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Graded quantization for multiple description coding
of compressive measurements

Diego Valsesia, Student Member, IEEE, Giulio Coluccia, Member, IEEE, and
Enrico Magli, Senior Member, IEEE

Abstract—Compressed sensing (CS) is an emerging paradigm
for acquisition of compressed representations of a sparse signal.
Its low complexity is appealing for resource-constrained scenarios
like sensor networks. However, such scenarios are often coupled
with unreliable communication channels and providing robust
transmission of the acquired data to a receiver is an issue.
Multiple description coding (MDC) effectively combats channel
losses for systems without feedback, thus raising the interest in
developing MDC methods explicitly designed for the CS frame-
work, and exploiting its properties. We propose a method called
Graded Quantization (CS-GQ) that leverages the democratic
property of compressive measurements to effectively implement
MDC, and we provide methods to optimize its performance. A
novel decoding algorithm based on the alternating directions
method of multipliers is derived to reconstruct signals from
a limited number of received descriptions. Simulations are
performed to assess the performance of CS-GQ against other
methods in presence of packet losses. The proposed method is
successful at providing robust coding of CS measurements and
outperforms other schemes for the considered test metrics.

I. INTRODUCTION

Compressed sensing (CS) [1] is a novel theory for sam-
pling and acquisition of sparse and compressible signals. The
traditional paradigm based on sampling a signal according to
the Nyquist/Shannon theorem followed by compression can
be replaced by the acquisition of a small number of linear
measurements, in the form of random projections. This is
very appealing for low-complexity systems, such as low-power
sensor motes, where classic acquisition followed by compres-
sion could be expensive in terms of energy consumption and
computational demands. Such systems typically need to trans-
mit the acquired data to a receiver over unreliable channels,
thus raising the issue of robustness of the transmission against
channel losses and at the same time imposing a constraint
on the complexity of the adopted methods. The framework
of multiple description coding (MDC) allows to increase the
robustness by creating multiple correlated representations of
the data to be transmitted. The quality of the decoded data
will then depend on the number of descriptions available at
the receiver, where side decoders can recover a lower quality
version of the data from few received descriptions, whereas
the central decoder can achieve the maximum quality when
all the descriptions are received. A few works studied the
problem of MDC in the CS framework. An early work on the
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topic [2] borrows from the theory of sparse representations to
derive a two-description coding scheme through a frame syn-
thesis operator. However, the work does not consider random
projections. The work in [3] presents a method to generate
descriptions of an image by sensing each of them separately,
i.e., preprocessing the image to split it into two sub-images
and then sense the wavelet coefficients of each separately. We
will not consider this kind of approach in the paper because
we want to explicitly avoid any preprocessing of the signal
before acquisition. Indeed, compressive measurements could
be directly obtained by specialized hardware (e.g., [4]–[6]),
thus hindering any preprocessing of the data. Deng et al.,
[7] argue that the democratic property of random projections
makes compressive sensing image coding robust to channel
losses. They just partition the measurements into packets so
that the quality of the decoded image will depend on the
number of received packets. However, they do not consider
a practical packetization problem, as they employ very small
packets containing few measurements for each transmission.
Such system is actually not sensible due to the high packeti-
zation overhead.

This paper builds on the MDC mechanism called graded
quantization (CS-GQ), originally proposed in [8], exploiting
the democratic property of compressive measurements. The
principle behind CS-GQ is that multiple copies of the measure-
ment vector can be used as descriptions. Each description is
then partitioned into sets of samples, and each set is quantized
with different quality. The principle is similar to [9]–[19], but
has never been applied in conjunction with CS.

In this paper, we give several novel contributions with
respect to [8]. First, we discuss how methods based on
segmentation of measurements such as [7] are special cases
of CS-GQ and, contrary to the present literature on MDC
for CS, we carefully consider packetization issues. The use
of CS for low-complexity and low-energy sensor networks
motivates us to pay particular attention to the use of the
proposed method with common data link layer protocols such
as IEEE 802.15.4. Moreover, we propose techniques to im-
prove the performance of CS-GQ, to optimize its parameters,
and we introduce a novel algorithm based on the alternating
directions method of multipliers (ADMM) [20] to implement
the side decoder. On the theoretical side, perfomance analysis
is conducted by providing reconstruction guarantees for the
side decoder, using both the actual decoder and an ideal
version based on the oracle decoder, which serves as a limit
case for performance assessment. On the experimental side,
simulations are performed for various scenarios. The paper
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is organized as follows: Sec. II explains some introductory
background concepts, Sec. III introduces CS-GQ and Sec. IV
the side decoding algorithm based on ADMM. Sec. V presents
theorems guaranteeing stable side decoding and discusses the
performance of oracle-based side and central decoders. Sec. VI
deals with the optimization of the CS-GQ parameters as func-
tion of the channel loss probability and discusses packetization
issues. Finally, Sec. VII reports the results of simulations
comparing various MDC methods, the performance of CS-
GQ in presence of channel losses using two different channel
models and shows that the robustness of multiple descriptions
can improve scene recognition accuracy in a sensor network
application.

II. BACKGROUND

A. Compressed sensing

In the standard CS framework, introduced in [1], [21], a
signal x ∈ Rn×1 which has a sparse representation in some
basis Ψ ∈ Rn×n, i.e. x = Ψθ, ‖θ‖0 = k, k � n can be
recovered from a smaller vector of noisy linear measurements
y = Φx + e, y ∈ Rm×1 and k < m < n, where Φ ∈ Rm×n
is the sensing matrix and e ∈ Rm×1 is the vector representing
additive noise such that ‖e‖2 < ε, using [22]

θ̂ = arg min
θ
‖θ‖1 s.t. ‖ΦΨθ − y‖2 < ε (1)

and x̂ = Ψθ̂, known as Basis Pursuit DeNoising, provided that
m = O(k log(n/k)) [21] and that each submatrix consisting
of k columns of ΦΨ is (almost) distance preserving [23,
Definition 1.3]. The latter condition is the Restricted Isometry
Property (RIP). Formally, the matrix ΦΨ satisfies the RIP of
order k if ∃δk ∈ (0, 1] such that, for any θ with ‖θ‖0 ≤ k:

(1− δk)‖θ‖22 ≤ ‖ΦΨθ‖22 ≤ (1 + δk)‖θ‖22,

where δk is the RIP constant of order k. It has been shown
in [24] that when Φ is an i.i.d. random matrix drawn from
any subgaussian distribution and Ψ is an orthogonal matrix,
ΦΨ satisfies the RIP with overwhelming probability. More-
over, using a random matrix as sensing matrix, ensures the
democratic property of compressive measurements y [25].
Indeed, it can be seen that each measurement has roughly
the same importance as the others, in the sense that none of
them improves or degrades the quality of the reconstruction
significantly more than the others. This property is the key
ingredient of our proposed CS-GQ technique, as described in
Section III.

