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Abstract   

Metal oxide chemical sensors based on nanomaterials are gaining popularity and 

finding extensive use in automotive industries, process control and environmental 

monitoring. ZnO, a semiconducting metal oxide has attracted great interest over the 

years for its sensitivity to a variety of gases.  Nanostructured  sensing  materials,  such  

as  thin films, nanowires,  tetrapods, nanoflackes offer an inherently high surface area,  

reducing  operating  temperatures and increasing sensitivity to low  concentrations  of  

analytes. In  this  thesis,  ZnO  nanostructures have  been  tested  as  chemical  

sensors  and  a  detailed  study  on  the  effect  of  different  process  parameters  such  

as grain size, roughness, surface-to-volume ratio, depletion layer, temperature,  gas 

concentration  and  material  properties on gas sensitivity is presented.  Initially, ZnO 

nanodevices were prepared with a variety of techniques, such as RF sputtering, 

electrodeposition, hydrothermal growth, chemical vapour deposition, thermal 

evaporation and controlled oxidation. The structural characterization of the nanodevices 

has been done by a FEI QUANTA 3D dual beam SEM/FIB machine and by a 

Dimension 3100 Atomic Force Microscope (AFM) (Digital Instruments) in tapping mode. 

X-ray diffraction (XRD) spectra were recorded on an AXS D8 diffractometer (Bruker) 

with a Cu Kα X-ray tube. The gas sensor substrate based on alumina consisted of Pt 

grid of 50nm thickness and golden contacts of 200nm thickness creating an alumina 

patterned substrate. The sensor deposition area was coated with ZnO nanostructures to 

form the sensing material.  Sensing measurements are performed in a closed steel 

chamber where air and tested gases have been inserted. ZnO based nanostructures’ 

response was measured in different concentrations of Ethanol, CO and NO2.  

Initially the role of grain size and roughness has been investigated in several thin film 

based nanodevices. Grain size is decreasing with increasing RF sputtering power and 

increasing by post-annealing treatment. Roughness instead is increasing with both the 

increasing of RF sputtering power and post-annealing treatment. High response was 

observed for those films with smaller grain size, while the roughness seems to influence 

very little the response of the sensor. For all thin films, the response is increasing with 
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temperature and gas concentration. Recovery time and response time seem to follow a 

non-linear behavior with the above parameters.  

Extended studies have investigated the role of surface-to-volume ratio and depletion 

layer in the sensing performance. It has been observed that the increase of surface-to 

volume ratio has an important effect on the sensitivity, increasing, more than twice the 

response of such a device in respect to another that is based on a ZnO thin film. On the 

other hand, the dimensions of a nanostructure play the most crucial role in the depletion 

layer width in respect to the sensing properties. The diameter of a nanowire should be 

comparable with its depletion layer width. In this case the depletion layer has strong 

effect, which makes the sensor’s response depend also on it. 

The sensing properties of all fabricated structures have been compared to find the 

optimum sensor that could face the demands of automotive industries. All fabricated 

structures have been compared in different configurations to find out which one 

presents the best sensing performance. To that direction sensors based on thin film, 

tetrapods, nanowires, nanoflackes have been tested in same environmental conditions. 

Advanced nanostructures present better sensing properties. Sensing response of every 

advanced nanostructure presents more than double sensing response than every thin 

film-based nanostructure. Comparing the advanced nanostructures with each other, 

tetrapods based sensor has higher response and recovery time, while the sensitivity is 

slightly higher for the nanowires-based sensor. 

Theoretical studies have been performed by ab-initio simulations in NO2 environment. 

They have revealed that the sensing mechanism is driven almost exclusively by 

competitive adsorption between NO2 and atmospheric oxygen mediated by temperature 

change. The influence of the NO2 on the electronic properties of ZnO has been 

assessed and it is in accordance with the experiments. 

Our future work is the investigation of other materials for the development of sensing 

nanodevices targeting to develop more sensitive nanosensors in the same or lower 

cost. Additionally, the investigation of other growth techniques that could develop more 

complicated structures in low cost is another point of interest for the future. 
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Chapter 1 . Introduction 

1.1 Introduction to gas sensors 

The detection of hazardous gases became gradually in the last century an issue of 

great importance for the industries and for several groups of workers. Environmental 

threats and accidents that are multiplied by the time have obliged the industries to 

investing more and more money in the gas sensors development both in research and 

industrial level.  

Starting from many years ago people had realized the importance of the development of 

sensing devices. For example, miners had used small birds as a substitute for a 

quantifiable method to measure this hazard. Nowadays there is a huge demand for the 

development and optimization of detectors for monitoring airborne pollutants, for 

improvement of the traffic and residential safety, for the protection of workers in the 

petrochemical and oil industries or even for the detection of natural gas leaks or carbon 

monoxide from incomplete combustion in boilers in domestic environments. Such kind 

of devices find numerous of applications also in automotive sector, powertrain 

manufacturing, transportation industry [1], aerospace industry, optical systems.  

