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Abstract. Prostate Magnetic Resonance Imaging (MRI) is one of the
most promising approaches to facilitate prostate cancer diagnosis. The
effort of research community is focused on classification techniques of MR
images in order to predict the cancer position and its aggressiveness. The
reduction of False Negatives (FNs) is a key aspect to reduce mispredic-
tions and to increase sensitivity. In order to deal with this issue, the most
common approaches add extra filtering algorithms after the classification
step; unfortunately, this solution increases the prediction time and it may
introduce errors. The aim of this study is to present a methodology im-
plementing a 3D voxel-wise neighborhood features evaluation within a
Support Vector Machine (SVM) classification model. When compared
with a common single-voxel-wise classification, the presented technique
increases both specificity and sensitivity of the classifier, without impact-
ing on its performances. Different neighborhood sizes have been tested
to prove the overall good performance of the classification.

Keywords: Prostate cancer; magnetic resonance imaging; support vec-
tor machine; MRI classification.

1 Introduction

Prostate Cancer (PCa) is one of the most frequent cancer in males, and it is
the third leading cause of cancer-related death among European men [1]. Ac-
cording to clinical guidelines, one of the most commonly used methods to detect
prostate cancer is a Transrectal Ultrasound (TRUS) guided biopsy that, unfor-
tunately, has been proven to provide limited efficacy to differentiate malignant
from benign tissues [2]. Another accepted screening method is the antigen (PSA)
blood test, which has been linked to over diagnosis and over treatments [3]. Re-
cently, diagnostic improvements have been made by evaluating the information
extracted from magnetic resonance image (MRI) sequences such as conventional
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morphological T1-weighted (T1-w) and T2-weighted (T2-w) imaging, diffusion-
weighted MRI (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI).
These Multiparametric MRI techniques are promising alternatives for the detec-
tion of prostate cancer, as well as the evaluation of its aggressiveness [4—6].

Research studies have shown that Support Vector Machine (SVM) classifiers
provide good results for classification [7—9]. Nevertheless, they have to cope with
False Positives (FPs) and False Negatives (FNs) that affect the final results. From
a clinical point of view FNs may lead to underestimating the cancer by detecting
only portions of it, whereas FPs may lead to an extra care. Both scenarios
are not acceptable and should be avoided. The reduction of FPs and FNs is
therefore still a challenge that needs to be solved to effectively use Computer
Aided Detection (CAD) tools or Decision Support System (DSS) for PCa. In
particular, physicians look at FNs reduction (and related sensitivity increment)
to avoid misprediction by detecting regions that cannot be easily seen with the
naked eye.

On the computational side, these aspects are usually addressed either by
implementing extra filter steps, trained to increase the specificity by reducing
FPs, or by modifying the classification method. Sometimes both approaches
are taken, negligently forgetting that procedures adding post-prediction filters
may also decrement True Positives (TPs) or may negatively impact on future
improvements of the classification step.

In this article, we propose a new methodology that relies on a 3D voxel-wise
neighborhood features evaluation instead of single voxel one. We implemented
the classification pipeline on top of a SVM supervised machine learning classifi-
cation technique. The tool is mainly written resorting to Insight Toolkit (ITK)
libraries [10] to provide a modular and cross-platform implementation of the
flow. Moreover, actual implementation based ITK algorithms may take advan-
tage of the multiple processors present in most common systems and ensure
faster classification time.

In terms of classification, preliminary results show interesting classification
improvements w.r.t. the single voxel classification process.

2 Materials and Methods

In this section, we first describe the available multiparametric MRI dataset, then
we present the idea of the 3D-voxel neighborhoods classifier approach, together
with its implementation based on ITK and LIBSVM tool [11].

2.1 Dataset

The available dataset consists of 28 patients, who underwent MRI before prosta-
tectomy. The mean age is 64 years and they were selected among patient of the
same hospital. Since personal data are confidential and removed from the MRI
sequences, we have no other information about them. A pathologist contoured
tumors on histological sections and a radiologist outlined regions of interest
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(ROI) on the T2-w images in areas corresponding to each PCa. Non tumor
ROI were also outlined in each patient to define a balanced dataset useful in
the training stage. A total of 28 tumors with size bigger than 0.5 cc (median:
1,64 cc; 1st-3rd quartile: 0,75-2,25 cc) were included in the dataset. DW-MRI
and DCE-MRI sequences were automatically aligned to T2-w images and finally
each pixel, belonging to the prostate automatically segmented, was represented
as a vector of quantitative parameters (i.e. T2-w signal intensity, the ADC value
and K trans)[12, 13].

