matrices to impart the proper antibacterial properties. 

CS based porous membranes were tested for their physicochemical, thermal, mechanical 

as well as swelling and degradation behavior at physiological condition. Additionally, GS 

release profile was investigated, showing a moderate burst effect in the first day followed 

by a decreasing release rate which was maintained for at least 56 days. Moreover, porous 

membranes loaded with GS or AgNPs showed good bactericidal activity against both of 

Gram+ and Gram- bacteria. Preliminary in vivo tests were carried out Testudo Hermanni 

showing the potential use of the developed antimicrobial membranes as an alternative to 

wet-to-dry conventional treatment. 

8.1 Introduction 

Shell trauma is one of the most common pathological conditions encountered in 

chelonians and it occurs with different seriousness degrees [1]. Carapace injuries arise 

mostly from dog bites, automobile and mower accidents, but can also result from falls [1]. 

Chelonians suffering shell trauma die following internal hemorrhage, organ damage and 

sepsis due to the recurring bacterial proliferation on the wound site. When a tortoise is 

injured, the first clinical step consists in classifying the trauma seriousness [1]. Shell 
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trauma may result in shell fractures with or without loss of bone tissue. In case of shell 

fracture without loss of bone tissue, closure of the fracture is usually enough to permit 

resolution of the wound while in case of severe fracture with loss of bone tissue, it is 

necessary to replace –at least temporarily- the tissue loss, as it will not regenerate 

spontaneously [2]. To treat chelonian carapace injuries, two clinical approaches are 

currently employed: i) the immediate closure of the shell by means of screws, plates and 

bone cements or epoxy resins [1, 3-7] or ii) the periodical direct medication of the wound 

through wet-to-dry bandages [1, 8], vacuum assisted closure (VAC) [9, 10], platelet-rich-

plasma (PRP) treatment [11, 12] or ointments [13, 14]. In the former, the external fixation 

by means of screws and bone plates is used when wound contamination and infection 

have been prevented and there is no loss of bone tissue [15, 16] while cements/ epoxy 

resins are applied to fill bone missing zone [6, 7, 14, 17]. However, epoxy resins may 

cause an excessive tissue heating due to the exothermic nature of the resin 

polymerization process, they may require potentially toxic solvents for their removal [18] 

and they may increase the risk of contaminations that  results in infection and sepsis 

[19],. In the latter treatment, turtle wound is left open in order to periodically disinfect 

and medicate it. Wet-to-dry bandages are generally used: the primary layer of gauzes is 

moist with sterile saline or dilute antiseptic solution and is allowed to dry out before its 

removal; however, dry gauzes are preferred in the presence of wound exudates and lets 

out necrotic tissue or debris [20]. However, there many drawbacks associated with 

bandages, such as the damage of healthy tissue, the presence of disperse bacteria and 

fibers in the wound bed after the removal of gauzes [10]. The use of VAC technology 

consists on the application of an open-cell foam over the wound, secured to the site with 

adhesive occlusive drape, to which a suction system is attached [9]. With a constant 

negative pressure of about 125 mmHg [1] fluids can be collected from the wound 

permitting the exudate and bacteria removal and granulation tissue formation [21]. 

Disadvantages include the initial price and the need of proper training to use the 

equipment. Moreover, VAC technology is unsuitable in the case of a gross infection, lack 

of wound haemostasis, unprotected vascular anastomoses, foam placement over vessels, 

the presence of necrotic tissue with scar, exposed organs and malignancy in the wound 

bed [22]. PRP is a platelet concentrate derived from blood centrifugation procedures [11] 

which locally delivers high amounts of GFs involved in haemostasis and cell proliferation 

(fibroblasts, osteoblasts, endothelial cells), promoting the wound healing process [23]. 

PRP gel must be applied onto the wound surface and is to be protected by a sterile gauze 

for 48 hours [12], working as a barrier against external microorganisms. Disadvantages of 

this technique include the need of an initial investment, the need of a proper training to 

use the equipment and the lack of a thorough understanding of the biologic interactions 

among PRP gel and the animal tissue. Among ointments, honey and sugar, petroleum 

impregnated gauzes, triple antibiotic ointment, GS cream and a variety of silver based 

products have been widely used in managing chelonian shell wound to prevent infection, 

maintain moisture, enhance healing, or facilitate debridement [14, 24]. Silver (Ag) is 
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known for its broad antibacterial spectrum; it can be used as ointment and cream (silver 

sulfadiazine) [8], or it can be loaded in matrices as nanoparticles for its controlled release 

[25, 26]. Unfortunately, even if it shows an high antimicrobial activity, Ag has a potential 

toxic effect at higher dosage [27]. On the contrary, honey and sugar are cheaper and 

effective against a wide variety of Gram+ and Gram- bacteria, explicating their action by 

hydrogen peroxide release [28, 29]. GS also exherts antibacterial effects against both 

Gram+ and Gram- bacteria [30] but it has a potential nephrotoxic effect depending on its 

concentrations [31].  

In this contest, skin TE could be a promising alternative approach to treat chelonian shell 

injuries. However, only few studies have been investigated in reptiles [14, 32]. During the 

wound healing process, the dressing protects the injury and it is supposed to improve 

dermal and epidermal tissue regeneration [33]. The implantation of biodegradable 

membranes can overcome the clinical approaches above described, since they completely 

cover the wound site, avoiding dirt and bacterial infiltration, and their removal is not 

required at the end of the treatment due to the material biodegradability [33]. Moreover, 

biodegradable membranes can be loaded using proper drugs acting as drug delivery 

systems to guarantee an antibiotic time and space controlled release [34]. The localized 

drug release achieved using biodegradable membranes guarantees lower antibiotic 

concentrations compared to systemic therapy due to the direct drug release in the wound 

site, thus assuming a lower toxicity. Alginates, hydrocolloids, hydrogels and foams are the 

most popular wound dressing in veterinary applications [20] Among the natural polymers, 

CS (alone or coupled with antimicrobial or antibiotic agents) has been widely used in 

wound management both in humans (see paragraph 7.5.1.2.6.1.1) and animals. CS 

stimulates the migration of PMNs and macrophages, explicating an anti-inflammatory 

effect and is a hemostatic effect, as described in chapter 7. 

In this study, CS based porous membranes with improved antimicrobial properties were 

developed to promote the wound healing process and to reduce the bacterial 

proliferation in chelonian shell injury site. To improve the mechanical properties and 

water stability of CS, DSP and GPTMS were used (see chapter 2). GS and AgNPs were 

loaded into the developed membranes to improve the antibacterial effect against Gram+ 

and Gram- bacteria and to guarantee drug controlled release in time and in space without 

exceeded the toxic dosage for systemic circulation. The obtained porous membranes 

were analyzed for their physicochemical and morphological properties by SEM and 

Energy Dispersive X-ray Spectrometry (EDS), their thermal properties by TGA and their 

mechanical properties were evaluated by tensile and compressive tests. Swelling and 

dissolution measurements were investigated in media simulating physiological conditions. 

GS release from CS porous membranes was evaluated by means of UV-VIS spectroscopy, 

whilst the AgNPs release was indirectly investigated from the antibacterial test results 

conducted in vitro against five different bacteria lineages: Staphylococcus Aureus (Gram+), 

Escherichia Coli (Gram-), Enterococcus Faecalis, Pseudomonas Aeruginosa and Proteus 

Mirabilis. 
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8.2 Experimental 

8.2.1 Materials 

CS (medium molecular weight, 75%-85% deacetylation degree), GPTMS, DSP, GS and 

AgNPs (<110 nm particle size) were supplied from Sigma Aldrich. All solvents used were of 

analytical grade and used without further purification. 

