
Chapter 5

Tests and Results

In Chapter 4 different algorithms typical of a snapshot GNSS mass-market receiver have been pre-
sented. In order to validate their performance and to compare them, several tests and simulations
have been performed, the results of which are reported hereafter.

First the description of a fully software receiver implementing these algorithms is provided.
Then, results concerning the performance of the multi-correlator unit, the accuracy of the code
delay and of the Doppler frequency estimators are reported and discussed in Sections 5.2, 5.3
and 5.4. Afterwards, some results concerning search space windowing and on demand duty cycle
processing are reported. Section 5.8 describes the result obtained processing real Galileo IOV
signals with the software receiver developed and with the techniques proposed. Finally the results
of some tests with a real commercial receiver and with the real Galileo IOV signals are given.

5.1 A fully software receiver
A GNSS SDR receiver has been designed from scratch as a proof of concept, so as to test and
validate all the techniques proposed in Chapter 4. It exploits the flexibility offered by SDR imple-
mentation and represents a fundamental research working tool. In particular, it accompanied all
the phases of the work:

• the test of state-of-the-art algorithms;

• their adaptation to a software platform;

• the design of their extensions to new signals and constellations;

• the first tests with real Galileo signals;

• the development of innovative algorithms;

• the final performance assessment in terms of estimates accuracy and PVT solution.

5.1.1 The concept of SDR
SDR refers to an ensemble of hardware and software technologies enabling a reconfigurable com-
munication architecture [26]. Despite the fact that software implementations are generally less
efficient than hardware dedicated receivers, SDR has entered the field of GNSS receivers as soon as
satellite navigation enlarged its popularity. The availability of digital signals opened new oppor-
tunities and lead to the design, directly in the digital domain, of new algorithms, which were too
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complex to be implemented in an analog way. For example, the possibility to access intermediate
processing stages and observables, which is not available in commercial hardware receivers, paved
the way towards innovative interference [66] or spoofing detection techniques [67]. SDR GNSS
receivers are nowadays tools of paramount importance for Research and Development (R&D) and
still offer new interesting and un-explored perspectives, like the case of a multi-GNSS scenario.
Among the wide variety of solutions that employ different combination of processing platforms,
three categories of architectures can be identified [26]:

classic SDR architectures, based on an FPGA, and performing positioning algorithms on a DSP;

hybrid architectures, based on an FPGA with hardware accelerator, and performing the posi-
tioning software algorithm on Personal Computer (PC);

fully software architectures, entirely hosted on a General Purpose Processor (GPP), such as a
PC or an embedded system.

The receiver developed belongs to the category of fully software receivers: the full receiver,
including the baseband functions and the positioning algorithms, is implemented using MATALB
programming language and runs on a PC. It accepts as input different kind of raw IF GNSS data,
coming from different sources. It is able to process both GPS L1 C/A signals and Galileo OS
E1B and E1C signals It is based on a multi-correlator open-loop snapshot processing approach, as
described in Section 4.1 and can provide as output the usual receiver’s observables, such as code
delay, Doppler frequency, C/N0, phase and navigation message. The receiver is very flexible and
fully configurable, and represents an important tool to assess performance and accuracy of the
selected techniques in different circumstances.

5.1.2 Initialization of the receiver
Mass-market receivers usually benefit of assistance data, according to the 3GPP AGNSS standard
[68]. The receiver software implemented follows the same principle and, despite the fact it could
potentially work as a standalone receiver, the presence of some aiding greatly improves perfor-
mance. As depicted in Figure 5.1, mass-market receivers exchange information with assistance
servers as follows.
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Measurement 
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Figure 5.1: Scheme of message exchange between assistance server and mass-market receiver.

• Measurement control request: the receiver asks for certain measurements, such as timing
information, list of PRNs in view, rough Doppler frequencies and rough code delay.

• Measurement results: the server replies with the proper information

• Measurement report message: the receiver sends to the server the observables, i.e. the
results of the processing of raw data.
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• PVT: the server computes the PVT and sends it back to the receiver.

Notwithstanding, the message exchange is only emulated by the software receiver: the informa-
tion to initialize the multi-correlator open-loop engine is supplied manually or exploiting a standard
acquisition scheme, and the PVT is computed with a standalone software routine.

5.1.3 Block scheme of the final version
A block scheme of the final version of the fully software receiver for Galileo E1BC processing
implements is reported in Figure 5.2.
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Figure 5.2: Fully software receiver implementation block scheme.

5.1.4 Signals
Three types of GNSS signals are considered in all the work:

• Software simulated signals, obtained with a software signal generator (N-FUELS), de-
scribed in Appendix A.1. They give the best flexibility in terms of frequency plan, modula-
tion, navigation message, power level, frequency and code delay definition, at the expenses
of a longer simulation time and not realistic signal conditions. Some signal impairment, such
as interference, multipath can be added to the signal. However they can be used only by
software receivers.

• Hardware simulated signals, obtained with the Spirent signal generator available at
ESTEC premises and described in Appendix A.3.1. This tool is flexible, powerful, but
its configuration is not trivial and its availability limited. The LMS model described in
Sections 3.4.2 and 3.4.3 can be included in the Spirent configuration. The RF signal is condi-
tioned by a front-end (Section 3.1.1) grabbed with a bit-grabber, such as the ones described
in Section A.2, and then stored to a memory for post-processing.

• Real GPS and Galileo signals, captured by an antenna, conditioned by a RF front-end
and stored in a memory through a bit-grabber. They are less flexible, completely unknown
in principles, but obviously extremely realistic.
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5.2 Multi-correlation results
A software routine performing the multi-correlation snapshot algorithm described Section 4.1 has
been implemented, representing the core of the fully software receiver. In the first stage, in order
to test the features of the technique, an N-FUELS input signal is considered. Its characteristics
are reported in Table 5.1; most of them, such as the sampling frequency, are compatibles with the
ones of real mass-market hardware devices.

Table 5.1: N-FUELS signal parameters for snapshot processing test.

Signal length 0.5 s
Frequency band L1 (1575.42 MHz)

Sampling frequency 16.3676 MHz
IF carrier frequency 4.1304 MHz
number of satellites 1

Doppler 500 Hz, fixed
Code delay 0.1 ms
Modulation GPS L1 C/A or Galileo BOC(1,1)

Navigation message Absent
Front-end filter Butterworth 4th order, 4.092 MHz

The signal is processed by the software routine and the non-normalized correlation function
is shown as result of the signal correlation, both for the I and for the Q channels. The main
differences between this simulation and a real scenario have to be pointed out:

• noise is absent, at least for the first configuration;

• multipath is absent;

• ionosphere and troposphere propagation is not simulated;

• the phase of the signal is perfectly known;

• the Doppler frequency of the signal is perfectly known (perfect carrier wipe-off);

• only 1 signal component is considered.

In Sections 5.8 and 5.2.6, the same algorithm is applied to real GNSS signals. Some results are
shown and discussed.

5.2.1 Example of a search space
Figure 5.3a shows an example of correlation function obtained exploiting the technique described.
The input signal is a GPS L1 C/A signal, PRN 1, with a very high C/N0. The phase and
frequency of the input signal are perfectly known so a perfect wipe-off is performed. The domain
of the correlation function covers a snapshot of 1 ms, which is the nominal length of a code period.
The simulation mode is the standard mode, with 2 samples per chip (P = 2). The shape of
the theoretical auto-correlation function of the BPSK modulation is clearly recognisable in the I
plot. A peak appears around 0.1 ms, which exactly matches the true code delay of the signal, as
configured in the simulation. In addition, Figure 5.3b shows a zoom around the peak. The shape
of the triangle is clear, and it can be assumed, from a “visual interpolation”, that the upper vertex
is exactly located at 0.1 ms. At the same time, in the Q channel only noise is present.

More in details, Figure 5.3 shows the magnitude of the correlation in the vicinity of a peak.
Points on the x axis are spaced at an interval equal to the C/A code chip length divided by P ; in
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Figure 5.3: Example of the correlation function for a GPS L1 C/A signal obtained with the
multi-correlation snapshot processing technique.

this case the sampling interval corresponds to 150 m in the range domain). Therefore the width of
the triangle base is exactly 2 C/A code chips, or 4 points of the Auto Correlation Function (ACF).
The height of the base of the triangle is the magnitude of the noise. The peak of the triangle
corresponds to the signal magnitude.

The obtained plot is useful to compare the performance, in terms of signal detection capability,
sensitivity, time to perform correlation, under different scenarios:

• different input C/N0;

• different coherent and non-coherent integration times;

• different operation mode (standard, high resolution, super-high resolution); different signals
(Galileo and GPS);

In particular the C/N0 is computed according to the following formulation:

C/N0 = 1
Tc

A2

2σ2 , (5.1)

where Tc is the coherent integration time, A is the magnitude of the peak, and σ2 is the noise
variance, which can be computed as

2σ2 = E

I2 +Q2

. (5.2)

5.2.2 Effect of different integration times
The coherent integration time is configurable. The minimum value corresponds to the length of a
the shift register, e.g. 66 samples for the standard mode, corresponding to 33 chips, or 0.032 ms.
Other values are possible, for example a value corresponding to the length of the shift register
times L, or as in the general case the full code length, 1023 chips, corresponding to 1 ms (equal
to the register length times M), or even more, as long as no data transition occurs. It is obvious
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Figure 5.4: Effect of different integration times in the snapshot processing correlation function.

that, by increasing the coherent integration time, the peak emerges from the noise floor; however
the dynamics of the input signal must be accounted for, and bit synchronizations is required.

Figure 5.4a shows the effects of different coherent integration times on the I channel correlation
function. The signal is a GPS L1 C/A signal, without noise, in standard resolution mode. In the
first case the integration time is set equal to the length of the shift register. The peak is visible,
although the noise level due to cross-correlation is quite high. In the second case the integration
time is equal to 10 times the size of the shift register, in the third case equal to 31 times the length of
the shift register, i.e. 1 ms. Table 5.2 reports some numerical values, among which the approximate
time required to perform the correlation in the Matlab simulation and the SNR between the peak
and the noise floor. It is noted that the time information assumes interest only as a comparison,
and not as absolute value.

Table 5.2: Effect of different integration times lower than 1 ms in snapshot processing.

Integration time SNR Time elapsed
66 samples - 0.03 ms 17 dB 0.30 s
660 samples - 0.32 ms 26.4 dB 0.43 s
2046 samples - 1 ms 31.6 dB 0.78 s

It is interesting to notice how the SNR and the time elapsed increase when increasing the
integration time. In particular, when increasing the integration time by a factor of 10 (from
0.03 ms to 0.32 ms), the SNR increases by a factor of 10 dB, while when increasing the integration
time by a factor of 3 (from 0.32 ms to 1 ms), the SNR increases by a factor of about 5 dB, as
expected from theory.

Clearly, integration times higher than 1 ms are possible. Results for 2 ms and 20 ms coherent
integrations are shown in Figure 5.4b. In this case the signal is affected by noise, the C/N0 is
equal to 50 dBHz. Similarly Table 5.3 reports the C/N0 after the correlation and the time elapsed
in the same three cases. As expected, by increasing the integration time up to 20 ms sensitivity is
higher, and the receiver is able to acquire also signals that would be under the noise floor for lower
integration times.
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Table 5.3: Effect of different integration times longer than 1 ms in snapshot processing.

Integration time SNR Time elapsed
1 ms 19.8 dB 0.78 s
2 ms 21.5 dB 1.29 s
20 ms 28.8 dB 8.6 s

Figure 5.5 reports the results for 1 ms and 20 ms integration times for a signal with a C/N0
equal to 35 dBHz. It is evident that the code delay peak is visible only when integrating for a longer
time, confirming the benefits of this technique in the case of low power signals (high sensitivity).

 

0 0.2 0.4 0.6 0.8

-1

0

1
x 10

-4 I channel

time (ms)

 

 

0 0.2 0.4 0.6 0.8
-5

0

5

x 10
-4

time (ms)

 

 

T = 20 ms

T = 1 ms

Figure 5.5: Effect of 20 ms integration times in the snapshot processing correlation function for
low power signals.
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5.2.3 Effect of different input C/N0

It is expected that the technique proposed behaves differently according to different input C/N0.
In this section GPS C/A signals characterized by different C/N0 are tested. Figure 5.6 shows the
correlation function for four different signals with a C/N0 respectively equal to 35, 40, 45 and
50 dBHz, coherently integrated for 1 ms. While in the first case the signal is not acquired, in the
remaining cases the correlation peak is clearly visible, and the noise floor is lower and lower as the
C/N0 increases.
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Figure 5.6: Effect of different signal strength in the snapshot processing correlation function with
1 ms coherent integration.

Table 5.4 reports the SNR and the C/N0 after correlation in the different cases. As expected
it increases with the signal strength. It is noted that also low power signals can be acquired by
increasing the integration time.

