POLITECNICO DI TORINO
Repository ISTITUZIONALE

GAINE - tanGible Augmented INteraction for Edutainment

Original

GAINE - tanGible Augmented INteraction for Edutainment / Bottino, ANDREA GIUSEPPE; Martina, Andrea; Toosi,
Amirhosein. - In: EAl ENDORSED TRANSACTIONS ON FUTURE INTELLIGENT EDUCATIONAL ENVIRONMENTS. -
ISSN 2409-0034. - ELETTRONICO. - 15:5(2015), pp. 207-216. [10.4108/icst.intetain.2015.259627]

Availability:
This version is available at: 11583/2601782 since: 2016-01-15T15:31:25Z

Publisher:
European Alliance for Innovation

Published
DOI:10.4108/icst.intetain.2015.259627

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

GAINE - tanGible Augmented INteraction for
Edutainment

Andrea Bottino, Andrea Martina, Amirhosein Toosi

Dipartimento di Automatica e Informatica
Politecnico di Torino
Torino, Italy
{andrea.bottino, andrea.martina, amirhosein.toogip@o.it

Abstract— Interactive tabletops are gaining an increasing
interest since they provide a more natural interadbn with digital
contents and allow the interaction of multiple uses at a time
promoting face-to-face collaboration, information $aring and
the raise of social experiences. Given the potealities offered by
these devices, several entertainment-edutainment plcations
based on interactive tabletops have been successfutleveloped
in different areas, from medical therapy support to children’s
collaborative learning, interactive storytelling ard cultural
heritage. However, the development of such applidains often
requires complex technical and implementation skii. Taking
this into consideration, in this paper we present @AINE
(tanGible Augmented INteraction for Edutainment), a software
framework aimed at the rapid prototyping and develgpment of
interactive tabletop games. GAINE offers developerscontext
specific high-level constructs and a simple scriptg language that
simplifies the implementation task. The framework isportable on
different operating systems and offers independencéom the
underlying hardware. Two practical case studies aréhoroughly
discussed to show how GAINE can simplify the developent of
interactive tabletop applications in the entertainnent and
edutainment contexts.

Keywords—Edutainment, entertainment, interactive tatoles,
tangible user interfaces, toolkit

I. INTRODUCTION

In the last few years, the multi-touch tables eredrgs a
powerful tool to integrate interactive surfaces aesponsive
spaces that embody digital information, providingvesal
advantages over conventional desktop setups. Fitstactive
tabletops offer users a direct and, thus, morerakituteraction
with on-screen contents. This naturalness is furémhanced

tabletops games have been used to teach, impravexancise
social and communicational skills among childrethvautism
spectrum disorders ([5][6][7]).- In [8] a tangiblebletop
application was developed to support children's isitat
making and collaboration. The use of psychophygickd
measures as input technique for social tabletop irgam
application intended for children was investigated9]. The
potentialities of tabletop interactive games in pmging
medical therapies have been also explored. Exangalesbe
found in [10], which describes a game developedcfoldren
with cerebral palsy, or in [11], where VR trainibgsed on a
tabletop game was proved to be a viable adjunct to
conventional physical therapy in facilitating motearning in
patients with traumatic brain injuries. Other reshashowed
the capabilities of entertainment and edutainmeptieations
based on tabletop interactive interfaces in varitelds, from
classroom collaborative learning [12] to interaetatorytelling
[13][14], pervasive games [15] and museum exh[higd[17].

Despite the capabilities offered by interactive leap
developing applications that fruitfully exploit tme presents
some inherent difficulties and requires complexhtécal and
programming skills. In order to mitigate this prefn, in this
paper we present GAINEanGible Augmented INteraction for
Edutainment a software framework specifically designed to
simplify the prototyping and development of intdhae
tabletop applications in educational and entertaimngontexts.

GAINE provides an abstraction layer that hides the
underlying complexity of the hardware and softwhibearies
necessary to manage a tabletop interactive ganmtheffnore,
the framework offers developers high-level congsuc
representing the basic application building blockeich

when such devices support the use of tangible thjec facjlitate the implementation task. In this sen€AINE is

recognized and tracked once placed on the tabléacsur
Second, interactive tabletops allow the interactibmore than
one user at a time, promoting collaboration, infation
sharing and the rise of social experiences.

A large variety of applications started deployinge t
benefits of using this technology, in particular toake
computer applications more accessible to diffetegories
of users, like children, users with physical or gigylogical
disabilities and elderlies. Several research is #rea, mainly

similar to other tabletop toolkits presented in fherature,
such as [19][25][27][36]. However, we took a stepward in
simplifying the application design by offering dégers a
reusable, semi complete application that can beptaialy
customized through an easy-to-use, XML-style sicrpt
language.

The rest of the paper is organized as follows. datiSn Il
we review the current state of the art of interactiabletops
toolkits. Then, Section Il presents the GAINE feamork and

focused on exploiting edutainment and entertainmengection IV discusses the design of two tangible egusing

applications, have been reported in the literatumteractive

INTETAIN 2015, June 10-12, Torino, Italy
Copyright © 2015 ICST
DOI 10.4108/icst.intetain.2015.259627

GAINE. Finally, conclusions and future works arelioed in
Section V.

Il. RELATED WORKS

Various toolkits have been developed explicithfdoilitate
the creation of tabletop applications based oniftmlich and
tangible user interfaces. They are all centeredhenidea of
abstracting (i) the underlying hardware level, &yl the
complexity of the core tabletop interaction funaottity, i.e.
obtaining and managing the low level informatiotated to
touch and fiducial identification and tracking. TFhke
characteristics allow developers to focus on thegteof their
applications.

