
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

GAINE - tanGible Augmented INteraction for Edutainment / Bottino, ANDREA GIUSEPPE; Martina, Andrea; Toosi,
Amirhosein. - In: EAI ENDORSED TRANSACTIONS ON FUTURE INTELLIGENT EDUCATIONAL ENVIRONMENTS. -
ISSN 2409-0034. - ELETTRONICO. - 15:5(2015), pp. 207-216. [10.4108/icst.intetain.2015.259627]

Original

GAINE - tanGible Augmented INteraction for Edutainment

Publisher:

Published
DOI:10.4108/icst.intetain.2015.259627

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2601782 since: 2016-01-15T15:31:25Z

European Alliance for Innovation

GAINE - tanGible Augmented INteraction for
Edutainment

Andrea Bottino, Andrea Martina, Amirhosein Toosi
Dipartimento di Automatica e Informatica

Politecnico di Torino
Torino, Italy

{andrea.bottino, andrea.martina, amirhosein.toosi}@polito.it

Abstract— Interactive tabletops are gaining an increasing
interest since they provide a more natural interaction with digital
contents and allow the interaction of multiple users at a time
promoting face-to-face collaboration, information sharing and
the raise of social experiences. Given the potentialities offered by
these devices, several entertainment-edutainment applications
based on interactive tabletops have been successfully developed
in different areas, from medical therapy support to children’s
collaborative learning, interactive storytelling and cultural
heritage. However, the development of such applications often
requires complex technical and implementation skills. Taking
this into consideration, in this paper we present GAINE
(tanGible Augmented INteraction for Edutainment), a software
framework aimed at the rapid prototyping and development of
interactive tabletop games. GAINE offers developers context
specific high-level constructs and a simple scripting language that
simplifies the implementation task. The framework is portable on
different operating systems and offers independence from the
underlying hardware. Two practical case studies are thoroughly
discussed to show how GAINE can simplify the development of
interactive tabletop applications in the entertainment and
edutainment contexts.

Keywords—Edutainment, entertainment, interactive tabletops,
tangible user interfaces, toolkit

I. INTRODUCTION

In the last few years, the multi-touch tables emerged as a
powerful tool to integrate interactive surfaces and responsive
spaces that embody digital information, providing several
advantages over conventional desktop setups. First, interactive
tabletops offer users a direct and, thus, more natural interaction
with on-screen contents. This naturalness is further enhanced
when such devices support the use of tangible objects,
recognized and tracked once placed on the table surface.
Second, interactive tabletops allow the interaction of more than
one user at a time, promoting collaboration, information
sharing and the rise of social experiences.

A large variety of applications started deploying the
benefits of using this technology, in particular to make
computer applications more accessible to different categories
of users, like children, users with physical or psychological
disabilities and elderlies. Several research in this area, mainly
focused on exploiting edutainment and entertainment
applications, have been reported in the literature. Interactive

tabletops games have been used to teach, improve and exercise
social and communicational skills among children with autism
spectrum disorders ([5][6][7]). In [8] a tangible tabletop
application was developed to support children's decision
making and collaboration. The use of psychophysiological
measures as input technique for social tabletop gaming
application intended for children was investigated in [9]. The
potentialities of tabletop interactive games in supporting
medical therapies have been also explored. Examples can be
found in [10], which describes a game developed for children
with cerebral palsy, or in [11], where VR training based on a
tabletop game was proved to be a viable adjunct to
conventional physical therapy in facilitating motor learning in
patients with traumatic brain injuries. Other research showed
the capabilities of entertainment and edutainment applications
based on tabletop interactive interfaces in various fields, from
classroom collaborative learning [12] to interactive storytelling
[13][14], pervasive games [15] and museum exhibits [16][17].

Despite the capabilities offered by interactive tables,
developing applications that fruitfully exploit them presents
some inherent difficulties and requires complex technical and
programming skills. In order to mitigate this problem, in this
paper we present GAINE (tanGible Augmented INteraction for
Edutainment), a software framework specifically designed to
simplify the prototyping and development of interactive
tabletop applications in educational and entertainment contexts.

GAINE provides an abstraction layer that hides the
underlying complexity of the hardware and software libraries
necessary to manage a tabletop interactive game. Furthermore,
the framework offers developers high-level constructs,
representing the basic application building blocks, which
facilitate the implementation task. In this sense, GAINE is
similar to other tabletop toolkits presented in the literature,
such as [19][25][27][36]. However, we took a step forward in
simplifying the application design by offering developers a
reusable, semi complete application that can be completely
customized through an easy-to-use, XML-style scripting
language.

The rest of the paper is organized as follows. In Section II
we review the current state of the art of interactive tabletops
toolkits. Then, Section III presents the GAINE framework and
Section IV discusses the design of two tangible games using

INTETAIN 2015, June 10-12, Torino, Italy
Copyright © 2015 ICST
DOI 10.4108/icst.intetain.2015.259627

GAINE. Finally, conclusions and future works are outlined in
Section V.

II. RELATED WORKS

Various toolkits have been developed explicitly to facilitate
the creation of tabletop applications based on multi-touch and
tangible user interfaces. They are all centered on the idea of
abstracting (i) the underlying hardware level, and (ii) the
complexity of the core tabletop interaction functionality, i.e.
obtaining and managing the low level information related to
touch and fiducial identification and tracking. These
characteristics allow developers to focus on the design of their
applications.