Table 5.4: Effect of different signal strength in the snapshot processing correlation function with
1 ms coherent integration.

Signal C/N0 SNR Estimated C/N0

35 dBHz not acquired not acquired
40 dBHz 9.3 dB 39.3 dBHz
45 dBHz 15.7 dB 45.7 dBHz
50 dBHz 19.8 dB 49.8 dBHz

In order to acquire the signal for signal strengths as low as 35 dBHz it is necessary to increase
the integration time. As detailed in Section 3.3.1, this is possible only if navigation data are absent
or wiped-off. For this purpose, N-FUELS signals with no navigation data are exploited. Table 5.5
summarizes the input parameters chosen and reports the SNR and the C/N0 for the different cases.

Figure 5.7 shows that in the first four cases it is possible to acquire the signal, since the peak
is clearly visible and the resulting SNR is higher than 15 dB. Instead in the last two, the peak
values are similar to the noise realization and the probability of acquisition is then lower.
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Table 5.5: Effect of different signal strength C/N0 in the snapshot processing correlation function
with different coherent integration times.

Signal C/N0 Tc SNR Estimated C/N0

35 dBHz 20 ms 17.2 dB 34.2 dBHz
29 dBHz 120 ms 18.1 dB 27.3 dBHz
20 dBHz 640 ms 17.6 dB 19.5 dBHz
15 dBHz 1200 ms 14.7 dB 13.9 dBHz
10 dBHz 2560 ms 11.5 dB 7.5 dBHz
5 dBHz 2560 ms 9.4 dB 5.3 dBHz
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Figure 5.7: Effect of different signal strengths and integration times on the correlation peak
function.
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5.2.4 Effect of different operation modes
The most interesting feature of snapshot multi-correlation algorithms is represented by the possi-
bility to dynamically switch between different operating modes. The parameters for the standard,
the high-resolution and the super-high resolution modes are reported in Table 4.1. Briefly summing
up, the standard mode is able to look for the code delay in the entire code epoch, but has a reduced
accuracy (2 samples per chip). On the contrary high and super-high resolution modes can account
for a larger accuracy (5 and 10 samples per chip respectively), despite the fact that they consider
a reduced search space, and therefore need a priori rough information on the code delay. The
standard case has been extensively analysed in Sections 5.2.1, 5.2.2 and 5.2.3. The high resolution
mode considers a subset of the code equivalent to 1/8 of the code epoch. A rough estimate of the
code delay should then be sufficiently accurate to fall within ±63 code chips, otherwise the signal
has no chance to be acquired, as described in Section 5.6.3 concerning signal windowing.

Figure 5.8 shows the correlation function in the I and Q channels when processing the signal
in high definition mode. The signal is a GPS L1 C/A signal, without noise, the integration time
is equal to 1 ms. The peak is clearly emerging, and it is interesting to notice that the correlation
spans a time interval of only 0.125 ms = 1 ms)/8.
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Figure 5.8: Example of the correlation function for a GPS L1 C/A signal in high resolution mode.

In the super-high resolution case the search space is further reduced, and in the delay domain
it corresponds to 1/16 of the code epoch. Figure 5.9 depicts the zoom on the correlation peak for
the high resolution and the super-high resolution cases. In the left plot the resolution is equal to
5 samples per chip, indeed the base of the triangle corresponds to 10 samples. In the right case
the resolution is doubled, 10 samples per chip, allowing a theoretical higher accuracy in the delay
estimation. These results can be compared with the standard resolution peak zoom, reported in
Figure 5.3b.

Finally, Figure 5.10 depicts the case in which the true signal code delay falls outsides the actual
reduces search space; therefore the peak is not detected and an invalid measure is obtained. This
problem is considered in the windowing of the search space, in Section 5.6.

It is also possible to further reduce the number of correlations, by decreasing the L parameter.
For example, Figure 5.11 shows the correlation peak in the standard resolution mode for L = 31,
corresponding to the case of Figure 5.3a, for L = 15, so considering about half of the code-epoch
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Figure 5.10: Acquisition failure in the case of false aiding information in high resolution mode.

length, and for L = 5, equivalent to approximately 1/6 of the code length. It is clear from
the picture that the accuracy and the SNR of the result is equivalent, while the computational
complexity is reduced by a factor of 2 and of 6 approximately.

5.2.5 Comparison between GPS and Galileo signals
The technique can be extended to Galileo signals as described in Section 4.1.2; the only difference
consist of a new design of the parameters K, M and L, according to the structure of the BOC(1,1)
modulation. In particular, since the Galileo OS code-epoch is 4 times larger than in GPS, either a
larger shift register or a higher frequency are required. First an example of correlation function is
reported in Figure 5.12, with P = 2, K = 33, and L = 124. In this case 8184 parallel correlators
are required. The dimension of the shift register is the same of the GPS case, 66 samples, but the
clock frequency is four times larger. The signal is a Galileo E1B BOC(1,1) signal without noise
and the integration time is equal to a full code epoch, i.e. 4 ms.
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The peak around 0.1 ms is clear and the noise level is sufficiently low to allow acquisition of
the signal. By enlarging the figure around the peak the theoretical sharper correlation function of
the BOC(1,1) modulation can be recognized. As in the case of GPS, depicted in Figure 5.3b, the
resolution is equal to 2 samples per chip.

The main issue concerning the processing of Galileo signal is the increased complexity. With
respect to GPS C/A, the code is 4 times longer and the modulation is more elaborated. The
standard mode operation has been performed by considering the third combination of parameters,
as described in Table 4.2, i.e. with 2 samples per chip (P = 2), K = 132, a shift register of 264
bins, L = 31, giving a clock frequency of 127 MHz and a total of 8184 correlators. So, with respect
to GPS, the clock frequency is the same and the shift register is 4 times larger. Table 5.6 shows a
summary of parameters and the result in terms of execution time, which is approximately 4 times
larger for Galileo. This result is acceptable, since the code epoch, and so the integration time is 4
times larger.

Table 5.6: Comparison between GPS an Galileo, standard resolution.

GPS L1 C/A Galileo E1B BOC(1,1)
fclk 127 MHz 127 MHz

Shift register (PK) 66 264
Integration time 1 ms 1 ms

L 31 31
Time elapsed 0.56 s 2.13 s

By reducing the Galileo integration time to 1 ms, corresponding to 1/4 of a code epoch (sub
correlation), it is possible to compare the results in a fairer way. Table 5.7 shows the results; the
elapsed time is reduced by approximately a factor of 4, giving a performance comparable with the
GPS case.

Table 5.7: Comparison between GPS an Galileo, standard resolution, same integration time.

GPS L1 C/A Galileo E1B BOC(1,1)
fclk 127 MHz 127 MHz

Shift register (PK) 66 264
Integration time 1 ms 4 ms

L 31 62
Time elapsed 0.56 s 0.63 s

By considering another approach, for example a double shift register dimension and a double
clock frequency, the results are different. As reported in Table 5.8, the elapsed time increases from
0.6 s to almost 1 s.

Table 5.8: Comparison between GPS an Galileo, standard resolution, double shift register.

GPS L1 C/A Galileo E1B BOC(1,1)
fclk 127 MHz 254 MHz

Shift register (PK) 66 132
Integration time 1 ms 1 ms

L 31 31
Time elapsed 0.56 s 0.95 s

96



5 – Tests and Results

However it has to be pointed out that an accurate comparison between GPS and Galileo
execution times should be carried out by counting the number of floating and or fixed point
operations rather than measuring the elapsed time. In addition, the software implementation
cannot consider the presence of more correlators working in parallel.

Better results can be achieved passing to high resolution and super-high resolution operating
modes. As for the GPS case, the resolution of the peak in samples per chip can be increased. In
addition, by exploiting for each correlation a subset of the reference code instead of the full code,
the computational burden decreases. The value of the P , K and L parameters for Galileo E1B are
reported in Table 4.3.

Figure 5.13 reports a plot of the correlation peak in the case of super-high resolution. Further
techniques, such as least square interpolation, can assure even better results.
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Figure 5.13: Super-high resolution in the case of Galileo signal.

Finally a comparison in terms of execution time is given in Table 5.9. GPS and Galileo signals
are compared, with a comparable integration time (1 ms), with no noise and with the parameters
described above. The execution times for GPS and Galileo are comparable. However is has to be
pointed out that the execution time depends strictly on the code implemented, its optimization
and the computational capacity of the machine on which it is run.

Table 5.9: Total execution time for different operation modes and signals.

GPS L1 C/A Galileo E1B BOC(1,1)
Standard resolution 0.56 s 0.63 s

High resolution 0.21 s 0.22 s
Super-high resolution 0.16 s 0.18 s

5.2.6 Real data snapshot processing
Similar results can be obtained by processing real GNSS data, captured at ESTEC premises. It is
interesting to point out that the algorithms is able to process not only simulated signal but also
real signals, characterized by a real propagation scenario and then affected by several errors from
different sources.
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120 seconds of raw GNSS L1 data have been collected with the front-end/bit-grabber (described
in Section A.2), with a sampling frequency equal to 16.368 MHz and an IF equal to 4.092 MHz, and
stored in a file for post-processing, on December 18, 2013, at 12.30 UTC+1 , at ESTEC Navigation
laboratory (52.218◦ N, 4.419◦ E). Figure 5.14 shows the GPS and Galileo satellites visible at that
time in that location.
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Figure 5.14: Skyplot at ESTEC, December 18, 2012, 12.30.)

The data have been processed with the fully software snapshot receiver described in Section 5.1,
conveniently modified in order to fit front-end frequency plan. The main differences with the
simulated signal considered above are:

• the presence of noise;

• the possible presence of multipath (however the roof top position of the antenna assures a
low multipath impact);

• errors induced by ionospheric and tropospheric propagation;

• the phase of the signal is totally unknown;

• the Doppler frequency of the signal is roughly known (it accounts also for the grabber os-
cillator clock drift); in particular, the code is initialized with some aiding information. For
this reason both the I and the Q branches of the processor are considered and combined:
S = I2 +Q2;

• several GPS and Galileo signals are present;

• a real front-end characterized by a certain bandwidth is present;

• the signal is quantized over a certain number of bits.
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For example, Figure 5.15 shows the multi-correlation function over an entire code epoch, ob-
tained correlating a snapshot of input signal with local code of GPS PRN 11. The standard
resolution mode is exploited, with P = 2; the samples are coherently accumulated for Tc = 1 ms,
and then 5 accumulations are performed, for a total period equal to 5 ms. The code delay, corre-
sponding to the correlation peak is located around −0.27 ms.
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Figure 5.15: Code correlation function for GPS PRN 11 with standard resolution and 5 ms in-
tegration time.

Better results can be achieved performing interpolation on the samples of the correlation triangle
or changing the resolution mode to high and super-high resolution. A priori information on the
code delay is required, for example the output of the standard correlation processing. In these
cases, reported in Figure 5.16, 5 and 10 samples per chip are considered respectively. In both cases
the peak is evident.

It is interesting to look at the evolution of the correlation function. In fact, the algorithm
is able to correctly follow the correlation function peak over time. In the example below, the
GPS signal with PRN 11 is processed over a total integration time of 2 s. In particular, 100
snapshot correlations, each one corresponding to a 20 ms integration, are performed. Each 20 ms,
an interpolation on the non-coherent accumulation (I2+Q2) is computed, and the result is reported
in Figure 5.17. The navigation data bit synchronization is achieved manually by starting the
processing at a given time.

With respect to simulated data, real data are affected by multipath; in particular low elevation
satellites are more conditioned by the multipath effect, for geometrical reasons. Figure 5.18 shows
the correlation peak, computed with super high resolution and with a non-coherent integration time
equal to 10 ms. The signal corresponds to the PRN 22, which at that moment had an elevation
of about 28◦. It is possible to see in the plot the typical distortion of the peak induced by the
presence of reflected rays, reaching the receiver with a larger time delay. The effect of a front-end
filter is not present or negligible.

The same results can be obtained processing Galileo signals. An example, considering Galileo
signal with code 22, coherent integration time equal to 4 ms, i.e. a BOC(1,1) code-epoch) and
non-coherent integration time equal to 20 ms, is reported. In particular Figure 5.19 shows the
correlation peak for the standard and the high resolution modes.
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Figure 5.16: Code correlation function for GPS PRN 11 with different resolutions and 5 ms
integration time.

Figure 5.17: Correlation peak (interpolation) of a GPS signal over a time interval of 2 s.

5.3 Code delay estimation
In the simulations performed in this section the code delay estimation accuracy is evaluated. It
has been proved that the code delay accuracy may depend on several factors and parameters used
in the code delay estimation:

• the presence of a front-end filter;

• the true code delay, i.e. the delay between the received signal and the local replica;
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Figure 5.18: Code correlation function for GPS PRN 22 with super-high resolution; effect of
multipath.
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Figure 5.19: Correlation peak for standard and high resolution for Galileo code number 22.