The available toolkits can be broadly divided irteo
categories. The first includes libraries that medsal with the
low level input processing tasks, such as imagensatation,
object recognition, noise filtering and calibratidtxamples of
such toolkits are reacTIVision [30], an Open Sowomputer
vision library initially developed for the Reactabl[18],
LightTracker [23], Touchlib [26] and Community Covésion
[24]. These toolkits usually run as standalone rexiwhich
encode and send data to an external applicatioa. T O
protocol [30] has become the standard de-factérémsmitting
interaction information.

The second category of toolkits includes higherelev
frameworks. These toolkits often rely on librarie§ the
previous class to manage low-level task and, onofofhem,
provide advanced tools that simplify the rapid ptgping of
applications. PyMT [25] is a Python library thatopides
multi-touch widgets and recognition of several raiduch

Ill. THE GAINE FRAMEWORK

As we stated in the introduction, GAINE is a softeva
framework aimed at supporting a rapid prototypingd a
development of tabletop interactive applicationsnother
characteristic of the framework is that it is pbféaon different
operating systems and hardware setup.

We stress the fact that GAINE is not a general-psep
library; on the contrary, it has been specificalgsigned to
support the development of projects with entertainimand
edutainment purposes. Thus, GAINE offers developgesific
high-level constructs tailored to these contextd ansimple
scripting language that simplifies the implementatiask (as
we will show in Section V). Taking this into codsration, in
the following we will refer, without loss of genétg, to any
GAINE-based application as “the game”.

In this section we first briefly introduce the hamte
structure used as reference for its developmenen;Thve
provide a detailed description of the GAINE softevar
framework.

A. GAINE Hardware: the interactive table

GAINE was tested and developed on a custom muttitou
interactive table that supports user interactiorough both
multiple touch and tangible objects. The table aaffeatures
a rear-projection screen with a 1080p short throejeotor,
placed beneath the table, which allows the use sfngle
mirror. The overall height of the wheeled table ®3X10 cm.
The top surface of size 100x80 cm hosts the sondech is
framed into a border that allows players to leajedb on the
table.

gestures. However, PyMT does not provide support fo

tangible interaction. Similar characteristics arffered by

The table features as well a secondary output,gtnats

uTableSDK [29] and DiamondSpin [28]. More advanced!S€ is not mandatory, which can be connected texérnal

features are provided by TUIO AS3 [27], an Actiaiyzc3

(AS3) wrapper of the TUIO protocol. Tactive [36]adsoftware
library for the rapid development of multi-touchpdipations
only, since it lacks support for tangible interanti Tactive is
based on a Javascript API that allows developeisé for the
implementation tasks, only web technologies
consequently, to reuse any web application alreadylable in
a multi-touch context. ToyVision [19] is another 2\%rapper,
which is based on an extension of the reacTIVisomikit that
supports a larger set of tangible playing piecesbluding in
the recognition process shape and color informatian

additional contribution is provided by the ROSSdity, which
aims at exploiting in the interaction a larger fmrtof Tangible
User Interface space. ROSS provides an abstractitamgible
platforms, full-body interaction spaces and resp@nsbjects
(e.g. RFID tags, smartphones) that facilitates ¢éwetbpers
their integration into any ROSS based application.

According to this taxonomy, the GAINE framework
discussed in this paper falls into the higher letalkits
category, further extending the simplifications dhe
development process offered by other solutions.

and

monitor or projector to provide either an infornoatiscreen
(e.g. for displaying game statistics and messagea)different
view on the game environment.

(1) Computer
2) Projector
(3 IR camera

@ Mirror
(® Infrared Light

® IR Led
(@ External Screen

Fig. 1. A schematic of our multitouch interactiable.

The interaction on the table surface integrateb bailtiple
touch and tangibles objects tagged with fiduciBisth touch
and fiducial recognition are based on optical ftiragk
techniques. These techniques rely on infrared IligiR)
illuminating the table surface and being reflectediards an

IF-camera as soon as fingers or fiducials hitssiméace. The
images of the IF camera are then processed by guem
vision algorithm to track the objects of interest.

Our interactive table uses a combination of Diftlse
lllumination (DI) and Frustrated Total Internal [Retion
(FTRI). With DI, the table surface is illuminatedoin IF
emitters placed below the surface [21], while WHRIR [22]
the lights come from the side and is transmitted fhe surface
material, a special Enlighten acrylic. Their conation
provides a more robust tracking, since DI can bbfisrack the
fiducials, provided that the surface is equallyriinated, and
FTIR offers a better solution for tracking fast dar
movements. Illluminators for both DI and FTIR hake same
wavelength (850 nm).

Fiducial and finger tracking
reacTIVision toolkit. The library features as wallcalibration
procedure, aimed at correcting the distortionsohiced by the
camera optics. ReacTIVision provides a library 96 2istinct
fiducials, a number which allows great flexibility developing
tabletop games. If needed by the application, tse df
fiducials or their characteristics can be extendedrder to
deal with specific requirements, as shown in [19].

The reacTIVision trackers runs as a stand-aloneuteod
that streams captured data to the application sofw
according to the TUIO protocol, through an UDP ¢fen
These data include position and ID of detectedefingand
position, orientation, size, ID and class type. (ifee symbol
drawn) of detected fiducials. The combination ofdBd class
type allows tracking and using multiple instancéshe same
fiducial.

Since reacTIVision abstracts the hardware level|NEA
based application can be translated to interactiisees based
on different hardware devices. Even in case of avithat
cannot offer both finger and fiducial tracking betavailability
of an external display, GAINE still provides a widet of
functionalities for the development of effectivbletop games
and applications.