8.2.2 Methods 

CS was dissolved in acetic acid solution 0.5M to form a CS solution of 2.5% w/v. Four 

different typologies of CS based membranes were prepared according to the following 

procedures: 

i. CS/GPTMS_DSP were obtained by adding GPTMS and DSP to the CS solution, as 

described in paragraph 2.2.2. Briefly, GPTMS (50% w/w) was added to the CS solution 

and kept under magnetic stirring for about 1 hour. Afterward, DSP 1M solution (7.5 % 

v/v) was added dropwise to CS/GPTMS blend (one drop per second), maintained 

under stirring for about 10 minutes (CS/GPTMS_DSP). 

ii. CS/GPTMS_DSP_AgNPs samples were obtained by adding AgNPs to CS/GPTMS_DSP 

solution. Three different amounts of AgNPs respect to the total amount of CS were 

added: 5%, 10% and 15% w/w (CS/GPTMS_DSP_AgNPs5, CS/GPTMS_DSP_AgNPs10 

and CS/GPTMS_DSP_AgNPs15 respectively). Once AgNPs were incorporated, the 

solutions were kept under magnetic stirring till their homogeneity was reached. 

Then, CS/GPTMS_DSP and CS/GPTMS_DSP_AgNPs solutions were poured in multiwell (2 

ml in each well for compressive tests, 1 ml for the in vitro tests), 20 ml in circular Petri 

dishes (10 cm of diameter) to obtain 2 mm thickness membranes for in vivo test and 90 

ml in squared Petri dishes (12 x 12 cm) to obtain 5 mm thickness membranes for 

antibacterial tests. Once poured, samples were placed in a freezer at -20°C for 24 hours 

and then freeze-dried at -55°C for minimum 24h (48 hours for membranes with 5 mm 

thickness). 

iii. For the incorporation of the antibiotic agent, GS was dissolved in ultrapure water to 

obtain a solution with concentration of 3.5 mg/ml; then, the GS solution was poured 

dropwise onto the surface of CS/GPTMS_DSP porous membranes allowing its 

homogeneous absorption into the CS matrix. Finally, CS/GPTMS_DSP_GS samples 

were cooled down a second time at -20°C for 24 hours and then freeze-dried for 48 

hours depending on the thickness of membranes. 

8.2.3 Sample characterization 

8.2.3.1 Morphological characterization and element distribution 

The external surface and section morphology of CS/GPTMS_DSP, CS/GPTMS_DSP_AgNP5, 

CS/GPTMS_DSP_AgNP10, CS/GPTMS_DSP_AgNP15 and CS/GPTMS_DSP_GS porous 
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membranes was observed by SEM (SEM LEO – 1430, Zeiss). Using an energy dispersive 

spectrometer (EDS), qualitative compositional analysis was performed and punctual 

elemental composition of materials with high spatial resolution was accomplished. 

Samples were sputter coated with gold in a undervacuum chamber prior to SEM-EDS 

examination. 

8.2.3.2 Thermogravimetric analysis (TGA) 

Thermal degradation was measured using a TA INSTRUMENT Q500 equipment. The 

experiments were performed with a 10-15 mg sample in aluminum pans under a dynamic 

nitrogen atmosphere between 40°C and 800 C. The experiments were run at a scanning 

rate of 10°C/min and obtained results were analyzed using TA Universal Analysis 

software. 

8.2.3.3 Mechanical properties 

8.2.3.3.1 Tensile test 

Rectangular strips of 10X30 mm size were cut from each typology of membranes. Samples 

were tested in wet state because of the in vivo implantation procedure on chelonians 

requires to soak the membranes with sterile 0.9% NaCl solution before application (see 

paragraph 8.2.3.8). In addition, the release of exudates from wound site in time maintains 

the developed scaffold in a moist envirorment. Before testing in wet state, specimens 

were immersed in PBS (pH 7.4). Then, samples were strained to break at a constant 

crosshead speed of 2 mm/min. Using the associated software Test Works, stress-strain 

curves were obtained, in which the elastic modulus was calculated from the slope of the 

first linear portion. To measure the thickness of the strips, digital calibrator was used and 

thicknesses were employed for determining the stress value. Three specimens for each 

kind of material were tested. The result was expressed as an average value ± standard 

deviation. 

8.2.3.3.2 Compressive test 

The compressive mechanical properties were performed on wet porous cylindrical 

scaffolds using MTS QTest/10 device equipped with load cells of 50 N, respectively. 

Before testing in wet state, specimens were immersed in PBS (pH 7.4). All samples were 

compressed at a constant crosshead speed of 2 mm/min to approximately 80% of their 

original length. Four specimen for each kind of scaffolds were tested. Young’s modulus 

(E), collapse strength and strain (σ* and ε*, respectively) and collapse modulus (E*) were 

measured from the stress-strain curves. E is the slope of the linear elastic regime, E* is 

the slope of the collapse regime, σ* and ε* are respectively the stress and strain of 

transition from linear to collapse regime (determined from the intersection of E and E* 

regression lines). The resulted was expressed as an average value± standard deviation. 
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8.2.3.4 Water uptake and dissolution tests 

The water uptake and dissolution behavior of porous samples were evaluated by 

immerging the samples in PBS (pH 7.4) at 37°C. The water uptake degree was measured 

after 1, 3, 6, 9 and 24 hours while the dissolution degree was evaluated after 1, 3, 5, 7, 14, 

28 and 56 days. The water uptake percentage was calculated as: 

ΔWs (%) = (Ws-W0)/W0*100 

where W0 and WS are the sample weights before and after swelling respectively. The 

dissolution percentage was calculated as: 

ΔWd (%) = (W0-Wd)/W0*100 

where Wd is the dried sample weight after dissolution. The solution pH was measured at 

the same time intervals during the swelling and the dissolution tests, and its stable value 

at around 7 (physiological pH) was verified. For each experimental time, three samples 

were measured and the results were expressed as averages value ± standard deviation. 

8.2.3.5 Drug release evaluation 

GS release from CS/GPTMS_DSP_GS membranes was carried out by UV-VIS spectroscopy 

(CARY 500 SCAN UV-VIS-NIR Spectrophotometer). Samples were immersed in 5 ml of PBS 

at pH 7.4 and GS concentration in the incubation media was assayed after 1, 3, 6, 24 

hours and 2, 7, 14, 28, 56 days. The GS release concentration was reported as a 

percentage respect to the initial concentration and was calculated from the absorption 

values using the calibration curves that was prepared starting from GS solution of known 

concentrations. UV spectra were recorded in a range of 400-200 nm. Five measures for 

samples were used and the data were reported as mean value ± standard deviation. 

8.2.3.6 Antibacterial tests 

The antibacterial properties of membranes were tested against five pathogenic bacteria 

isolated from turtles wound infection: Staphylococcus aureus, Escherichia coli, 

Enterococcus faecalis, Pseudomonas aeruginosa and Proteus mirabilis. CS/GPTMS_DSP, 

CS/GPTMS_DSP and CS/GPTMS_DSP_AgNP10 samples (5 mm thickness) were prepared 

for antibacterial tests. Strains were stored in tryptone soy broth (TSB, Oxid, Milano) with 

20% glycerol at -80°C until needed. For experimental use, the stock cultures were grown 

on tryptone soy agar (TSA, Oxid) slants, then each strain 2-3 colonies was transferred to 

10 ml of TSB and incubated at 37°C for 18 hours to obtain early stationary phase cells. Cell 

cultures of each microorganism in stationary phase were diluted in TSB and incubated at 

37°C until an optical density of 0.2x105 colony-forming units (CFU/ml) at 600 nm was 

reached. Tubes with 10 ml of Mueller-Hinton broth (MHB, Oxid) were inoculated with 100 

µl of culture. Sample weighing 0.25 g were then cut into 1.5 cm2 pieces and added to each 

tube. The tubes were then incubated at 37 °C for 18 hours. Depending on the turbidity of 
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the tubes, serial dilutions with peptone water were made and plated in Petri dishes with 

15 mL of TSA culture medium. Colonies (CFU) were counted after incubation at 37 °C for 

18 hours. Three replicate plates were used per each dilution of broth.  

8.2.3.7 Preliminary in vivo tests 

The test was performed in collaboration with the Clinica per animali esotici in Rome, Italy. 