• the C/N0;

• the coherent integration time;

• the chip spacing (resolution of the correlation function, resolution mode in the software
receiver);

• the resolution of the interpolation curve;

• the number of points of the correlation function used to interpolate.
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First a Matlab routine implementing semi-analytical simulations for code delay estimation has
been implemented, in order to compute the accuracy of the code delay estimate compared to
different parameters. In all the following semi-analytical simulation, unless specified, the following
parameters are assumed:

• BPSK signal, correspondent to the GPS L1 C/A signal;

• Tc = 1 ms;

• chip spacing equal to 0.1 chip; 21 samples of the correlation are considered, thus spanning
an interval of 2 chips (the entire correlation peak). This is equivalent to the super high
resolution;

• resolution of the interpolation equal to 100, i.e. 100 samples every sample of the correlation
function

• all the points of the correlation, namely 21;

• a number of trials of the Monte Carlo simulation sufficient to smooth the effect of noise.

Then some results have been validated and confirmed exploiting N-FUELS and the fully soft-
ware receiver and performing Monte Carlo simulations.

5.3.1 Effect of the front-end filter
It has to be reminded that the signal entering the receiver is far different from the ideal GNSS
signal, mainly because of the effect of the front-end filtering. For example, a 4 MHz bandwidth
front-end, typically adopted in mass market receivers, can save most of the power of a GPS L1
C/A signal, while cuts some useful signal from a Galileo E1 signal. Table 5.10 reports the typical
error standard deviation on the pseudo-range for a GPS signal at 45 dBHz for different values of
the front-end filter bandwidth, i.e. considering a different number of lobes of the input signal, for
Tc = 1 ms [69].

Table 5.10: Standard deviation of code delay estimates at 45 dBHz for 1 ms coherent integration
time.

Number of lobes Bandwidth Code delay Pseudo-range error
(MHz) standard deviation (ns) (m)

0.5 1.023 31.7 31
1 2.046 24.8 22
2 4.092 17.4 18
3 6.138 14.2 16
5 10.23 7.4 15

A front-end filter has been added to the semi-analytical model, in order to simulate the low-pass
filter of the front-end. A Butterworth filter, of the 4th order and with a bandwidth of 4.092 MHz
has been implemented in Matlab. The theoretical effect of the filter is to cut the high frequencies
of the signal; therefore, the resulting correlation peak is smoothed, leading to a deterioration in
the estimate accuracy. Figure 5.20 shows this effect: the theoretical and real (filtered) correlation
functions for a BPSK signal are depicted. At the same time, especially in the presence of low
C/N0, the results can improve because of the rejection of out of band noise.
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Figure 5.20: Effect of the front-end filter.

5.3.2 Effect of the initial code delay estimate
Let’s assume that the noise is absent (C/N0 = 100 dBHz) and that there is no front-end filter, it
is possible to analyse the code delay accuracy.
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Figure 5.21: Code delay accuracy versus initial delay for different C/N0.

Figure 5.21a shows the code delay accuracy versus the initial delay estimate used to initialize
the algorithm. It is interesting to notice that the delay estimate has a bias, dependent on the
initial code delay. The variance of the estimate is almost zero, since the noise is almost absent Also
for small delays, for example 0.025 chips, the error in the estimate is equal to 0.008 chips, that are
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equivalent to 2.3 m in the pseudo-range. This is probably due to the fact that a limited number
of samples of the correlation is considered. When considering 200 samples, i.e. much more than 2
chips, the result improves. However, this solution is not computationally affordable. By increasing
the interpolation resolution no improvements are experienced By increasing noise to respectively
50 dBHz and 40 dBHz, the accuracy decreases, as shown in Figure 5.21b. In other words, the effect
of noise overcomes the bias for low C/N0.

In addition, it has to be noted that the trend is periodic, with period equal to 0.1 chips, which
is the resolution of the correlation function. By changing this value the plot changes accordingly.
The nulls correspond exactly to 0, 0.1, 0.2, chips, confirming the fact that the error is a limitation
of the interpolation technique. When the delay is a multiple of the chip spacing, the error is
minimum. In other cases, the interpolation solution is less accurate. The error could be computed
analytically summing up all the terms of the summation cut off; in fact, in theory, the summations
should go from −∞ to +∞. In principle this should be negligible, but it could affect the final
result. It will be shown in the following that by increasing the number of points used to compute
the interpolation, i.e. by spanning an interval larger than 2 chips, results improve.

5.3.3 Effect of the C/N0

It is evident that by decreasing the C/N0 the accuracy decreases. Figure 5.22 shows the mean
and the standard deviation over 1 000 Monte Carlo simulation runs, in the presence and in the
absence of the front-end filter and with code delay equal to zero. The error in fraction of chip is
lower than 0.01 chips, corresponding to 3 m, for C/N0 > 52 dBHz. The filtered version presents a
bias of about 0.007 chips, but exhibits a lower standard deviation.
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Figure 5.22: Code delay accuracy versus C/N0.

The same test is repeated and reported in Figure 5.23 for an initial delay equal to 0.025 chips.
The result in terms of standard deviation is slightly worse, as expected. Moreover it is interesting
to notice the same bias of 0.008 chips for the ideal case.

DLL comparison

The same effect is analysed performing Monte Carlo simulations with the snapshot algorithms
described above and using N-FUELS generated signals at different C/N0. In order to evaluate
the goodness of the results, the curve obtained with Monte Carlo simulations is compared to the
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Figure 5.23: Code delay accuracy versus C/N0 and delay equal to 0.025 chip.

theoretical DLL tracking jitter [17]. The tracking jitter of a closed-loop DLL is a measure of the
amount of noise transferred from the input signal to the output of the PLL on the final phase
estimate. It is the first measure of a loop performance and allows one to quantify the impact of
the thermal noise on the PLL. The tracking jitter is a normalized version of the noise standard
deviation, taking into account the bandwidth of the complete loop. It can be expressed (in meters)
as:

σDLL =


Bn

2C/N0

Rc

2Bfe


1 + 1

TcC/N0


· c

Rc
, (5.3)

where Bn is the code loop noise bandwidth, Rc is the chipping rate, Bfe is the single sided front-
end bandwidth, Tc is the coherent integration time and c is the speed of light. Nevertheless, it
is not trivial to compare results obtained with two different techniques, because of the different
quantities and variables involved. In particular, In order to liken the results, a E-L spacing equal
to D = 0.2 chip is chosen, to emulate the 10 samples per chip correlation spacing of the open/loop
multi-correlator snapshot architecture. In addition, it has to be said that a DLL has a loop
filter, the main task of which is to improve the delay estimate, reducing the noise present at the
output of the discriminator. A filter bandwidth is defined when designing a DLL, typical values
for the DLL are around 1 Hz. This means that the code delay estimate is the result of average
over about 1 s of samples, approximating the loop filter with a Finite Impulse Response (FIR))
filter. On the contrary, open-loop estimation gives as output non averaged results, resulting in an
obvious degraded accuracy. To overcome the issue, the code delay error values of the Monte Carlo
simulation are filtered with a moving average filter. By averaging 0.5 seconds of data (e.g. L = 31
values spaced 16 ms), an equivalent closed-loop bandwidth of about 1 Hz is obtained, as reported
in the following equation:

B = 1
2LTc

= 1
2 · 31 · 0.016 ≃ 1 Hz . (5.4)

In particular a GPS L1 C/A signal is considered, affected by constant Doppler frequency equal
to zero for the observation period, to avoid the effect of dynamics. The following figures show
the standard deviation of the code estimation error, i.e. the difference between the estimated code
delay and the true one, expressed in meters (pseudo-range error standard deviation) for different
C/N0 values.
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Figure 5.24: Comparison between code delays estimation accuracy, B = 1 Hz, D = 0.2 chip.

In particular, in Figure 5.24a, a coherent integration time equal to 1 ms and 16 non coherent
sums are considered, while in Figure 5.24b a coherent integration time equal to 4 ms and 16
non coherent sums, spanning a total time T = 64 ms, are considered. The second case is more
representative of Galileo OS signals, even if the simulation is carried out with GPS signals. In both
cases the Monte Carlo simulation results are extremely good for high C/N0. The code delay error
estimate is slightly higher than its equivalent in the DLL formulation. The open-loop estimation
error notably increases in the first case below 40 dBHz due to strong outliers, the probability of
occurrence of which depends on the C/N0. In fact, this effect is smoothed in the second case,
where the coherent integration time is 4 times larger, thus improving the SNR.

Nevertheless, it has to be pointed out that the comparison between open-loop multi-correlation
approach and closed-loop DLL is difficult and approximate, since the parameters involved are
different, and the results are only qualitative.

5.3.4 Effect of the coherent integration time
By increasing the coherent integration time the effect of noise is reduced, thanks to the averaging
process, and the results improve, as proved by Figure 5.25. At 20 ms the standard deviation is
lower than 0.01 chips for a C/N0 larger than 40 dBHz.

At high integration times and in the presence of a front-end filter the results are even better.
The values of the pseudo-range error of Table 5.10 lower up to 2 m for a 10 MHz bandwidth when
integrating for 10 ms.

5.3.5 Effect of the chip spacing
As already said, the chip spacing controls the periodicity of the code delay estimate. Figure 5.26
shows the trend of the code delay error versus the code delay for the three different resolution
modes (1/10 chip, 1/6 chip and 1/2 chip), in the absence of the front-end filter and for a signal
without noise. It is evident that the larger the resolution the better the accuracy.

However, this affects only the bias. In fact, in a signal affected by noise, 50 dBHz, and with zero
delay, the difference in terms of standard deviation between the modes is negligible, as depicted in
Figure 5.27.
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Figure 5.25: Code delay accuracy versus C/N0 for different coherent integration times.
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Figure 5.26: Effect of the chip spacing in the code delay accuracy.

Figure 5.28 proves that the maximum error reduces to 0.001 chip, equivalent to 30 cm, when
increasing the resolution to 1/100 of a chip, but this is no longer computationally affordable, since
it requires a number of correlators 10 times larger.

5.3.6 Effect of the resolution of the interpolation curve

The effect of the resolution of the interpolation is significant. Figure 5.29 reports the error in the
estimate for resolutions equal to 1, 10, 100 and 1000 samples per correlation function point; in
particular, 1 sample per point is equivalent to the case in which interpolation is not performed.
It can be noted that for values larger than 100 samples per correlation function point the effect
becomes negligible.
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Figure 5.27: Effect of the chip spacing in the code delay accuracy, standard deviation for different
resolution modes. 
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Figure 5.28: Code delay accuracy for extremely large resolution (100 samples per chip).

5.3.7 Effect of the number of points of the correlation function used to
interpolate

Depending on the number of points around the peak of the correlation function used for computing
the sinc interpolation, different results are achieved. Theoretically, the more points are considered,
the most accurate is the sinc reconstruction. Indeed an infinite number of points would be theo-
retically required.

It has been proved with a semi-analytical simulation that when a few points are used there
is a bias. In the case of GPS L1 signal (BPSK modulation), at high C/N0 (80 dBHz) and at
super-high resolution (10 samples per chip) at least 15 points around the correlation peak are
necessary to reduce the bias, as shown in Figure 5.30a, the bias is completely removed when 21
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Figure 5.29: Code delay accuracy for different resolution of the interpolation curve.

points, corresponding to 2 chips, are used. At the same time, the standard deviation (shown in
Figure 5.30b) increases when increasing the number of points, because of noise. Nevertheless its
value is bounded to about 0.008 chips, since the noise is correlated and weighted by the sinc. For
the same signal at 45 dBHz the results are worse: the bias is not removed, even for 21 points, and
the variance is more than one order of magnitude larger, around 0.05 chips. It can be proved that
also the interpolation resolution, i.e. the sampling frequency of the sinc curve used to interpolate,
can impact on the accuracy.
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Figure 5.30: Accuracy of the code delay estimate vs. number of correlation points used.

5.3.8 Effect of the cross-code correlation
It is noted that also the simple intra modulation noise between the data and the pilot code in
Galileo E1BC channel creates an error in the pseudo-range estimation. In particular the BOC(1,1)
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modulation is considered. A difference of about 14 cm in the code delay estimate is introduced
with respect to the case in which only the data signal is generated with N-FUELS, as reported in
Figure 5.31.  
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Figure 5.31: Intra-correlation error in Galileo E1BC.

5.4 Doppler frequency estimation
In this section, first some results obtained with the frequency estimation techniques described in
Section 4.1.3 are reported. Then, results obtained with the innovative DFFT-based estimation
technique are presented.

5.4.1 Comparison of different estimators
The frequency estimation accuracy has been computed for the different techniques described in
Section 4.1.3. The most interesting results are reported hereafter, showing the frequency error
with respect to the true Doppler frequency depending on different parameters, such as the initial
frequency misalignment and the C/N0.