B. The GAINE Software Framework

The GAINE framework
intercommunicating functional blocks. The main mieds the

is composed by different

The main event source is the tabletop surface, hwhic
communicates through the TUIO protocol the datateel to
tracked fingers and fiducials. Multiple fingersrofiltiple users
can be tracked at once, and the objects involvedhiege
interactions are first identified. Then, for eaclbjest,
interaction data are translated into multitouchtges and
communicated to the object. Currently, otdyp, drag, pinch
and rotate gestures have been considered but, as future work,
we are planning to handle other core gestures)([Z0 three
TUIO events available for fiducials aradd remove and
transform (move or rotate), which are redirected to the
ObjectManager module, which handles digital corsteatated
to tangible playing pieces. As for system evensgrefined
events and those generated by the GUI elements,
EventManager simply acts as a collector, pairingtrods and

the

is performed by theconsumers.

The remaining GAINE modules are the ObjectManager,
which handles the creation, destruction and staddugion of
the digital playing pieces, and the WidgetManagehich
creates and manages the GUI elements.

We recall that the GAINE HW features a dual screstap:
the tabletop surface, where the user interactibestalace, and
a secondary screen can be used to provide additiona
information on the game or a different view on ¢faene board.
These two screens can be totally independent,t@ndecision
of which contents to show and how they should tspldied
on each of them is let to the developers.

Digital contents (i.e. the playing pieces and th&lG
elements) can be either 3D or 2D and they can tegycazed
into four different classesgéme objectstiles, agentsand
widget3, which are detailed in the following subsections.
These elements are defined in two different refezesystems:
the screen space (for widgets and TUIO data) aadwibrid
space (for the 2D/3D models representing game thjétes
and agents). The transformation that relates tlweréference
systems is computed during the calibration stepth va
procedure that relies on a specific calibratiotigratcontaining
a grid of fiducials of known size placed on theléagurface.

1) Game objects
Game objects are the basic digital elements disgldy
the game. Game objects can be the game board dabileéop

GameManager, which starts the application, reads thsyrface or the background 3D scenario shown oséhendary

configuration scripts, creates the digital contesteres and
evolves the application state and, finally, geresrdlhe outputs.
Graphics rendering relies on OpenSceneGraph (03G),
popular 3D engine framework. OSG is an open sosceme
graph API that provides high performances, advarfeatlires,
a wide range of loaders for different 2D/3D and tmedia
contents, support for multi-core and multi-gpu eyss and
portability on different platforms. Audio renderiig managed
through osgAudio, an OSG plugin that wraps Opersitross-
platform audio API.

screen. Other examples of game objects are digitaling

pieces and accessory elements (e.g. a digital .di€bg

characteristics of the game objects classes catolmpletely
defined by the developers in a configuration scripame
objects can be made interactive and the develarsiefine
their response to user inputs. As for their reprd®n, one or
multiple 2D or 3D models, callegwitchesand described in
more details in the following, can be associatednoobject
and updated according to rules, conditions and tevéts an
example, in a children game, the geometric shapgbeocolor

The EventManager is responsible of handling andf@game object can be updated when the playsrotat.

communicating the events generated by a GAINE egiidin.
The event management system implements the cldskkigate
event model, characterized by event sources (dshtamd
event listeners (consumers), which receive the tevieom the
sources.

2) Tiles

The tiles are the digital elements representing the tangible
objects used as game pieces. The tangible fiduaralsracked
and their position, orientation and size are usedontrol the
tiles representation.

Each tile belongs to a class identified by thel&s of its
fiducial. Several parameters characterize a tilessland its
instances. One of the instance parameters iswfiteh i.e. the
2D or 3D texturized model representing the tilethe game
views. Different switches can be available forla tlass. The
initial switch associated to an instance can besehoin
different ways (e.g. randomly or according to arsfined
condition) and the actual switch can be changedrdit to
events and game rules. The switches can be anipzatddheir
animation can be controlled in different ways (itecan be
started automatically, when the object is insta@diaor when a
specific event occurs, it can be stopped and testait can be
lopped or not, and so on). Switches can have a®; &ioth
related or not to the physical size of the corresiitg tangible
playing pieces and their motion in world spaceostmllied by
the transform event of their fiducial.

Single

Start

Linear

Curve

TShape

Cross

Fig. 2. Labels assigned to a grouped tile accortbrthe number and position
of neighboring Tiles (left column) and exampledatdfel switches for two tile
classes (Road, central column, and House, righhuo).

A tile class can also be defined as groupablehim dase,
different instances can be chained together to foadompound
digital model. Examples of groupable tiles can dedrparts or
single houses gathered into a block of flats. beotto allow a
correct match between the physical layout of thegitde
objects and the digital representation of the gjteup, the
fiducial of a groupable class is constrained tedpgare and the

tangible base and the tile switches must have ahessize of
the fiducial.

Two groupable tiles are connected when the distance
between their centers falls below a threshold edlab the tile
size. When groupable tiles are linked, a 4 congeatghbor
graph is constructed, and each group element islddb
according to the number and position of its neighbas
follows (see Fig. 2)Start (tile with a single neighbor),inear
(two neighbors on the same grid directio@urve (two
neighbors on different grid directions)shape(3 neighbors)
andCross(4 neighbors). A different switch can be defined f
each label and the current Tile switch is instaebasly
updated at every label change, i.e. when a Tilensoved or
added to the group.

Fig. 3. An example of a tile group before (up) aafier (down) grid
regularization.