B. Multiple description coding

MDC [26] is a way of coding an information source that is
resilient to packet losses. The multiple description technique
allows to create multiple correlated representations of the orig-
inal information source, each carrying enough information to
decode the source with a certain fidelity. Losing a description
will not make the received data unusable since each description
can be decoded separately, albeit providing a limited quality.
However, the best decoding quality is obtained when all the
descriptions are available. In the framework of MDC, one can
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Fig. 1: Block diagram of a two-description MDC system.

description 1

description 2

B B B B

B B B B

b b b b

b b b b

1 m
m

2
. . . . . .+1

m

2

Fig. 2: CS-GQ

identify the so-called central decoder and the side decoders.
The role of the central decoder is to decode the source
when all descriptions have been received, thus achieving the
so-called central distortion. The side decoder recovers the
source with a lower fidelity (side distortion) since only a
subset of the descriptions has been received. This scheme
is depicted in Fig. 1 for the simple two-description case.
One may seek to create balanced or unbalanced descriptions
depending on their individual contribution to the final quality
of the recovered source. Several approaches to MDC have
been studied in the literature. Among others, it is possible to
identify approaches based on transforms, such as the Pairwise
Correlating Transform [27], approaches based on channel
coding, such as Unequal Error Protection [28] and approaches
based on quantization, notably the Multiple Description Scalar
Quantizer (MDSQ) [11].

III. GRADED QUANTIZATION FORMULATION

In the simple case of two descriptions, CS-GQ partitions
the indices of the measurement vector y into two sets Ω1

and Ω2. Two different quantization step sizes (coarse and
fine) are chosen and assigned to each set to generate the first
description. The dual assignment is performed for the second
description. This is graphically shown in Fig. 2, where we con-
sidered Ω1 =

{
i ∈
[
1, m2

]}
and Ω2 =

{
j ∈

[
m
2 + 1,m

]}
but,

thanks to the democratic property [25], the same performance
is expected for any other definition of the sets with the same
cardinality, e.g., the sets of even and odd indices. Before going
into further details, we remark that this scheme is amenable to
generalizations to an arbitrary number of sets and quantization
step sizes and hence of descriptions. In this paper we will not
consider this more general case, and we will rather focus on
the analysis and usage of the two-descriptions system. The
proposed system design may provide either balanced or unbal-
anced descriptions, depending on how many measurements are
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Fig. 3: High and low resolution quantizers are staggered so
that the central decoder achieves higher precision.

quantized using the high-rate and the low-rate quantizers. In
case of unbalanced descriptions, the cardinality of sets Ω1 and
Ω2 is not the same. Balanced descriptions offer the same side
decoding distortion regardless of which description is received.
Otherwise, unbalanced descriptions may have significantly
different side distortion depending on the specific description
that is received. This is desirable when the descriptions are
sent on separate channels having very different packet loss
probabilities. In the simplest case, one description is contained
in a single packet, e.g., when the number of measurements is
small or there is no packet-size limitation. Issues related to
packetization strategies and channel losses will be discussed
later in Section VI.

From now on, we consider staggered uniform scalar quan-
tizers with 2B and 2b levels, and B ≥ b. The associated
quantization step sizes are, respectively, ∆B and ∆b, which are
linked to the number of levels through the dynamic range r:
∆B = r2−B and ∆b = r2−b. The i-th description, i = 1, 2,
has then mB,i elements quantized with 2B levels and mb,i

elements quantized with 2b levels, such that mB,i+mb,i = m.
Staggered quantizers are quantizers whose reconstruction

levels are shifted with respect to each other. In this work, the
staggering involves the low-resolution and the high-resolution
quantizers and is motivated by an improvement in the reso-
lution obtained by the central decoder, which receives both
the high-resolution and low-resolution versions of each mea-
surement. In fact, when both descriptions are received, each
measurement falls inside the intersection of the quantization
intervals defined by the two staggered quantizers, which is
smaller or equal than ∆B . Hence, the low-resolution quantizer
has its bins shifted by ∆B

2 . The following equations describe
how the measurement vector y is quantized to generate the 2
descriptions:

y(B) =

⌊
y

∆B

⌋
∆B +

∆B

2

y(b) =

⌊
y − ∆B

2

∆b

⌋
∆b +

∆b

2
+

∆B

2
.

This allows to gain some extra bins of width ∆B

2 when low-
resolution and high-resolution quantizers are combined. This
is shown in Fig. 3 for a 4-bit high resolution quantizer and a
2-bit low-resolution quantizer. In general, the high resolution
quantizer has 2B bins, the low resolution quantizer has 2b bins,
while the combined quantizer has 2B−2b+1 bins of size ∆B

and 2(2b − 1) bins of size ∆B

2 .
In this work we do not consider more complex quantizers,

e.g., the Lloyd-Max method or vector quantization, because

they are regarded as computationally too complex and with
little or no performance gain, as shown in [29].

An improvement over classic recovery from noisy measure-
ments (1) can be obtained if we explicitly take into account
the two different quantization noise levels. Hence, the side
decoder solves the following optimization problem:

θ̂S = arg min
θ
‖θ‖1 s.t.


∥∥y(B) − Φ(B)Ψθ

∥∥
2
≤ εB∥∥y(B) − Φ(B)Ψθ

∥∥
∞ ≤ ∆B

2∥∥y(b) − Φ(b)Ψθ
∥∥

2
≤ εb∥∥y(b) − Φ(b)Ψθ

∥∥
∞ ≤ ∆b

2

(2)

where Φ(B) and Φ(b) are the appropriate submatrices of Φ, i.e.,
Φ restricted to the rows corresponding to the measurements
with fine and coarse quantization levels, respectively. The two
`2-norm constraints in (2) take into account the different quan-
tization levels in the two sets, being εB and εb the expected
`2 norm of quantization noise, which can be estimated as

εB =

√
mB,i

∆2
B

12
and εb =

√
mb,i

∆2
b

12
.

The `∞-norm constraints enforce consistency with the quan-
tization intervals - i.e., a reconstruction whose measurements
would be quantized to the same intervals as the observed mea-
surements, allowing better dequantization performance [25],
[30] -, thus exploiting all the information available regarding
the original unknown signal. Note that, while the `2-norm
constraints refer to the average norm of the noise, the `∞-norm
constraint is applied individually on every linear measurement.
In [8], it is shown that explicitly considering the previously
explained structure of the noise in the reconstruction problem
provides significant gains in the quality of the reconstruction,
with respect to considering an average noise norm.