Before presenting the results, the problem of the initial frequency misalignment is briefly re-
called. In order to estimate the Doppler frequency with MLE FFT techniques, a rough estimate
of the Doppler frequency has to be available. As described above, the FFT is able to represent the
signal frequency components in frequency range defined in (4.12). This introduces a first level of
dependence on the so called wipe-off frequency. If the difference between the wipe-off frequency
and the real frequency does not lie in this range, the technique leads to wrong results. Admitted
that this first requirement is satisfied, it has been shown that the performance of the algorithm
changes depending on the frequency difference also within the FFT bin. So a periodicity of δf (see
(4.13)) can be seen in the results. For this reason, in all the simulation reported in the following,
the interval [−15 Hz; +15 Hz] is considered. In order to simulate the initial frequency error, the
same GNSS signal, with Doppler frequency equal to 0 Hz is considered, but the wipe-off frequency
is changed between −15 Hz and +15 Hz, to account for any possible position inside the bin.

The Doppler frequency estimate average error, standard deviation and Root Mean Square
(RMS) are computed with a Monte Carlo simulation using an N-FUELS simulated Galileo signal
with the parameters reported in Table 5.11.
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Table 5.11: Parameters of N-FUELS simulation for frequency estimation performance assess-
ment.

Signal length 7 s
IF carrier frequency 4.1304 MHz
Sampling frequency 16.3676 MHz

Modulation Galileo E1B BOC
Doppler frequency Fixed, 0 Hz

Noise Varying, range 20 - 50 dBHz, absent

The snapshot frequency estimation algorithms considered in the first phase of the tests are:

• FFT only, no interpolation (Section 4.1.3);

• Sinc interpolation (Section 4.1.3);

• Interpolation based on the correction term ∆P (Section 4.2.3);

• Interpolation based on nearly MLE (Section 4.1.3);

• Interpolation based on quadratic fit (Section 4.1.3)

Absence of noise

First some results in the case ideal signal conditions are presented, corresponding to open sky and
good channel propagation conditions. In this case the noise is absent and only the useful signal
component is generated. By exploiting results of this simulation it is possible to derive information
about how the different estimators behave with respect to the initial frequency error, i.e. to the
position of the Doppler frequency inside the FFT bin. In addition, bias and standard deviation of
the estimators is evaluated.
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Figure 5.32: Average frequency estimate error for a signal without noise.

Figure 5.32 shows the mean error for different initial frequency errors. The black curve corre-
sponds to the results of FFT only processing. The error confirms the theoretical expectations, it
is minimum when the frequency error is equal to 0, and to multiples of the bin size ∆f , because
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one FFT point falls exactly on the correct value of the Doppler. At the same time, it is maximum
when the true Doppler falls in the middle between two FFT points, i.e. −∆f/2, −∆f/2, and so
on.

The blue curve corresponds to the sinc interpolation. Results of the FFT are interpolated and
some improvement is seen, as already detailed theoretically in Section 4.1.3. In particular, when the
frequency misalignment is close to 0 and to multiples of ∆f , the performance is similar to the case
of FFT only processing. When moving far from these points the error increases, despite being lower
than the FFT only case. It can be proved that this is a limit of the sinc interpolation technique.
In fact, a sinc interpolation is optimal for band-limited signals, but doesn’t apply perfectly on the
shape of the BOC correlation function. It has to be noted that in this case 3 points of the FFT are
used for computing the interpolation. In addition, increasing the resolution of the interpolating
curve, the results can slightly improve, at the expenses of a larger computational load.

The same effect can be seen in the case of the quadratic fit, green curve; this approach is
theoretically similar to the sinc interpolation case. The error is slightly lower, at the expense of a
larger computational load.

The cyan curve, is the average error for the method denoted as nearly MLE. It is trivial
to notice that the error is extremely lower than in the three cases reported above. In order to
appreciate it, an enlargement is depicted in Figure 5.33. Still, it is possible to see the same trend
of the FFT only technique, with smaller errors for input frequencies errors multiples of ∆f .

Finally, the red curve corresponds to the case of interpolation based on the correction factor
∆P . The result is much better than the first three methods analysed and slightly better than the
method based on nearly MLE. In particular, it can be seen that the error is almost constant for
each initial frequency.
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Figure 5.33: Zoom on the average frequency estimate error for a signal without noise.

According to these results, the method based on the discriminator was chosen as candidate for
frequency estimation, and then successfully expanded and improved, as described in Section 4.2.

However, it is important also to have a look on the standard deviation of the estimates. Fig-
ure 5.34 shows the standard deviation of the 5 techniques analysed in the same simulation. As
expected, the standard deviation of FFT only processing is null. The sinc interpolation presents a
large standard deviation in correspondence to −∆f/2 and to +∆f/2, probably due to a numerical
approximation problem, connected to the resolution of the interpolation curve. The quadratic fit
and the nearly MLE methods exhibit a similar profile for the standard deviation, with a trend
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Figure 5.34: Frequency estimate error standard deviation for a signal without noise.

similar to the one of the average error. On the other hand, the correction factor method exhibits
the larger standard deviation, in particular for values of the frequency misalignment close to 0 and
to multiples of ∆f ; this fact anticipates the behaviour of the technique for low C/N0, which will
be described in the following. Better analysis of the variance will be given for the cases in the
presence of noise.

Nevertheless, in order to properly analyse the performance of each technique, it is necessary
to take a look at the computational load required. It is well known that the FFT has a high
computational burden; then the majority of the time elapsed is used by the Matlab function
performing the Discrete Fourier Transform (DFT).

Table 5.12: Run time in s for 100 000 iterations of each single algorithm.

Technique FFT sinc ∆P Nearly MLE Quadratic fit
Execution time 8.108 s 19.659 s 10.959 s 10.717 s 15.754 s

- +240% +135% +132% +194%

Table 5.12 shows the elapsed time for the five methods described and considered in the simula-
tion. Since this figure of merit strongly depends on the hardware of the PC, it is more interesting
to consider the proportion between the results than the absolute values. It is evident that the
fastest method is the FFT only implementation, given that the other four methods just add more
processing to the first. The sinc interpolation more than doubles the execution time, as expected.
The quadratic fit can be considered as a computationally simplified sinc interpolation; in fact it
achieves similar results with a lower computational burden. ∆P correction factor and nearly MLE
based methods have very similar execution times, worsening the FFT only method of a factor of
30-35%.

Results for C/N0 = 50 dBHz

As soon as the C/N0 decreases to 50 dBHz it is possible to see some different result. Figure 5.35a
shows the average frequency error is this case. Four techniques (FFT only, sinc, nearly MLE and
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quadratic fit) exhibit almost the same performance as in the case of absence of noise. On the
contrary, the ∆P correction factor method has some important degradation for input frequency
errors of ±1 Hz, ±2 Hz, ±14 Hz and ±15 Hz. This confirms a weakness of the algorithm, as
described in Section 4.2.3.
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Figure 5.35: Frequency estimate error standard deviation for a signal with C/N0 = 50 dBHz.

Figure 5.35b shows the standard deviation of the 5 techniques analysed in the same simula-
tion. The trend is similar to the one reported in Figure 5.34 for the case with no noise. The
main differences are the larger standard deviation for FFT, sinc and quadratic fit techniques in
correspondence of ±∆f/2, and the larger standard deviation for the correction factor techniques
around the bin centre, confirming the facts described above. It is interesting to note that nearly
MLE estimator has an almost constant standard deviation.

Results for C/N0 = 41 dBHz

Results obtained increasing the noise to C/N0 = 41 dBHz and considering 100 simulations are
shown hereafter. Figure 5.36a depicts the average frequency estimate error. In all the 5 cases
the error slightly increases, maintaining the same trend with respect to the input frequency error.
For ∆P and nearly MLE based techniques the average error is always below 1 Hz. In particular,
the ∆P technique exhibits errors lower than 0.05 Hz in the region around ∆f/2. Figure 5.36b
shows the standard deviation in the same case. It increases, if compared to the case at 50 dBHz,
especially in the most critical zones.

Results for C/N0 = 53 dBHz

Finally results at 35 dBHz are reported (100 simulations).
Figure 5.37a shows the average error. Again, the trend is similar to the cases of higher C/N0.

∆P and nearly MLE-based techniques clearly exhibit better results than the other techniques.
The main effect of increasing the noise is that the frequency region in which the ∆P technique
has a very low error decreases: while for C/N0 = 50 dBHz very good results are obtained in the
frequency range 3–13 Hz, this range reduces to 4–11 Hz for C/N0 = 41 dBHz and to 6–10 Hz for
C/N0 = 35 dBHz. This is due to the fact that a larger noise increases the probability of choosing
a correct second peak and then of making an error in determining the correction sign.
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Figure 5.36: Frequency estimate error standard deviation for a signal with C/N0 = 41 dBHz.
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Figure 5.37: Average frequency estimate error for a signal with C/N0 = 35 dBHz.

Figure 5.37b shows the standard deviation. It is interesting to notice that the 5 techniques
have opposite behaviour when the input frequency error is around an FFT point of far from it. In
general this rule applies: the smaller is the standard deviation for values around 0 and ±∆f , the
larger is the standard deviation around ±∆f/2, as in the case of FFT only, sinc interpolation and
quadratic fit. The larger is the standard deviation for values around 0 and ±∆f , the smaller is
the standard deviation around ±∆f/2, as in the case of ∆P technique. The case of nearly MLE
based estimation follows this rule, even if in a lighter way, and is the one offering the best variance
in average.

Results for f = 8 Hz

In the following simulations, a value of the input frequency error is fixed, in order to study the
dependence on the signal strength. The input frequency errors providing the best performance
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(8 Hz according to the results obtained before) is chosen, assuming the fact that for other frequency
misalignments similar results can be obtained with the DFFT technique.
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Figure 5.38: Frequency estimate RMSE for different techniques vs. C/N0 and for a fixed input
frequency misalignment, Tc = 64 ms.

Figure 5.38 shows a comparison of the Root Mean Square Error (RMSE) for the 5 techniques
for different values of the C/N0. It is interesting to point out how in this case the ∆P technique
outperforms any other algorithm implemented, also thanks to its good behaviour for the input
frequency error chosen. As expected, the higher the C/N0, the lower the RMSE. A well-known
drawback of FFT-based techniques, documented in literature and concerning all MLE based tech-
niques, is the so called threshold effect [70, 71]. Below a certain C/N0 the frequency estimate
computed with MLE suffers of an error, because of the appearance of large noise spikes in the fre-
quency search domain, yielding to the identification of a wrong FFT peak as correct peak. This has
the effect to suddenly increase the average error and to invalidate any other interpolation method.
This is evident in Figure 5.38 for C/N0 < 32 dBHz A possible solution consist in increasing the
integration time. Figure 5.39 shows the result for ∆P and nearly MLE based techniques, in the
case of a total time equal to 128 ms and an FFT computed on 32 points. The C/N0 threshold is
reduced to 29 dBHz.

Semi-analytical estimation

At the same time a semi-analytic simulation has been performed to prove the consistency of the
results of the ∆P technique. Two C/N0 (35 dBHz and 50 dBHz) and two initial frequency errors
(2.475 and 7.8135 Hz respectively the values giving the highest and lowest errors), are considered.
The results for Tc = 128 ms are shown in Figure 5.40 and Figure 5.41 respectively. The consistency
between the N-FUELS Monte Carlo simulation and the semi-analytical result is evident. Also in
this case the threshold effect described before is evident; the RMSE increases with respect to the
CRLB for C/N0 < 29 dBHz.

5.4.2 Zero forcing and DFFT results
In order to assess the performance of the DFFT frequency estimation technique described in
Section 4.2 and to compare it with the other techniques analysed, some semi-analytical and Monte
Carlo simulations are carried out.
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Figure 5.39: Frequency estimate RMSE for different techniques vs. C/N0 and for a fixed initial
frequency misalignment, Tc = 128 ms.
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Figure 5.40: Doppler frequency estimate RMSE for different C/N0 vs. the initial frequency error
in the range [−∆f + ∆f ]. The plot is periodic for frequency values outside this
range.

A few simulations are run with C/N0 = 45 dBHz and 5 000 iterations, comparing the standard
case (p = 0. i.e. the ∆P technique, with the notation used in the simulations of the previous
section), the case with zero-forcing and p = 2 and the DFFT case with p = 2. Figure 5.42a shows
that the error average absolute value in the DFFT case is comparable to the one of zero-forcing.
On the contrary, Figure 5.42b shows that the error standard deviation in the DFFT case decreases
with respect to the case with zero-forcing. In particular, it almost reaches the value of the non
zero-forcing case for frequency values far from ∆f = 0, whereas it clearly outperforms the other
methods around ∆f = 0.