The available toolkits can be broadly divided into two
categories. The first includes libraries that merely deal with the
low level input processing tasks, such as image segmentation,
object recognition, noise filtering and calibration. Examples of
such toolkits are reacTIVision [30], an Open Source computer
vision library initially developed for the Reactable [18],
LightTracker [23], Touchlib [26] and Community Core Vision
[24]. These toolkits usually run as standalone modules which
encode and send data to an external application. The TUIO
protocol [30] has become the standard de-facto for transmitting
interaction information.

The second category of toolkits includes higher level
frameworks. These toolkits often rely on libraries of the
previous class to manage low-level task and, on top of them,
provide advanced tools that simplify the rapid prototyping of
applications. PyMT [25] is a Python library that provides
multi-touch widgets and recognition of several multi-touch
gestures. However, PyMT does not provide support for
tangible interaction. Similar characteristics are offered by
uTableSDK [29] and DiamondSpin [28]. More advanced
features are provided by TUIO AS3 [27], an Actionscript 3
(AS3) wrapper of the TUIO protocol. Tactive [36] is a software
library for the rapid development of multi-touch applications
only, since it lacks support for tangible interaction. Tactive is
based on a Javascript API that allows developer to use, for the
implementation tasks, only web technologies and,
consequently, to reuse any web application already available in
a multi-touch context. ToyVision [19] is another AS3 wrapper,
which is based on an extension of the reacTIVision toolkit that
supports a larger set of tangible playing pieces by including in
the recognition process shape and color information. An
additional contribution is provided by the ROSS library, which
aims at exploiting in the interaction a larger portion of Tangible
User Interface space. ROSS provides an abstraction of tangible
platforms, full-body interaction spaces and responsive objects
(e.g. RFID tags, smartphones) that facilitates to developers
their integration into any ROSS based application.

According to this taxonomy, the GAINE framework
discussed in this paper falls into the higher level toolkits
category, further extending the simplifications of the
development process offered by other solutions.

III. THE GAINE FRAMEWORK

As we stated in the introduction, GAINE is a software
framework aimed at supporting a rapid prototyping and
development of tabletop interactive applications. Another
characteristic of the framework is that it is portable on different
operating systems and hardware setup.

We stress the fact that GAINE is not a general-purpose
library; on the contrary, it has been specifically designed to
support the development of projects with entertainment and
edutainment purposes. Thus, GAINE offers developers specific
high-level constructs tailored to these contexts and a simple
scripting language that simplifies the implementation task (as
we will show in Section IV). Taking this into consideration, in
the following we will refer, without loss of generality, to any
GAINE-based application as “the game”.

In this section we first briefly introduce the hardware
structure used as reference for its development. Then, we
provide a detailed description of the GAINE software
framework.

A. GAINE Hardware: the interactive table

GAINE was tested and developed on a custom multitouch
interactive table that supports user interaction through both
multiple touch and tangible objects. The table surface features
a rear-projection screen with a 1080p short throw projector,
placed beneath the table, which allows the use of a single
mirror. The overall height of the wheeled table box is 110 cm.
The top surface of size 100x80 cm hosts the screen which is
framed into a border that allows players to lean objects on the
table.

The table features as well a secondary output, though its
use is not mandatory, which can be connected to an external
monitor or projector to provide either an information screen
(e.g. for displaying game statistics and messages) or a different
view on the game environment.

Fig. 1. A schematic of our multitouch interactive table.

The interaction on the table surface integrates both multiple
touch and tangibles objects tagged with fiducials. Both touch
and fiducial recognition are based on optical tracking
techniques. These techniques rely on infrared light (IF)
illuminating the table surface and being reflected towards an

IF-camera as soon as fingers or fiducials hits the surface. The
images of the IF camera are then processed by a computer
vision algorithm to track the objects of interest.

Our interactive table uses a combination of Diffused
Illumination (DI) and Frustrated Total Internal Reflection
(FTRI). With DI, the table surface is illuminated from IF
emitters placed below the surface [21], while with FTIR [22]
the lights come from the side and is transmitted into the surface
material, a special Enlighten acrylic. Their combination
provides a more robust tracking, since DI can reliably track the
fiducials, provided that the surface is equally illuminated, and
FTIR offers a better solution for tracking fast finger
movements. Illuminators for both DI and FTIR have the same
wavelength (850 nm).

Fiducial and finger tracking is performed by the
reacTIVision toolkit. The library features as well a calibration
procedure, aimed at correcting the distortions introduced by the
camera optics. ReacTIVision provides a library of 216 distinct
fiducials, a number which allows great flexibility in developing
tabletop games. If needed by the application, the list of
fiducials or their characteristics can be extended in order to
deal with specific requirements, as shown in [19].

The reacTIVision trackers runs as a stand-alone module
that streams captured data to the application software,
according to the TUIO protocol, through an UDP channel.
These data include position and ID of detected fingers and
position, orientation, size, ID and class type (i.e. the symbol
drawn) of detected fiducials. The combination of ID and class
type allows tracking and using multiple instances of the same
fiducial.

Since reacTIVision abstracts the hardware level, GAINE-
based application can be translated to interactive tables based
on different hardware devices. Even in case of devices that
cannot offer both finger and fiducial tracking or the availability
of an external display, GAINE still provides a wide set of
functionalities for the development of effective tabletop games
and applications.