Testudo Hermanni chelonians were divided into two different groups consisting of 12 

animals each. The first group was treated with wet-to-dry gauzes (conventional 

treatment), while the second group with GS loaded CS based porous membranes. In 

detail, CS/GPTMS_DSP_GS porous membranes and gauzes were implanted in shell 

traumatized Testudo Hermanni after swab collection, wound lavage, debridement, and 

disinfection of the injury site.  

CS/GPTMS_DSP_ GS dry membranes were moisten with sterile 0.9% NaCl solution before 

their application. After CS/GPTMS_DSP implantation on the wound site, gauzes and 

adhesive tape were applied over the membranes to guarantee that they were pushed 

against the wound site. Depending on the extension of the wound site, more than one 

membrane or gauze could be used. On days 21, the gauzes and CS/GPTMS_DSP_GS were 

removed to evaluate the wound healing process and a new gauze or membrane loaded 

with the antibiotic agent was replaced in case of the formation of granulation tissue was 

not occurred. Follow up: 21 days. 

8.2.3.8 Statistics 

Experiments were repeated three times and results were expressed as an mean ± 

standard deviation. Statistical significance was calculated using analysis of variance 

(ANOVA). A comparison between two means was analyzed using Tukey's test with 

statistical significance level set at p<0.05. 

8.3 Results and discussion 

8.3.1 Morphological characterization and element distribution 

In Fig. 8.1 the surfaces and the fractured sections of CS/GPTMS_DSP membranes loaded 

with AgNPs are reported. The Petri-side surface showed a more compact structure as 

compared to the air-side surface due to the contact with the polystyrene substrate that 

probably induced a compression of the pores (data not shown). All porous scaffolds 

showed a typical foam-like morphology with highly interconnected pores on the sections. 

Mean pore dimensions of the fractured sections were 27.7±2.4 µm, 30±2.5 μm, 16±2.03 

μm and 13±2.9 μm for CS/GPTMS_DSP, CS/GPTMS_DSP_AgNP5, CS/GPTMS_DSP_AgNP10 

and CS/GPTMS_DSP_AgNP15 membranes. The pores showed a spherical shape and a 

decreasing size and density on the surface with increasing the initial AgNPs amount from 

5 to 15 wt.% (Fig. 8.1). 
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SEM images of fracture sections and surfaces of CS/GPTMS_DSP and GS loaded samples 

are reported in Fig. 8.2. Spherical, interconnected pores were observed both on the 

surface and on the section of CS/GPTMS_DSP_GS having a pore size dimension of 

26.7±1.2 μm. Microstructure remodelling of CS/GPTMS_DSP_GS surface occurred after 

the rehydration and re-lyophilization processes used for the GS loading treatment: new 

pores with higher size and formation of sheets on the surface (reducing the 

interconnectivity) compared to control samples were detected and were associated to 

the removal of ice crystals during the second freeze-drying step. SEM analysis also 

evidenced the deposition and homogeneous distribution of the antibiotic agent into the 

bulk of the scaffold (insert in Fig. 8.2D). 

Membrane pore size and its distribution are known to affect cell and nutrient 

permeability. It has been reported that highly open porous polymer matrices are required 

for high-density cell seeding, as well as sufficient nutrient and oxygen supply to the cells 

in the scaffold [35]. Pore sizes of 5-10 μm are favourable for vascularization whilst a 

multi-pore size membrane (212–250 μm, 250–300 μm, 355–500 μm) has been 

investigated to guarantee a better environment for cell proliferation, compared with the 

uniform-pore size scaffold [35]. On the basis of these considerations, 

CS/GPTMS_DSP_AgNP5, CS/GPTMS_DSP_AgNP10 and CS/GPTMS_DSP_GS could be ideal 

candidate materials for the production of porous membranes for wound healing in 

chelionians. However, a selection of the optimal dressing also requires an evaluation of 

the mechanical performance, the water uptake behaviour of porous samples.  
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Fig. 8.1. SEM micrographs of CS based membrane surfaces (A, C, E, G) and sections (B, D, F, H) 

after AgNPs addition: (A, B) CS/GPTMS_DSP; (C, D) CS/GPTMS_DSP_AgNP5; (E,F) 

CS/GPTMS_DSP_AgNP10; (G, H) CS/GPTMS_DSP_AgNP15. 
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Fig. 8.2. SEM micrographs of CS/GPTMS_DSP (A,B) and CS/GPTMS_DSP_GS (C, D) membrane 

surfaces (A, C) and sections (B, D). 

EDS analysis was performed on CS/GPTMS_DSP, CS/GPTMS_AgNP5, CS/GPTMS_AgNP10 

and CS/GPTMS_AgNP15 porous membranes to evaluate the distribution of AgNPs on the 

surfaces and sections of samples. Fig. 8.3 reports the EDS element-mapping on the 

sections and surfaces for control and AgNPs loaded CS/GPTMS_DSP samples, respectively. 

EDS spectra of AgNPs loaded samples showed the characteristic elements of CS (C and O) 

and peaks corresponding to Si, Na and P elements associated both to the presence of 

GPTMS and DSP crosslinkers (data not shown). The green spots corresponding to Ag 

element were uniformly dispersed both on the sections (Fig. 8.3B, C, D) and surfaces (Fig. 

8.3F, G, H) of CS/GPTMS_DSP_AgNPs5, CS/GPTMS_DSP_AgNPs10 and 

CS/GPTMS_DSP_AgNPs15 samples. The EDS mapping results suggested Ag homogeneous 

dispersion of Ag for all the analysed compositions. 
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Fig. 8.3. EDS spectra of sections (A, B, C, D) and surfaces (E, F, G, H) of CS based porous 

membrane: (A, E) CS/GPTMS_DSP; (B, F) CS/GPTMS_DSP_AgNP5; (C, G) CS/GPTMS_DSP_AgNP10; 

(D, H) CS/GPTMS_DSP_AgNP15. Scale bar: 200 µm. Green spots represented Ag element. 

8.3.2 Thermogravimetric analysis (TGA) 

To further explore the interaction between CS/GPTMS_DSP and both the antibacterial 

agents (AgNPs and GS), the prepared membranes were characterized by TGA from 40°C 

to 800 C. The typical DGA curves of AgNPs and GS loaded membranes are reported in Fig 

8.4 and 8.5, respectively. Both the thermal curves clearly exhibited two distinctive 

thermal decomposition patterns (Fig. 8.4 and Fig. 8.5): the first decomposition step 

started from about 90°C and continued to above 150 °C and the second weight loss was 

observed in the 180-550 °C. The initial thermal decomposition is mainly due to the 

evaporation of the water retained in the membranes and the second thermal 

decomposition is attributed to the decomposition (oxidative and thermal) of the base 

membrane matrix, CS, which was completely destroyed around at temperature 550 °C. In 

addition, specimens exhibited small shoulders at 375  C to 550 °C, which were associated 

with the thermal destruction of GPTMS and DSP used as crosslinkers (see paragraph 

2.3.6). 

As shown in Fig. 8.4, after the addition of AgNPs, the onset temperature for the water 

evaporation and thermal destruction of CS/GPTMS_DSP_AgNP5, CS/GPTMS_DSP_AgNP10 

and CS/GPTMS_DSP_AgNP15 membranes delayed slightly to higher temperatures, 

indicating the increase in water holding capacity and thermal stability, which is mainly 

due to the more heat stable metallic Ag [36] (Fig. 8.4). The residual percentages of weight 

of the CS/GPTMS_DSP, CS/GPTMS_AgNP5, CS/GPTMS_AgNP10 and CS/GPTMS_AgNP15 

were 48.3%, 58.4%, 56.5% and 57.2%, respectively. The high residuals of all samples are 

mainly due to the formation of inorganic compounds containing C, N and O. Similar multi-

degradation behavior of CS film was reported in the literature [37]. Additionally, the 

higher residual content of the AgNPs loaded CS/GPTMS_DSP membranes is also 

attributed to the Ag nanoparticles in the membranes. Table 8.1 collects the maximum 
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water evaporation temperature (Twe), the maximum degradation rate temperature (Td) of 

CS based samples and the corresponding weight losses. No differences were observed by 

increasing AgNPs amount from 5 to 15 wt. %. TGA analysis confirmed the improvement of 

the thermal stability of CS porous membranes after the addition of AgNPs. 