The same results, but for C/N0 = 30 dBHz are plotted in Figure 5.43. Similar considerations
can be drawn: the DFFT technique offers the best performance in almost every condition. Con-
cerning Figure 5.43a, it can be stated that the errors shown in the zero-forcing and DFFT cases
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Figure 5.41: Doppler frequency estimate RMSE for different initial frequency error vs. C/N0 in
super high resolution.
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Figure 5.42: Frequency estimate error for different p and for the DFFT case, C/N0 = 45 dBHz.

are due to the noise and to the shape of the P-curve, while in the standard case the bigger errors
are driven by the wrong sign estimate.

Finally, a case for p = 4 is considered, but comparable results are achieved and are not reported.
Summarizing, Table 5.13 reports mean and standard deviation for different cases. The solution
with p = 2 and DFFT represents the best solution in every scenario tested. As expected, when
∆f = 6 Hz, the case with no zero-forcing (p = 0) reaches the same performance of the case with
p = 2 and DFFT, but clearly worsen for lower initial frequency errors. It is also confirmed that
the case of zero-forcing with p = 4 underperforms the case with p = 2.
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Figure 5.43: Frequency estimate error for different p and for the DFFT case, C/N0 = 30 dBHz.

Table 5.13: Summary of the accuracy of the different techniques analysed for two different C/N0
values and for two different ∆f , 5 000 iterations, values in Hz.

C/N0 = 45 dBHz C/N0 = 35 dBHz
∆f = 1 Hz ∆f = 6 Hz ∆f = 1 Hz ∆f = 6 Hz

Technique Mean Std Mean Std Mean Std Mean Std
p = 0 0.59 0.98 0.002 0.10 0.80 1.52 0.01 0.32
p = 2 0.003 0.20 0.003 0.18 0.03 0.62 0.001 0.57
p = 4 0.02 0.45 0.011 0.45 0.08 1.36 0.16 1.22

DFFT (p = 2) 0.003 0.16 0.002 0.12 0.04 0.48 0.001 0.37
DFFT (p = 4) 0.005 0.17 0.003 0.12 0.02 0.53 0.008 0.38

5.4.3 Comparison with existing techniques
A comparison with existing techniques shall take into account several different aspects. In the
following, the proposed technique is compared with the standard closed-loop PLL structure and
with the theoretical CRLB. However, it has to be said that, given the fact that the architectures
are extremely different, it is difficult to carry on a fair comparison.

Search space

The first point to compare is the size of the frequency search space. In the case of the standard
PLL the search space is related to the loop bandwidth, which can assume values from a few Hz up
to 20 − 30 Hz. At the same time, the open-loop architecture proposed has a much larger search
space (up to 250 Hz). This means that a much larger frequency uncertainty can be held. At the
same time, a closed-loop architecture undergoes a transient, introducing a delay in the estimation
procedure, which is absent in the open-loop scheme.

Performance analysis

Three techniques, namely the standard PLL (with Tc = 64 ms and different bandwidths), the
standard FFT and the DFFT as described above are compared in terms of RMSE of the frequency
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estimate, using a GNSS software receiver. A normal acquisition stage is used to provide the initial
rough estimates of the signal parameters; then a standard DLL is used in all cases to track the code
delay. The parameters of the three techniques have been tuned in a comparable way. In addition,
different initial frequency estimates, in the range [−7 Hz; 7 Hz], are tested. An N-FUELS simulated
Galileo E1 signal at 35 dBHz is tracked, and several iterations of the algorithm are considered. The
results are reported in Figure 5.44.
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Figure 5.44: Comparison between standard PLL and DFFT technique in terms of RMSE.

It has been proved (but omitted in the figure) that for values of the PLL bandwidth larger than
6 Hz, the loop cannot track the signal, because of instabilities problems due to the large coherent
integration time. When the bandwidth is reduced to 5 and 2 Hz, the PLL correctly tracks the
signal, but only in a limited pull-in region, i.e. for an initial frequency error lower than about 3.4
and 1.7 Hz respectively, as depicted in the figure. Nevertheless, as expected, in this region the
frequency estimate RMSE is very low. The FFT exhibits the behaviour described in Section 4.2.5
and confirms the outcome of the semi-analytical simulations. The DFFT algorithm implemented
is the version with zero-forcing and p = 2, the results are consistent.

It can be said that the DFFT technique gives the best overall performance, considering the
search space analysed. Its RMSE is always below 1 Hz, while in the case of a standard closed-loop,
it is bounded to 0.3 Hz only in the central region, but reaches values larger than 4 Hz for larger
input frequency errors.

Complexity analysis

The complexity can be evaluated in terms of execution time in the software implementation. The
same simulation described in the previous section has been run and 10 seconds of data have been
processed. The execution time in the three cases is comparable.

Robustness and sensitivity

The benefits of open-loop approach in terms of sensitivity and robustness were evaluated by the
authors in [72]. In particular, the main advantage of the proposed technique is the absence of the
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risk of LOL. Indeed, whereas in a classic close loop scheme some signal nuisances can lead to LOL
and then to a time-consuming re-acquisition stage, open-loop architectures just give an invalid
measure for a brief time interval. As soon as the signal quality is restored, the DFFT scheme gives
good frequency estimates, without further transients.

5.4.4 Comparison with Cramer-Rao lower bound
10 000 realizations of the semi-analytical process are considered, for a C/N0 spanning a range from
20 to 50 dBHz; the standard case, the case with zero-forcing and p = 2 and the DFFT case with
p = 2 are considered.

Moreover, the CRLB is proposed as a benchmark to compare the performance of the different
algorithms. The CRLB for frequency estimation is defined as [49]

CRLB = 12
(2π)2 · (C/N0)/Bfe · fs ·T 3

tot
, (5.5)

where C/N0 is expressed in linear units and Bfe is the single sided front-end bandwidth, equal to
fs/2 in this case. The CRLB is a useful metric to assess the performance of an estimator, in terms
of lower bound of the RMSE. An algorithm able to approach this bound can be considered a valid
alternative to standard receiver architectures.

The results are reported in Figure 5.45. The red curves represent the RMSE for ∆f close to the
FFT bin centre (∆f = 1 Hz), whereas the blue curves correspond to the case of larger frequency
errors (∆f = 6 Hz). As expected, the second set of curves, is closer to the CRLB; in particular,
the curve obtained by just applying a standard FFT for ∆f = 1 Hz gives the worst performance,
for the reasons outlined above. On the contrary, the curve obtained with the same method but for
∆f = 6 Hz is closer to the theoretical bound for high values of the C/N0, i.e. where the sign error
is very unlikely. As already outlined, the frequency error for the case of ∆f = 1 Hz substantially
improves when introducing zero-forcing. The same trend is observed when the initial frequency
error is higher. Moreover, in both cases, the Double FFT technique slightly outperforms the single
FFT technique, but only for C/N0 > 25 dBHz. In general, it is possible to assume that both
zero-forcing and DFFT techniques, for any initial frequency error, have the same performance,
which is really close to the CRLB, confirming the validity of the techniques proposed, for values
of the C/N0 higher than 28 dBHz.
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Figure 5.45: Doppler frequency estimate RMSE versus C/N0, comparison between theoretical
and simulated results.
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Below this C/N0 threshold, errors are larger, mainly because of the limit of the MLE FFT
approach. The same effect arise in the code delay estimation process below 30 dBHz. It is indeed
well known in literature that estimator performance degradation occurs beyond a certain noise
power, because of the appearance of large noise spikes in the search domain [70]. This threshold
effect can be overcome by further increasing the integration time, thus entering the framework of
HS receiver. In this particular case, it is possible to increase the value of K to 32, so as to span a
total accumulation interval equal to 128 ms, at the expenses of a larger computational burden.

5.5 Navigation message decoding
A software routine for the demodulation of the navigation message is present in the fully software
receiver implemented. Its block scheme is depicted in Figure 5.46.
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Figure 5.46: Block scheme of navigation message demodulation in the receiver architecture.

The message demodulation exploits the phase estimate computed in the data channel, as de-
scribed in Section 4.1.5, using the code of Galileo E1B, to remove the phase from the signal and
to estimate the message symbols. The navigation message data bits are obtained just taking the
real part of I channel correlation values and multiplying them times the exponential e−jϕ̂, in order
to remove the residual phase oscillations, as shown in Figure 5.47. The bits can then be extracted
with the sign operator. The bit transitions can be clearly seen, as depicted in the figure.

In the particular case considered in this example, Galileo E1C codes are used in both channels,
just for test purposes, to check the validity of the algorithm, and without lacking of generality.
This is evident from the data bits reported in the figure, corresponding exactly to the Galileo E1C
secondary code.

5.6 Windowing results
The problem of the search space windowing has been addressed in Section 4.1.4. Briefly recall-
ing, both code delay and Doppler frequency search spaces are reduced, in order to decrease the
computational burden, provided that a good initial estimate is available. However, the true code
delay and Doppler frequency can exit from the actual reduced search space, because of the signal
dynamic. It is then necessary to update the search space, centring it around the true values,
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Figure 5.47: Navigation data bit extraction in Galileo E1B.

with a process denoted signal windowing. When performing windowing, a few points have to be
considered.

• The update process cannot be performed at each iteration, because then most of the benefits
of the open-loop approach would be loosen; moreover, it is really not necessary to update
the search space at each iteration.

• Performing a wrong update is dangerous as much as not performing any update: if the
estimates around which the search space is redefined are wrong, because of a wrong previous
estimation, then invalid measures are obtained. It is necessary to rely on the information
about the new values before applying them.

• Code delay and frequency search spaces redefinitions are independent and can be updated in
different moments.

• Large dynamics or on demand processing (Section 4.3) can fast up the rate of evolution of
the signal parameters and thus require a more frequent and careful windowing process.
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Figure 5.48: Block scheme of the windowing process.

For these reasons, windowing requires a dedicated software routine, based on the following
points:

1. estimation of the quantity (frequency or code delay) at the current epoch;

2. evaluation of the reliability of the quantity;
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3. average/filtering of the last quantity estimates;

4. determination of the necessity to update the search space;

(a) definition of the new quantity around which centring the search space;
(b) update of the information in the frequency wipe-off/code correlation blocks.

This is shown in Figure 5.48; in particular, operations 4.(a) and 4.(b) are performed only if
operation 4. returns a positive answer. Only in this case the loop is closed (feedback represented
by the dotted line).

5.6.1 Code delay windowing
As explained in Section 4.1, the reduced code delay search space size is equal to KL/1023 fractions
of chip. In high resolution mode, this is equal to 12 · 3/1023 = 0.0352, i.e. about 3.5% of the full
search space. The code delay search space is redefined as soon as the last estimate of the code
delay, properly filtered to assure its reliability, enters the 10% area close to the border, as depicted
in Figure 5.49. In this case a new value for the estimated code delay is fixed in the code correlation
block.

𝐾𝐾𝐾𝐾/1023 

80% 

Figure 5.49: Code delay windowing limits.

In the following example an N-FUELS Galileo E1B signal without data bits is tracked for 38 s.
The Doppler profile is set to a linear increase of 10 Hz/s, starting from −5000 Hz (particular values
are chosen just to have a fast changing Doppler rate and code delay rate, to appreciate the effect
of widowing in a small time scale). The search space is updated 6 times: after 11.0 s, 16.4 s, 21.7 s,
27.1 s, 32.6 s and 38.1 s, i.e. every about 5.4 s. Figure 5.50a shows the code delay estimated during
all the simulation; the red dots correspond to the points in which the code delay used to centre
the code search space has been changed.

5.6.2 Doppler frequency windowing
The Doppler frequency reduced search space size corresponds to 1/Tc. The oscillator frequency is
changed as soon as the filtered frequency estimate approaches the 20% area close to the border,
as depicted in Figure 4.13. Figure 5.14 shows the frequency estimate in the same simulation as
above; the red points correspond to the instants in which the wipe-off frequency is changed, as
reported in Table 5.14.
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Figure 5.50: Estimates in the case of signal windowing.

Table 5.14: Frequency windowing updates in a real simulation.

New fD −4957 Hz −4871 Hz −4828 Hz −4784 Hz −4741 Hz −4697 Hz −4654 Hz
time 4.4 s 13.0 s 17.3 s 21.6 s 26.0 s 30.3 s 34.7 s

5.6.3 Duty cycle windowing
When dealing with DC techniques, it is necessary that at any epoch, the true code delay and
Doppler frequency lie within the reduced search space, otherwise the signal cannot be found.
When tracking continuously the signal and in normal conditions this is not a big problem, because
even in high dynamics the code delay rate and the frequency rate are limited and the estimates
should be maintained well centred in the search space. On the contrary, when DC is employed, it is
possible that during the sleep state the signal changes so much that the true code delay and/or the
Doppler frequency exit from the search space. For example, assuming that the code search space
covers 10 chips and that the actual code delay lies exactly in the middle of the search space, and
assuming a relative velocity between user and satellite equal to 500 m/s [69], the code delay covers
half the search space (towards right or towards left) in 10/Rc · c/v ≃ 5.8 s. Therefore the sleep
period should be lower than 5.8 s to assure that the signal can be declared present. Otherwise it
is necessary to predict the trend of the code delay and of the frequency and to define a new search
space at each RTC wake-up. However this approach could decrease the algorithm robustness,
since outliers in the frequency estimation would cause a wrong search space definition, potentially
leading to a missed detection. Filtering techniques, with both the purposes of reducing the impact
of noise and of predicting the evolution of the parameters are implemented.