B. The GAINE Software Framework

The GAINE framework is composed by different
intercommunicating functional blocks. The main module is the
GameManager, which starts the application, reads the
configuration scripts, creates the digital contents, stores and
evolves the application state and, finally, generates the outputs.
Graphics rendering relies on OpenSceneGraph (OSG), a
popular 3D engine framework. OSG is an open source scene
graph API that provides high performances, advanced features,
a wide range of loaders for different 2D/3D and multimedia
contents, support for multi-core and multi-gpu systems and
portability on different platforms. Audio rendering is managed
through osgAudio, an OSG plugin that wraps OpenAL, a cross-
platform audio API.

The EventManager is responsible of handling and
communicating the events generated by a GAINE application.
The event management system implements the classic delegate
event model, characterized by event sources (controls) and
event listeners (consumers), which receive the events from the
sources.

The main event source is the tabletop surface, which
communicates through the TUIO protocol the data related to
tracked fingers and fiducials. Multiple fingers of multiple users
can be tracked at once, and the objects involved by these
interactions are first identified. Then, for each object,
interaction data are translated into multitouch gestures and
communicated to the object. Currently, only tap, drag, pinch
and rotate gestures have been considered but, as future work,
we are planning to handle other core gestures ([20]). The three
TUIO events available for fiducials are add, remove and
transform (move or rotate), which are redirected to the
ObjectManager module, which handles digital contents related
to tangible playing pieces. As for system events, user-defined
events and those generated by the GUI elements, the
EventManager simply acts as a collector, pairing controls and
consumers.

The remaining GAINE modules are the ObjectManager,
which handles the creation, destruction and state evolution of
the digital playing pieces, and the WidgetManager, which
creates and manages the GUI elements.

We recall that the GAINE HW features a dual screen setup:
the tabletop surface, where the user interaction takes place, and
a secondary screen can be used to provide additional
information on the game or a different view on the game board.
These two screens can be totally independent, and the decision
of which contents to show and how they should be displayed
on each of them is let to the developers.

Digital contents (i.e. the playing pieces and the GUI
elements) can be either 3D or 2D and they can be categorized
into four different classes (game objects, tiles, agents and
widgets), which are detailed in the following subsections.
These elements are defined in two different reference systems:
the screen space (for widgets and TUIO data) and the world
space (for the 2D/3D models representing game objects, tiles
and agents). The transformation that relates the two reference
systems is computed during the calibration step, with a
procedure that relies on a specific calibration pattern containing
a grid of fiducials of known size placed on the table surface.

1) Game objects
Game objects are the basic digital elements displayed by

the game. Game objects can be the game board on the tabletop
surface or the background 3D scenario shown on the secondary
screen. Other examples of game objects are digital playing
pieces and accessory elements (e.g. a digital dice). The
characteristics of the game objects classes can be completely
defined by the developers in a configuration script. Game
objects can be made interactive and the developers can define
their response to user inputs. As for their representation, one or
multiple 2D or 3D models, called switches and described in
more details in the following, can be associated to an object
and updated according to rules, conditions and events. As an
example, in a children game, the geometric shape or the color
of a game object can be updated when the player taps on it.

2) Tiles
The tiles are the digital elements representing the tangible

objects used as game pieces. The tangible fiducials are tracked
and their position, orientation and size are used to control the
tiles representation.

Each tile belongs to a class identified by the class ID of its
fiducial. Several parameters characterize a tile class and its
instances. One of the instance parameters is the switch, i.e. the
2D or 3D texturized model representing the tile in the game
views. Different switches can be available for a tile class. The
initial switch associated to an instance can be chosen in
different ways (e.g. randomly or according to a user-defined
condition) and the actual switch can be changed according to
events and game rules. The switches can be animated, and their
animation can be controlled in different ways (i.e. it can be
started automatically, when the object is instantiated or when a
specific event occurs, it can be stopped and restarted, it can be
lopped or not, and so on). Switches can have any size, both
related or not to the physical size of the corresponding tangible
playing pieces and their motion in world space is controlled by
the transform event of their fiducial.

Fig. 2. Labels assigned to a grouped tile according to the number and position
of neighboring Tiles (left column) and examples of label switches for two tile
classes (Road, central column, and House, right column).

A tile class can also be defined as groupable. In this case,
different instances can be chained together to form a compound
digital model. Examples of groupable tiles can be road parts or
single houses gathered into a block of flats. In order to allow a
correct match between the physical layout of the tangible
objects and the digital representation of the tile group, the
fiducial of a groupable class is constrained to be square and the

tangible base and the tile switches must have the same size of
the fiducial.

Two groupable tiles are connected when the distance
between their centers falls below a threshold related to the tile
size. When groupable tiles are linked, a 4 connected-neighbor
graph is constructed, and each group element is labeled
according to the number and position of its neighbors as
follows (see Fig. 2): Start (tile with a single neighbor), Linear
(two neighbors on the same grid direction), Curve (two
neighbors on different grid directions), TShape (3 neighbors)
and Cross (4 neighbors). A different switch can be defined for
each label and the current Tile switch is instantaneously
updated at every label change, i.e. when a Tile is removed or
added to the group.

Fig. 3. An example of a tile group before (up) and after (down) grid
regularization.

According to developer’s choices, it is possible to
guarantee a seamless junction between grouped tiles, without
requiring tangibles to be perfectly aligned and connected, by
applying the following grid regularization:

- we create a regular grid, using as grid point distance
the tile size; the grid is aligned with the XY axis of the
reference system, and tiles are inserted and aligned to
the grid according to their relative positions in the tile
group;

- we fit the regularized grid with the actual tile group by
computing the transformation that minimizes the
squared distances between corresponding Tile centers;

- we update the position and orientation of the actual tile
centers with those in the regularized grid.