According to developer's choices, it is possible to
guarantee a seamless junction between grouped wil#wout
requiring tangibles to be perfectly aligned andrmated, by
applying the following grid regularization:

- we create a regular grid, using as grid point dista
the tile size; the grid is aligned with the XY aristhe
reference system, and tiles are inserted and aigme
the grid according to their relative positions e ttile
group;

- we fit the regularized grid with the actual tileogp by
computing the transformation that minimizes the
squared distances between corresponding Tile eenter

- we update the position and orientation of the ddiiea
centers with those in the regularized grid.

An example of grid regularization is shown in Rg.

3) Agents
The agentsare autonomous virtual characters that can be

generated by the main scene (i.e. the game boatbeo8D
scenario on the secondary screen) and by singlgramped
tiles. For instance, if the game scenario represantity and

some of the tiles are house blocks, they can genemagents
the city dwellers, which are then free to move atbthe city

according to specific navigation rules. If the dileepresent
streets, they can generate cars which are corstragmmove

on the correct street lane (Fig. 4).

Fig. 4. Examples of autonomous agents generatéoebylaying pieces.

C. Game logic management

The management of the game logic is based on three

elementsparameterseventsaandrules

Parametersare variables associated to various elements,

like the system, game objects, tiles, agents addets. System
variables include, for instance, the system timeal dahe
execution time, and tile parameters can be thesitipa,
orientation and current switch. For game objedtss tand
agents, class parameters are available as welh ascthe
number of created instances. Developers have thslplity to
create their own parameters and associate themytelament
of the application. It is also possible to defirmragmeters as
functions of other parameters. Any element makieg af a
parameter (i.e. other parameters, GUI labels shpwtnvalue
or conditions to be checked) is immediately updatben the
parameter value is modified.

The rules are actions executed according to arorgti

The agent characteristics can be again defined higy t conditional statement. This condition, if presesgn be

developers. Similar to tiles, each agent is reptese by a
switch, which can be selected, in various ways, regreo set of
possible choices. Agents are provided with the loidipato

navigate the environment in a “life-like and impisienal

matter”. This capability relies on the so-calledte&sing
behaviours” defined in [4]. Different behaviours ncde
combined and assigned to an agent and, eventtiadlyagent
behaviour can be modified by events/conditions.uAlty, we
provide a set of basic steering behaviours thagnekithose
already available in the OpenSteer library [33]véitheless,
new type of behaviours can be implemented andexffér the
application designer according to his/her speaiéeds.

The minimal/maximal number of instances per clasd a

the agent generation rules and rates can be defined
developers. Agents can be optionally destroyed rdaug to
their life-time, as a consequence of a system ewenthen the
generating tile/tile group has been removed from table
surface. Other parameters associated to agentsthaie
maximal speed, the list of obstacles to avoid duriavigation
(e.g. a list of game object, tile and agent clgsaed a set of
values to control their animation. When agents gaeerated
by a groupabile tile, the developer can also dettideminimal
number of Tiles in the group that allows the getienaof
agents. This parameter can be used, for instaoceyvoid
adding cars to a street composed by only two blocks

4) Widgets

The widgets are the graphical control elements ¢hatbe
used to create the game GUI. Examples of widgeadiadole
are buttons, sliders, labels, image and video visjgkalog or
message windows. Widgets, according to the spewifiiget
type, offer different pre-defined properties ant@yate events
upon user interaction.

The framework includes a peculiar type of widgetd|ed
Sensible Areas, which are (invisible) polygonalioeg defined
on the tabletop surface that raise an event whéiduzial
moves within, enters or exit their area. The ewtsta (i.e.,
position, instance and class ID of the fiducial tpenerated the
event), can then be used by the application tgerigpecific
actions, as we will show in the examples in Sedfian

expressed as a function of the parameter valuethi\4 rule,
different possible actions can take place: an w@détone or
more parameters, the raise of an event, the playstfund or
the creation of different elements (e.g. a gameeabja
message window, a video widget, and so on). Rukes a
executed when any of their parameters has beenfigthdi
Clearly, in the case a rule is controlled by a ¢o it is

executed only if a parameter involved into the détomo has

been updated. Finally, developers can assign aupgmrity, an

integer value defaulted to one, and rules are d&dcin

descending priority order.

Events are actions that can be detected by thergrog
Events can be predefined by the GAINE frameworlg.(e.
interaction events) or defined by the developers associated
to any GAINE element. For instance, an event cagdoerated
by a tile class when the number of instances exceedirops
below a predefined threshold.

Any GAINE element, including the system, can rexgigb
an event and define an event handler, which canisist set of
rules that are executed only when the event iswede

In Section IV, we will show with a simple examplevhto
use all these elements to define the logic of detap
interactive game.

D. Dual screen management

The game view on both available displays can béralbed
by the developers. Each display can define its dwase
scenario (e.g. a 2D image/model for the game boardhe
tabletop surface and a 3D environment for the sdmon
screen) and a camera, which can provide a 2D @ &iéw,
either parallel or perspective. The camera parasetan be
defined in advance and modified during the game. afis
alternative, multiple cameras can be defined andcked
according to events or conditions. In a similar wityis
possible to define multiple lights, activate/deeat® them and
modify their parameters.

As previously stated, game objects, tiles, agemd a
widgets can be displayed, according to the devetdphoices,
on one or both the display screens. For instangeari

augmented chess game, the tabletop surface cdaydizpth a
chessboard and the GUI elements to control the gaueh as
a chess game clock and, if the game is subjednt® ¢ontrol,
buttons to stop one player’'s clock and start tHeemotThe
tangible chess pieces can be associated to fiduaad
represented as (possibly animated) 3D models db wirual

chessboard in the secondary display, allowing tlaeneg
audience a better comprehension of the game eonl(Eig.

5).