Fig 8.5 reports the DGA curve of control and CS/GPTMS_DSP_GS samples. The 

incorporation of GS into CS/GPTMS_DSP membranes did not affect the thermal behavior 

of samples. CS/GPTMS_DSP_GS showed a first thermal degradation at around 140 °C and 

a second stage, associated to the thermal and oxidative decomposition of CS and to the 

vaporization and elimination of volatile products, starting at 210 °C and reaching a 

maximum at 630 °C with a total weight loss of 43.7%. CS decomposition masked GS 

thermal degradation which is known to partially take place in the 200–500 C interval and 

to have a final oxidation between 500°C and 650 C [38]. 

 

Fig. 8.4. First derivative of TGA curves of CS/GPTMS_DSP, CS/GPTMS_DSP_AgNP5, 

CS/GPTMS_DSP_AgNP10 and CS/GPTMS_DSP_AgNP15 porous membranes. 
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Table 8.1 Maximum water evaporation temperature (Twe), maximum degradation rate 

temperature (Td) and corresponding and total weight loss for CS based samples. 

Sample Twe 

(°C) 

Twe Weight 

loss (%) 

Td 

(°C) 

Td Weight 

loss (%) 

Total weight 

loss (%) 

CS/GPTMS_DSP 87.0 10.2 273 41.5 51.7 

CS/GPTMS_DSP_AgNP5 137.8 6.0 291.8 35.6 41.6 

CS/GPTMS_DSP_AgNP10 138.6 6.5 291.8 36.9 43.5 

CS/GPTMS_DSP_AgNP15 138.9 5.8 292.0 37.0 42.8 

 

 

Fig. 8.5. First derivative of TGA curves of CS/GPTMS_DSP and CS/GPTMS_DSP_GS porous 

membranes. 

8.3.3 Mechanical properties 

Tensile and compressive tests were performed on wet state samples to mimic the 

physiological environment. Moreover, for the in vivo implantations on Testudo Hermanni 

cheloninans, membranes were soaked with 0.9 % NaCl solutions prior to implantation to 

have an increase in membranes flexibility resulting in a easy manipulation (see paragraph 

8.2.3.8). 

8.3.3.1 Tensile test 

Tensile tests were performed on CS/GPTMS_DSP, CS/GPTMS_AgNP5, 

CS/GPTMS_AgNP10, CS/GPTMS_AgNP15 and CS/GPTMS_DSP_GS porous membranes in 

wet conditions to determine the effect of the antibacterial agents on sample stiffness. All 



194 
 

samples had a uniform thickness of about 2 mm. CS based membranes samples showed 

an elasto-plastic behaviour; for all specimens, at low strains (lower than 10%) the stress 

increased linearly with an increase in the strain while for strains >10%, the stress 

increased slowly with increasing strain until failure occurred (data not shown).  

Addition of AgNPs resulted in a stiffer material confirming the reinforcing effect of the 

nanoparticles in the polymeric matrix, which is consistent with previously reported results 

[36, 39]. As can be seen from Table 8.2, the elastic modulus of the samples containing Ag 

nanoparticles differed significantly from the control (*p<0.05 for CS/GPTMS_DSP_AgNP5 

and CS/GPTMS_DSP_AgNP10; **p<0.01 for CS/GPTMS_DSP_AgNP15). With increasing 

content of AgNPs, the E increased to a value ranging from 0.400-0.460 MPa (for 

CS/GPTMS_DSP_AgNP5 and CS/GPTMS_DSP_AgNP10) to 1.834±0.693 MPa 

(CS/GPTMS_DSP_AgNP15). Moreover, E of membranes containing AgNPs 15 wt.% was 

significantly different from that of CS/GPTMS_DSP_AgNP5 and CS/GPTMS_DSP_AgNP10 

(*p<0.05 and **p<0.01 respectively). The increase stiffness of CS/GPTMS_DSP_AgNP15 

could be ascribed to the decrease of the degree of sample porosity and to the physical 

attraction between CS and AgNPs. 

A significant increase of E value was also observed for CS/GPTMS_DSP_GS samples 

compared to control (*p<0.05) obtaining a value of 1.180±0.560 MPa. This tensile results 

suggested that the incorporation of GS into CS/GPTMS_DSP could improve the tensile 

properties of CS based membrane and is probably associated to the morphological 

changes that occur following the second freeze-drying. 

Materials used to fabricate wound dressing are expected to possess mechanical flexibility 

to favour their surgical application and the in vivo permanence on the wound site. 

Furthermore, a  membrane able to mimic the behaviour of the natural skin tissue should 

possess a similar elastic modulus. In the literature, the Young's modulus of the skin, E, 

varies between 0.42 MPa and 0.85 MPa for torsion tests [40], 4.6 MPa and 20 MPa for 

tensile tests [41, 42] and between 0.05 MPa and 0.15 MPa for suction tests [43]. All the 

investigated samples had an E value in the range of 0.3-2.5 MPa comparable with the skin 

range value reported in the literature. 

Table 8.2. Elastic modulus calculated from the corresponding stress-strain curves of wet 

CS/GPTMS_DSP based samples (average value ± standard deviation). 

Sample Ewet (MPa) 

CS/GPTMS_DSP 0.085±0.010 

CS/GPTMS_DSP_AgNP5 0.405±0.185 

CS/GPTMS_DSP_AgNP10 0.397±4.14 

CS/GPTMS_DSP_AgNP15 1.834±0.693 

CS/GPTMS_DSP_GS 1.180±0.560 
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8.3.3.2 Compressive test 

Fig. 8.6 shows the compressive stress–strain curves for the AgNPs loaded CS/GPTMS_DPS 

porous scaffolds. CS/GPTMS_DSP containing Ag nanoparticles were characterized by a 

linear elastic regime at low deformations (elongation 0-10%) and a collapse regime at 

higher deformations (between 10- 20%). Samples did not reach final fracture and 

underwent densification. Data for wet CS/GPTMS_DSP specimens were not reported 

since load value reached were too low to be acquired by the equipment used. The 

addition of different amount of AgNPs showed an increase of the E and E* by obtaining 

values of about 0.030 MPa and 0.035 MPa for CS/GPTMS_DSP_AgNP5 and 

CS/GPTMS_DSP_AgNP10 to 0.070±0.012 MPa and 0.093±0.007 for CS/GPTMS_DSP based 

membranes containing the highest amount of silver nanoparticles (15 % wt./wt.), 

respectively. 

In addition, the stress and strain values of transition from linear to collapse regime (σ* 

and ε*) were observed for increased stress values (0.009±0.001 MPa for 

CS/GPTMS_DSP_AgNP5 to about 0.011 MPa for CS/GPTMS_DSP_AgNP10 and 

CS/GPTMS_DSP_AgNP15) and for increased elongations (from about 20 % for 

CS/GPTMS_DSP_AgNP5 and CS/GPTMS_DSP_AgNP10 to 12.848±2.640 for 

CS/GPTMS_AgNP15) in the case of the highest amount of AgNPs (15 wt. %) incorporated 

into porous membranes compared to 5 wt.% and 10 wt. % Ag nanoparticles addition 

(Table 8.3). The increase of E and E* values for CS/GPTMS_DSP_AgNP15 samples 

(statistical significant compared to CS/GPTMS_DSP_AgNP5 samples, *p<0.05) was a 

consequence of the mechanical reinforcement associated with the addition of Ag 

nanoparticles and of the decrease of sample porosity with increasing the amount of 

AgNPs. 