A sensor in general could be defined as an electrical or electronic device that detects a 

signal, physical condition and chemical compounds through a transducer which 

converts a signal from one form of energy to another [2]. Energy types include (but are 

not limited to) electrical, mechanical, electromagnetic, chemical, acoustic and thermal 

energy. While the term transducer commonly implies the use of a sensor/detector, any 

device which converts energy can be considered a transducer. Some of the most used 

sensors nowadays are the gas sensors, the thermometer, the thermocouple, the 

phototransistor, the photoresistor, the microphone, the seismometer, the Hydrophone 

etc. 
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Figure 1.1: Working principle of a high-performance gas sensor. 

Gas sensor which is the main topic of the present work is a device that transforms the 

chemical concentration of one or more specific gases into a signal that can be easily 

employed to report the detection result [3]. Specifically, gas sensor measures the 

concentration of gas nearby interacting with a gas to measure its concentration. Each 

gas has a unique breakdown voltage (i.e. the electric field at which it is ionized). Sensor 

identifies gases by measuring these voltages. The concentration of the gas can be 

determined by measuring the current discharge in the device. 

 

1.2 Metal oxide semiconductors for gas sensing 

Metal oxide sensors are also known as chemiresistors. The detection principle of 

resistive sensors is based on change of the resistance of a nanostructure upon 

adsorption of the gas molecules on the surface of a semiconductor. The gas-solid 

interactions affect the resistance of the nanostructure because of the density of 

electronic species in it. 

Metal oxide semiconductor (MOS) is one of the most important materials that could be 

applied for gas sensing measurements. It was first discovered in the early 60s that 

molecules interacting with semiconductor surfaces can influence the surface properties 

of semiconductors, such as conductivity and surface potential. The first MOS gas 
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sensors were based on thick films of SnO2 which was reported by Taguchi [4]. Since 

then, metal oxide semiconductors have been widely studied as gas sensors because of 

their low cost and relative simplicity. Metal oxides have a broad range of electronic, 

chemical and physical properties that are often highly sensitive to the changes in their 

chemical environment. Due to these properties, metal oxides have rapidly gained 

attention over the years and became the most popular commercial sensors. Nowadays 

is well known that the sensor characteristics can be changed by varying the crystal 

structure, dopants, preparation technology, operating temperature etc. Numerous 

materials have been reported to be usable as metal oxide sensors including both single-

component metal oxides such as ZnO, SnO2, WO3, TiO2 and Fe2O3; and multi-

component oxides, such as BiFeO2, MgAl2O4, and SrTiO [5]. 

 

1.3 Material properties of ZnO Semiconductors for gas sensing applications 

Zinc Oxide is a wide band gap semiconductor of (~3.3 eV), exhibiting wurtzite crystal 

structure of hexagonal shape. Its crystal is composed of alternating zinc and oxygen 

planes, forming the final ZnO structure. In Figure 1.2a the wurtzite crystal structure of 

ZnO is shown. ZnO’s basal plane (0001) is a polar surface, which is terminated at one 

end by positively charged zinc ions and at the other end by negatively charged oxygen 

ions. The rest of the crystal surfaces, shown in the left side of Figure 1.2b are non-polar.     

 

Figure 1.2: Wurtzite crystal structure of ZnO [6]. 
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The technology of modern electronics, as well as the low power consumption need have 

paved the way of implementing nanostructured materials in the fabrication of novel 

devices. In the literature a great variety of ZnO nanostructures can be found including 

nanowires (NW) [7], nanorods (NR) [8], nano-flowers [9] and nanobelts [10]. The 

discrepancies in the shape of these structures are dictated by the different growth rates 

along different crystal planes. Addition of catalysts or rate inhibitors during the growth 

process takes place in order to further control the growth ratio between different crystal 

planes. In the general case, a crystal forms its structure in such a way as to maximize 

the surface area of low energy surfaces, as the non-polar surfaces. As presented in 

Figure 1.2b, the side walls geometry of ZnO (non-polar phases) is maximized, while the 

polar ends follow a rapid grow at (0001) direction. Consecutively, the nanowire form is 

the most favored one for ZnO when trying to grow self-assembly nanostructrures. 

ZnO has received much attention over the past years for its possible use in wide range 

of applications such as gas sensors [11] [12] solar cell electrodes [13] [14], light emitting 

devices [15] and optical waveguide device [16]. The remarkable properties of ZnO 

include also abundance in nature, low cost, non-toxicity, high chemical stability [17], 

[18], [19] and amenability to doping. Most of all, the chemical sensitivity to different 

adsorbed gases make it one of the most widely applied metal oxide material for 

monitoring of various gases [20], [21], [22]. 

In particular, ZnO nanostructures have been identified as a promising candidate for gas 

sensing due to their excellent response and recovery characteristics to a variety of 

analytes such as NO2, NO, CO, CO2, ethanol, methanol etc. 
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1.4 Motivation and objectives 

Researchers in the past have reported improvement in sensitivity for gas sensors by 

using nanostructured materials [23], [24]. However less work has been reported on the 

comparison between different nanostructures and different fabrication methods in terms 

of sensing properties. The motivation of this work was to fabricate highly sensitive gas 

sensors operating at low temperatures by using several deposition methods in order to 

propose the optimum development way and the optimum nanostructure to the scientific 

community for gases detection use. 