Player 1 [white]
1546

Py Player 2 [black]
2 & 18:23

Fig. 5. A chess game developed with GAINE: the iplgypieces and their
associated fiducials (up) and a snapshot of theegeisw displayed on the
secondary screen (down).

While with our dual screen setup, the user intéacts
clearly possible on the tabletop surface only, @léments can
be exploited on the secondary display as well.ifgtance, it is
possible to display informative labels or messagelows that
can be hidden when a timer expires.

E. Portability

GAINE has been implemented in C++. As stated in the

introduction, one of the goals in the developmehnGaINE
was to provide a framework that is portable on edédht
operating systems and hardware setup.

In our project, the portability issue has been etk
exploiting in the development of the framework onmature,
robust and well know portable Open Source softviararies,
which are briefly listed in the following:

- reacTlVision [30] for touch recognition and fidukcia
tracking, which offers as well the abstraction frtme
underlying hardware;

- OSG [31], the graphics rendering engine;
- 0sgAudio and OpenAL [32] for audio rendering;

- OpenSteer [33], to manage the navigation of GAINE

autonomous agents;

IV. CASE STUDIES AND DISCUSSION

The GAINE framework has been used to develop skvera
entertainment/edutainment applications, rangingnfreimple
games to interactive stories for kids. Some ofdlaplications
have been briefly sketched in the previous sectiblese we
describe in more details two case studies and pertrsome
data to show how the use of GAINE impacts the dgpreknt
of a multitouch, augmented tabletop application.

The first example discussed is a tabletop augmergesion
of the classic Tic-tac-toe game. We have chosanctise study
since it is simple enough to allow us to brieflgaliss its whole
implementation and, at the same time, to demomstiia¢
effectiveness of GAINE in supporting a rapid apgticn
development. Tic-tac-toe is a pencil-and-paper gé&ndwo
players which take turns marking a 3x3 grid witleithown
symbol (either a “X”, cross, or a “O”, naught). Tplyer who
first succeeds to place three symbols on a rowjneol or
diagonal wins the match. Otherwise, if all markvéndeen
placed without a winner, the game ends with a draw.

Developing the tabletop version of Tic-tac-toe lieggi to
create the digital contents to be displayed (¢hg.game board
and the application GUI) and the scripts managhey dame
flow. In the following, we will show some excerpbin these
scripts to provide insights on the development gssc

The game board is a 2D textured plane showing K& 3
playing grid (Fig. 6(a)). In this example, the saedary screen
simply shows a 3D perspective view of the game dhoahe
tangible playing pieces are the noughts and crpsggsh are
marked with two different fiducials (Fig. 6(b)). @in
corresponding 3D tiles, shown on the secondaryesc(€ig.
6(c)), are configured as follows:
<tile type="Nought" fiducial="105" />

<switch display="2" model="models/nought.dae" animated="true" loop="true"/>
</tile>

tile type="Cross" fiducial="205" />
<switch display="2" model="models/cross.dae" animated="true" loop="true"/>

</tile>

1 2 3
4 5 | 6
¥ -8 1.9

Fig. 6. (a) The Tic-tac-toe tabletop interface,vgimg the playing grid (where
the dotted numbered squares highlight the sensitdas, which are not

- muParser [34], to parse the mathematical expressiorctually visible), the GUI labels and the starttbut (b) the tangible playing

used by parameters, conditions and rules;

- Cmarkup [35], for script parsing.

pieces; (c) the 3D game view on the secondary scree

In order to manage the game, the following systanampeters
and events were defined:

<parameters>
<parameter name="winPlayerl" type="int" value="0"/>

<!-- playerl = cross -->

<parameter name="winPlayer2" type="int" value="0"/>

<!-- player2 = nought -->

<parameter name="gameActive" type="bool" value="true"/>
<parameter name="gameResult" type="int" value="-1"/>

<!-- 0 draw, cross: wins playerl, nought: wins player2 -->

<parameter name="grid[9]" type="int" value="{0,0,0, 0,0,0, 0,0,0}"/>
<parameter name="playedPieces" type="int" value="0"/>
</parameters>

<eventList> <event name="OnGameFinished"/> </eventList>

Thegrid parameter is a vector of nine elements that record

the playing pieces placed on the grid cells, whilgedrieces
counts the overall number of symbols play@@eresult stores
the result of the current gamenpprlayer parameters record the
players’ scores angameActive indicates if a game is in
progress.

Then, we defined a set of rules that check: @lithe cells
in a row, column or diagonal contain the same syrdra (ii)
if the maximal number of symbols has been playedsibly
resulting in a draw. If one of these conditionwésified, the
game result is recorded and theameFinished event is raised:

<rulelist>

<!-- check possible win in the first grid row -->

<rule condition="gameActive and grid[1] == grid[2] and grid[2] == grid[3]
and grid[3] != @">

<onTrue action="gameActive = false, gameResult =
emitEvent="0OnGameFinished" />

</rule>
<l— we do not report, for the sake of brevity, the similar rules that check
different combinations-->

grid[3]"

<!-- check draw, N.B.: this rule has lower priority than win checks -->
<rule condition="playedPieces == 9" priority="0">
<onTrue action = "gameActive = false, gameResult = 0"
emitEvent ="OnGameFinished" />
</rule>
</rulelist>

Each cell of the playing grid is associated witkessible
area that raises an event when a playing piecdateg on
(onsensibleAreaEntering) or removed from
(onsensibleAreaLeaving) the grid cell. Each sensible area
defines an extra parametes11, containing the index of the
grid cell it is associated with, which will be usky the event
handlers. The sensible areas are defined as follows

<sensibleArealist>
<sensibleArea name="cl1l" vertices(386,184),(626,184),
(626,424),(386,424)">
<parameter name="cell" type="int" value="1">
</sensibleArea>
<!— other cells from c2 to c8... -->
<sensibleArea name="c9" vertices="(978,776),(1218,776),
(1218,1016),(978,1016)">
<parameter name="cell" type="int" value="9">
</sensibleArea>
</sensibleArealist>

The system registers itself as listener of the ibsreas
events. The event handler updates the symbol oplkinged
piece to the proper entry of tleid vector and the number of
pieces played. The update of these parametersctuseules
to be evaluated. If one of the player wins, or¢hera draw, the
game is stopped, the current score is updated andssage
window is displayed. A “New game” button on the |&bp
surface allows, when pressed, to reset the val@iedl grid
cells and start a new game.