The characteristic stress-strain curve of soft and porous materials was also observed for 

CS/GPTMS_DSP_GS samples (data not shown). After the introduction of GS to 

CS/GPTMS_DSP, E, E*, σ* and ε* were comparable to CS/GPTMS_DSP_AgNP15 obtaining 

values of 0.088±0.038 MPa, 0.093±0.029 MPa, 0.010±0.000 MPa and 12.848±3.125, 

respectively (Table 8.3). The surface modification following the incorporation of GS into 

the CS based porous membranes seem to affect the mechanical properties of samples. 
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Fig. 8.6. Compression stress versus strain curves of CS/GPTMS_DSP_AgNP5, 

CS/GPTMS_DSP_AgNP10 and CS/GPTMS_DSP_AgNP15.  

Table 8.3 The elastic modulus (E), the collapse modulus (E*) and the collapse stress and strain (σ* 

and ɛ*, respectively) of CS and CS/GPTMS membranes. 

Sample E (MPa) E* (MPa) σ* (MPa) ɛ* (%) 

CS/GPTMS_DSP_AgNP5 0.032±0.007 0.034±0.005 0.009±0.001 23.720±3.548 

CS/GPTMS_DSP_AgNP10 0.030±0.023 0.040±0.021 0.011±0.001 19.300±9.957 

CS/GPTMS_DSP_AgNP15 0.070±0.012 0.093±0.007 0.011±0.000 12.848±2.640 

CS/GPTMS_DSP_GS 0.088±0.038 0.093±0.029 0.010±0.000 12.848±3.125 

8.3.4 Water uptake and dissolution tests 

Water uptake and dissolution degree of CS/GPTMS_DSP samples loaded with Ag 

nanoparticles and GS are shown in Fig 8.7 and Fig 8.8, respectively. 

Fig 8.7A reports the water uptake of CS/GPTMS_DSP, CS/GPTMS_DSP_AgNP5, 

CS/GPTMS_DSP_AgNP10 and CS/GPTMS_DSP_AgNP15. A comparison of the swelling 

percentage of AgNPs loaded samples to control revealed that the water uptake was 

similar for all samples at each time point. In addition, the incorporation of different 

amount of Ag nanoparticles into the porous membranes did not affect the water uptake 

behavior of samples. In detail, porous membranes increased considerably their weight 

immediately after 1 hour of immersion in PBS solution reaching values of water uptake of 

1219±19%, 1356±9, 1174±126% and 1150±193%, for CS/GPTMS_DSP, 

CS/GPTMS_DSP_AgNP5, CS/GPTMS_DSP_AgNP10 and CS/GPTMS_DSP_AgNP15 

respectively. Then, the swelling values remained stable till the end of the experiment. 

The dissolution profiles of AgNPs loaded CS based samples after 56 days of immersion in 

PBS are presented in Fig. 8.7B. CS/GPTMS_DSP, the CS/GPTMS_DSP_AgNP5, 
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CS/GPTMS_DSP_AgNP10 and the CS/GPTMS_DSP_AgNP15 membranes decreased their 

weight of 11.0±2.0 %, 9.9±3.5 %, 9.0±0.7% and 11.6±2.0 % after 1 day incubation in PBS, 

respectively. The initial high weight loss was associated to the release of salts into PBS 

solution, as described in paragraph 2.3.4. The weight loss values remained stable after 14 

days, then a moderately increase was measured after 28-56 days. Final dissolution values 

of 25.2±3.3% for CS/GPTMS_DSP, 21.8±1.3% for CS/GPTMS_DSP_AgNP5, 21.7±0.2% 

CS/GPTMS_DSP_AgNP10 and 22.5±0.8% for CS/GPTMS_DSP_AgNP15 were reached after 

56 days incubation in PBS. Compared to the control membranes, the addition of AgNPs 

slightly enhanced the stability in aqueous media of CS/GPTMS_DSP for long incubation 

time period in PBS (28 and 56 days). No significant differences were observed between all 

samples at each time point. 

The water uptake of porous membranes was measured to examine the changes of 

properties of CS/GPTMS_DSP in the absence and presence of GS. As shown in Fig 8.8A, 

the water uptake of samples without GS was increased faster than that of the 

CS/GPTMS_DSP_GP. The swelling degree of GS loaded CS/GPTMS_DPS reached values of 

863±205% after 1 hours incubation in PBS and a slightly increase was observed till 24 

hours of immersion in physiological solution (973±165%). Significant differences were 

observed between control and CS/GPTMS_DSP_GS at the first two time points of 

experiment (*p< 0.05). The lower water absorption behavior of CS based samples 

containing GS could be associated to the microstructure remodelling of the surface that 

occurs after the loading of the antibiotic agent. Fig. 8.8B shows the percentage weight 

loss of the CS/GPTMS_DSP and CS/GPTMS_DSP_GS membranes. The weight loss of 

membranes containing the antibiotic decreased of 11.4±0.8 % after 1 day in PBS and 

maintained stable till 5 days, showing comparable values to the control. After this time 

point, the dissolution degree increased from 14.6±1.4% (7 days in PBS) to 22.1±0.0% (28 

days in PBS). Moreover, weight loss of membranes containing GS showed significant 

differences compared to CS/GPTMS_DSP at days 14 (***p<0.001) and was attributed 

both to the degradation of CS and to the GS release from the polymer matrix. On the 

contrary, after 56 the sample containing GS was decreased to about 20% of its own 

weight, meanwhile, the control was decreased approximately to 25% (*p<0.05). 
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Fig. 8.7 Water uptake (A) and dissolution degree (B) of CS/GPTMS_DSP, CS/GPTMS_DSP_AgNP5, 

CS/GPTMS_DSP_AgNP10 and CS/GPTMS_DSP_AgNP15 porous membranes in PBS as a function of 

time. Column heights correspond to the mean values. Bars indicate standard deviations (n = 3). 
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Fig. 8.8 Water uptake (A) and dissolution degree (B) of CS/GPTMS_DSP and CS/GPTMS_DSP_GS 

porous membranes in PBS as a function of time. Column heights correspond to the mean values. 

Bars indicate standard deviations (n = 3).*p< 0.05, ***p<0.001. 

8.3.5 Drug release evaluation 

The GS release from CS/GPTMS_DSP porous membranes was evaluated in vitro 

quantifying the amount of GS in the collected medium. Figure 8.9 shows the cumulative 

release after 1, 3, 6 and 24 hours and at 2, 5, 7, 14, 28 and 56 days. An initial burst in 

release was observed at 24 hours (about 70% with respect to the GS loaded into the 

membranes) followed by a moderate release over the subsequent days (around 0.55% 

each day). During the first 24 hours the release could be mainly due to a diffusive 

mechanism and then, in the following days, the CS/GPTMS_DSP_GS degradation allowed 

the release of a constant and moderate amount of GS. 
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The delivery of antibiotics to local wound sites through the membranes may be a 

preferred option to systemic administration since (i) reduce the risk of systemic toxicity 

such as the cumulative cell and organ toxicity of the aminoglycosides in the ears and 

kidneys [44, 45], (ii) provide tissue compatibility and low occurrence of bacterial 

resistance [46] and (iii) overcome the problem of ineffective systemic antibiotic therapy 

resulting from poor blood circulation. In this specific field for the treatment of chelonian 

shell traumas, the high initial GS release could enhance the antimicrobial effect, reducing 

the bacterial population on the wound site since from the first day after implantation. 