 

To this direction the potential use of ZnO seed layers with different grain size and 

thickness capable to host nano-objects has been investigated. We would like to report 

on grain-size effect approach towards improving the sensing properties of ZnO thin films 

deposited by RF sputtering at low gas concentration levels. The morphological and 

structural properties of the films were analyzed as a function of sputtering power at 

room temperature and subsequent annealing treatment while the gas sensing ones 

were studied in low gas concentration range under low operating temperature. The 

obtained results indicate the high potential of grain-size effect as an approach to the 

development of high-sensitivity ZnO-based sensors. 

 

 

We would also like to open the way to low cost but high performing gas sensors by 

comparing the ZnO-based seed layers with sensors made by either ZnO-based 

nanostructures or by hosting nano-objects on top of the seed layers in sensing 

properties such as sensitivity, response, response and recovery time, reversibility and 

reproducibility. As nano-objects have been used nanostructures such as thin film, 

tetrapods, nanowires and nanoflackes which have been fabricated by several methods 

such as electrodeposition, chemical vapor deposition, hydrothermal growth, RF 

sputtering,etc.
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Chapter 2 . Investigation of the sensing characteristics and 

dangerous gases detection 

 

2.1 Sensing properties 

Characterizing sensor’s performance requires taking into account several parameters 

[25]. Below are listed the most important parameters followed by their definitions: 

Response 

As sensor response is defined the relative percentage variation in the sensor 

conductivity [26], and is given by using the formulas below 

Response = (Ggas-Gair)/Gair, in case of reducing gases 

Where Ggas is the conductance of the sensor when is exposed to the gas and Gair the 

base conductance of the sensor when is exposed only to air without reducing gas. 

And, Response = (Rgas-Rair)/Rair, in case of oxidizing gases 

Where Rgas is the Electrical resistance of the sensor when exposed to the gas and Rair 

is the electrical resistance of the sensor when exposed only to air without oxidizing gas. 

 

Sensitivity 

Is the change in the measurement signal per concentration unit of the analyte, i.e. the 

slope of a calibration graph, namely the derivative of response. In other terms is the 

response change (ΔR) of a sensor divided by the related variation of the input gas 

concentration (ΔC) as described appears at the equation below: 

Sensitivity (%/ppm) = ΔR/ΔC 
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Response and Recovery Time 

Response time is defined as the rise time (time interval) that the output response of a 

sensor goes through from 0% to 90% of the final steady-state value upon reached 

stationary conditions. While recovery time is defined the fall time that the output 

response of a sensor goes through from 100% to 10% of the final stready-state value 

upon reached stationary conditions. Two examples follow: 

 

 

Figure 2.1: Response time and Recovery time of a random sensor. 

 

Reproducibility 

Is the degree of agreement among results of successive measurements of the same 

measurand when individual measurements are preformed changing the following 

conditions. 

Limit of detection 

In metrology and analytical chemistry, the limit of detection (LOD) is defined as the 

minimum gas concentration (measurand) detected by a sensor (instrument). 
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Dynamic (or operation) range 

Is the concentration range between the detection limit and the upper limit concentration. 

 

Selectivity 

 An expression of whether a sensor responds selectively to a single analyte or a group 

of analytes (quantitative expressions of selectivity exist for different type of sensors). An 

example of ideal case and one of real case follow: 

 

 

Figure 2.2: Sensors selectivity to CO a) Ideal case b) Real case. 

 

Linearity 

Is the relative deviation of an experimentally determined calibration graph from an ideal 

straight line. Usually values for linearity are specified for a definite concentration range. 

 

Resolution and noise 

Is the lowest concentration difference that can be distinguished when the composition is 

varied continuously. This parameter is mainly important for sensors in continuously 



Chapter 2. Investigation of the sensing characteristics and dangerous gases detection 

 

 
9 

 

flowing streams. Resolution, in principle, is limited by the noise occurring both on the 

sensor (active material) and electronics (amplifier) used to readout the sensor response. 

Hysteresis 

Is the maximum difference in output when the value is approached with an increasing 

and a decreasing analyte concentration range. It is given as a percentage of full scale 

output.  

Stability 

Is the ability of the sensor to maintain its performance for a certain period of time. As a 

measure of stability, drift values are used (e.g. the signal variation for zero 

concentration). 

Working Temperature 

Is usually the temperature that corresponds to maximum sensitivity. 

Accuracy 

The given definition is the attitude of a sensor to give an indication close to the true 

value of the measurand under test. The concept is clarified in Figure 2.3.

 

Figure 2.3: Cases that may correspond to the attitude of the sensor. 
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2.2 Classification of gases using gas sensor models 

There are two categories of gases: 

1. Oxidizing gases or electron-accepting gases, such as NO2, O2, O3 etc. 

2. Reducing gases or electron-donating gases, such as Ethanol, CO, NH3, H2, H2S, 

SO2, CH4, CO2 etc. 

In case of n-type semiconductor (when a semiconductor contains mostly free electrons 

it is known as "n-type") and in particular in case of ZnO sensing material (n-type as well) 

the sensing procedure for both gas types is presented in schemas below (Figure 2.4 

and Figure 2.5).  

Reducing gases induce a decrease in the electrical resistance of ZnO-based sensor (n-

type). Oxygen molecules remove from materials surface the gas molecules, thus 

electrons which were previous captured return to valance band leading in the increase 

of conductivity. 

 

Figure 2.4: Nanowire model of conduction mechanism upon exposure to reducing gas. 