The code of the system event handlers is the fatigw

<eventlListeners>
<event name="OnSensibleAreaEntering">
<rule action="grid[sender.cell]=sender.tileClass,

playedPieces
</event>
<event name="OnSensibleArealLeaving">
<rule action="grid[sender.cell]=0, playedPieces=playedPieces-1" />
</event>
<event name="OnGameFinished">
<rule action="gameActive = false, newGameButton.enable = true"/>

playedPieces + 1" />

<rule condition="gameResult == @">
<onTrue playSound="draw.wav"/>
</rule>
<rule condition="gameResult == Cross.fiducial">
<onTrue action="winPlayerl = winPlayerl + 1" playSound="winl.wav"/>
</rule>

<rule condition="gameResult Nought.fiducial">

<onTrue action="winPlayer2 = winPlayer2 + 1" playSound="win2.wav"/>

</rule>
</event>
<event name="OnButtonClicked">
<rule condition="sender == newGameButton">

<onTrue action="grid[] = {0,0,0, 0,0,0, 0,0,0}, gameResult -1,
gameActive = true, newGameButton.enable = false, playedPieces = 0" />
</rule>
</event>
</eventListeners>

The widget configuration fifecreates the labels to display
the players’ scores and the “New Game” button, thie
disabled at game start and raises, if active d@oked, a default
eventonButtonClicked.

<labellist>
<label name="PlayerOnelLabel" icon="img/labpone.jpg" position ="670,1170"
size="270,100" orientation ="south" displayedParameter="winPlayerl">
</label>
<label name="PlayerTwolLabel" icon="img/labptwo.jpg" position="940,18"
size="270,100" orientation="north" displayedParameter="winPlayer2">
</label>
</labellist>

<buttonList>
<button name="newGameButton" position="268,732" size="270,70"
orientation="west" label="New Game" icon="img/newgame.jpg"
onClick="img/newgameClick.jpg" sound="startgame.wav"
enable="false" />
</buttonList>

Summarizing, the game execution flow is the follogvi

when a player places one of his/her symbols orica gr
cell, an event is raised causing: (i) an updatiefell
value, (ii) an increment of the number of piecesy/pt,
and (iii) an evaluation of the the rules includimge of
these parameters in their conditions;

- eventually, theonGameFinished event is raised, halting
the game, updating the scores and the labels sgowin
them, playing a proper sound and activating thew/Ne
Game” button;

- when the “New Game” button is pressed, game
variables are cleared, the button is deactivatet aan
new match can start.

The whole development process of the game (which
includes digital content and tangible pieces comatiscript
writing, testing and debugging) required a totalfigé man-
hours. We think this number highlights the capébdgi of our
framework to support a rapid application prototgpin

The second example discussed is “Torino 1507, an
edutainment application designed for children agetiveen 6
and 13 (i.e. students of first and middle schodlgyino 150
has a gameplay similar to that of the well-knowmGity

For the sake of clarity, we report a simplifiedsien of the script, where we removed most of the
parameters related to the definition of the widggtearance

game ([38]). It is a cooperative game in which playhave the
task of founding and developing their own versidrthe city

of Torino in 1861, the year when the city becaneedapital of
the newly proclaimed united Kingdom of Italy.

The game is aimed at communicating to childreneagbf
the history of their own city, along with informati related to
buildings and monuments that have changed theieappce
through time or that do not exist anymore. Thetdigiontents
and the information displayed are the legacy of iPo orino
Virtual Adventure), a Virtual Heritage project aitheat
constructing a realistic and historically accuradi2 model of
Torino in 1861, whose demonstrative 2D and 3D autve
visualization were shown during the Italia 150 bedgion, held
in 2011. The information used for creating theggtal models
were collected from various sources: photos of stiisting
buildings and monuments, archival material suchmesps,
photographs, drawings, paintings and other hisdbric
documents (Fig. 7).

Fig. 7. Examples of models used by Torino 150 apptin and of reference
documents used to create them.

“welfare” for citizens, where the welfare represeatbalance
among positive (e.g. presence of hospitals, markaiblic
transportation) and negative factors (e.g. crinitipabollution,
taxes). The game has three difficulty levels, eglab the level
of taxes (low, medium or high), which can be s&édby the
players.

The tangible playing pieces represent the differen(S

buildings of the city, such as houses, marketsjcpoand
fireman stations, industries and streets. As a mwar
reaching certain welfare levels, the theatre, chdieand royal
palace blocks are released. When playing pieceplaced on
the table, they contribute to modify some of theapzeters
involved into the computation of the current wedfari-or
instance, the population increases with the numolbdrouses,
the health with the number of hospitals and thmicrlity is a
function of population, richness and number of gohtations.