An example of grid regularization is shown in Fig. 3.

3) Agents
The agents are autonomous virtual characters that can be

generated by the main scene (i.e. the game board or the 3D
scenario on the secondary screen) and by single or grouped
tiles. For instance, if the game scenario represents a city and

some of the tiles are house blocks, they can generate as agents
the city dwellers, which are then free to move around the city
according to specific navigation rules. If the tiles represent
streets, they can generate cars which are constrained to move
on the correct street lane (Fig. 4).

Fig. 4. Examples of autonomous agents generated by the playing pieces.

The agent characteristics can be again defined by the
developers. Similar to tiles, each agent is represented by a
switch, which can be selected, in various ways, among a set of
possible choices. Agents are provided with the capability to
navigate the environment in a “life-like and improvisional
matter”. This capability relies on the so-called “steering
behaviours” defined in [4]. Different behaviours can be
combined and assigned to an agent and, eventually, the agent
behaviour can be modified by events/conditions. Actually, we
provide a set of basic steering behaviours that extend those
already available in the OpenSteer library [33]. Nevertheless,
new type of behaviours can be implemented and offered to the
application designer according to his/her specific needs.

The minimal/maximal number of instances per class and
the agent generation rules and rates can be defined by
developers. Agents can be optionally destroyed according to
their life-time, as a consequence of a system event or when the
generating tile/tile group has been removed from the table
surface. Other parameters associated to agents are their
maximal speed, the list of obstacles to avoid during navigation
(e.g. a list of game object, tile and agent classes) and a set of
values to control their animation. When agents are generated
by a groupable tile, the developer can also decide the minimal
number of Tiles in the group that allows the generation of
agents. This parameter can be used, for instance, to avoid
adding cars to a street composed by only two blocks.

4) Widgets
The widgets are the graphical control elements that can be

used to create the game GUI. Examples of widgets available
are buttons, sliders, labels, image and video widgets, dialog or
message windows. Widgets, according to the specific widget
type, offer different pre-defined properties and generate events
upon user interaction.

The framework includes a peculiar type of widgets, called
Sensible Areas, which are (invisible) polygonal regions defined
on the tabletop surface that raise an event when a fiducial
moves within, enters or exit their area. The event data (i.e.,
position, instance and class ID of the fiducial that generated the
event), can then be used by the application to trigger specific
actions, as we will show in the examples in Section IV.

C. Game logic management

The management of the game logic is based on three
elements: parameters, events and rules.

Parameters are variables associated to various elements,
like the system, game objects, tiles, agents and widgets. System
variables include, for instance, the system time and the
execution time, and tile parameters can be their position,
orientation and current switch. For game objects, tiles and
agents, class parameters are available as well, such as the
number of created instances. Developers have the possibility to
create their own parameters and associate them to any element
of the application. It is also possible to define parameters as
functions of other parameters. Any element making use of a
parameter (i.e. other parameters, GUI labels showing its value
or conditions to be checked) is immediately updated when the
parameter value is modified.

The rules are actions executed according to an optional
conditional statement. This condition, if present, can be
expressed as a function of the parameter values. Within a rule,
different possible actions can take place: an update of one or
more parameters, the raise of an event, the play of a sound or
the creation of different elements (e.g. a game object, a
message window, a video widget, and so on). Rules are
executed when any of their parameters has been modified.
Clearly, in the case a rule is controlled by a condition, it is
executed only if a parameter involved into the condition has
been updated. Finally, developers can assign rules a priority, an
integer value defaulted to one, and rules are executed in
descending priority order.

Events are actions that can be detected by the program.
Events can be predefined by the GAINE framework (e.g.
interaction events) or defined by the developers and associated
to any GAINE element. For instance, an event can be generated
by a tile class when the number of instances exceeds or drops
below a predefined threshold.

Any GAINE element, including the system, can register to
an event and define an event handler, which consists in a set of
rules that are executed only when the event is received.

In Section IV, we will show with a simple example how to
use all these elements to define the logic of a tabletop
interactive game.

D. Dual screen management

The game view on both available displays can be controlled
by the developers. Each display can define its own base
scenario (e.g. a 2D image/model for the game board on the
tabletop surface and a 3D environment for the secondary
screen) and a camera, which can provide a 2D or a 3D view,
either parallel or perspective. The camera parameters can be
defined in advance and modified during the game. As an
alternative, multiple cameras can be defined and switched
according to events or conditions. In a similar way, it is
possible to define multiple lights, activate/deactivate them and
modify their parameters.

As previously stated, game objects, tiles, agents and
widgets can be displayed, according to the developers’ choices,
on one or both the display screens. For instance, in an

augmented chess game, the tabletop surface can display both a
chessboard and the GUI elements to control the game, such as
a chess game clock and, if the game is subject to time control,
buttons to stop one player’s clock and start the other. The
tangible chess pieces can be associated to fiducials and
represented as (possibly animated) 3D models on a 3D virtual
chessboard in the secondary display, allowing the game
audience a better comprehension of the game evolution (Fig.
5).

Fig. 5. A chess game developed with GAINE: the playing pieces and their
associated fiducials (up) and a snapshot of the game view displayed on the
secondary screen (down).

While with our dual screen setup, the user interaction is
clearly possible on the tabletop surface only, GUI elements can
be exploited on the secondary display as well. For instance, it is
possible to display informative labels or message windows that
can be hidden when a timer expires.