 

On the other hand oxidizing gases induce an increase in the electrical resistance of 

ZnO-based sensor (n-type). Oxygen molecules adsorbed by the material surface act as 

electron acceptors.  The adsorbed oxygen species capture free electrons from Zn metal 

giving rise to an increase of resistance.    
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Figure 2.5: Nanowire model of conduction mechanism upon exposure to oxidizing gas. 

 

Band models of conductive mechanism upon exposure to both oxidizing and reducing 

gases are given in next chapter for better understanding of the fundamental 

mechanisms that cause the gas response at MOS. 

2.3 Detection of Gases 

In this section the details of the gases of major interest for the automakers are reported. 

In literature there are several of those gases that referred as highly toxic, toxic or 

dangerous. The detection of those gases is a challenging issue and the details of each 

one of them must be known.  

2.3.1 Detection of Nitrogen oxides 

Nitrogen oxide gases, commonly referred to collectively as NOx, are common pollutants 

formed in automotive engines and industrial combustion systems by thermal fixation 

and oxidation of atmospheric nitrogen. NOx, which includes NO2 and NO gases have 

adverse effects on the environment, and are the leading cause of green house effect, 

acid rain, and photochemical smog. In humans, exposure to more than 3 ppm of NO2 

gas for period longer than 8 hours can cause respiratory and cardiovascular diseases. 

Thus, better detection of such gases is of major importance, and that calls for better 

understanding of detection mechanism to facilitate development and optimization of 

sensing devices. 
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2.3.2 Detection of Alcohols 

Sensor materials for detection of alcohols, especially ethanol, are being actively 

developed [27]. The interest in ethanol is connected with its wide application in 

chemistry, medicine, and the food industry and several potential applications such as in 

case of automakers for traffic safety. Precise quantitative detection of ethanol vapors is 

required for determination of quality of wines and human health as well. Metal oxides 

are widely used for detection of ethanol. Ethanol sensors are being enhanced, and as is 

the case for other analytes, the problems of response, sensitivity, selectivity, stability 

and reproducibility are being addressed. The most widely used metal oxide materials for 

alcohol detection are ZnO, TiO2, SiO3, WO3, SnO2 and Zr2O3. As a rule, the analysis 

is carried out at temperatures above 400°C; therefore one important task is to decrease 

the operating temperature.  

 

2.3.3 Detection of Carbon oxides 

CO is a substance produced from the combustion (burning) of carbon based 

substances. Development of gas sensors for the detection of carbon monoxide is an 

issue of the day, since CO is one of the most toxic gases, and being odorless, it can 

form undetected by incomplete combustion of fuel in industry and in private houses. CO 

gas, which is contained in automobile exhaust along with nitrogen oxides, is one of the 

main environmental contaminants, especially in large cities. Another carbon oxide, CO2, 

is one of the greenhouse gases, which are believed to be responsible for the global 

warming effect. The main source of CO2 today is the combustion of fossil fuels. The 

number of papers devoted to development of new CO sensor materials is rather small. 

Some recently developed sensor materials for CO and CO2 are SnO2/TiO2: Nb [28], 

ZnO [29] [30] , ZnO:Cu [31] and SnO2/Au [32]. The need of improve ZnO-based 

sensors in the detection of CO is still a high challenge for the scientific community. 

Sensor response is suggested to be based on the CO oxidation reaction: 

2CO + O2 =2CO2 + e [33] 
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Chapter 3 . Synthesis and characterization of ZnO-based 

nanostructures gas sensors. 

 

3.1 Host-device 

The substrates used to host the sensing material consisted of an alumina patterned 

substrate of 3x3 mm2 dimensions. They were patterned by Au contacts (50 nm thick 

film) and Pt heating elements (200 nm thick) with the sensor geometry map depicted in 

Figure 3.2 using RF sputtering process (details of RF sputtering procedure reported 

below in this chapter). The deposition area presented in Figure 3.2 in our experiments 

hosts the sensing material in all cases. Different shadow masks were used for the 

deposition of Pt and Au contacts (Figure 3.1). The thickness of Au film was negligible 

since it was needed just to be conductive with good adhesion and in case of 50nm the 

two conditions are fulfilled. Pt film created was around 200nm thick. It was noticed 

experimentally that this was the optimum thickness to create a resistance of 5 Ohm 

between the two edges of the Pt grid. In this case was easier to heat up the sensor in 

the desired operating temperature without damaging it.  

 

 

Figure 3.1: Shadow masks for the deposition of Au, Pt and sensing material (from left to 
right). 
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Figure 3.2: Alumina patterned substrate used as host device. 

 

3.2. RF sputtering method 

Sputtering is a physical process whereby atoms in a solid target material are ejected 

into the gas phase due to bombardment of the material by energetic ions (Figure 3.3). It 

is commonly used for thin-film deposition and functional coatings as well as integrated 

circuit processing [34]. The coating is a multilayer containing silver and metal oxides 

such as zinc oxide, tin oxide, or titanium dioxide. Sputtering is also used as the process 

to deposit the metal layer during the fabrication of CDs and DVDs. 
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Figure 3.3: RF sputtering deposition procedure. 