5.6.4 Effect of Doppler rate
It has been proved (Appendix 7, [37]) that, for the Galileo constellation, the maximum Doppler
shift rate, occurring when the satellite is at the zenith, and for a user moving at a constant speed
of 100 km/h is bounded to 0.7 Hz/s. By fixing K = 16, a negligible frequency change within the
integration period is obtained (less than 0.05 Hz). At the same time, when the user experiences
accelerations, a Doppler frequency rate is introduced. Figure 5.51 depicts the average RMSE for a
signal with C/N0 = 45 dBHz, characterized by a different Doppler rate, from zero up to 15 Hz/s.
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The DFFT technique with p = 2 is still able to estimate the frequency with a good accuracy even
for a Doppler rate equal to 15 Hz/s.
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Figure 5.51: Average RMSE error for a signal at 45 dBHz and different values of the Doppler
rate.

5.7 Duty cycle power saving techniques
An important driver for mass-market receivers design is represented by power consumption. In
order to reduce at maximum the power consumption, the different chip manufacturers adopted
different solutions, most of them are based on the concept that, contrarily to a classical GNSS
receiver, a mass-market receiver is not required to constantly compute a PVT solution. In fact,
most of the time, GNSS chipsets for consumer devices are just required to keep updated information
on approximate time and position and to download clock corrections and ephemeris data with a
proper time rate depending on the navigation message type and the adopted extended ephemeris
algorithm. Then, when asked, the receiver is able to provide a position fix in a short time interval.
By reducing the computational load of the device during the waiting mode, the power consumption
is reduced proportionally.

In order to better understand advantages and disadvantages of power saving technologies, some
of them have been studied and analysed in details in Section 4.3. At the same time a duty cycle
power saving layer has been added to the fully software receiver, as explained in Section 4.3.3. The
results are reported in this section: DC performance is first assessed by comparing the accuracy of
code delay, Doppler frequency and C/N0 estimates when continuously tracking a signal and after
a re-activation following a sleep period, for different signal power levels. Then a full positioning
solution is computed in different scenarios, in the full active state and for various DC patterns.

5.7.1 Accuracy of observables
In the following simulations a Galileo E1B signal generated with N-FUELS is considered. The
data bits are not generated, to emulate the presence of assistance, but the same result could be
achieved by processing the pilot code E1C instead. The Doppler profile is set to a linear increase
of 1 Hz/s, starting from −1000 Hz.

First 6.4 s of data, corresponding to 100 snapshots of 64 ms, are processed in the full active
mode, with the software receiver described in Section 5.1. Then, the same data are processed with
a DC approach, with Ta = 64 ms, Ts = 576 ms, so that 10 snapshots of 64 ms are processed and
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a DC estimate is available every 10 full active estimates. The gain, in terms of execution time,
resulting from the simulations, is about 87 %.

Figure 5.52 shows the code delay and Doppler frequency estimates. The black points are the
result of the full active state processing, while the red crosses represent the estimates when DC is
active. The figure proves that the accuracy is maintained good enough, even when the receiver is
re-activated after almost one second of sleep period.
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Figure 5.52: Full active (black) versus duty cycle (red) estimates.

Figure 5.53 reports the estimated C/N0 in the same two situations, confirming once more that
DC approach gives results very close to the full active standard processing.
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Figure 5.53: Full active (black) versus duty cycle (red) C/N0 estimate.

Figure 5.54 shows the same results but with signals characterized by a lower C/N0 (about
30 dBHz). Also in this latter case, the accuracy of the estimates obtained with DC techniques (red
crosses) is in line with the accuracy in the full active case (black points), confirming the benefits
of this approach and the absence of invalid measures.

5.7.2 The PVT solution
To prove the accuracy of the position solution, GNSS data are generated with an hardware signal
generator (Section A.3.2) and stored in a memory through a SiGe front-end, with fs = 16.3676 MHz
and fIF = 4.1304 MHz. 4 Galileo signals are processed by the multi-correlator open-loop snapshot
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Figure 5.54: Full active (black) versus duty cycle (red) estimates with low C/N0.

software receiver for about 45 s and for different DC patterns, reported in Table 5.15: the full
active case, considered as a reference, and three different DC configurations. Successively, a PVT
is computed with a rate of 1 Hz exploiting a software routine.

Table 5.15: Different configurations of the DC pattern.

Ta Ts update interval DC
Full active – 0 ms 0.064 s 100 %

DC 1 64 ms 576 ms 0.64 s 10 %
DC 2 64 ms 960 ms ≃ 1 s 6.25 %
DC 3 64 ms 1984 ms ≃ 2 s 3.125 %

Static

First the static case is considered; results are reported in Figure 5.55. The true position corresponds
to the GNSS antenna on top of ISMB NavSAS navigation lab. The full active case, obtained
continuously processing 35 s of data is plotted with a white marker. Similarly, the DC cases
reported in the table are drawn. As expected, as long as the sleep state increases, both accuracy
and precision of the position decrease. It can be stated that all the solutions presented reach a
level of accuracy which is acceptable for the majority of mass-market applications. Moreover, it
has to be said that the position is obtained with basic navigation algorithms, without any kind of
filtering, and just adopting a least squares solution. Proper PVT algorithms, such as a Kalman
filter, are expected to improve the results.

Dynamic

A scenario emulating pedestrian and vehicular users has been exploited to test the accuracy of the
results also in the dynamic case. The hardware generator allows to emulate a dynamic trajectory
following a circle of radius 100 m with a certain velocity, equal to 2 m/s and to 15 m/s for the
pedestrian and the vehicular case respectively.
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Figure 5.55: Positioning results for the static case and for different DC strategies.

Results for the pedestrian case are shown in Figure 5.56, while the vehicular case is depicted
in Figure 5.57. In both cases an arc of circle is plotted for full active and DC tracking strategies.
The conclusions are similar to the ones of the static case; a slight deterioration is evident in
DC approaches, but the error is always kept within a few meters, confirming the validity of the
technique and of the parameter propagation strategy described in the paper.
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Figure 5.56: Positioning results for the pedestrian case and for different DC strategies.
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Figure 5.57: Positioning results for the vehicular case and for different DC strategies.
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5.8 Real data results
In this section a few results obtained with real Galileo signals are reported, so as to prove the
capability of the estimation algorithms proposed and the validity of the full open-loop snapshot
processing scheme. The final architecture considered, including antenna, front-end and the software
receiver, is reported in Figure 5.58.
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Figure 5.58: Block scheme of the open-loop receiver architecture as implemented in the fully
software receiver used for Galileo IOV processing.

Summarizing, the RF signal is first captured by a patch antenna then stored on a PC memory
exploiting the SiGE front-end (Section A.2.1. A wipe-off block removes the residual IF component
and the signal enters two separate channels, processing respectively Galileo E1B and E1C signals.
The multi-correlator snapshot processing units performs the partial multi-correlations, at Tc = 4 ms
exploiting a local replica of both data and pilot codes. Then 16 the I and Q correlation values
in the pilot channel are accumulated. Code delay, C/N0, and Doppler are finally estimated at
a rate of 64 ms. At the same time, a phase discriminator and a frequency accumulator compute
the residual phase, in order to properly estimate the bits of the navigation message from I and Q
correlation values in the data channel. The results are then passed to a different software routine
able to compute a PVT solution.

Real Galileo IOV data were collected on June 04, 2014, 01.40 CET, in Torino city centre, Piazza
Castello. The location was chosen in order to confirm the robustness of the snapshot open-loop
approach in a real urban scenario, characterized by interference, multipath and signal obstruction.
At that time all the four Galileo satellites were in view, the sky-plot is reported in Figure 5.59.
During the first 60 s of simulation, the antenna was in a fixed position in the middle of a square
(static scenario). Then, for the following 60 s, the user was moving at about 15 km/h around the
square, thus experiencing signal shadowing and multipath (dynamic scenario).

Nevertheless, at that time the satellite transmitting Code Number 20 (FM4) was not transmit-
ting any valid signal (UNAVAILABLE FROM 2014-05-27 UNTIL FURTHER NOTICE) [73]. In
addition, Code Number 12 (FM2) was broadcasting only words 63. For these reasons it has not
been possible to compute a full PVT solution exploiting only Galileo satellites.

Figure 5.61 reports the C/N0 as estimated by the software routine along the two minutes of data
collection. It is interesting to notice that, as expected, the average C/N0 of satellite 11 is about
5 dBHz lower with respect to PRN 12 and 19. In fact, this SV is characterized by a lower elevation
at the time of the data collection, as confirmed by the skyplot of Figure 5.59. In addition, during
the second minute, in which the user is moving, the same satellite experiences very low C/N0
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Figure 5.59: Skyplot in Torino city centre on June 04, 2014, at 01.40 CET.

Figure 5.60: Path followed during the data collection at about 15 km/h, as a result of GPS only
processing.

levels, down to 30 dBHz, probably because of multipath, signal reflection, and temporary LOS
shadowing. Also satellites 12 and 19 C/N0 estimate exhibits a larger variance in the second part
of the signal analysis, for the same reasons.

Figure 5.62a reports the estimates of the Doppler frequency, computed according to the DFFT
technique described in Section 4.2. In all the three cases, a proper estimate is always provided,
with very few and limited outages, especially in the second part in which a dynamic scenario is
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Figure 5.61: C/N0 estimate for the three Galileo IOV satellites along two minutes of data pro-
cessing.

considered. The performance deterioration for PRN 19 can be explained by comparing the sky-plot
of Figure 5.59 and the track reported in Figure 5.60. It is indeed expected a signal deterioration,
because PRN 19 azimuth is about 180◦ and the user is moving towards the south side of the square,
where some buildings are present. Similarly, Figure 5.62b reports the code delay as estimated by
the receiver.
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Figure 5.62: Parameters estimate for the three Galileo IOV satellites along two minutes of data
processing.
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5.9 A real device: the STM Teseo 2
Some commercial mass-market receivers evaluation boards were available at ESA ESTEC Navi-
gation lab. In particular, the Teseo 2, a stand-alone, single-chip, multi-constellation positioning
device by ST Microelectronics (STM) has been used. The performance of different firmware re-
leases in terms of TTFF, sensitivity and positioning accuracy has been evaluated. More details on
the architecture and characteristics of the Teseo 2 receiver are given in Section A.4.

5.9.1 Time to first fix

As described in (Section 3.2), the TTFF is the time a user has to wait before his device provides a
position fix since it is powered on. Some results for different C/N0, for hot, warm and cold start,
and for different constellation combinations have been obtained using the Teseo 2. First some test
with only GPS and GLONASS constellations were carried out; then Galileo signals are added, and
the receiver performance verified.

GPS and Glonass

Hot and warm start tests were carried out by sending a proper National Marine Electronics Asso-
ciation (NMEA) command to the device. In total 500 trials are considered. Results are obtained
with real GNSS data, captured by a static rooftop antenna at ESTEC premises.

Table 5.16 reports the results. As expected, hot start assures a much lower TTFF. It is worth
recalling that hot start means that all the parameters (such as ephemeris, time and estimated user
position) are already present at power on, so the receiver only has to measure the pseudo-ranges
[34]. It is interesting to notice that while in warm start, the combined use of GPS and Glonass
gives a lower TTFF, in cold start the effect is adverse.

Table 5.16: TTFF in seconds for different cases.

Hot start Warm start Cold start
GPS + Glonass GPS GPS + Glonass GPS GPS + Glonass

50% 2.3 32.3 20.6 35.2 35.5
Max 3.4 39.8 37.9 42.4 42.8
Min 1.6 19.3 13.5 23.7 26.3
Std 0.4 5.5 5.8 3.9 4.1

GPS and Galileo

Figure 5.63 reports the hot start TTFF for different C/N0 values, in the range 25 − 53 dBHz,
computed using the Teseo 2 and hardware generated GNSS data. The receiver is configured
in dual constellation mode (GPS and Galileo) and carries out 40 TTFF trials, with a random
delay between 15 and 45 seconds. In standard AWGN scenario and in hot start conditions, the
results mainly depend on the acquisition strategy and on the receiver availability of correlators and
acquisition engines. In an ideal case with open sky conditions and variable C/N0, the introduction
of a second constellation only slightly improves the TTFF and this result cannot be generalized
since it mainly depends on the acquisition threshold of the receiver, which can be different with
different constellation signals. In real world conditions, the situation can be quite different.
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Figure 5.63: Hot start TTFF for Galileo and GPS configuration vs. C/N0 using the Teseo 2
receiver.