2.2 Classifier

Before going into methods and implementation details, we briefly describe the
architecture of the classification tool. It consists of two different stages: a training
and a testing stage. Both stages are summarized in Figure 1. Since the ITK
libraries follows the Objected Oriented Programming (OOP) paradigm, it can
be noticed that the architecture is fully modular. Together with the usage of the
LIBSVM library as a reliable implementation for a SVM classifier [11], this choice
alms at guaranteeing compatibility and flexibility towards further functionality
improvements.

The very first step of both stages is a data adaptation provided by means
of an ITK filter (called DataProcess in the schema of Figure 1). This step is
merely required by the discrepancy between the actual dataset format and the
one imposed by LIBSVM. It consists on vector permutations and aggregations;
actual values are not modified during this process. If the DataProcess filter, due
to further changes on the dataset format, will be no longer necessary, it will be
avoided.

Once adapted, all the data are normalized and standardized as required by
the SVM classification methodology [14]. The Normalization class filter imple-
ments this step. It provides both the normalized data and the normalization
parameters. Normalization parameters are necessary to apply the normalization
process to new data, i.e., when any further prediction is needed.

The normalized data are then forwarded to the training class, where the final
SVM classifier model is trained and created. The Training class filter is also able
to output a final model description that is very useful to set up the classifier
whenever needed, without training the model from scratch again. Avoiding re-
training time waste hugely impacts to the classifier timing performances.

When the training is completed and we need to employ it for prediction, the
testing flow is very similar to the training one: data coming from the feature
extraction are formatted and subsequently normalized resorting to the parame-
ters saved during the training phase. The prediction is also performed restoring
the model previously saved during the training phase. The outputs is an ITK
compliant image, representing a probability map where, for each pixel of the
original morphological sequence, a cancer probability value is computed.
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Fig. 1. The Classifier Training and Testing Flows

2.3 The 3D Voxel Neighborhood Approach

At the morphological level, tumors are clusters of voxels, spreading along three
dimensions. Even on MRI sequences, all of them start as a two-dimensions ar-
tifact on one slice and then progress slice by slice until the end of their mass.
Thus, it makes sense to consider at the same time not only on the set of features
extracted for the voxel under-evaluation but also on the pixels surrounding it,
both on the same slice and on the previous and following slices. Under these
assumptions, when the classifier deals with potential FP voxels surrounded by
True Negative (TN) voxels, we may increase the chance of classifying them as
TN. The same way potential FN voxels within a TP voxels neighborhood likely
results in a TP classification.

To formalize this idea, we first define a radius concept as the distance from a
central voxel (see Figure 2). This distance can be evaluated as a voxel-wise one
(Ry.) or using a common length metrics, i.e. millimeters (R, ), resorting to the
spacing information (S, .) available within the header of any MRI sequence
compliant with the DICOM standard [15]. This last type of evaluation should
allow better results since spacing is known to be bigger on Z-axis than on X-
and Y-axis (e.g., 3 millimeters from one slice to another versus 0.3 millimeters
between two adjacent voxels within a slice). The radius identifies a 3D box where
all belonging voxels can be processed together.

Assuming that for each axial direction (x, y, z) we can relate a voxel-wise
radius with common length metrics radius (millimeters in the equation) as:

S(ay.2)

we are able to express the number of voxel selected with respect to each direction
as:
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NumVozx, = ((2Ryz) + 1) (2)
NumVoz, = (2Ryz) + 1)

Eventually, equation 2 allows to evaluate the total number of voxels processed
in the 3D neighborhood as:

NumVozo = (NumVoxy, NumVox,NumVox,)

— (2Ru) + 1) ©

Figure 2 shows quantitatively how many voxel will be considered when the
radius is set to 1 voxel. Both the Training and the Prediction class filters are
able to process 3D voxel-wise neighborhoods as well as single voxels.