In general, two stages are distinguished in thin film growth; initial growth which can be 

separated between nucleation and coalescence and actual growth. During initial growth, 

chemical and physical properties of the substrate, and interaction between substrate 

and particles arriving there, play an important role. After an initial layer covering of the 

substrate has formed, actual growth begins, during which interaction only occurs 

between particles of the film material. Important parameters are the energy of the 

particles arriving at the substrate film surface, energy absorption at the time of collision, 

and chemical and physical interaction between adatoms and the substrate-film surface 

as well as temperature. These parameters determine the shape, the geometry and the 

texture of the film [35]. Sputtered ZnO films are polycrystalline, and their individual 

crystals grow in different orientations, preferentially along their c-axis. 

 

Additionally, in literature can be found growth models for metal oxides thin films 

formations [36], [37]. The most well known of these models [38] devides the film growth 

in four different zones. The temperature and the pressure are the parameters that 

influence the quality of the film and are presented in xx’ and yy’ axis respectively in 

Figure 3.4. Zone 1 allows the formation of rough surfaces due to low adatom mobility 

(slow surface diffusion) and the “shadow effect”. Passing to zone 2 the adatom mobility 

increases, and finally overcomes the shadow effect in order to grow dense layers with 
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more columnar grains. Finally, in zone 3 small grains coalescence to form larger, not 

necessarily columnar. The last zone is called T zone, where grain outlines are difficult to 

identify. ZnO sputtering procedure can be described by the previous model as well.    

 

Figure 3.4: Structure Zone Model combining the effect of inert gas pressure and 
substrate temperature [38]. 

 

3.2.1 RF sputtering deposition of thin films 

The ZnO films were prepared by RF sputtering in the sputtering geometry as shown in 

Figure 3.5. The sputtering target used was a 2 inch. diameter ZnO target (99.99% 

purity, 2” diameter x. 250” thickness) which was set at 9 cm apart from alumina 

patterned substrate. High purity Ar gas was introduced in the chamber set at a vacuum 

of 2x10-6 Torr. The deposition was performed by varying the sputtering power from 70W 

to 150W range from 18 to 75 min in order to obtain film thickness of 100 nm and 200 

nm. Further annealing treatment was performed to chosen samples to investigate the 

grain size and roughness alternation and the structural deformation. Thermal annealing 

was applied in inert environment for 60 min at 400°C (MILA-5000). 
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Figure 3.5: RF sputtering geometry inside the chamber. 

 

3.2.2 Characterization 

Thin films were obtained and characterized mainly by Atomic Force Microscope 

measurements (AFM) and X-Ray diffraction (XRD) analysis. SEM measurements have 

been carried out as well but were unable to give sufficient information about the surface 

structure. The XRD patterns depicted in Figure 3.6 coming from 200nm  thin films 

sputtered at  70 W in the first case (left) and 150 W sputtering power (right) in the 

second case. The growth rate was 4.15  and 7.96 nm/min respectively. The 

morphological analysis indicated the presence of all known theoretical peaks for ZnO 

material, in both cases. No preferential growth was observed during the thin film 

synthesis and a polycrystalline material was formed.  
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Figure 3.6:  XRD and peak analysis of a 200 nm thickness ZnO thin film by RF 
sputtering at 70 W and 150W (from left to right). 

 

3.2.2.1 Annealing treatment 

Moreover, the effect of the annealing treatment on the grain size was analyzed by AFM 

measurements. Figure 3.7 and Figure 3.8 depict the morphology of 200 nm thick films 

of ZnO deposited at 70W and 150 W respectively, before and after the annealing 

procedure. As presented clearly, annealing treatment results in an increase of the grain 

size in agreement with other previous reports [39]. Roughness is found to increasing 

with both increasing sputtering power and annealing (Table 1). Numeric details on 

roughness are given in results and discussion chapter. 
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Figure 3.7: AFM images of ZnO film were deposited at 70W before (left) and after 
annealing (right). 

 

 

Figure 3.8: AFM images of ZnO film were deposited at 150W before (left) and after 
annealing (right). 

 

 Increasing sputtering power Annealing 

 
RMS Roughness 

 
increases 

 
Increases 

 

Table 1: Thin films’ roughness in respect to the increasing temperature and annealing. 
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3.3 Electrodeposition method 

The electrodeposition method is one of the most widely used methods to synthesize 

metal oxide nanostructures. Although the electrodeposition method can be used on an 

industrial scale, all of our work was performed at laboratory scale. ZnO nanowires were 

synthesized by three different configurations which are analyzed in this chapter. 

 

For electrodeposition, a standard three-electrode setup (Figure 3.9) is typically used, 

with a saturated Ag/AgCl electrode as the reference electrode and Pt as the counter-

electrode. The anode, where growth usually takes place, is placed parallel to the 

cathode in the deposition solution. The electrical bias throughout the reaction system is 

controlled by a constant voltage source to maintain a constant driving force to the 

reaction, or by a constant current source to keep a constant reaction rate. 

 

 

Figure 3.9: Three electrode set-up geometry. 

 

The device was used for the current generation is presented in Figure 3.10. It is an 

AMEL System 5000 potentiostat-galvanostat. 
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Figure 3.10: AMEL System 5000 potentiostat-galvanostat. 