On the other hand, when both descriptions are received, the
central decoder outputs the vector

θ̂C = arg min
θ
‖θ‖1 s.t. ‖yC − ΦΨθ‖2 ≤ εC , (3)

where yC is obtained in the following manner. For each
measurement, the quantization bins of the high- and low-
resolution versions are compared to determine the correct
bin in the central partition to be used for the dequantization
(see Fig. 3). ε2

C can be estimated as in (15) to properly take
quantizer staggering into account.

We shall also consider a special case of CS-GQ, which
we call CS-SPLIT. It is a simple technique that consists in
splitting the measurements vector into 2 or more segments,
so that instead of transmitting a single packet with all the
measurements, two descriptions are created by packetizing half
of the measurements in each. Referring to Figure 2, CS-SPLIT
can be regarded as a special case of CS-GQ when b = 0,
providing the best central distortion but worst side distortion
as shown in section VI-A.

IV. ADMM-BASED SIDE DECODER

In this section, we propose a method for the resolution of
problem (2) based on ADMM. In [8] problem (2) is solved by
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CVX [31] [32], a framework to model and solve convex opti-
mization problems, which employs the semidefinite program-
ming (SDP) solver SeDuMi [33]. SeDuMi uses interior point
methods to solve general SDP problems, resulting in rather
slow performance, especially for large scale problems due to
the fact that those are second-order methods1. In this paper, we
propose a significantly faster reconstruction algorithm based
on the Alternating Directions Method of Multipliers (ADMM)
tailored to solve problem (2). ADMM [20] is a popular first-
order method that allows cheaper iterations, and that combines
the robustness of the method of multipliers (a method to
solve a constrained optimization problem via unconstrained
minimization of an augmented Lagrangian function, including
the constraints as penalty terms and an additional `2 penalty
as augmenting term) [35] in terms of convergence, and the
decomposition property, similar to dual ascent [36], which
also allows for a distributed implementation. It is particularly
convenient to solve the side decoding problem (2) because it
allows to use alternating updates to the dual variables of an
augmented Lagrangian, projecting over the sets defined by the
multiple constraints. A proximal gradient method is used to
update the primal variable θ at each iteration. In the following
we report the derivation of the algorithm, while the complete
procedure is summarized in Algorithm 1.

A. Notation
Let us first introduce some notation that is used during the

derivation of the algorithm. First, we define the sets C2 and C∞,
which are feasible sets defined by the `2 and `∞ constraints
of (2), as a function of generic quantities A, b and c, as

C2 (A,b, c) = {θ ∈ Rn | ‖Aθ − b‖2 ≤ c}
C∞ (A,b, c) = {θ ∈ Rn | ‖Aθ − b‖∞ ≤ c} ,

along with the corresponding indicator functions, namely

IC2(A,b,c) (θ) =

{
0 if θ ∈ C2 (A,b, c)

∞ otherwise

IC∞(A,b,c) (θ) =

{
0 if θ ∈ C∞ (A,b, c)

∞ otherwise
.

The quantities defined above will be used to replace the
constrained formulaton of problem (2) with an unconstrained
one. Moreover, we define the soft-thresholding operator with
threshold λ as

Sλ (v) = sgn(v)�max {0, |v| − λ} ,
where | · | denotes the vector containing the absolute values of
· and � denotes the elementwise product, and the operators
performing projection over `2 ball

PC2(b,c) (v) =

{
b+c v−b

‖v−b‖2 if ‖v−b‖2>c
v otherwise

and `∞ ball

clip[−c,+c] (v) = sgn(v)�min {|v|, c} ,
where min{·} and max{·} have to be intended as elementwise
operators.

1See [34] for details.

B. Unconstrained problem and auxiliary variables

It is possible to use indicator functions to transform (2) into
an unconstrained minimization problem. First, we define the
following quantities

H = Φ(B)Ψ and h = y(B)

L = Φ(b)Ψ and l = y(b) .

Then,

θ̂S = arg min
θ

{
‖θ‖1 + IC2(εB ,H,h) (θ) + IC2(εb,L,l) (θ)

+ IC∞(εB ,H,h) (θ) + IC∞(εb,L,l) (θ)
}

= arg min
θ

{
‖θ‖1 + IC2(εB ,I,h) (Hθ) + IC2(εb,I,l) (Lθ)

+ IC∞
(

∆B
2 ,I,h

) (Hθ) + IC∞
(

∆b
2 ,I,l

) (Lθ)
}

where I is the identity matrix of suitable size. We now
introduce auxiliary variables w, z,p,q.

w = Hθ, z = Lθ, p = Hθ, q = Lθ

The problem can be now recast as:

θ̂ = arg min
θ,w,z,p,q

{
‖θ‖1 + IC2(εB ,I,h) (w) + IC2(εb,I,l) (z)

+ IC∞
(

∆B
2 ,I,h

) (p) + IC∞
(

∆b
2 ,I,l

) (q)
}

subject to w = Hθ, z = Lθ, p = Hθ, q = Lθ

We can include these new constraints by building an aug-
mented Lagrangian functional:

J = ‖θ‖1 + IC2(εB ,I,h) (w) + IC2(εb,I,l) (z) + IC∞
(

∆B
2 ,I,h

) (p)

+ IC∞
(

∆b
2 ,I,l

) (q) + uT (w −Hθ) + vT (z− Lθ)

+ sT (p−Hθ) + tT (q− Lθ) +
ρ

2
‖w −Hθ‖22

+
ρ

2
‖z− Lθ‖22 +

ρ

2
‖p−Hθ‖22 +

ρ

2
‖q− Lθ‖22 .