Confirming benefits of I-NAV message

It is interesting to analyse the difference in the TTFF due to the different structure of the GPS and
Galileo navigation message. Galileo E1 signal I/NAV message and GPS L1 C/A signal navigation
message contain data related to the satellite clock and ephemeris and to the GNSS time. These
parameters are important for computing the position, since they describe the position of the
satellites in their orbit, their clock error and the signals transmission times.

Some results in the particular case of cold start, with an ideal open sky AWGN scenario,
computed with the Teseo 2 receiver, are reported in Table 5.17. The TTFF is significantly lower
when using also Galileo satellites: while the mean TTFF when tracking only GPS satellites is equal
to about 31.9 s, it decreases to 24.7 s when considering only Galileo satellites, and to 22.5 s in the
case of dual constellation. Similarly, the minimum and maximum TTFF values are lower when
tracking also Galileo satellites. The 95% probability values confirm the theoretical expectations
[74]. Again, in the ideal case with open sky conditions, the results with two constellations are
quite similar to the performance of the signal with faster TTFF. However, as detailed below, in
non-ideal conditions the usage of multiple constellations represents a big advantage and underlines
once more the importance of developing multi constellation mass-market receivers.

Table 5.17: Comparison between TTFF (in seconds) in cold start for different constellation com-
bination obtained with the STM Teseo 2 receiver.

min Max Mean 95%
GPS 22.2 40.1 31.9 36.2

Galileo 18.6 36.6 24.7 32.3
GPS+Galileo 19.6 35.4 22.5 31.9

TTFF in harsh environments

The TTFF in harsh environments was estimated exploiting an hardware signal generator (Sec-
tion A.3.1) along with the multi satellite LMS model described in Section 3.4.3. About 50 tests,
in hot, warm and cold start, were carried on, first using both GPS and Galileo satellites, and then
using only one constellation. It must be noted that in the second case only the 2D fix is considered,
since, according to the scenario described, at maximum three satellites are in view. Table 5.18
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reports the results for the double constellation case: in hot start the average TTFF is about 8 s,
and it increases to 36 s and 105 s respectively for the warm and cold cases. It is straightforward
that the results are much worse than in the case reported above, where full open sky AWGN con-
ditions are considered. In this scenario only 6 satellites are available at maximum; moreover, the
presence of multipath and fading affects the results, and they exhibit a larger variance, because of
the varying conditions of the scenario.

Table 5.18: TTFF (in seconds) exploiting GPS and Galileo constellations in harsh environments
obtained with the Teseo 2 receiver.

min Max Mean
HOT start 4.5 12.4 7.9

WARM start 31.5 67.2 36.3
COLD start 40.5 265.7 105.0

At the same time, in Table 5.19 similar results, but for the GPS only case, are reported. In
this case the Teseo 2 has been configured to track only GPS satellites. The mean TTFF increases
both in the hot and in the warm start case, whereas in cold start it is not possible compute a
2D fix with only three satellites; the ambiguity of the solution cannot be solved if an approximate
position solution is not available. It can seem unfair to compare a scenario with three satellites
with a scenario with six satellites. However, it can be assumed that this is representative of what
happens in limited visibility conditions, such as an urban canyon, where a second constellation
theoretically double the number of satellites in view.

Table 5.19: TTFF (in seconds) exploiting only GPS constellations in harsh environments ob-
tained with the Teseo 2 receiver.

min Max Mean
HOT start 4.7 38.0 11.8

WARM start 31.6 109.7 51.9
COLD start N.A. (*) N.A. (*) N.A. (*)

* 4 SVs required for cold start

These results confirm the benefits of dual constellation mass-market receivers in harsh environ-
ments, especially in urban canyons, where the number of satellites in view can be really low. Making
use of the full constellation of Galileo satellites will allow mass-market receivers to substantially
increase performance in these scenarios.

5.9.2 GGTO
Time is a crucial feature in satellite-based radio navigation systems. The elapsed time between the
transmission of a GNSS signal and its reception by a receiver, multiplied times the speed of light,
provides the basis for calculating the pseudo-range. However, GPS and Galileo are using different
reference time systems, and thus a time difference arises: the GGTO [75].

To be more precise the pseudo-ranges determined with Galileo are referenced to the GST, while
the ones from GPS use the GPST as a reference. The GST is steered to a prediction of UTC,
modulo one second, obtained through an external time service provider. GST will be kept to within
50 ns (95%) of UTC, modulo one second, over any one-year time interval. The offset between UTC
and GST (respectively modulo one second) will be known with a maximum uncertainty of at least
28 ns (2-σ).
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Different implementation solutions

When computing a PVT solution with mixed signals, three solutions are possible:

1. GGTO determination at user level: the GGTO can be estimated from the navigation
equations. Then, five unknowns need to be determined: the user’s 3D position, the time bias
between the user and Galileo (or GPS) and the GGTO. This means at least five pseudo-range
measurements.

2. GGTO determination at system level: the signals broadcast by GPS and Galileo satel-
lites include the GGTO in the navigation message. So the receiver can apply this broadcasted
GGTO to account for the time offset. This way, it only has to determine the 3D position
and the time bias between the receiver and the navigation system. The navigation solution
is obtained with at least four pseudo-range measurements, but the navigation message has
to be decoded.

3. Hybrid solution: for users who do not want to use the broadcast GGTO, but still need to
deal with restricted visibility condition, it is in fact possible to just determine the GGTO with
the fifth satellite on their own, when enough visibility conditions are good. Afterwards, when
satellite visibility conditions worsen, the receiver can switch to the four parameter solution,
utilizing the last computed GGTO estimate, opportunely smoothed to reduce its noise. This
exploits the assumption that the constellation time-offset slowly drifts over time: indeed the
inherent variations of stochastic nature are assumed to cause an error around 0.2 ns (RMS)
in one hour time interval [76].

The Teseo 2 exploits the second solution. The driving performance requirements associated to
GGTO can be summarized as [77]:

• GGTO validity: the validity period of the GGTO shall be a minimum 24 consecutive hours;

• GGTO offset accuracy: the accuracy of the offset between GST and GPS Time (modulo 1 s)
shall be less than 5 ns with a 2-σ confidence level over any 24 hours;

• GGTO Stability: The stability of the GGTO, expressed as an Allan deviation, shall be better
than 8 × 10−14 over any 1 day.

GGTO parameters computation

In order to test the Teseo 2 receiver and to evaluate the performance of the receiver computing the
PVT with a combination of constellations, a Spirent scenario with GGTO dedicated configuration
has been set up, starting from the nominal GPS+Galileo scenario. The GGTO can be simulated
in the Spirent signal generator (see Figure 5.64) by setting the GST to GPS time offset. The true
GGTO, that is basically the difference of the A0 (offset), A1 (offset rate) and A2 (offset acceleration)
parameters between GPS and Galileo, is used to model the time difference and is broadcast in the
navigation message. The user is also given the opportunity to generate clock divergence terms that
are not broadcasted as correction terms but apply only in the RF generation: the ∆A0, ∆A1, ∆A2
terms are divergence errors, thus applying at the signal level but not included in the navigation
message.

In order to compute the A0 parameter let’s assume that the difference between GPS and
Galileo system time is in between 10 and 20 m, corresponding respectively to 10/(3 × 108) and
20/(3 × 108) s, approximately equal to 30 and 60 ns. So

A0 = 30 ns = 3 × 10−2 µs . (5.6)
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Figure 5.64: GGTO determination in the Spirent simulator.

A1 is chosen in such a way that the maximum drift in the simulation time is less than 60 ns.
Considering a simulation time of 1 day, we have:

A1|A0 +A1Tsim = 60 ns , (5.7)

that is

A1 = 60 ns −A0
Tsim

= 60 ns − 30 ns
86 400 s = 3.47 × 10−7 µs/s . (5.8)

From the requirements (Allan deviation) we know that the stability shall be better than 8 × 10−14

over any 1 day. Supposing that the ∆A2 is equal to 0 µs/s2, then it is possible to compute ∆A1
in microseconds, and we have:

∆A1 = 8 × 10−8 µs/s . (5.9)

∆A1 is computed in such a way that the maximum deviation does not exceed 5 ns ± 2-σ,

∆A0|∆A0 + ∆A1Tsim < 5 ns . (5.10)

So
∆A0 < 5 ns − 8 × 10−8 ns/s · 4 600 s = 4.7 ns . (5.11)

It is possible to choose for example ∆A2 = 2 ns. The equation to add the ∆A2 parameter is:

∆A1 + ∆A2Tsim < 5 ns . (5.12)

Two scenarios have been defined. They are identical concerning constellations, signal power
and standard parameters. The difference is only in GGTO definition.

138



5 – Tests and Results

Scenario GGTO 1 
A0 = 0.03 µs
A1 = 3.4722 × 10−7 µs/s
∆A0 = 0 µs
∆A1 = 0 µs/s

. (5.13)

This is a nominal scenario, in which the same corrections on the GGTO are transmitted in the
navigation message and used in the signal generation. Therefore all the divergence terms are set
to 0. It is useful to test with the Teseo 2 the correct decoding of the A0 and A1 parameters of
the I-NAV, as done in some of the tests reported below. On the right window of Figure 5.65 some
information confirm the correct demodulation of the parameters.

Figure 5.65: GGTO demodulation with the Teseo 2.

Scenario GGTO 2 
A0 = 0.03 µs
A1 = 3.4722 × 10−7 µs/s
∆A0 = 0.002 µs
∆A1 = 8 × 10−8 µs/s

. (5.14)

This is a more realistic scenario, in which there are some divergence terms, as computed above.
The GGTO transmitted in the navigation message is different from the GGTO used to generate
the signal. In this case some problems at the receiver can be expected.

Both scenarios have been tested at ESTEC navigation lab, confirming the correct implementa-
tion of the GGTO decoding and GPS+Galileo mixed solution in the latest releases of the Teseo 2
firmware analysed.

GGTO and TTFF

Furthermore, it is interesting to analyse more in details the case of GPS and Galileo joint solution
TTFF, which is strictly related to GGTO. As reported above, when computing a PVT solution
with mixed signals, three solutions are possible: either to estimate it as a fifth unknown, or to
read it from the navigation message, or to use pre-computed value. In the first case it is not
necessary to rely on the information contained in the navigation message, eventually reducing the
TTFF. However, five satellites are required to solve the five unknowns, and this is not always the
case in urban scenario or in harsh environments, as it will be proved below. On the contrary, in
the second case, it is necessary to obtain the GGTO information from the navigation message,
and since it appears only once every 30 seconds, in the worst case it is necessary to correctly
demodulate 30 seconds of data. Both approaches show benefits and disadvantages, depending
on the environment. The Teseo 2 exploits the second solution: in this case, it is possible to
see an increase in the average TTFF when using a combination of GPS and Galileo, due to the
demodulation of more sub-frames of the broadcast message.

Advantages and disadvantages of using the broadcast GGTO when computing a mixed GPS
and Galileo position can be evaluated also in harsh conditions. During some tests, the scenario
described in Section 3.4.4, where the 3 GPS and 3 Galileo signals, affected by fading and multipath
(LMS Multi-SV model), are considered, is tested with the Teseo 2 receiver.
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Figure 5.66: Number of satellites tracked by the Teseo 2 receiver in the Multi-SV LMS 3GPP
simulation.

Figure 5.66 shows the number of satellites in tracking state for 30 minutes of test. When the
LMS channel conditions are good, all the six SVs in view are in tracking state. However, when the
fading becomes important, the number is reduced to only two satellites. If the receiver is designed
to extract the GGTO from the navigation message, then a PVT solution is possible also when only
four satellites are in tracking state, i.e. for 90% of the time in this specific case. On the contrary, if
the GGTO has to be estimated, one more satellite is required, and this condition is satisfied only
57% of the time, strongly reducing the probability of having a fix. Nevertheless, estimating the
GGTO requires the correct demodulation of the navigation message, and this is possible only if
the signal is good enough for a sufficient amount of time.

Real data results

Since May 2013 Galileo IOV satellites started the transmission of a valid GGTO in the navigation
message. The Teseo 2 combined fix has been tested with real GPS and Galileo data, correctly
demodulating the broadcast GGTO, as reported in Figure 5.67.

Figure 5.67: Screenshot of the GPS testing tool showing the correct demodulation of the GGTO.
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5.9.3 Sensitivity in harsh environments
As firstly reported in Section 3.2, a receiver capability to work in hostile environments is measured
in terms of sensitivity. Sensitivity can be measured by verifying the device performance when
artificially decreasing the received signal strength or adding multipath effects.