 

Zinc and Oxygen ions are provided from the following solution: 5mMol ZnCl2, 0.1M KCl, 

5mMol H2O2 at 75°C which constitute the electrochemical bath. ZnO electrodeposition 

consists in generating hydroxide ions at the electrode surface by cathodically reducing 

an oxygen precursor (H2O2). The chemical equations and reactions [40] are presented 

in Table 2 and Figure 3.11 respectively. 

In details, it was noted that the increase of nanowire length with electrical charge (i.e. 

time) follows an exponential law at a given over potential. An explanation for this trend 

could be as follows: during the growth period of the nanowires, the precursor could 

continuously provide liberally reactants for electrodeposition by ion diffusion and the 

variation of HO− and Zn2+ concentrations could be negligible at the substrate surface in 

a certain period up to the necessary time. Above this period of time, the solution facing 

the WE surface depletes from ions and so, the precursor could not supply adequate 

reactants for the growth of nanowires. A boundary layer is formed near the membrane 

surface (Figure 3.11b). In this region, transport phenomena supply the electrode with 

ions coming from the solution and a diffusion controlled limiting current density would be 

obtained [41][42]. In general, the boundary layer reduces the effectiveness of the entire 

process due to the area of oriented H2O molecules formed in front of the cathode. 
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Therefore, the crucial steps become the diffusion process of ions and electrochemical 

reduction of H2O2, which will result in the decrease of the growth rate.  

Hydrogenperoxide : H2O2 + 2e− → 2OH− 

Molecularoxygen: O2 + 2H2O + 4e− → 4OH− 

Dehydration: Zn(OH)2 → ZnO + H2O 

Table 2: Reactions at the cathode surface. 

 

Figure 3.11: Schematic of the electrodeposition of ZnO from ZnCl2 solution with H2O2 
as oxygen precursor (adapted from [40]). 

 

 

ZnO nanowires can be grown by electrodeposition methods in combination with 

templates, such as anodic aluminum oxide (AAO), polycarbonate membranes, nano-

channel glass, and porous films. In the literature, polycarbonate and AAO have 

attracted much of interest due to their simplicity and capability of large area fabrication 

[43]. After nanowire growth, the template can be chemically dissolved and leaving 

behind the free standing nanowires. 
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3.3.1 Electrochemical deposition free standing ZnO nanowires 

Initial experiments were performed in pre-deposited ITO glass (Indium tin oxide coaters) 

in order to investigate the deposition growth parameters. The electrolyte prepared was a 

solution containing 5 mM of ZnCl2, 0.1 M of KCl and 5 mM of H2O2. The presence of 

zinc chloride and hydrogen peroxide was explained previously. The addition of 

potassium chloride in the solution guarantees the good electrical conductivity of the 

electrolyte. All experiments were controlled via the AMEL 5000 Potentiostat/Galvanostat 

(presented previously). 

 

Before the actual deposition linear polarization studies were performed on ITO covered 

glass as reported (Figure 3.12). The method consists in generating hydroxide ions at 

the surface of the cathode by reduction of the oxygen precursor. The cathodical 

reduction was observed from -0.75 V to -1.1 V, meaning that any used potential value 

within this range is capable of initiating the deposition of ZnO nano-structures. 

 

 

Figure 3.12: Voltammetric curve of ITO covered glass in 5 mM of ZnCl2, 0.1 M of KCl 
and 5 mM of H2O2 at a scan rate of 100 mV/sec. 



Chapter 3. Synthesis and characterization of ZnO-based nanostructures gas sensors. 

 

 
24 

 

Therefore, the potential values in the range -0.75 V to -1.1 V were applied, following the 

potentiostatic mode (or chrono-amperometric mode) and the effect of deposition 

potential on the obtained ZnO nanowires was assessed. It is noted that the length of 

nanowires depends on the deposition time while the diameter on the applied potential 

and KCl concentration. In our experiments the KCl concentration was from 0.05 M to 

0.1M for the investigation of the optimum growth parameters. 

3.3.1.1 Characterization 

Several nanowires were obtained using this configuration. Their diameter and length 

vary depending on the concentration of KCl and deposition as was mentioned 

previously. The higher the KCl concentration the bigger the diameter is (Figure 3.13) 

and the longer the deposition time the higher the length is. Additionally, higher Zn 

concentration in nanowires synthesis was observed when the deposition potential is 

decreasing. Finally, the density of the nanowires depends on the applied voltage as 

presented in Figure 3.14. In Figure 3.15 an image of grown nanowires on SnO2 coming 

from literature is presented for comparison reasons. 

   

Figure 3.13: SEM image of free-standing ZnO nanowires grown by different KCl 
concentrations at -800mV. 

a)(ZnCl2: 5mM, KCl: 0.1M, H2O2: 5mM) 

b)(ZnCl2: 5mM, KCl: 0.05M, H2O2: 5mM) 
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Figure 3.14: SEM micrographs of electrodeposited ZnO nanorods on ITO substrates by 
potentiostatic mode, (a) -700 mV, (b) -800 mV, (c) -900 mV and (d) -1000 mV.  

 

 

Figure 3.15: SEM image of free-standing ZnO nanowires formed on a SnO2 substrate 
by electrodeposition (adapted by [44]). 
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A typical I-t diagram of ZnO deposition in a conductive (ITO) surface is presented in 

Figure 3.16 shows that the resistance is decreasing during the deposition which is 

expected since the surface is covered gradually by a less conductive material. 