Different types of agents are considered in the ggam

citizens, spawned by houses, and horse-drawn trants
carriages created by streets (see Fig. 4). Sontensysvents
were also introduced. For instance, each hour ofiegéay
(virtually corresponding to 12 hours in real litle cathedral,
if placed on the table, rings the bell to annouaceeligious

function causing citizens to approach the churcé.afother
example, an earthquake (raised either randomhheysystem
or explicitly by players with a GUI button) can sausome
houses to collapse in ruins and a population deerea

Opposite to the previous example, this applicafioly
exploits the availability of a secondary screenjciWwhallows
players to be immersed in a 3D reconstruction ef ¢itual
city they are building in the game (Fig. 8). Thigtual
environment can be viewed under different perspesti
namely through: (i) a set of fixed cameras, prowdian
overview of the city, (i) a first-person camera agk
movements can be controlled by the user, and diiifirst-
person camera attached to any of the citizens rgowinthe
environment. The current viewing camera can bectaleand
updated through the game GUI.

As for the development time of the whole applicatith is
virtually impossible to provide an accurate estenédr two
main reasons. First, as previously stated, moghefdigital
contents used by the application were based onethos
developed for a previous project. The only modeéifgrt was
the adaptation of these models to the needs odlainee VR
application. Second, Torino 150 was one of the rteshcases
used as reference for the development of GAINE.sT line
development of the application proceeded in pdralith the
implementation of the features and functionalitieguired by
the framework. Nevertheless, we think that the amof code
required by the application scripts to configurenteots and
implement the game logic, which sums up to 513slinaly,
can provide an indication of the simplicity of dmng an
interactive tabletop game with GAINE.

Fig. 8. Torino 150 games: the playing pieces asdraenshot of the view on
the secondary screen.

V. CONCLUSIONS

In this paper we presented GAINE, a flexible fraroguw
for the rapid prototyping and development of tatpegames
exploiting tangible interaction on multi-touch irdetive
tabletops. The main contribution of GAINE is to yire a set
of high level structure and a simple scripting lange that
allows specifying (i) the characteristics of th@itdil contents
managed by the application and (ii) the definitafrthe game
logic. Examples showing the effectiveness of usB#®gJNE in
the development of tabletop interactive applicatiofor
entertainment and edutainment purposes were pievéahel
discussed.

The framework has been implemented in C++ relyingao
set of open source libraries that provide an attstrafrom the
hardware level and the portability on differenttfdems.

As for future work, we are planning to expand the

functionalities offered by GAINE. As we did in thgevious
development steps, this process will be carriedbgutackling
novel projects and novel application scenarios)yairgy the
new challenges they require to face and desigrohgisns for
them. Then, following the ideas discussed in [18] §87], we
are also planning to enhance the tangible
component, which is currently limited to the usefidiicial-
tagged objects, by providing support for a morgedaset of
playing pieces and responsive objects. Finally,piiesthe
simplicity of the scripting language used by trenfework, the
design process would sorely benefit from the albdity of an
IDE (similar to the Graphic Assistant described1i]), which
would provide developers an easier modeling of gaee
elements and an automation of the script generation

ACKNOWLEDGMENT

hardware during his doctoral thesis and Danieleiodag for
his contribution to code development.

REFERENCES

[1] M. Kaltenbrunner, S. Jorda, G. Geiger and M. Alorf3bie reactable*:

A collaborative musical instrument,” WETICE 2006: Proceedings of

the 15th IEEE International Workshops on Enablingchnologies:
Infrastructure for Collaborative Enterprisepp. 406—411.

[2] E. Tse, S. Greenberg, C. Shen and C. Forlines, tiiiatial Multiplayer

Tabletop Gaming,” IlPerGames 2006: Proceedings Third International

Workshop on Pervasive Gaming Applications, 139—148.

T. Gross, M. Fetter and S. Liebsch, “The cuetaboperative and
competitive multi-touch interaction on a tabletopfi CHI 2008
Extended Abstracts on Human Factors in ComputirageBys pp. 3465—
3470.

C. W. Reynolds, “Steering Behaviors For Autonom@learacters,” In
Proceedings of Game Developers Conferer8an Jose, California,
1999, pp. 763-782.

A. Battocchi, A. Ben-Sasson, G. Esposito, E. Gal, Pranesi, D.
Tomasini, P. Venuti, P. Weiss, and M. Zancanara|l&borative puzzle
game: a tabletop interface for fostering collabweaskills in children

(3]

(4]

(5]

with autism spectrum disordersJournal of Assistive Technologies,

2010, 4(1), pp. 4-13.
G. F. M. Silva, A. Raposo and M. Suplino, “Par: éllaborative game

for multitouch tabletop to support social interanotiof users with
autism,”Procedia Computer Scienc27, 2014, pp. 84-93.

R. Zarin and D. Fallman, “Through the troll foreskploring tabletop
interaction design for children with special cog@t needs,” In
Proceedings of the SIGCHI Conference on Human FHFsactm
Computing System8CM, 2011, pp. 3319-3322.

C. McCrindle, E. Hornecker, A. Lingnau and J. Ri¢khe design of t-
vote: a tangible tabletop application supportingldcan's decision

(6]

(7]

8l

making,” In Proceedings of the 10th International Conferenae o

Interaction Design and Childrer2011, pp. 181-184.

A. Al Mahmud, O. Mubin, J. R. Octavia, S. Shahid, Yeo, P.
Markopoulos and J. B. Martens, “aMAZEd: designing affective

(9]

social game for children,” IrProceedings of the 6th international

conference on Interaction design and childr2@Q7, pp. 53-56.

Y. Li, W. Fontijn and P. Markopoulos, “A tangiblakletop game
supporting therapy of children with cerebral pdldyroceedings of the
2nd Intl. Conf. on Fun and GameX)08 pp. 182-193.