E. Portability

GAINE has been implemented in C++. As stated in the
introduction, one of the goals in the development of GAINE
was to provide a framework that is portable on different
operating systems and hardware setup.

In our project, the portability issue has been tackled
exploiting in the development of the framework only mature,
robust and well know portable Open Source software libraries,
which are briefly listed in the following:

- reacTIVision [30] for touch recognition and fiducial
tracking, which offers as well the abstraction from the
underlying hardware;

- OSG [31], the graphics rendering engine;

- osgAudio and OpenAL [32] for audio rendering;

- OpenSteer [33], to manage the navigation of GAINE
autonomous agents;

- muParser [34], to parse the mathematical expressions
used by parameters, conditions and rules;

- Cmarkup [35], for script parsing.

IV. CASE STUDIES AND DISCUSSION

The GAINE framework has been used to develop several
entertainment/edutainment applications, ranging from simple
games to interactive stories for kids. Some of these applications
have been briefly sketched in the previous sections. Here we
describe in more details two case studies and we report some
data to show how the use of GAINE impacts the development
of a multitouch, augmented tabletop application.

The first example discussed is a tabletop augmented version
of the classic Tic-tac-toe game. We have chosen this case study
since it is simple enough to allow us to briefly discuss its whole
implementation and, at the same time, to demonstrate the
effectiveness of GAINE in supporting a rapid application
development. Tic-tac-toe is a pencil-and-paper game for two
players which take turns marking a 3x3 grid with their own
symbol (either a “X”, cross, or a “O”, naught). The player who
first succeeds to place three symbols on a row, column or
diagonal wins the match. Otherwise, if all marks have been
placed without a winner, the game ends with a draw.

Developing the tabletop version of Tic-tac-toe requires to
create the digital contents to be displayed (e.g., the game board
and the application GUI) and the scripts managing the game
flow. In the following, we will show some excerpt from these
scripts to provide insights on the development process.

The game board is a 2D textured plane showing the 3x3
playing grid (Fig. 6(a)). In this example, the secondary screen
simply shows a 3D perspective view of the game board. The
tangible playing pieces are the noughts and crosses, which are
marked with two different fiducials (Fig. 6(b)). Their
corresponding 3D tiles, shown on the secondary screen (Fig.
6(c)), are configured as follows:
<tile type="Nought" fiducial="105" />

<switch display="2" model="models/nought.dae" animated="true" loop="true"/>
</tile>

<tile type="Cross" fiducial="205" />

<switch display="2" model="models/cross.dae" animated="true" loop="true"/>
</tile>

Fig. 6. (a) The Tic-tac-toe tabletop interface, showing the playing grid (where
the dotted numbered squares highlight the sensible areas, which are not
actually visible), the GUI labels and the start button; (b) the tangible playing
pieces; (c) the 3D game view on the secondary screen

In order to manage the game, the following system parameters
and events were defined:
<parameters>
 <parameter name="winPlayer1" type="int" value="0"/>

 <!-- player1 = cross -->

 <parameter name="winPlayer2" type="int" value="0"/>
 <!-- player2 = nought -->

 <parameter name="gameActive" type="bool" value="true"/>
 <parameter name="gameResult" type="int" value="-1"/>

 <!-- 0 draw, cross: wins player1, nought: wins player2 -->
 <parameter name="grid[9]" type="int" value="{0,0,0, 0,0,0, 0,0,0}"/>

 <parameter name="playedPieces" type="int" value="0"/>
</parameters>

<eventList> <event name="OnGameFinished"/> </eventList>

The grid parameter is a vector of nine elements that records
the playing pieces placed on the grid cells, while playedPieces
counts the overall number of symbols played. GameResult stores
the result of the current game, winPlayer parameters record the
players’ scores and gameActive indicates if a game is in
progress.

Then, we defined a set of rules that check: (i) if all the cells
in a row, column or diagonal contain the same symbol, and (ii)
if the maximal number of symbols has been played, possibly
resulting in a draw. If one of these conditions is verified, the
game result is recorded and the OnGameFinished event is raised:
<ruleList>

 <!-- check possible win in the first grid row -->
 <rule condition="gameActive and grid[1] == grid[2] and grid[2] == grid[3]

and grid[3] != 0">
<onTrue action="gameActive = false, gameResult = grid[3]"

emitEvent="OnGameFinished" />
 </rule>

<!— we do not report, for the sake of brevity, the similar rules that check
different combinations-->

 <!-- check draw, N.B.: this rule has lower priority than win checks -->

 <rule condition="playedPieces == 9" priority="0">

 <onTrue action = "gameActive = false, gameResult = 0"
emitEvent ="OnGameFinished" />

 </rule>
</ruleList>

Each cell of the playing grid is associated with a sensible
area that raises an event when a playing piece is placed on
(OnSensibleAreaEntering) or removed from
(OnSensibleAreaLeaving) the grid cell. Each sensible area
defines an extra parameter cell, containing the index of the
grid cell it is associated with, which will be used by the event
handlers. The sensible areas are defined as follows:
<sensibleAreaList>
 <sensibleArea name="c1" vertices(386,184),(626,184),

(626,424),(386,424)">
 <parameter name="cell" type="int" value="1">

 </sensibleArea>
<!— other cells from c2 to c8... -->

 <sensibleArea name="c9" vertices="(978,776),(1218,776),
 (1218,1016),(978,1016)">

 <parameter name="cell" type="int" value="9">
 </sensibleArea>

</sensibleAreaList>

The system registers itself as listener of the sensible areas
events. The event handler updates the symbol of the played
piece to the proper entry of the grid vector and the number of
pieces played. The update of these parameters causes the rules
to be evaluated. If one of the player wins, or there is a draw, the
game is stopped, the current score is updated and a message
window is displayed. A “New game” button on the tabletop
surface allows, when pressed, to reset the values of all grid
cells and start a new game.