 

Figure 3.16: I-t diagram of ZnO deposition on ITO surface. 

 

3.3.2 Electrochemical deposition of ZnO nanowires in anodic porous alumina template 

For the fabrication of the APA template a complicated and lengthy process has followed 

(Figure 3.17). Using an ITO substrate a titanium thin film which serves as adhesion 

layer is deposited by thermal evaporation. Titanium film deposition is followed by the 

deposition of a thicker film of tungsten (using the same method) which serves as 

adhesion promoter; and on the top via RF sputtering technique first and electron beam 

evaporation secondly a thick film of around 500nm of aluminum is deposited. 

The two step anodization process was followed for the fabrication of APA. The first step 

was made using oxalic acid for several minutes, which is followed by the etching of APA 

using CrO3 in order to lead the second anodization directly to the fabricated holes. 

Using once again the oxalic acid the second anodization had been performed and it was 

followed by the widening in order to remove tungsten and titanium and to create the 

contact with the ITO surface. The fabricated APA in its final form is presented in Figure 

3.18 at top view along with a SEM image. 
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The procedure at the end is followed by electrodeposition to grow the vertical aligned 

nanowires. At the end APA can be chemically dissolved in order to release the free 

standing nanowires. 

 

Figure 3.17: Fabrication process steps of home-made anodic porous alumina. 

 

Figure 3.18: APA template (SEM and optical image). 
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3.3.2.1 Characterization 

SEM measurements have been carried out to investigate the nanowires structure. 

According to the obtained images the density of nanowires was rather poor and in some 

cases some broken or not well-formed nanowires were also observed. Furthermore, in 

several templates uncovered holes were noticed. Further investigation is ongoing for the 

improvement of this technique. EDAX analysis has been performed revealed the 

presence of Al coming from the dissolved APA, Zn and Au coming from metallization of 

the sample (Figure 3.20). 

SEM images in Figure 3.19 coming from literature [44] present ZnO Nanorods 

electrodeposited into thin alumina template by potentiostatic method. 

   

Figure 3.19: SEM images of the ZnO nanorods electrodeposited into thin alumina 
template by potentiostatic method in 0.1 M Zn(NO3)2 in DMSO (adapted by [45]). 

 

 

Figure 3.20: EDAX analysis of ZnO nanowires obtained after the dissolution of APA. 
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3.3.3 Electrochemical deposition of ZnO nanowires in polycarbonate template 

Commercial polycarbonate membranes with holes created by ion bombardment were 

used for the deposition. Several templates were used with holes diameter and length 

varying from 10 to 100 nm and from 5 to 16 um respectively. The thermal evaporation 

technique was used to create a bottom contact and to cover the holes on the one side. 

The chosen material for this purpose was Au because it has better adhesion and does 

not damage the polycarbonate membrane. 

The working electrode in this case immersed into the electrolyte by a pipe system made 

by Teflon (Figure 3.21). The pipe has an aluminum component inside it which is used to 

contact the polycarbonate membrane isolating the Au covered side and exposing the 

side with the open holes to the electrolyte.  

The fabrication and deposition procedure is presented schematically in Figure 3.22. 

 

 

Figure 3.21: The pipe system used for the isolation of one side of polycarbonate 
membrane from the electrolyte. 

 

 

In ideal case, the deposition is taking place until the fully cover of the holes. 

Experimental finding revealed that is rather impossible to achieve a simultaneous and 

homogenous fill, therefore the deposition in our experiments stops when we observe 
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that in I-t deposition curve the current starts to decrease, which means that 

instantaneously the resistance has stopped to increase and therefore the holes are fully 

covered and the deposition of a thin film (responsible for the resistance decrease) on 

top of polycarbonate membrane has initiated to be formed (Figure 3.22). After the end 

of the deposition the polycarbonate membrane can chemically dissolved releasing the 

nanowires into a suspension of isopropanol. Ultrasonic is used to eliminate the 

precipitation. 

 

Figure 3.22: Schematically presentation of the steps of TED process. 

 

Figure 3.23: I-t diagram presents the deposition into the polycarbonate holes till their 
total cover. 
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3.3.3.1 Characterization 

SEM images of the nanowires were obtained are presented below (Figure 3.24). In 

each case the diameter and the length were those of the mold of each hole. Even if the 

shape and structure of nanowires is quite good the density remains poor. This means 

that nanowires coming from many substrates must be used for the implementation of a 

single sensor device. Therefore, is rather impossible to follow this technique for a 

massive production of gas sensors. Experimentally, the best results in terms of density 

and homogeneity of length were those obtained in -1.05 V potential for a three-hour 

deposition (Figure 3.24). 

 

 

Figure 3.24: SEM image indicates the well-shaped TED nanowires. 