 

Fig. 8.9. GS release after 1, 3, 6, 24 hours and 2, 5, 7, 14 , 28 and 56 days. The curve reports the 
percentage cumulative release values normalized respect to the initial amount of the GS 
incorporated within the CS/GPTMS_DSP_GS porous membranes. Markers correspond to the 
mean values. Bars indicate standard deviations (n = 3) 

8.3.6 Antibacterial tests 

In order to convict the effect of GS and AgNPs on both Gram- (S. Aureus, P. aeruginosa 

and P. mirabilis) and Gram+ (E. Coli, E. faecalis) bacteria, time-killing assay was performed 

on CS/GPTMS_DSP, CS/GPTMS_DSP_GS and CS/GPTMS_DSP_AgNP10 by measuring the 

reduction of the number of CFU recovered at 18 hours. CS/GPTMS_DSP_AgNP10 samples 

was selected as optimized scaffolds. Fig 8.10 shows the qualitative antibacterial efficacy 

exerted by the three membranes on S. Aureus. The results of the antibacterial screening 

of the tested scaffolds are presented in Fig. 8.11. The AgNPs impregnated CS membranes 

showed a bactericidal effect on all bacteria: growth of S. Aureus, E. Coli, E. Fecalis, P. 

aeruginosa and P. mirabilis was reduced by logarithmic orders of 3.4, 1.5, 1.8, 2.3 and 1.6, 

respectively relative to the control. GS loaded CS/GPTMS_DSP membranes revealed total 

bactericidal activity against E. coli, S. aureus and E. fecalis but they were unable to inhibit 

bacterial propagation in case of P. aeruginosa strain as compared to CS/GPTMS_DSP. P. 

mirabilis was reduced by logarithmic orders 1.27 respect to the control, showing results 

comparable to that obtained by CS/GPTMS_DSP_AgNP10. The most effective sample 
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against E. coli, S. aureus and E. fecalis strains was the one impregnated with GS, while the 

highest antibacterial activity against P. aeruginosa was found for membranes containing 

Ag nanoparticles. The simultaneous loading of two agents (GS and AgNPs) on CS 

membranes shows to improve the antibacterial effect against a broad spectrum of strains 

reducing the risk of infections that can consequently compromise the healing process. 

 

Fig. 8.10. S. Aureus growth in contact with control (A), CS/GPTMS_DSP_GS (B) and 

CS/GPTMS_DSP_AgNP10 (C) membranes without MHB dilutions. 

 

Fig. 8.11 Kinetics of growth inhibition of S. Aureus, E. Coli, E. Fecalis, P. aeruginosa and P. mirabilis 

in presence CS/GPTMS_DSP, CS/GPTMS_DSP_GS and CS/GPTMS_DSP_AgNP10. 

8.3.7 Preliminary in vivo tests 

To estimate the wound healing effect of the CS/GPTMS_DSP_GS for the treatment of 

carapace injuries in chelonians, GS loaded porous membranes and wet-to-dry gauzes 

(conventional treatment) were implanted in shell traumatized Testudo Hermanni after 

swab collection, wound lavage, debridement, and disinfection of the injury site. Each 

wound was observed for a period of 21 days post-operation. On day 21, 33% of the total 

wounds treated with the CS/GPTMS_DSP_GS was healed, whereas, 22% and 45% 

evidenced the implant failure and chelonian death, respectively. In addition, all 

chelonians treated with gauze dressing died, showing the potential use of the developed 

antimicrobial membranes as an alternative to wet-to-dry conventional treatments. 
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8.4 Conclusion 

In this chapter, biodegradable wound dressings based on CS porous membranes with 

improved antimicrobial activities were developed to treat chelonian shell injuries. CS 

membranes containing different ratios of AgNPs (5, 10 and 15% wt./wt.) or GS were 

obtained by freeze-drying technique. Mechanical characterization was performed on 

samples showing that the incorporation of AgNPs or GS enhanced the stiffness of 

CS/GPTMS_DSP samples. Moreover, a strict correlation was observed between the Young 

modulus and the amount of AgNPs incorporated into the membranes: E increased as the 

AgNPs concentration shifted from 5% wt. to 15 wt.%. The high swelling degree, which is 

one of the important factor for reducing the risk of wound dehydration, was observed for 

all antimicrobial agent loaded samples reaching final values of about 1200-1300% and 

950% for AgNPs and GS loaded membranes after 24 hours of incubation in physiological 

solution, respectively. However, the incorporation of the antimicrobial agents into 

CS/GPTMS_DSP affected the surface morphologies of porous membranes: i) pore 

occlusion on the surface of CS based membranes containing AgNPs was detected 

increasing the amount of AgNPs. For this reason, CS/GPTMS_DSP_AgNP10 was selected 

as ideal candidate for this application field; ii) new pores with higher size and formation of 

sheets on the surface (reducing the interconnectivity) were formed following rehydration 

and re-lyophilization processes used for the GS loading treatment. GS release profile from 

CS/GPTMS_DSP_GS demonstrated high burst release of the antibiotics in the first 24 

hours (about 70% with respect to the GS loaded into the membranes), followed by 

gradual release at a decreasing rate over time. 

Finally, the investigation focused on the GS and AgNPs (10% wt./wt.) effect on bacterial 

inhibition, shows that the presence of either AgNPs or GS improved the antimicrobial 

activity of CS based porous membranes. GS loaded samples were highly efficient against 

E. coli, S. aureus and E. fecalis strains while CS/GPTMS_DSP_AgNP10 increased the 

inhibitory effect against P. aeruginosa and P. mirabilis bacteria compared to control and 

GS loaded samples. From preliminary in vivo results, 33% of Testudo Hermanni treated 

with of CS/GPTMS_DSP_GS healed confirming the potential use of GS loaded membranes 

for the treatment in chelonian shell injuries. Future works will be addressed to develop 

composite membranes based on CS impregnated with both AgNPs and antibiotics GS with 

the aim to improve the antibacterial activity against a broad spectrum of strains. 
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Chapter 9 
Final discussion and conclusions 

 
9.1 General discussion  
 
Tissue engineering (TE) is defined by Laurencin et al. as the application of biological, 

chemical, and engineering principles to the repair, restoration, or regeneration of living 

tissues by using biomaterials, cells, and factors alone or in combination [1]. It involves the 

fundamental understanding of structure–function relationships in normal and 

pathological tissues and the development of biological substitutes that promote tissue 

repair and/or functional restoration. In this therapeutic approach, biomaterials, usually in 

the form of 3 dimensional frameworks, play multiple significant roles to provide structural 

maintenance of the defect shape and serve as temporary extracellular matrix (ECM) for 

cell adhesion, proliferation, differentiation, and maturation. After some advances and 

relatively successful clinical applications for hard tissues over the past decade[2], much of 

the effort is now being directed at soft tissue reconstruction. Engineering two-

dimensional (2D) soft tissues (e.g. cornea [3] and skin [4, 5]), and complex three-

dimensional (3D) tissues (e.g. cardiac [6] and neural [7]) is a far more challenging task.  

Among the various biomaterials, polysaccharides have recently gained interest as 

materials for scaffold fabrication, since their carbohydrate moieties interact with or are 

integral component of several matrix glycoproteins and cell adhesion molecules [8]. 

Chitosan (CS), a copolymer of glucosamine and N-acetyl-glucosamine, is obtained by 

alkaline deacetylation of chitin, which is the main component of the exoskeleton of 

crustaceans, such as shrimps [9]. CS has been widely investigated in TE because it exhibits 

unique and appealing biological properties in terms of biocompatibility, biodegradability, 

non-toxicity, antimicrobial, haemostatic, antitumoral and anticholesteremic activities [10-

15]. Moreover, due to the cationic nature of CS molecules and the abundant functional 

amine and hydroxyl groups on its backbone, CS can be easily processed into various forms 

(gels, sponges, membranes, beads and scaffolds) [16-19] and physically or chemically 

modified for the delivery of bioactive molecules and drugs [20]. These properties, find 

several biomedical applications in soft tissue engineering (i.e. cartilage [21, 22], liver [23, 

24] and nerve [25, 26]), wound healing [4, 5, 27] and as excipients for drug delivery [16-

18, 28, 29]. For most medical application, CS has been crosslinked in order to improve its 
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mechanical strength and maintain a predefined shape of the implant under physiological 

conditions. Commonly used chemical crosslinkers in literature include epoxy compounds 

[30], aldehydes (formaldehyde, glyceraldehyde and glutaraldehyde) [31, 32] and 

carbodiimides [33]. They all exhibit a certain degree of cytotoxicity and may therefore 

impair biocompatibility of CS scaffolds. For this reason, increasing interest has been 

recently gained by less cytotoxic crosslinking agents such as enzymes [34] or naturally 

derived crosslinking agents, having a lower toxicity [35-38]. The effect of crosslinking 

strongly influences the in vivo performance of the scaffolds in terms of mechanical 

properties, degradation, water stability and cellular response and can be optimized to 

obtain the desired properties required in different biomedical applications. A detailed 

investigation of the influence of different crosslinkers on the features of the final CS 

membrane is fundamental to select the proper methods to crosslink CS to satisfy specific 

biological and surgical requirements.  