Moreover, we switch to the scaled form by defining the
following residuals and scaled dual variables:

ru = w−Hθ rv = z−Lθ rs = p−Hθ rt = q−Lθ
uρ = ρ−1u vρ = ρ−1v sρ = ρ−1s tρ = ρ−1t

Hence, the augmented Lagrangian can be rewritten as:

J = ‖θ‖1 + IC2(εB ,I,h) (w) + IC2(εb,I,l) (z) + IC∞
(

∆B
2 ,I,h

) (p)

+ IC∞
(

∆b
2 ,I,l

) (q) +
ρ

2
‖ru + uρ‖22 −

ρ

2
‖uρ‖22

+
ρ

2
‖rv + vρ‖22 −

ρ

2
‖vρ‖22 +

ρ

2
‖rs + sρ‖22

− ρ

2
‖sρ‖22 +

ρ

2
‖rt + tρ‖22 −

ρ

2
‖tρ‖22 . (4)
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Algorithm 1 CS-GQ side decoder.
Require: α, λ, ρ,H,L,h, l
θ(0,0) ← 0,w(0) = p(0) ← 0, z(0) = q(0) ← 0,u

(0)
ρ = s

(0)
ρ ← 0,v

(0)
ρ = t

(0)
ρ ← 0

while Outer stopping criterion is not met do
while Inner stopping criterion is not met do

θ(i,j+1) = Sλ
(
θ(i,j) − αρ

[
HT

(
Hθ(i,j) −w(i) − u(i)

ρ

)
+ LT

(
Lθ(i,j) − z(i) − v(i)

ρ

)
+HT

(
Hθ(i,j) − p(i) − s(i)

ρ

)
+ LT

(
Lθ(i,j) − q(i) − t(i)

ρ

)])
j ← j + 1

end while
After stopping: θ(i+1,0) = θ(i,j)

w(i+1) =

h + εB
Hθ(i+1,0)−u(i)

ρ −h
‖Hθ(i+1,0)−u(i)

ρ −h‖2
if ‖Hθ(i+1,0) − u

(i)
ρ − h‖2 > εB

Hθ(i+1,0) − u
(i)
ρ otherwise

(5)

z(i+1) =

l + εb
Lθ(i+1,0)−v(i)

ρ −l
‖Lθ(i+1,0)−v(i)

ρ −l‖2
if ‖Lθ(i+1,0) − v

(i)
ρ − l‖2 > εb

Lθ(i+1,0) − v
(i)
ρ otherwise

(6)

p(i+1) = clip[−∆B
2 ,

∆B
2

] (Hθ(i+1,0) − s(i)
ρ − h

)
+ h (7)

q(i+1) = clip[−∆b
2 ,

∆b
2

] (Lθ(i+1,0) − t(i)
ρ − l

)
+ l (8)

u(i+1)
ρ = u(i)

ρ + w(i+1) −Hθ(i+1,0)

v(i+1)
ρ = v(i)

ρ + z(i+1) − Lθ(i+1,0)

s(i+1)
ρ = s(i)

ρ + p(i+1) −Hθ(i+1,0)

t(i+1)
ρ = t(i)

ρ + q(i+1) − Lθ(i+1,0)

i← i+ 1
end while

Ensure: θ̂S ← θ(i,0)

C. Alternating directions minimization

It is now possible to minimize (4) in an iterative fashion
using alternating directions, i.e., minimizing over one variable
at a time. This constitutes the outer loop of Algorithm 1.

θ(i+1) = arg min
θ

{
‖θ‖1

+
ρ

2
‖w(i) −Hθ + u(i)

ρ ‖22 +
ρ

2
‖z(i) − Lθ + v(i)

ρ ‖22

+
ρ

2
‖p(i) −Hθ + s(i)

ρ ‖22 +
ρ

2
‖q(i) − Lθ + t(i)

ρ ‖22
}
(9)

w(i+1) = arg min
w

{
IC2(εB ,I,h) (w)

+
ρ

2
‖w −Hθ(i+1) + u(i)

ρ ‖22
}

(10)

z(i+1) = arg min
z

{
IC2(εb,I,l) (z)

+
ρ

2
‖z− Lθ(i+1) + v(i)

ρ ‖22
}

(11)

p(i+1) = arg min
p

{
IC∞

(
∆B
2 ,I,h

) (p)

+
ρ

2
‖p−Hθ(i+1) + s(i)

ρ ‖22
}

(12)

q(i+1) = arg min
q

{
IC∞

(
∆b
2 ,I,l

) (q)

+
ρ

2
‖q− Lθ(i+1) + t(i)

ρ ‖22
}

(13)

u(i+1)
ρ = u(i)

ρ + w(i+1) −Hθ(i+1)

v(i+1)
ρ = v(i)

ρ + z(i+1) − Lθ(i+1)

s(i+1)
ρ = s(i)

ρ + p(i+1) −Hθ(i+1)

t(i+1)
ρ = t(i)

ρ + q(i+1) − Lθ(i+1)

It can be seen that (9) involves minimizing a functional
composed of two main parts: a smooth (differentiable) part
f(θ) = ρ

2‖w
(i)−Hθ+u

(i)
ρ ‖22+ ρ

2‖z
(i)−Lθ+v

(i)
ρ ‖22+ ρ

2‖p
(i)−

Hθ + s
(i)
ρ ‖22 + ρ

2‖q
(i) − Lθ + t

(i)
ρ ‖22 whose gradient can be

computed analytically and a non-smooth (non-differentiable)
part g(θ) = ‖θ‖1. Functionals of this kind can be minimized
using the proximal gradient method [37], i.e., an iterative
method that takes a step towards the negative gradient of the
smooth component and then computes the proximal mapping
over the non-smooth part. It is easy to show that the gradient
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of the smooth part f(θ) is:

∇θf(θ) =

= ρHT
(
Hθ(i)−w(i)−u(i)

ρ

)
+ ρLT

(
Lθ(i)−z(i)−v(i)

ρ

)
+ ρHT

(
Hθ(i)−p(i)−s(i)

ρ

)
+ ρLT

(
Lθ(i)−q(i)−t(i)

ρ

)
,

while the proximity operator of non-smooth part g(θ) is the
soft-thresholding function. Hence, one can iteratively take a
step in the gradient direction and apply the soft thresholding
function in order to eventually find θ(i+1), i.e., the minimizer
of (9). This constitutes the inner loop of Algorithm 1.

The subsequent minimization problems in (10), (11), (12)
and (13) all involve projections over the sets defined using
the indicator functions. It can be seen that (10) and (11)
correspond to projections over the `2 balls of radii εB and
εb centered at h and l respectively. Similarly, (12) and (13)
correspond to projections over the `∞ balls of diameters
∆B and ∆b centered at h and l respectively. The results
of the projections are (5), (6), (7) and (8). Notice that the
projection operations and the update of the dual variables can
be performed in parallel.

As stopping criteria of the inner and outer loops, we check
the distance between two successive iterations. Hence, two
constants εstopi and εstopj are properly chosen such that the
stopping conditions are

‖θ(i,j+1) − θ(i,j)‖2
‖θ(i,j)‖2

< εstopj (Inner stopping criterion)

‖θ(i+1,0) − θ(i,0)‖2
‖θ(i,0)‖2

< εstopi . (Outer stopping criterion)

V. THEORETICAL GUARANTEES

In this section we present some theoretical results concern-
ing CS-GQ. First, Theorem 1 provides a guarantee of stable
recovery of signals from single descriptions, using the side
decoder presented in (2). As it is common in the literature
about CS (see for example [23]), this kind of bounds is used
as a guarantee that the error does not explode, rather than
giving an exact characterization of the error itself.