The code of the system event handlers is the following:
<eventListeners>
 <event name="OnSensibleAreaEntering">

 <rule action="grid[sender.cell]=sender.tileClass,

playedPieces = playedPieces + 1" />

 </event>
 <event name="OnSensibleAreaLeaving">

 <rule action="grid[sender.cell]=0, playedPieces=playedPieces-1" />
 </event>

 <event name="OnGameFinished">
 <rule action="gameActive = false, newGameButton.enable = true"/>

 <rule condition="gameResult == 0">
 <onTrue playSound="draw.wav"/>

 </rule>
 <rule condition="gameResult == Cross.fiducial">

 <onTrue action="winPlayer1 = winPlayer1 + 1" playSound="win1.wav"/>

 </rule>
 <rule condition="gameResult == Nought.fiducial">

 <onTrue action="winPlayer2 = winPlayer2 + 1" playSound="win2.wav"/>
 </rule>

 </event>
 <event name="OnButtonClicked">

 <rule condition="sender == newGameButton">
 <onTrue action="grid[] = {0,0,0, 0,0,0, 0,0,0}, gameResult = -1,

gameActive = true, newGameButton.enable = false, playedPieces = 0" />
 </rule>

 </event>

</eventListeners>

The widget configuration file1 creates the labels to display
the players’ scores and the “New Game” button, which is
disabled at game start and raises, if active and clicked, a default
event OnButtonClicked.
<labelList>
 <label name="PlayerOneLabel" icon="img/labpone.jpg" position ="670,1170"

 size="270,100" orientation ="south" displayedParameter="winPlayer1">
 </label>

 <label name="PlayerTwoLabel" icon="img/labptwo.jpg" position="940,18"

 size="270,100" orientation="north" displayedParameter="winPlayer2">
 </label>

</labelList>

<buttonList>

 <button name="newGameButton" position="268,732" size="270,70"
orientation="west" label="New Game" icon="img/newgame.jpg"

onClick="img/newgameClick.jpg" sound="startgame.wav"
enable="false" />

</buttonList>

Summarizing, the game execution flow is the following:

- when a player places one of his/her symbols on a grid
cell, an event is raised causing: (i) an update of the cell
value, (ii) an increment of the number of pieces played,
and (iii) an evaluation of the the rules including one of
these parameters in their conditions;

- eventually, the OnGameFinished event is raised, halting
the game, updating the scores and the labels showing
them, playing a proper sound and activating the “New
Game” button;

- when the “New Game” button is pressed, game
variables are cleared, the button is deactivated and a
new match can start.

The whole development process of the game (which
includes digital content and tangible pieces creation, script
writing, testing and debugging) required a total of five man-
hours. We think this number highlights the capabilities of our
framework to support a rapid application prototyping.

The second example discussed is “Torino 150”, an
edutainment application designed for children aged between 6
and 13 (i.e. students of first and middle schools). Torino 150
has a gameplay similar to that of the well-known SimCity

1 For the sake of clarity, we report a simplified version of the script, where we removed most of the
parameters related to the definition of the widget appearance

game ([38]). It is a cooperative game in which players have the
task of founding and developing their own version of the city
of Torino in 1861, the year when the city became the capital of
the newly proclaimed united Kingdom of Italy.

The game is aimed at communicating to children a piece of
the history of their own city, along with information related to
buildings and monuments that have changed their appearance
through time or that do not exist anymore. The digital contents
and the information displayed are the legacy of ToViA (Torino
Virtual Adventure), a Virtual Heritage project aimed at
constructing a realistic and historically accurate 3D model of
Torino in 1861, whose demonstrative 2D and 3D interactive
visualization were shown during the Italia 150 celebration, held
in 2011. The information used for creating these digital models
were collected from various sources: photos of still existing
buildings and monuments, archival material such as maps,
photographs, drawings, paintings and other historical
documents (Fig. 7).

Fig. 7. Examples of models used by Torino 150 application and of reference
documents used to create them.

The aim of the game is to reach the highest level of
“welfare” for citizens, where the welfare represents a balance
among positive (e.g. presence of hospitals, markets, public
transportation) and negative factors (e.g. criminality, pollution,
taxes). The game has three difficulty levels, related to the level
of taxes (low, medium or high), which can be selected by the
players.

The tangible playing pieces represent the different
buildings of the city, such as houses, markets, police and
fireman stations, industries and streets. As a reward for
reaching certain welfare levels, the theatre, cathedral and royal
palace blocks are released. When playing pieces are placed on
the table, they contribute to modify some of the parameters
involved into the computation of the current welfare. For
instance, the population increases with the number of houses,
the health with the number of hospitals and the criminality is a
function of population, richness and number of police stations.

Different types of agents are considered in the game:
citizens, spawned by houses, and horse-drawn trams and
carriages created by streets (see Fig. 4). Some system events
were also introduced. For instance, each hour of gameplay
(virtually corresponding to 12 hours in real life) the cathedral,
if placed on the table, rings the bell to announce a religious

function causing citizens to approach the church. As another
example, an earthquake (raised either randomly by the system
or explicitly by players with a GUI button) can cause some
houses to collapse in ruins and a population decrease.