Once a radius is defined, each feature belonging to the voxels included in the
3D box is evaluated by averaging its value among all single voxel values. This
averaged value is employed as final value of the feature. Currently, studies on
different evaluation approaches are under analysis.

7

-%* m)

Fig. 2. 3D Voxel Neighborhood with a R,, = 1. A total of 27 voxels are then considered.

It has to be emphasized in here that, during the developed supervised train-
ing, where the dataset is originated by user-selected malignant and benignant
ROI, the Training class filter averages the feature value only of voxels of the
same ROI target type. This strategy avoids the training class filter to break the
supervised training rules. Moreover, this way, volumetric information could be
weighted in the malignant voxels set described by NumV ozi,: neighborhood
voxels; thereby FP isolated voxels could be filtered and the borders of malignant
ROI may result more accurate. In line with these assumption physicians consider
and highlight tumors with a minimum volume size that have diagnostic relevance
(i.e. 0,5¢cc). Tt is also important to mention that features are collected voxel by
voxel. Any other form of feature extraction introduces losses in the original data.

Experiments were performed with different radius values in order to investi-
gate the classifier performances against single voxel-wise classification and will
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be provided on Section 3. In technical terms, the neighborhood selection is im-
plemented making use of itkConstNeighborhoodlterator and itkImageRegionCon-
stlterator ITK class templates.

3 Results

In this section we present the results for 3D voxel neighborhood classifier and
we discuss about obtained performances.

3.1 Data Evaluation

The training set was built upon 28 patients and a leave-one-out cross-validation
(LOOCYV) has been implemented to validate the model. We performed different
experiments varying the radius (R, ): six different radius (R;) size were tested:
Ri—{0,1,2,3,4,5), Wwhere R;—o means a standard single voxel-wise classification.
Figure 3 compares results by means of the following statistical functions:

Area Under the ROC Curve (AUC) [16]
— Sensitivity (Se): Se = 2L

TP+FN
— Specificity (Sp): Sp = %
— Accuracy (Acc): Acc = %

In particular, we present arithmetic mean (AM) and standard deviation (SD)
to compare classifier prediction performances.

Since the final decision has to be binary (tumor vs healthy tissue), a thresh-
olds cutoff was set to 0.5 value during the experimental setup. This is a very
weak threshold, which commonly leads to worst results comparing with best cut-
off search algorithms, such as the Yoden one [17, 18]. The meaning of our choice
is strongly related to the way physicians exploit the classification results. Within
a diagnosis path, the CAD software is usually able to show the physician the
classification results as a colored overlay map on the T2-w sequence [19]. Colors
help focusing on the tumor areas but their relation to the classifier outcome is
changed as physician commodity.

3.2 Discussion

Figure 3 reveals that our 3D voxel-wise neighborhood classifier provide an im-
provement of the classification performances. We highlight the AM improvement
in term of AUC, Se, Sp and Acc. In particular, when comparing Ry to Ry, the
results seem very promising.

Generally speaking, the progressive increase of the radius relates to a contin-
uous improvement in results. The Se reveals a significant improvement ranging
its average from 0.71 to 0.78 (R to Rs), as well as the improvement of the AUC
value is significant when single voxel-wise classifier performances are compared
with Rs neighborhood classifier. In this case the average rises from 0.76 to 0.81.
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Fig. 3. AUC, Se, Sp and Acc average (dot) and standard deviation (whiskers) values,
with relation to radius size (R;), for testing set.

Nevertheless, the Sp seems to do not benefit from our proposed technique (R
to Rs delta is less than 0.03), suggesting that the way features on different voxel
are considered may need further investigation to refine the methodology. In par-
ticular, the AM variation expressed along the radius, may suggest that more
considerations on the morphological characteristic of tumors among the dataset
are needed. We expected such kind of impact on final results thus further inves-
tigations will be planned on that.

Eventually, SD values are generally not negligible but this may depend on
the actual available dataset size.
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4 Conclusion

We present a 3D voxel neighborhood SVM classifier methodology, implemented
using ITK libraries, based on MRI sequences to discriminate prostate cancer
lesion from healthy tissue.

Obtained results indicate improvements if compared against traditional single
voxel-wise classifier; especially FNs take advantage from the proposed approach.
Some minor drawbacks suggest a further analysis involving an extended dataset
to confirm the validity volumetric neighborhood approach performance.
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