Theorem 1. (Stable side recovery) Suppose that A = ΦΨ
satisfies the RIP of order 2k with δ2k <

√
2− 1 and let y =

Aθ+ e where, without loss of generality, e =
[
eTB eTb

]T
with

‖eB‖2 ≤ εB , ‖eb‖2 ≤ εb, ‖eB‖∞ ≤ ∆B

2 , ‖eb‖∞ ≤ ∆b

2 . Then
the solution to (2) obeys∥∥θ̂S − θ∥∥2

≤ C0
σk (θ)1√

k

+ C2

(
min

{
εB ,

∆B

2

√
mB

}
+ min

{
εb,

∆b

2

√
mb

})
where σk (θ)1 is the l1-norm of the error incurred by approx-
imating θ with its k largest-magnitude components, mB and
mb are the number of rows of matrices Φ(B)Ψ and Φ(b)Ψ
respectively and the constants are

C0 = 2
1−

(
1−
√

2δ2k
)

1−
(
1 +
√

2δ2k
) C2 = 4

√
1 + δ2k

1−
(
1 +
√

2δ2k
) .

Proof. We are interested in deriving a bound
for ‖d‖2 =

∥∥θ̂S − θ
∥∥

2
. We know that θ ∈{

C2 (εB , H,h) ∩ C2 (εb, L, l) ∩ C∞
(

∆B

2 , H,h
)
∩ C∞

(
∆b

2 , L, l
)}

(see Sec. IV for notation). Moreover, the solution to (2) is
either θ or one with lower l1 norm, so that we can say that∥∥θ̂S∥∥1

≤ ‖θ‖1. Using [23, Lemma 1.6] we know that

‖d‖2 ≤ C0
σk (θ)1√

k
+ C1

| 〈AdΛ, Ad〉 |
‖dΛ‖2

where C1 = 2
1−(1+

√
2)δ2k

, Λ = Λ0 ∪ Λ1, being Λ0 the set of
the k components with largest magnitude of θ and Λ1 the set
of the k components with largest magnitude of dΛc0

(subscript
denotes restriction to the components indexed by the subscript
set). Notice that

‖Ad‖2 =
∥∥Aθ̂S −Aθ∥∥2

=
∥∥Aθ̂S − y + y −Aθ

∥∥
2

=

∥∥∥∥∥
[

Φ(B)Ψθ̂S
Φ(b)Ψθ̂S

]
−
[

y(B)

y(b)

]

+

[
y(B)

y(b)

]
−
[

Φ(B)Ψθ
Φ(b)Ψθ

] ∥∥∥∥∥
2

≤
∥∥∥Φ(B)Ψθ̂S − y(B)

∥∥∥
2

+
∥∥∥Φ(b)Ψθ̂S − y(b)

∥∥∥
2

+
∥∥∥Φ(B)Ψθ − y(B)

∥∥∥
2

+
∥∥∥Φ(b)Ψθ − y(b)

∥∥∥
2

≤ 2 min

{
εB ,

∆B

2

√
mB

}
+ 2 min

{
εb,

∆b

2

√
mb

}
Using the Cauchy-Schwarz inequality we write

| 〈AdΛ, Ad〉 | ≤ ‖AdΛ‖2‖Ad‖2

≤ 2‖dΛ‖2
√

1+δ2k

(
min

{
εB ,

∆B

2

√
mB

}
+min

{
εb,

∆b

2

√
mb

})
Thus,

‖d‖2 ≤ C0
σk (θ)1√

k

+ C2

(
min

{
εB ,

∆B

2

√
mB

}
+ min

{
εb,

∆b

2

√
mb

})

Next, we characterize the performance of an oracle side
decoder for sparse signals so that the result can be used to
provide an oracle optimality condition for the optimization
of the CS-GQ parameters, as shown in Sec. VI. The oracle
decoder is an ideal decoder that knows perfectly the support
S of the sparse signal. For such systems, recovery amounts
to computing θ̂ = A†Sy, where A†S is the Moore-Penrose
pseudoinverse of matrix A restricted to the columns indexed
by S. Often, the oracle receiver is used to evaluate the exact
performance of CS reconstruction algorithms, since CS decod-
ing involves a nonlinear reconstruction step, whose distortion
performance is hard to characterize exactly.

Theorem 2. (Oracle recovery) Suppose that θ is k-sparse
and that Φ has i.i.d. Gaussian zero-mean entries having
variance 1

m . Let y = ΦΨθ be the vector of measurements to be
quantized using staggered low- and high-resolution quantizers.
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Suppose the oracle decoder is used for CS recovery. Then, the
expected side distortion in the high-rate regime is:

E
[∥∥∥θ̂S − θ∥∥∥2

2

]
=

kr2

(m− k − 1)

m

24

(
2−2B + 2−2b

)
and the expected central distortion is:

E
[∥∥∥θ̂C − θ∥∥∥2

2

]
=

kr2

(m− k − 1)

m

24
2−2B 2B+1 − 2b + 1

2B + 2b − 1

Proof. According to [38, Theorem 5], the following relation
holds:

E
[
‖θ̂ − θ‖22

]
=

k

m− k − 1
E
[
eTe

]
(14)

where e = Q(y) − y is the error introduced by quantization
Q(·) In case of side decoding, the receiver has only a single
description i with mB,i high resolution measurements and
mb,i low resolution measurements. The average error norm
is obtained as the mean of the norm of the expected error
when description 1 is received (e1) and when description 2 is
received (e2). Notice that mB,1 = mb,2 and mb,1 = mB,2 by
design. Hence, in the high-rate regime the following relation
holds:

E
[∥∥∥θ̂S − θ∥∥∥2

2

]
=

k

m− k − 1
· 1

2

(
E
[
eT1 e1

]
+ E

[
eT2 e2

])
=

kr2

m− k − 1

1

24

(
mB,12−2B +mb,12−2b

+mB,22−2B +mb,22−2b
)

=
kr2

(m− k − 1)

m

24

(
2−2B + 2−2b

)
The central decoder exploits the staggering of the low and high
resolution quantizers to obtain a non-uniform central quantizer,
having 2B−2b+1 bins of size ∆B and 2(2b−1) bins of size
∆B

2 as explained in Sec. III. Thus the expected error norm is:

E
[
eTe

]
=

=
m

2B + 2b − 1

[
2
(
2b − 1

) ∆2
B

48
+
(
2B − 2b + 1

) ∆2
B

12

]
=
mr2

24
2−2B 2B+1 − 2b + 1

2B + 2b − 1
(15)

Substituting it into (14) we obtain the desired expression.