Opposite to the previous example, this application fully
exploits the availability of a secondary screen, which allows
players to be immersed in a 3D reconstruction of the virtual
city they are building in the game (Fig. 8). This virtual
environment can be viewed under different perspectives,
namely through: (i) a set of fixed cameras, providing an
overview of the city, (ii) a first-person camera whose
movements can be controlled by the user, and (iii) a first-
person camera attached to any of the citizens moving in the
environment. The current viewing camera can be selected and
updated through the game GUI.

As for the development time of the whole application, it is
virtually impossible to provide an accurate estimate for two
main reasons. First, as previously stated, most of the digital
contents used by the application were based on those
developed for a previous project. The only modeling effort was
the adaptation of these models to the needs of a real-time VR
application. Second, Torino 150 was one of the main test cases
used as reference for the development of GAINE. Thus, the
development of the application proceeded in parallel with the
implementation of the features and functionalities required by
the framework. Nevertheless, we think that the amount of code
required by the application scripts to configure contents and
implement the game logic, which sums up to 513 lines only,
can provide an indication of the simplicity of developing an
interactive tabletop game with GAINE.

Fig. 8. Torino 150 games: the playing pieces and a screenshot of the view on
the secondary screen.

V. CONCLUSIONS

In this paper we presented GAINE, a flexible framework
for the rapid prototyping and development of tabletop games
exploiting tangible interaction on multi-touch interactive
tabletops. The main contribution of GAINE is to provide a set
of high level structure and a simple scripting language that
allows specifying (i) the characteristics of the digital contents
managed by the application and (ii) the definition of the game
logic. Examples showing the effectiveness of using GAINE in
the development of tabletop interactive applications for
entertainment and edutainment purposes were provided and
discussed.

The framework has been implemented in C++ relying on a
set of open source libraries that provide an abstraction from the
hardware level and the portability on different platforms.

As for future work, we are planning to expand the
functionalities offered by GAINE. As we did in the previous
development steps, this process will be carried out by tackling
novel projects and novel application scenarios, analyzing the
new challenges they require to face and designing solutions for
them. Then, following the ideas discussed in [19] and [37], we
are also planning to enhance the tangible interaction
component, which is currently limited to the use of fiducial-
tagged objects, by providing support for a more varied set of
playing pieces and responsive objects. Finally, despite the
simplicity of the scripting language used by the framework, the
design process would sorely benefit from the availability of an
IDE (similar to the Graphic Assistant described in [19]), which
would provide developers an easier modeling of the game
elements and an automation of the script generation.

ACKNOWLEDGMENT

We thank Matteo De Simone for assembling the table
hardware during his doctoral thesis and Daniele Argiolas for
his contribution to code development.

REFERENCES
[1] M. Kaltenbrunner, S. Jorda, G. Geiger and M. Alonso, “The reactable*:

A collaborative musical instrument,” In WETICE 2006: Proceedings of
the 15th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pp. 406–411.

[2] E. Tse, S. Greenberg, C. Shen and C. Forlines, “Multimodal Multiplayer
Tabletop Gaming,” In PerGames 2006: Proceedings Third International
Workshop on Pervasive Gaming Applications, pp. 139–148.

[3] T. Gross, M. Fetter and S. Liebsch, “The cuetable: cooperative and
competitive multi-touch interaction on a tabletop,” In CHI 2008
Extended Abstracts on Human Factors in Computing Systems, pp. 3465–
3470.

[4] C. W. Reynolds, “Steering Behaviors For Autonomous Characters,” In
Proceedings of Game Developers Conference, San Jose, California,
1999, pp. 763-782.

[5] A. Battocchi, A. Ben-Sasson, G. Esposito, E. Gal, F. Pianesi, D.
Tomasini, P. Venuti, P. Weiss, and M. Zancanaro, “Collaborative puzzle
game: a tabletop interface for fostering collaborative skills in children
with autism spectrum disorders,” Journal of Assistive Technologies,
2010, 4(1), pp. 4-13.

[6] G. F. M. Silva, A. Raposo and M. Suplino, “Par: A collaborative game
for multitouch tabletop to support social interaction of users with
autism,” Procedia Computer Science, 27, 2014, pp. 84-93.

[7] R. Zarin and D. Fallman, “Through the troll forest: exploring tabletop
interaction design for children with special cognitive needs,” In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM, 2011, pp. 3319-3322.

[8] C. McCrindle, E. Hornecker, A. Lingnau and J. Rick, “The design of t-
vote: a tangible tabletop application supporting children's decision
making,” In Proceedings of the 10th International Conference on
Interaction Design and Children, 2011, pp. 181-184.

[9] A. Al Mahmud, O. Mubin, J. R. Octavia, S. Shahid, L. Yeo, P.
Markopoulos and J. B. Martens, “aMAZEd: designing an affective
social game for children,” In Proceedings of the 6th international
conference on Interaction design and children, 2007, pp. 53-56.

[10] Y. Li, W. Fontijn and P. Markopoulos, “A tangible tabletop game
supporting therapy of children with cerebral palsy,” Proceedings of the
2nd Intl. Conf. on Fun and Games, 2008 pp. 182-193.

[11] J. Duckworth, P. R. Thomas, D. Shum and P. H. Wilson, “Designing co-
located tabletop interaction for rehabilitation of brain injury,” Lecture
Notes in Computer Science, Vol. 8013, 2013, pp 391-400.