 

In this work CS based compact films were crosslinked using different compounds with 

the aim to provide the basis for the selection of a crosslinking strategy able to impart the 

required properties to CS membranes in the design of biomaterial constructs for human 

and veterinary application in soft TE (Chapter 2). Three non cytotoxic and widely used 

compounds were selected: genipin (GP), γ-glycidoxypropyltrimethoxysilane (GPTMS), 

dibasic sodium phosphate (DSP) and a combination of GPTMS and DSP (GPTMS_DSP). CS 

crosslinked flat membranes were prepared via solvent casting following the addition of 

the different crosslinking agents. From the preliminary characterization, it was found that 

CS samples crosslinked with chemical compounds (CS/GP, CS/GPTMS, CS/GPTMS_DSP) 

contributed to improve mechanical strenght and stability in phisiological conditions 

compared to uncrosslinked and ionic crosslinked CS (CS/DSP). On the other hand, DSP 

addition increased the hydrophilicity, the water uptake and the flexibility of CS samples. 

By combining GPTMS with DSP allowed intermediate physic-chemical, mechanical and 

swelling behaviour were observed with respect to the single use of chemical or ionic 

compounds.  

The obtained results provided the basis for choosing the proper crosslinking method for 

the development of different typologies of CS scaffolds in i) human peripheral nerve 

regeneration and ii) animal wound healing applications. 

i) Peripheral nerve regeneration in human 

Peripheral nerve regeneration is a challenging task in neurosurgery with relevant clinical 

and socioeconomic implications since nerve injuries may lead to a lifelong function 

impairment and pain that may seriously compromise the quality of life [39]. The repair of 

peripheral nerve lesions has been attempted in many different ways, which have in 

common the goal of directing the regenerating nerve fibres into the proper distal 

endoneurial tubes. Coaptation of the two nerve ends is commonly used to repair short 

nerve defects [40]. When larger nerve gaps exist (20 mm or longer in humans), the 



210 

 

current clinical gold standard for repairing larger nerve deficits involves using nerve 

autografts. However, autografts are plagued by issues such as a shortage of donor nerves, 

a mismatch of donor nerve size with the recipient site, and occurrences of neuroma 

formation; and even in the best-case scenarios, complete recovery of function is rare [41, 

42]. Thus, bioengineering strategies are currently focused on developing devices (nerve 

guide channels, NGCs) that provide an appropriate microenvironment to support and 

enhance the regeneration process. Advances in engineered NGCs are directed to the 

mimicking of the properties of natural tissues using multifunctional materials and/or 

conduits that can solve the limitations associated with traditional surgical approaches 

(short gap length, lay regeneration time, possible neuroma formation). Among the 

various biomaterials investigated, CS potential use in peripheral nerve regeneration has 

been demonstrated both in vitro and in vivo [43, 44]. Moreover, amino groups of CS 

chains have been found to regulate the adhesion and proliferation of glial cells and the 

differentiation of neural stem cells (NSCs) [45]. 

In this thesis work, biocompatible and degradable CS membranes were prepared 

through different fabrication techniques and parameters were optimized to promote 

peripheral nerve regeneration. On the basis of the results of the previous part, two 

crosslinkers were selected (DSP and GPTMS). Two alternative for CS based hollow NGCs 

and a nanostructured internal filler were developed. 

The two NGC developed are characterized by innovative features in terms of possibility to 

wrap the membranes during surgery allowing to adapt the NGC dimensions to the patient 

and to reduce the adhesion of fibrotic tissue to the external part of the conduit that can 

compromise the nerve regeneration process. 

i. CS flat membranes were developed with the aim to obtain a final device that can be 

easily manipulated and rolled up to obtain flexible NGCs adaptable to the size of the 

trunked nerves. CS flat scaffolds were crosslinked using DSP alone (CS/DSP) or 

combined with GPTMS (CS/GPTMS_DSP) (Chapter 4). The constituent ratio of 

crosslinking agents and CS was selected in the first part of the thesis to obtain a 

composite material having both proper mechanical properties and good 

biocompatibility. CS/DSP and CS/GPTMS_DSP flat membranes were obtained by 

solvent casting and they could be easily wrapped to form a NGC. The developed 

membranes showed a good permeability to small molecules, such as glucose and 

salts, guaranteeing the exchange of nutrients across the tube wall. In vitro 

characterization performed on model membranes showed that CS/DSP and 

CS/GPTMS_DSP material extracts did not exert any cytotoxic effects on Schwann–

like cells (RT4_D6P2T). Cell adhesion, proliferation, and function were evaluated 

and confirmed on CS/GPTMS_DSP samples because they showed higher mechanical 

stability under physiological conditions and they were considered as “the worst 

case” (biomaterials employed for CS/GPTMS_DSP fabrication were the same of 

CS/DSP supplemented with GPTM). Moreover, CS/GPTMS_DSP showed to direct 
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RT4-D6P2T attachment resulting in characteristic cell morphology typical of SCs and 

to support the neurite outgrowth of dorsal root ganglia (DRG) cultured on this 

substrate. Finally, in vivo tests were carried out on both the two types of nerve 

scaffolds due to their biocompatibility, easy manipulation and suturability. 

Membranes were used for bridge implantation across 10-mm long median nerve 

defects in rats, and the outcomes of peripheral nerve repair were evaluated. During 

in vivo tests CS/GPTMS_DSP tubes were detached from the distal suturing site and 

functional recovery did not occurred at 12 weeks post-operative as also confirmed 

by histological investigation. On the contrary, crushed nerve encircled with CS/DSP 

membranes, allowed nerve fibre regeneration and functional recovery, with effects 

approaching those elicited by autografts which are considered as the “gold 

standard” for treating large peripheral nerve defects (20 mm in humans). 

CS/DSP_GPTMS conduits revealed a low adhesion of fibrous tissue on the external 

part compared to CS/DSP. 

ii. Bi-layer CS membranes were developed by combining two kinds of CS flat 

membranes crosslinked with different compounds (optimized in Chapter 4) to 

produce scaffolds with high capability to promote nerve regeneration (inner layer) 

and to reduce the risk of collapse under compression during axonal outgrowth on 

the (outer layer) (Chapter 5). Bi-layer membranes were fabricated by a two-step 

coating technique and were composed of a CS/DSP inner layer and a 

CS/GPTMS_DSP outer layer. For the development of the external side, the amount 

of GPTMS was decreased from 50% to 25% wt./wt. compared to flat membranes 

previously prepared (Chapter 4) in order to limit compositional differences between 

the inner and outer layer and to achieve a tight connection of the final device. The 

bi-layer samples showed an adequate mechanical behaviour both in terms of 

elongation at break and resistance, properties imparted by the CS/DSP internal side 

and CS/GPTMS25_DSP external side , respectively. The bi-layer device was easily 

manipulated and wrapped to form a cylindrical conduit under physiological 

condition after immersion in aqueous solutions for 2-3 minutes . Gradual and 

controlled permeation to small molecules was observed. Finally, preliminary in vivo 

tests were carried out on the bi-layers flat membranes for bridge implantation 

across 10-mm long median nerve defects in rats. After 12 weeks post-operative, 

nerves treated with bi-layer tubes displayed regenerated and aligned fibers at the 

injury site with no fibrous capsule formation at the external site. 

iii. An internal filler based on CS electrospun nanofibres were prepared from 0.5 M 

acetic acid solutions in the form of non-woven nanofibrous matrices with high 

specific surface areas and relatively small pores. The electrospun matrices formed a 

three-dimensional microenvironment for cell attachment and growth mimicking the 

ECM structure. In peripheral nerve TE, nanofibres with average diameter around 

100-200 nm have been reported to be advantageous for glial cell adhesion and 
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proliferation as compared to fibres characterized by a diameter of 700 nm [46, 47]. 