VI. RATE-DISTORTION OPTIMIZATION AND
PACKETIZATION

A. Optimizing CS-GQ

In this section, we focus our analysis on the scenario when
one employs identical channel models for both descriptions,
e.g., the loss probability p is the same for both descriptions.
Under this scenario, balanced descriptions are optimal both
instance-wise and on average, i.e. the distortion incurred by
either side decoder is the same. On the other hand, unbalanced
descriptions provide the same average performance, but the
distortion incurred by a specific instance depends on which
description is received and can be either lower or higher than
the distortion in the balanced case. Hereafter, we thus only
consider the balanced case. Different values of the parameters

B and b provide different tradeoffs between the distortion at
the central decoder and the distortion at the side decoder,
for a fixed total rate for both descriptions: R = B + b.
Moreover, the packet loss rate on the communication links
will also affect the expected distortion. On the other hand,
the limit case b = 0, which we called CS-SPLIT, simply
splits the measurements into two sets without inserting any
redundancy. This is equivalent to the segmentation performed
by any network protocol when the packet size exceeds the
maximum size. It is clear that this is the optimal strategy
when there are no packet losses, because it is equivalent to
generating a single description and no bits are wasted in
redundancy. However, if one description fails to reach the
receiver, only half of the measurements will be available for
decoding, hence significantly degrading the quality or leading
to recovery failure when their number is too low. Fig. 4 shows
the various operating points enabled by CS-GQ on the side
distortion vs. central distortion plane.

It is of interest to study the optimal value of the parameters
B and b when the description loss probability is known. In
this scenario, one wishes to find the quantization step sizes
providing the lowest expected distortion for a given bit budget.
Hence we define the average distortion as

D = p2 + 2p (1− p) ·Ds + (1− p)2 ·Dc

where p is the probability of losing a description, and Ds and
Dc are the distortions incurred by the side and central decoder,
respectively defined as

Ds =
‖θ − θ̂S‖2
‖θ‖2

and Dc =
‖θ − θ̂C‖2
‖θ‖2

.

The main problem in the optimization of the parameters is
the lack of closed-form expressions for the distortion of the
central and side decoders. There are two possible ways of solv-
ing this problem. The first way is to resort to an operational
curve, in which the operating points on the (Ds,Dc) plane are
known in advance (e.g., as a result of experiments).

In this case, for a fixed total rate R, every choice of the
low-resolution rate b generates a (Ds(b), Dc(b)) point, for a
total of bR2 c+ 1 points. The optimal choice of b is therefore:

b̂ = arg min
b∈[0,R2 ]

[
p2 + 2p · (1− p)Ds(b) + (1− p)2 ·Dc(b)

]
(Operational Optimality)

The other possible method is to employ some bounds on
the reconstruction performance. We can use the performance
of the oracle decoder, as described in Theorem 2, to derive
a simple expression that does not require any operational
information and can be used to optimize the parameters a
priori. Hence, the minimization of the average distortion
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Fig. 4: Operating points for CS-GQ (different values of B and b) and for CS-MDSQ (different values of M , refer to [19]).
n = 256, k = 10.

becomes:

b̂ = arg min
b∈[0,R2 ]

[
p2 + 2p (1− p) ·Ds + (1− p)2 ·Dc

]
= arg min

b∈[0,R2 ]

[
2p (1− p) kr2

(m− k − 1)

m

24

(
2−2B + 2−2b

)
+ (1− p)2 kr2

(m− k − 1)

m

24
2−2B 2B+1 − 2b + 1

2B + 2b − 1

]

= arg min
b∈[0,R2 ]

[
2p
(
2−2B + 2−2b

)
+ (1− p)2−2B 2B+1 − 2b + 1

2B + 2b − 1

]

= arg min
b∈[0,R2 ]

[
2p
(

2−2(R−b) + 2−2b
)

+ (1− p)2−2(R−b) 2R−b+1 − 2b + 1

2R−b + 2b − 1

]
(Oracle Optimality)

Exhaustive search over the feasible integer values of b can
be employed to determine the optimal one. We remark that this
search just involves evaluating the distortion expression for
bR2 c+ 1 values of b (e.g., 5 values when R = 8), thus having
very low complexity. Unfortunately, the optimality would only
hold if we had an oracle decoder, so this choice might be
suboptimal. Section VII-A shows a comparison between the
average distortion obtained with operational optimization and
with oracle optimization in order to show the effectiveness of
the latter.

B B B B B B

b b b b b b

B B B B B B

b b b b b b b b b B B B B B B B B B B B B B B B
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(a) Wrong way

B b B b B b

b B b B b B

B b B b B b

b B b B b B b B b B b B b B b B b B b B b B b B

B b B b B b B b B b B b B b B b B b

1 mPKT 1

PKT 6

PKT 2

PKT 7

PKT 3

PKT 8

PKT 4

PKT9

PKT 5

PKT 10

(b) Right way

Fig. 5: Segmenting a long measurements vector.

B. Packetization for high number of measurements

It may happen that the MDC system needs to deal with a
large scale problem in which the number of measurements to
be acquired is fairly large. In this scenario, the transmitter
cannot create packets that are arbitrarly large as their size
is capped by the MTU (Maximum Transmission Unit) size
of the adopted communication protocol. As an example, the
IEEE 802.15.4 protocol, popular in sensor network applica-
tions, specifies an MTU equal to 127 bytes with an effective
maximum payload size of 104 bytes.

As far as CS-GQ is concerned, a careful segmentation
operation must be performed whenever the size of a de-
scription exceeds the MTU. The goal is to keep the packets
balanced, in order to always get useful information whenever
a packet is received. Fig. 5b graphically shows a way to
assign quantization step sizes and performing segmentation.
Every packet contains an alternating sequence of measure-
ments quantized with B bits and b bits and has a dual packet
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with the opposite alternation pattern. Therefore, every received
packet is informative, in the sense that it is able to improve
the current set of measurements, whether by adding new
measurements or by improving their accuracy. To fix ideas,
Fig. 5a shows a wrong way to perform segmentation, where the
packets containing only low-resolution measurements are not
informative if the high resolution dual set is already available.
In case of loss of a packet, one could potentially lose more
high resolution measurements with respect to the case depicted
in Fig. 5b.