[12] S. E. Higgins, E. Mercier, E. Burd and A. Hatch, “Multi-touch tables
and the relationship with collaborative classroom pedagogies: A
synthetic review,” International Journal of Computer-Supported
Collaborative Learning, 6(4), 2011, pp. 515-538.

[13] X. Cao, S.E. Lindley, J. Helmes, A. Sellen, “Telling the whole story:
Anticipation, inspiration and reputation in a field deployment of
TellTable,” Proceedings of CSCW 2010, ACM Conference on Computer
Supported Cooperative Work. p. 251-260.

[14] T. Alofs, M. Theune, and I.M.T. Swartjes, “A Tabletop Board Game
Interface for Multi-User Interaction with a Storytelling System,”
Proceedings of 4th International Conference on Intelligent Technologies
for Interactive Entertainment, INTETAIN 2011, pp. 123-128.

[15] A. Wu, D. Joyner and E.Y.L. Do, “Move, beam, and check!
imagineering tangible optical chess on an interactive tabletop display,”
Computers in Entertainment (CIE) 8, no. 3, 2010: 20.

[16] M. Horn, Z. Atrash Leong, F. Block, J. Diamond, E. M. Evans, B.
Phillips and C. Shen, “Of BATs and APEs: an interactive tabletop game
for natural history museums,” In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2012, pp. 2059-2068.

[17] N. Correia, T. Mota, R. Nóbrega, L. Silva, A. Almeida, “A multi-touch
tabletop for robust multimedia interaction in museums,” In ACM
International Conference on Interactive Tabletops and Surfaces, 2010
pp. 117-120,

[18] S. Jordà, G. Geiger, M. Alonso and M. Kaltenbrunner, “The reacTable:
exploring the synergy between live music performance and tabletop
tangible interfaces,” In Proceedings of the 1st international conference
on Tangible and embedded interaction, 2007, pp. 139-146.

[19] J. Marco, E. Cerezo and S. Baldassarri, “ToyVision: a toolkit for
prototyping tabletop tangible games,” In Proceedings of the 4th ACM
SIGCHI symposium on Engineering interactive computing systems, 2012
pp. 71-80.

[20] C. Villamor, D. Willis, L.Wroblewski,”Touch Gesture Reference Guide.
2010. Available online at: static.lukew.com/TouchGestureGuide.pdf,
last accessed March 2015

[21] N. Matsushita and J. Rekimoto, “HoloWall: designing a finger, hand,
body, and object sensitive wall,” In Proceedings of the 10th annual
ACM symposium on User interface software and technology (UIST '97),
1997 pp. 209-210.

[22] Y.J. Han, “Low-cost multi-touch sensing through frustrated total internal
reflection,” In Proceedings of the 18th annual ACM symposium on User
interface software and technology (UIST '05), 2005 pp. 115-118.

[23] A. Gokcezade, J. Leitner, and M. Haller, “LightTracker: An open-source
multitouch toolkit,” ACM Comput. Entertain. 2010, 8, 3, pp. 16.

[24] Community Core Vision, available online at ccv.nuigroup.com, last
accessed March 2015

[25] T. Hansen, C. Denter and M. Virbel, “Using the PyMT toolkit for HCI
Research,” Forum on Tactile and Gestural interaction, 2010.

[26] Touchlib, available online at nuigroup.com/touchlib, last accessed
March 2015

[27] J. Luderschmidt, I. Bauer, N. Haubner, S. Lehmann, R. Dörner and U.
Schwanecke, “TUIO AS3: A Multi-Touch and Tangible User Interface
Rapid Prototype Toolkit for Tabletop Interaction,” In Self Integrating
Systems for Better Living Environments: First Workshop, Sensyble,
2010, pp. 21-28

[28] C. Shen, F. D. Vernier, C. Forlines and M. Ringel, “DiamondSpin: an
extensible toolkit for around-the-table interaction,” In Proceedings of the
SIGCHI conference on Human factors in computing systems, 2004, pp.
167-174.

[29] uTableSDK. Available online at http://utablesdk.codeplex.com, last
accessed March 2015

[30] ReacTIVision, a toolkit for tangible multi-touch surfaces, available
online at http://reactivision.sourceforge.net/, last accessed March 2015

[31] OpenSceneGraph, available online at www.openscenegraph.org, last
accessed March 2015

[32] osgAudio, OpenSceneGraph nodekit available at
code.google.com/p/osgaudio/, last accessed March 2015

[33] OpenSteer, Steering Behaviors for Autonomous Characters, available
online at opensteer.sourceforge.net, last accessed March 2015

[34] muParser, Fast Math Parser Library, available online at
muparser.beltoforion.de, last accessed March 2015

[35] CMarkup, available online at www.firstobject.com/dn_markup.htm, last
accessed March 2015

[36] O. Gaggi and M. Regazzo, “Tactive, a Framework for Cross Platform
Development of Tabletop Applications,” In International Conference on
Web Information Systems and Technologies (WEBIST 2014), pp. 91-98.

[37] A. Wu, J. Jog, S. Mendenhall, A. Mazalek, “A framework interweaving
tangible objects, surfaces and spaces,” In Human-Computer Interaction.
Interaction Techniques and Environments, 2011, pp. 148-157.

[38] SimCity, from Wikipedia http://en.wikipedia.org/wiki/SimCity, last
accessed March 2015