Polyethylene oxide (PEO) and dimethylsulphoxide (DMSO) were added to the CS 

solution to allow CS solution spinnability at high polymer concentration (5% 

wt./vol.). Optimization of the process and solution parameters allowed to obtain CS 

nanofibres with size of 128±17 nm. Crosslinked nanofibres with improved 

mechanical and physiological stability were obtained for the first time. DSP was 

selected as nanofibres crosslinker and it was added to the CS optimized solution 

before fibre spinning. As observed by morphological analysis, DSP crosslinking did 

not modify the fibre structure as compared to the uncrosslinked CS nanofibres and 

DSP crosslinked CS nanofibres showed a slightly decrease in fibre dimension 

(109±17 nm). Moreover, DSP enhanced the mechanical strength (E, from 63±10 

MPa to 113±8 MPa) and the structural integrity under physiological condition of CS 

nanofibres. 

ii) Wound healing in veterinary application 

Recently, much attention has been given to CS in veterinary applications, as a wound 

healing agent, antimicrobial agent, bandage material, skin grafting template, hemostatic 

agent and drug delivery vehicle. In this thesis work, due to the similarity of animal wound 

healing process with humans, CS was selected to obtain porous membranes with 

improved antimicrobial activity for the treatment of chelonian shell injuries (Chapter 8). 

The bioengineered membrane has the function of protecting the wound site from 

contamination and it may be produced in order to stimulate the rapid complete 

regeneration of the injured tissue and healing of the wound. Moreover, bioengineered 

membranes should be able to : ii) absorb exudates and toxic components from the wound 

surface; ii) maintain a high humidity at the wound/dressing interface in order to avoid 

dessication and to promote re-epithelialization and cellular migration, iii) be 

biodegradable, avoiding to periodically remove the device causing trauma to the wound 

and iv) allow the local drug delivery of bioactive molecules or antibiotics. Among the 

natural polymers, CS (alone or coupled with antimicrobial or antibiotic agents) has been 

widely used in wound management both in humans and animals [48]. CS have been found 

to enhance the function of antinflammatory cells such as polymorphonuclear leukocytes 

(PMN) and macrophages and to promote the formation of granulation tissue [49]. 

According to the recent literature, the development of skin dressings based on CS for the 

treatment of chelonian shell injuries seem to be the ideal substitute to conventional 

veterinary approaches (i.e. epoxy resins [50-55], wet-to-dry bandages [50, 56], vacuum 

assisted closure (VAC) [57, 58], platelet-rich-plasma (PRP) treatment [59, 60] or ointments 

[61, 62]) which have all several associated drawbacks.  

For this purpose, CS porous membranes with improved antimicrobial properties were 

prepared by the freeze-drying technique to promote the wound healing process and to 

reduce the bacterial proliferation in chelonian shell injury. To increase CS mechanical 

properties and its biocompatibility, GPTMS and DSP crosslinkers were added to the CS 
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solution (CS/GPTMS_DSP). The constituent ratio of crosslinking agents and CS was 

selected in the first part of the thesis (Chapter 2). Moreover, to impart the desired 

antibacterial properties to the developed membranes, different ratios of silver 

nanoparticles (AgNPs, 5%, 10% and 15% wt./wt. respect to the total amount of CS) and 

gentamicin sulphate (GS, 3.5 mg/ml dosage selected according to the conventional 

veterinary treatment for chelonian carapace healing) were incorporated into the CS 

matrices. The application of dressing materials based on natural products with 

antimicrobial properties limits the systemic use of antibiotics whose side-effects often 

result in wrong action or even damage to the patient’s kidney and liver, and also 

decreasing the bacterial proliferation at the wound site [63, 64]. Mechanical 

characterization performed on samples showed that the incorporation of AgNPs or GS 

enhanced the stiffness of CS/GPTMS_DSP samples. High swelling degree, which is one of 

the important factor for reducing the risk of wound dehydration, was observed for all 

antimicrobial agent loaded samples. From the morphological characterization AgNP 

optimal concentration was selected (10% wt./wt.): total pore occlusion on the surface of 

CS based membranes containing the maximum amount of AgNP incorporated. GS release 

was successfully released from CS/GPTMS_DSP loaded with the antibiotics. Finally, the 

investigation focused on the GS and AgNPs (10 % wt.wt, optimized concentration) effects 

on bacterial inhibition: the presence of either AgNPs or GS improved the antimicrobial 

activity of CS based porous membranes against Gram+ and Gram- bacteria. From 

preliminary in vivo tests, it was found that GS loaded membranes contributed to enhance 

wound healing in chelonians compared to wet-to-dry bandages. 

9.2 Conclusion and future developments 

In conclusion, CS based bioartificial constructs showing promising chemico-physical, 

mechanical and biological properties were developed for soft TE engineering both in 

human and veterinary applications. The easy processability of CS allowed to obtain 

different structures by selecting the proper crosslinking and fabrication methods.  

 

Innovative CS based biomedical devices for peripheral nerve repair developed and 

characterized for their in vitro and in vivo response showing promising results in terms of 

biocompatibility and functional recovery. The dip-coating rotating mandrel technique has 

been preliminary investigated for the obtainment of pre-shaped guides with a diameter 

depending on the mandrel size. The use of pre-shaped devices could reduce the time of 

surgery and the risks of surgical mistakes compared to nerve guide membranes, however, 

adaptability of the device to the nerve size is often required (Fig. 9.1). 

Concerning the CS based internal filler, encouraging preliminary in vitro results were 

obtained in collaboration with the Neuroscience University Cavaliere Ottolenghi (Torino, 

Italy) confirming the ability of cells to adhere and proliferate on CS nanofibrous matrices 

(Fig. 9.2). 
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The developed NGCs (CS/DSP or bi-layer samples) and the prepared internal filler (CS 

nanofibrous matrix) will be finally combined to solve the limitations associated with the 

use of hollow conduits (short gap length, long regeneration time, neuroma formation). 

The incorporation of aligned nanofibres into NGCs has been found to induce Schwann cell 

alignment resulting in oriented axonal growth while preventing neuroma formation in the 

peripheral nerve injury [65]. Further in vivo analysis using rats will be fundamental to 

analyze the influence of different strategies (materials, structure, topological features, 

haptotatic cues and chemotactic stimuli) for the regeneration process. 

 

CS porous membranes with improved antimicrobial properties showed inhibitory effects 

against five different bacterial strains. GS loaded samples were found to totally exert their 

antibacterial activity against E. coli, S. aureus and E. fecalis bacteria, while AgNP loaded 

membranes showed slight inhibitory effect against all Gram+ and Gram- strains. By the 

obtained results, the combined incorporation of both GS and AgNPs into the developed 

porous membranes could improve the antimicrobial activity against a broad spectrum of 

strains and, as a consequence, it could reduce bacterial proliferation during wound 

healing in chelonians. After a preliminary in vitro characterization samples, GS and AgNPs 

samples will be tests for their antibacterial activity . 

 

Fig. 9.1. Qualitative image of CS/DSP cylindrical conduits prepared by the dip-coating rotating 

mandrel technique. 

 

Fig. 9.2. Fluorescent imaging of RT4-D6P2T on control and CS nanofibrous matrices after 1,3, 5 
and 7 days in vitro (DIV). 4'-6-Diamidino-2-phenylindole (DAPI), α- vinculin and α-actin staining of 
proliferating cells on CS nanofibrous matrix and on positive control. 
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