VII. NUMERICAL EXPERIMENTS AND APPLICATIONS

Numerical simulations have been performed to evaluate the
performance of the proposed technique against other methods
to implement MDC for CS and to show the advantages for
some practical usage scenarios, inspired by sensor network
applications. All the results requiring side decoding have been
obtained using the side decoder presented in Sec. IV. We
remark that the algorithm solves problem (2) and that the
solution returned by the proposed algorithm is the same as
the one returned by a solver of convex problems such as
CVX. However, the proposed algorithm is specialized for the
particular problem considered in this paper and can be sig-
nificantly faster than CVX. The SeDuMi solver employed by
CVX uses second-order methods, such as Newton’s method,
and the complexity per iteration grows as O(n6). ADMM
on the other hand is a first order method, thus much less
expensive per iteration than a second order method, although
in principle having slower convergence. Nevertheless, ADMM
enjoys linear convergence rates under mild conditions on the
cost function, as shown in [39]. As a practical example, solving
a problem with n = 1024, k = 150 non-zero components,
m = 600 measurements obtained by a Gaussian sensing
matrix, B = 6 bits, b = 4 bits requires 104 seconds using
CVX, while only 9.1 seconds are needed by the proposed
algorithm based on ADMM, thus achieving a tenfold speed-
up. Moreover, whenever quantization cells are uniform, we add
to the reconstruction problem an `∞ constraint in addition to
the `2 constraint presented in (1). This is to enforce consistent
reconstruction as discussed in Sec. III.

A. Effectiveness of optimization via oracle formula

We present an experiment that shows the average distor-
tion obtained via optimization of the parameters with the
operational method and with the oracle method discussed in
Sec.VI-A. The curves shown in Fig. 6 are obtained for the
same system parameters of Fig. 4, i.e., m = 120 measurements
for a n = 256-long, k = 10-sparse signal and a memoryless
channel with packet loss probability p. It is observed that the
optimization via the oracle method provides a good estimate of
the parameters, only yielding slightly higher distortion when
the packet loss probability is very small. This is due to the
ideality of oracle decoding, which estimates lower distortions
than actually achieved by practical algorithms such as l1
minimization.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

p

D

Operational opt.
Oracle opt.

Fig. 6: Average distortion over a memoryless lossy channel
with packet loss probability p. Parameters b and B are opti-
mized via oracle/operational formulas. n = 256, m = 120,
k = 10.

B. Comparison with other quantization-based MDC schemes

In this section we compare the performance of CS-GQ
against other methods generating multiple descriptions using
quantization. Thus, we compare CS-GQ, CS-SPLIT and CS-
MDSQ, where CS-MDSQ is an application of the multiple
description scalar quantizer (MDSQ) as introduced in [11]
to the quantization of compressive measurements. Although
MDSQ is a powerful and popular solution for MDC, and
provides asymptotic performance close to the rate-distortion
bound, its use in CS is not straightforward. In fact, CS recon-
struction is a nonlinear process, with no guarantee that lower
distortion on the measurements results in better reconstruction
quality. Hence, the choice of the number of measurements and
quantization step size is a trade-off in order to achieve the
best performance after recovery. In our simulations, we use
the index assignment technique developed in [19]. As a first
comparison we fix the number of measurements and obtain
the tradeoff points on the side/central distortion plane for both
CS-GQ and CS-MDSQ. In Fig. 4 it is observed that fixing
m = 120 for a n = 256-long, k = 10-sparse signal allows CS-
GQ to provide better tradeoff points than CS-MDSQ. However,
CS-MDSQ outperfroms CS-GQ when a lower number of mea-
surements is chosen. We remark that, theoretically, CS-MDSQ
allows 2R+1 tradeoff points by modulating the redundancy,
while CS-GQ admits

⌊
R
2

⌋
+1 points only. However, observing

Fig. 4 we can notice that the redundancy of many tradeoff
points of CS-MDSQ is so high that the resulting side distortion
is severe (e.g., above 0.4). We remark that the MDSQ can also
accomodate the zero-redundancy case when all the entries of
the index assignment matrix are used, corresponding to CS-
SPLIT. Both zero-redundancy CS-MDSQ and CS-SPLIT ob-
tain the same central distortion. However, side distortion may



10 IEEE TRANSACTIONS ON COMMUNICATIONS

be different. CS-SPLIT represents half of the measurements
with a fine quantization rate, while CS-MDSQ represents all
the measurements with a coarser quantization rate. The effect
on CS recovery is that when there are plenty of measurements
(depending on n and on the sparsity of the signal), the
side distortion after recovery is quantization-limited, so even
though CS-MDSQ provides more measurements, their coarser
quantization limits the performance. We also notice that the
full-redundancy case (B = b) corresponds to a CS-MDSQ
with staggered side quantizers and equal size intervals in the
central partition.

A further experiment evaluates the dependency of the side
and central distortion on the number of measurements. Hence,
we fix the number of measurements and an operating point
and we analyse how central and side distortion change as a
function of the number of measurements. Fig. 7 is obtained
with the same signal as in Fig. 4 and choosing m = 120,
(B, b) = (6, 2) as the operating point of CS-GQ and M = 2 as
the redundancy of the MDSQ with R = 8 total rate (namely,
the ratio between the step size of the side quantizer and of
the central quantizer is 2M ; refer to [19] for further details).
We observe that the distortion of CS-GQ decreases faster than
the distortion of CS-MDSQ as the number of measurement
increases, while central distortion decreases at the same rate
although CS-GQ is marginally better. The reason behind this
performance is that CS-MDSQ is more quantization-limited
than CS-GQ when the number of measurements is high.
Viceversa, for a very low number of measurements, CS-GQ
is measurement-limited. The previous experiment considered
a rather generous overall budget equal to Rm = 960 bits.
Indeed, we considered a fixed number of measurements and
chose the rate according to the budget. It must be noticed
that one could optimize both the value of m and the value of
R under the overall budget constraint and this could lead to
different choices for CS-GQ and CS-MDSQ. Although we do
not report the results for brevity, we observed that if the budget
is very large as in the previous case, CS-MDSQ generally
provides better tradeoff curves than CS-GQ by using fewer
measurements and a finer quantization rate. However, results
change under a tight budget constraint. A minimum number of
measurements has to be acquired in order to ensure successful
reconstruction and due to the tight budget constraint it is not
possible to use high quantization rates. Fig.8 compares the
tradeoff curves of CS-GQ and CS-MDSQ for the two operating
points m = 50 and R = 8 and for m = 100, R = 4. Those
two choices of m and R are optimal for CS-MDSQ and CS-
GQ respectively under a budget of Rm = 400 bits. We notice
that CS-GQ outperforms CS-MDSQ despite choosing the best
combination of m and R. We therefore conclude that CS-GQ
can be advantageous with respect to CS-MDSQ when the bit
budget is low.