[10]

[11] J. Duckworth, P. R. Thomas, D. Shum and P. H. Wil$Designing co-

[12]

[13]

intenacti [14]

[15]

[16]

[17]
We thank Matteo De Simone for assembling the table

(18]

[19]

[20]

[21

[22

[23
[24
[25
126

[27

[28

[29
[30

[31

]

]

]
]
]
]
]

|

]

located tabletop interaction for rehabilitation lofin injury,” Lecture
Notes in Computer Sciendéol. 8013, 2013, pp 391-400.

S. E. Higgins, E. Mercier, E. Burd and A. Hatch, dltttouch tables
and the relationship with collaborative classrooredggogies: A
synthetic review,” International Journal of Computer-Supported
Collaborative Learning6(4), 2011, pp. 515-538.

X. Cao, S.E. Lindley, J. Helmes, A. Sellen, “Tddlithe whole story:
Anticipation, inspiration and reputation in a fieldeployment of
TellTable,” Proceedings of CSCW 2010, ACM Conference on Compute
Supported Cooperative Wonh. 251-260.

T. Alofs, M. Theune, and I.M.T. Swartjes, “A Taldpt Board Game
Interface for Multi-User Interaction with a Storljileg System,”
Proceedings of 4th International Conference onlligtent Technologies
for Interactive Entertainment, INTETAIN 204p. 123-128.

A. Wu, D. Joyner and E.Y.L. Do, “Move, beam, andedkl
imagineering tangible optical chess on an intevactabletop display,”
Computers in Entertainment (CIB) no. 3, 2010: 20.

M. Horn, Z. Atrash Leong, F. Block, J. Diamond, M. Evans, B.
Phillips and C. Shen, “Of BATs and APEs: an intéxectabletop game
for natural history museums,” Proceedings of the SIGCHI Conference
on Human Factors in Computing Syste@®12, pp. 2059-2068.

N. Correia, T. Mota, R. Nobrega, L. Silva, A. Alrdaj “A multi-touch
tabletop for robust multimedia interaction in musay’ In ACM
International Conference on Interactive Tabletopsl éSurfaces2010
pp. 117-120,

S. Jorda, G. Geiger, M. Alonso and M. Kaltenbruntiehe reacTable:
exploring the synergy between live music perforneaand tabletop
tangible interfaces,” IfProceedings of the 1st international conference
on Tangible and embedded interacti@d07, pp. 139-146.

J. Marco, E. Cerezo and S. Baldassarri, “ToyVisiantoolkit for
prototyping tabletop tangible games,” Broceedings of the 4th ACM
SIGCHI symposium on Engineering interactive conmgusystems2012
pp. 71-80.

C. Villamor, D. Willis, L.Wroblewski,"Touch Gesturgeference Guide.
2010. Available online at: static.lukew.com/Touck@eeGuide.pdf,
last accessed March 2015

N. Matsushita and J. Rekimoto, “HoloWall: designiadinger, hand,
body, and object sensitive wall,” IRroceedings of the 10th annual
ACM symposium on User interface software and teogyoUIST '97),
1997 pp. 209-210.

Y.J. Han, “Low-cost multi-touch sensing throughshrated total internal
reflection,” In Proceedings of the 18th annual ACM symposium om Use
interface software and technology (UIST 'GZ)05 pp. 115-118.

A. Gokcezade, J. Leitner, and M. Haller, “LightTkac. An open-source
multitouch toolkit,” ACM Comput. Entertair2010, 8, 3, pp. 16.

Community Core Vision, available online at ccv.moigp.com, last
accessed March 2015

T. Hansen, C. Denter and M. Virbel, “Using the Pylblkit for HCI
Research,Forum on Tactile and Gestural interactia?Q10.

Touchlib, available online at nuigroup.com/touchlitast accessed
March 2015

J. Luderschmidt, I. Bauer, N. Haubner, S. Lehmd&nDdrner and U.
Schwanecke, “TUIO AS3: A Multi-Touch and Tangibledd Interface
Rapid Prototype Toolkit for Tabletop Interactiorri’ Self Integrating
Systems for Better Living Environments: First Whdgs Sensyble,
2010, pp. 21-28

C. Shen, F. D. Vernier, C. Forlines and M. RingBliamondSpin: an
extensible toolkit for around-the-table interactidn Proceedings of the
SIGCHI conference on Human factors in computingesys,2004, pp.
167-174.

uTableSDK. Available online at http://utablesdk.eptbx.com, last
accessed March 2015

ReacTIVision, a toolkit for tangible multi-touch réaces, available
online at http://reactivision.sourceforge.net/t lcscessed March 2015

OpenSceneGraph, available online at www.openscapbgrg, last
accessed March 2015

[32] osgAudio, OpenSceneGraph nodekit available
code.google.com/p/osgaudio/, last accessed Marth 20

[33] OpenSteer, Steering Behaviors for Autonomous Clergcavailable
online at opensteer.sourceforge.net, last accédaech 2015

[34] muParser, Fast Math Parser Library, available
muparser.beltoforion.de, last accessed March 2015

[35] CMarkup, available online at www.firstobject.com/dmarkup.htm, last
accessed March 2015

enlimt

at[36] O. Gaggi and M. Regazzo, “Tactive, a FrameworkG@ooss Platform

Development of Tabletop Applications,” International Conference on
Web Information Systems and Technologies (WEBI$Z)2fp. 91-98.
[37] A. Wu, J. Jog, S. Mendenhall, A. Mazalek, “A frantelvinterweaving
tangible objects, surfaces and spacesfuman-Computer Interaction.
Interaction Techniques and Environmer2811, pp. 148-157.
[38] SimCity, from Wikipedia http://en.wikipedia.org/wisimCity, last
accessed March 2015