Tracking tests

Results in terms of TTFF in harsh environments are reported in Section 5.9.1.
A 30 minutes tracking test has been carried out with the Teseo 2 and compared with the

results of the fully software receiver, exploiting the data of the Multi-SV LMS 3GPP scenario
(Section 3.4.4). Both the receivers were able to process the signals, even with some LOLs due
to fading and multipath reflections. Figure 5.66 reports the number of satellites in tracking state
in the Teseo receiver at every second, while Figure 5.68 reports the HDOP as computed by the
receiver. It is interesting to note that when all the six satellites are in tracking state the HDOP
lies in the range 1.4 – 2.1, as expected from the simulation scenario definition; on the contrary in
correspondence with a LOL it increases.
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Figure 5.68: HDOP computed by the Teseo 2 receiver in the Multi-SV LMS 3GPP simulation.

Figure 5.69 shows a comparison between the power of the signal generated by the simulator
and the power estimated by the Teseo 2, in the case of GPS PRN 7 and Galileo code number 23.
This proves the tracking capability of the receiver also for high sensitivity. In order to deal with
low power signals, the integration time is extended both for GPS and for Galileo, using the pilot
tracking mode in the latter case.

Finally Figure 5.70 and Figure 5.71 show respectively the position and the velocity solution.
In the first case latitude, longitude and altitude are plotted, while in the second case the receiver
speed estimate in km/h is reported.

5.9.4 Concept of loss of lock
The main effect of signal shadowing, multipath and interference nuisances in legacy tracking loops
is represented by the LOL. A LOL occurs any time degradations in the received signal prevent
the tracking loops to lock into a stable lock point. It usually happens upon the exit of the loop
discriminators from their linearity zone and it leads to errors in the estimates of Doppler frequency,
phase and delay. The signal is declared lost and the tracking stage ends: in most receivers, it is
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Figure 5.69: C/N0 estimate computed by the receiver in harsh environments and compared with
the signal power.
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Figure 5.70: Teseo 2 position solution in LMS scenario.

signalled by setting the C/N0 estimate to 0 dBHz, as reported in Figure 5.72a. At the same time
pseudo-range and frequency estimation (reported in Figure 5.72b) are not available.

Because of the limited bandwidth of the loops, when a severe LOL occurs it is necessary to
reacquire the signal, i.e. to go back to the acquisition stage. This process is time and resources
consuming; it has been proved and reported in Figure 5.72a that a receiver adopting the standard
acquisition and tracking scheme can take up to 3 or 5 seconds to reacquire the signal after a
LOL, even if the signal degradation lasts only a fraction of second, unless specific techniques are
implemented. This time interval is not only due to the reacquisition process itself and to the
availability of acquisition engines, but also to the time needed to detect and declare a LOL and to
the channel characteristics at that time. As depicted already in Figure 5.69, it can happen that
for a few seconds the receiver stops tracking the signal.

This problem is absent when adopting open-loop snapshot techniques. In fact, since no feedback
mechanisms are present, the signal nuisance affects only one processing epoch, exactly for the time
duration of the nuisance. As soon as the signal degradation ends the receiver operates again,
without the need to reacquire the signal. It has to be pointed out that the concept of LOL is not
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Figure 5.71: Teseo 2 velocity solution in LMS scenario.

Time (s)
0 10 20 30 40 50 60

C
/N

0
 (

dB
H

z)

0

10

20

30

40

50

(a) C/N0

Time (s)
10 20 30 40 50

D
op

pl
er

 fr
eq

ue
nc

y 
(H

z)

-655

-650

-645

-640

-635

(b) Doppler Frequency

Figure 5.72: Teseo 2 estimates when tracking signals affected by LMS.

applicable to open-loop schemes; the expression invalid measure is indeed more appropriate. To
prove this fact, a comparison between a standard receiver adopting a DLL and a FLL and the
snapshot software receiver is carried out in the case of LMS affected signal. In particular, the
Scenario described in Section 3.4.4 with the LMS model of Section 3.4.2 is set up on an hardware
signal simulator. First the Teseo 2 receiver is connected to the signal generator, and a tracking test
in run; NMEA data are stored. Secondly, the same amount of data is grabbed with the bit grabber
described in Section A.2 and post-processed with the software receiver described in Section 5.1.

It has been proved that the Teseo 2 receiver exhibits several LOLs. In a 10 minutes simulation
with the following results are reported:

• average outage period: 12.6%

• average duration of a LOL: 7.96 s

• LOL probability: 0.8%

It is clear that the robustness of the receiver is strongly reduced when the LMS time series is
added to the signal: during almost 1/6 of the total time the receiver is not providing any valid
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result. On the contrary, when the same GNSS signal is processed with the fully software receiver
the results are significantly better. When adopting a total integration time of 64 ms the effects of
the signal degradation are significantly limited, and they are totally transparent when increasing
it to 128 ms.
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Figure 5.73: C/N0 estimation comparison in a signal affected by LMS nuisances.

Figure 5.73 shows a comparison of the C/N0 estimated by the Teseo 2 and by the snapshot
software receiver, along with the reference C/N0 time series from the hardware signal generator,
over a time interval of 30 s. It has to be said that the C/N0 is a good parameter to analyse
the quality of the receiver, despite the low rate of this measure available from the Teseo NMEA
messages. The red curve corresponds to the true signal power, as generated by the signal generator.
The green curve, corresponding to the Teseo 2 tracking loops output, exhibits 2 drops to 0 dBHz,
corresponding to 2 LOLs, lasting about 3 seconds. During these intervals the signal is not tracked
and no measures are available, even if the degradation occurs only for a few milliseconds. On the
contrary the estimate of the software receiver is much closer to the true C/N0 value, proving that
the open-loop snapshot solution performs better. This is confirmed by the plots of the code delay
and of the frequency reported in Figure 5.74b, where some outliers are present. In these cases,
some estimates are clearly wrong, due to invalid measures in the multi correlation stage and in the
FFT estimation. However, as soon as the fade ends the open-loop software receiver immediately
provides a valid measure. In the case of 128 ms the trend of the estimates is very smooth, and
no invalid measures occur. It is interesting to note that the outliers present in the case of 64 ms
integration correspond exactly to the time instants in which the C/N0 is low in Figure 5.73, as
reported in Table 5.20.

Table 5.20: C/N0 measures corresponding to LOL events.

Time (s) 13.7 14.53 15.23 16.32 18.62 21.12 21.82 27.33 28.22 30.02
C/N0 (dBHz) 20.8 23.4 13.4 9.1 19.5 20.8 12.4 23.5 24.6 23.9
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Figure 5.74: Elevation and azimuth of Galileo IOV satellites as computed from navigation mes-
sage.

5.10 Galileo IOV results
On March 12, 2013, for the first time, the four Galileo IOV satellites were switched on at the same
time, broadcasting a valid navigation message [16]. From 9.02 CET, all the satellites were visible
at ESTEC premises at the ESA’s technical site, in Noordwijk, The Netherlands, allowing a team of
researchers of ESA and myself to perform the first Galileo only position fix. The achieved accuracy
of better than 10 meters met expectations, taking into account the limited infrastructure deployed
so far [16].

5.10.1 First Galileo IOV dynamic PVT
At the same time, some results were obtained tracking Galileo satellites with the Teseo 2 receiver.
In particular, thanks to its small size and portability, it was installed on a mobile test platform,
embedded in the ESA’s Telecommunications and Navigation Test-bed vehicle (Figure 5.75). Then,
exploiting a network connection, it was possible to follow, from the navigation lab, the real time
position of the van moving around ESTEC. The receiver was also saving NMEA messages to a
local memory; the results reported in the following have been obtained post-processing these data.
To the best of the authors’ knowledge, this represents the first Galileo only mobile navigation
solution.

An important consideration has to be done: the results obtained with the Teseo 2 have to
be considered preliminary, since its firmware supporting Galileo was in an initial test phase (for
example the absence of ionospheric model and the tracking of the E1B data channel only). With
the latest releases of the Teseo 2 Galileo firmware even better results are expected.

Sky-plot

Figure 5.76 shows the sky-plot of the Galileo constellation around 10.30 CET at ESTEC premises:
all the four IOV satellites are in view. However the Code Number 11 (311) has a very low elevation,
although it is rising. Moreover some buildings around the van parking slot were obstructing the
line of sight path to the satellite. Only after about 35 minutes the mobile test unit was moved and
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Figure 5.75: ESA’s mobile test bed unit.

the Teseo 2 was able to acquire and track all the four signals, and thus to pass from a 2D fix to a
3D fix. It is noted that the geometry is not optimal, as proved by the high Position Dilution Of
Precision (PDOP).
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Figure 5.76: Galileo constellation sky-plot around 10.30 CET at ESTEC premises.
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Satellites elevation and azimuth

Elevation and azimuth for each satellite have been computed according to the content of the
Navigation message demodulated by the receiver and saved in the NMEA messages. Results are
reported in Figure 5.77.
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Figure 5.77: Elevation and azimuth of Galileo IOV satellites as computed from navigation mes-
sage.

C/N0 estimate

The C/N0 is estimated by the receiver with rate 1 Hz, and the result is reported in Figure 5.78.
From this figure it is possible to see that the SV Code Number 11 has been tracked only after about
30 minutes, i.e. when its elevation was higher and it was in line of sight with the receiver antenna.
Moreover, its average C/N0 is lower with respect to Code Number 12, 19 and 20, as expected from
its lower elevation angle. The average C/N0 of each satellite is proportional to its elevation: Code
Number 20, characterized by the highest C/N0, oscillating in the range 45 to 50 dBHz, was in fact
the one with highest elevation. Also the rising and setting trend is respected.

Pseudo-range estimate

Estimate of the pseudo-range of the four satellites are also reported in NMEA messages at 1 Hz rate
and depicted in Figure 5.79. It is noted that the Teseo 2 gives as output raw range measurements,
which need to be turned into pseudo ranges. Data are also affected by a nominal drift of about
9 000 m/s due to the nominal clock offset. This is clear from Figure 5.80, where a zoom of the
third plot of Figure 5.79 is reported.

Doppler frequency estimate

The Doppler frequency estimate by the FLL of the Teseo 2 is reported in Figure 5.81; results are
consistent.
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Figure 5.78: C/N0 of Galileo IOV satellites as estimated by the Teseo 2.
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Figure 5.79: Pseudo-ranges of Galileo IOV satellites as estimated by the Teseo 2.
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Figure 5.80: Zoom on the pseudo-range estimate of satellite 19.

Time (s)
1000 2000 3000 4000 5000 6000

D
op

pl
er

 fr
eq

ue
nc

y 
(H

z)

-5000

0

5000

(a) Code number 11
Time (s)

1000 2000 3000 4000 5000 6000

D
op

pl
er

 fr
eq

ue
nc

y 
(H

z)

-5000

0

5000

(b) Code number 12

Time (s)
1000 2000 3000 4000 5000 6000

D
op

pl
er

 fr
eq

ue
nc

y 
(H

z)

-5000

0

5000

(c) Code number 19
Time (s)

1000 2000 3000 4000 5000 6000

D
op

pl
er

 fr
eq

ue
nc

y 
(H

z)

-5000

0

5000

(d) Code number 20

Figure 5.81: Doppler frequency of Galileo IOV satellites as estimated by the Teseo 2.

Satellites in tracking

The number of satellites in tracking state is reported in Figure 5.82a. For the first 30 minutes they
are only 3, namely Code Numbers 12, 91 and 20. Code number 11 was low on the horizon, and
shadowed by buildings. Around 2 300 s after the test started, the van started to move, and for
a few seconds the SV 19 is acquired, even if several LOLs are experienced. Again, around about
5 600 s, one on the four signals exhibits a LOLs.

Horizontal Dilution of Precision

It is also interesting to analyse the HDOP, as expected from the sky-plot. It is noted that a
reliable value of the HDOP is obtained only when 4 or more satellites are in tracking. As already
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Figure 5.82: Teseo 2 results.

outlined this happens only after about 30 minutes. At about 5 600 seconds the HDOP explodes
again, because of a LOL of one satellite, as seen in Section 5.10.1. Excluding the outliers due to
the presence of only 3 SV, a general decreasing trend of the HDOP is evident from the figure, sign
that the geometry is improving.

Position solution

The position solution in latitude, longitude and altitude is computed by the Teseo 2. Results are
reported in Figure 5.83.
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Figure 5.83: Teseo 2 position solution.

The same results are plotted in Google Earth, as shown in Figure 5.84 Once more it is outlined
that the results obtained have to be considered preliminary. First because it was the first test with
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IOV satellites and with the limited infrastructure deployed so far. Second because the firmware
supporting Galileo was in an initial test phase.

Figure 5.84: Galileo only Teseo 2 mobile fix, computed on March 12, 2013.
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