C. Simulations over MTU-limited memoryless and Gilbert
channels

In this section we perform some simulations to assess the
gain achieved by using CS-GQ when the communication chan-
nel is prone to packet loss. We consider two channel models,
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Fig. 7: Comparison of CS-GQ and CS-MDSQ. (B, b) = (6, 2)
for CS-GQ and M = 2, R = 8 for CS-MDSQ. n = 256,
k = 10.

which are significant for the performance assessment of CS-
GQ in a packetization scenario: the memoryless channel, in
which the loss trace is a Bernoulli process, and the Gilbert
channel [40], [41], where memory is modelled as a two-
state Markov chain, as shown in Fig. 9. In this model the
communication link can be in either of two states, that we
label Good (G) and Bad (B) with a probability p of moving
from G to B and probability q of moving from B to G. When
in B state the link will drop any packet transmitted. This is a
popular model for channels exhibiting burst errors, e.g., due
to fading in a wireless system. In both cases we assume that
a limit to the maximum packet size is present and it is equal
to 100 bytes, as in the MTU of IEEE 802.15.4.
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Fig. 9: The Gilbert-Elliot channel model. p is the transition
probability from good to bad state.

The simulations over the memoryless channel have been
performed with a signal of length n = 256, k = 40 non-zero
components, m = 160 measurements and a total rate R = 10
bits per measurement over the two descriptions. CS-GQ has
been implemented to create two packets of 100 bytes each, in
the same fashion of Fig. 5b, and compared against a standard
segmentation of the measurements, i.e., splitting half of the
measurements into the two packets of 100 bytes. The tests
measured the distortion in the reconstructed signal averaged
over 105 runs. The values of B and b are automatically
optimized using the oracle method (see Sec. VI-A). Fig. 10
shows that CS-GQ has superior performance, yielding a lower
average distortion than segmentation of the measurements and
the gain is more significant when the packet loss probability
is high.

The simulations over the Gilbert channel have been per-
formed using a longer signal, in order to correctly test the
effect of the memory of the channel. We suppose that a batch
of Ns = 1000 vectors of measurements have to be transmitted
in sequence. The length of the signals is n = 1000, k = 200
non-zero components, m = 720 measurements and a total
rate R = 10 bits per measurement. Table I reports the average
distortion for some values of the transition probabilities p and
q. It can be noticed that the proposed scheme allows to achieve
lower distortion with respect to the segmentation approach.
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Fig. 10: Simulations over memoryless channel.

TABLE I: Average distortion over the Gilbert-Elliot channel

p q Segmentation CS-GQ
0.05 0.5 0.0257 0.0192
0.05 0.3 0.0762 0.0496
0.05 0.15 0.1820 0.1205
0.01 0.3 0.0160 0.0102
0.01 0.15 0.0451 0.0324

D. Simulations of object recognition over lossy channel

In this section we consider an application recently proposed
in [42] and [43] as a possible scenario in which the techniques
proposed in this paper could provide a significant performance
improvement. The purpose is to show the effectiveness of CS-
GQ in a practical scenario. In this application, a smart camera
platform, such as CITRIC [44], computes histograms of image
descriptors to be used as features in a scene classification task.
Image descriptors are compact representations of an image
that provide a certain degree of invariance to transformations
such as rotation, scaling, etc., and are widely used in the
computer vision field for visual search or scene recognition
tasks. The most popular descriptors are the Scale-Invariant
Feature Transform (SIFT) [45], which describe each image
keypoint, i.e., a signficant point of the image to be included in
the descriptor, through a vector of s = 128 entries. Each image
i has a variable number Ni of keypoints, and thus associated
descriptors. A clustering algorithm, such as κ-means, is used
to identify κ clusters in Rs from the Ni original descriptors.
A histogram of descriptors is obtained by counting how many
keypoint descriptors fall in each cluster. In [42], the authors
leverage the sparsity of such histograms to compress them
by means of random projections, and transmit them to a
remote fusion center. The authors do not consider the problems
of quantization of the measurements, nor the possibility of
having channel losses. However, we remark that those are
key problems for this application. In fact, transmitting the
random projections as floating point values requires very large
bandwidth, hence quantization could reduce such requirement
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TABLE II: Accuracy of scene recognition

p Segmentation CS-GQ
0.01 70.63% 71.25%
0.05 61.25% 63.75%
0.10 54.38% 61.88%

and save a sizeable amount of the scarce energy of the mobile
platform. Also, channel losses may occur and retransmission
of packets may not be feasible due to real-time constraints,
and it would indeed require further energy consumption on
sensor side. Hence disabling retransmission and providing a
scheme that is robust to channel losses could be of interest for
such platforms.

In our tests, we build a 10, 000-dimensional dictionary by
running hierarchical κ-means, with 10 clusters per level in the
hierarchy, over SIFT descriptors extracted from some images
in the BMW database [42]. This database comprises photos of
the UC Berkeley campus acquired with the CITRIC platform
with multiple views of the same scene from different angles.
We then use the dictionary of quantized SIFT features to
produce histograms of descriptors. Each image is characterized
by a histogram of descriptors, which is sparse because the
number of descriptors extracted from each image is much less
than the number of entries in the dictionary. [42]. A support
vector machine is trained from histograms of descriptors of the
images in the training set, in order to solve a classification task
that amounts to recognizing a scene from a number of possible
scenes. In order to simulate a real system, we consider packets
with maximum size of 100 bytes (as in the case of the MTU of
IEEE 802.15.4), to be transmitted over a memoryless channel.
The test metric that we adopt in this case is the accuracy in
the scene recognition. Table II shows the accuracy in the scene
recognition task as function of the packet loss probability p.
We can see that CS-GQ builds robustness into the system and
allows to achieve higher recognition rates, when in presence
of packet losses.

VIII. CONCLUSIONS

In this paper we considered the problem of robust trans-
mission of CS measurements over unreliable channels. We
discussed some strategies based on the Graded Quantization
paradigm that enable to increase robustness in a way that
directly exploits the democratic property of compressive mea-
surements. Moreover, contrary to many cases in the literature,
we considered a realistic packetization scenario and discussed
the issues involved in it as well as the performance of the
proposed method. Finally, we proposed a novel reconstruc-
tion algorithm, based on ADMM, for the specific problem
of having measurements obtained from multiple quantizers.
Our simulations showed that the proposed technique is a
competitive method to implement MDC for CS applications. In
particular, we showed that we can improve scene recognition
accuracy in an application of a smart camera platform using
CS and transmitting over an unreliable channel.
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