 

3.4 Tetrapods fabrication method 

A combination of thermal evaporation and controlled oxidation was used for the growth 

of ZnO tetrapods, inside a tubular furnace with two independent heating elements and 

where different gases can be fluxed (Figure 3.25). Unwanted contaminations were 

reduced as much as possible with the absence of catalyst or precursor. A metallic Zn 

foil (99.999% pure) was used as source material after a fast etching in diluted acid to 

remove oxide traces, which might reduce the evaporation rate. Source material was 
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placed in the first zone of the furnace which is labeled as “Zn evaporation zone” in 

Figure 3.25 and then heated up to 700 ◦C in an inert gas flow (Argon, 100 sccm). Zn 

vapour generated by heated source was carried by the Ar flow along the reactor up to 

the furnace region where it matched a 10 sccm oxygen flow (labeled “nucleation and 

growth zone” in Figure 3.25), which enter the reactor through a separate inlet tube. In 

this “matching-region”, where temperature was set in the range 600–500 ◦C, tetrapod 

nucleation and growth started. While floating in the gas stream, tetrapods grew until 

they reached the cold zone at the end of the furnace. Floating tetrapods came out of the 

heated zone in form of a continuous white smoke and there they deposited on the walls 

of reactor’s quartz tube, forming a thick and fluffy layer. The kind of thick film was grown 

can be easily removed from the reactor at the end of the growth procedure. In this 

configuration Zn source is protected from oxidation because of the presence of the inert 

gas, which means that the whole synthesis process can run up to complete source 

evaporation [46]. 

 

 

Figure 3.25: Schema of the ZnO synthesis reactor, where different positions for Zn 
evaporation from source material, nucleation zone and collection zone are indicated. 

Evaporation and nucleation temperature can be set independently. No vacuum system 
is used [46]. 
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3.4.1 Characterization 

SEM images depicted from literature [46] show that the tetrapods legs are from 50 to 

200 nm thick in cross-section. The study of morphology by SEM imaging showed that 

the tetrapods “legs” generally are 50–200nm thick and from 2 to 4 um length (Figure 

3.26). By changing the growth parameters is easy to control the dimensions of the 

tetrapod (Figure 3.27). Tetrapod’s thickness increases generally with higher source 

temperature, lower carrier gas flow and higher oxidation temperature.  

 

Figure 3.26: SEM image of ‘‘as-grown’’ ZnO tetrapods; (b) SEM image of the tetrapod 
sensing layer deposited from the isopropanol suspension; (c) a simple sensor device for 

testing ZnO tetrapod sensing properties: tetrapods are in the white layer between the 
contacts at the bottom; (d) scheme of sensor geometry: the alumina substrate is 3 by 3 
mm2, the contacts below tetrapods are 200 mm spaced, the Pt heater is parallel to the 

sensing material at the top of the picture. (Adapted by [46]). 
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Figure 3.27: SEM images of some of the grown ZnO tetrapods with thick “legs”, 
obtained in different growth conditions. 

For the realization of our sensors, tetrapods were deposited in the defined deposition 

area forming a dense tangle of nano-tetrapods that behaves as a porous film (Figure 

3.28c) SEM pictures presented in Figure 3.28 show the gradual fabrication of the 

sensing material. It is obvious that there are many interconnections and thus many 

‘‘bridges’’ between the gold contacts of the sensor as the deposition goes on. 

 

a) b) c)  

Figure 3.28: Sensors fabrication step by step based on suspension of tetrapods placed 
on top. a) 2mm3, b)4mm2, c)10mm2. 

 

The sensors fabricated in this way were usable and capable to be tested in a variety of 

gases providing results related to several sensing properties from structural point of 

view (surface to volume ratio). 
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3.5 Hydrothermal growth 

The hydrothermal growth is another convenient and low cost method to synthesize ZnO 

nanostructures which has gained immense popularity due to its simplicity and tolerable 

growth conditions.  The hydrothermal process requires the presence of a seed material. 

Zinc acetate dehydrate [47] and ZnO thin film are the most common candidates. In the 

case of our sensors, ZnO thin films were used as seed layers.   

The nucleation centers for ZnO NW growth are provided by the ZnO crystals remained 

on the substrate as has been already discussed. A ZnO thin film could perform the 

same, as it is a polycrystalline material of ZnO. Relevant studies [48] have revealed 

differences in the growth rate, diameter, density, and surface area of these highly 

oriented NW which were depended on the seed layer’s physical properties and the 

deposition time. ZnO NWs morphology is strongly influenced by the thickness of the 

seed layer and the corresponding crystal size. Moreover, the surface roughness was 

reported to be a significant parameter determining the vertical growth of these NWs. 

The alumina patterned substrate was used for the deposition of thin films. Since these 

ZnO NWs were grown in order to probe their properties for sensing applications, the 

thickness of the seed layer had to be comparable to the other tested devices; therefore 

100 and 200 nm were chosen in our case. 

Synthesis is carried out in aqueous solution, the growth temperatures are less than the 

boiling point of water. A chemical bath based on aqueous solution with 30mM Zn(NO3) 

and 30mM HMTA is used. The final solution is a light yellow color. The alumina 

patterned substrate with the deposited seed layer on top is immersed in the preheated 

chemical solution described above at 65 °C for a range of time between 1h and 3h 

depending on the desired length.    

 

3.5.1 Characterization 

SEM measurements have been carried out to investigate the dimension and density of 

ZnO growth nanowires on top of ZnO seed layers.  The SEM images below (Figure 3.29 

and Figure 3.30) reveal that the density of ZnO nanowires array is quite good and the 
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average diameter and length vary depending on the seed layer used and the applied 

deposition time. In case of 100nm seed layer the diameter is around 130nm and the 

length is 3um. On the other hand, in case of 200nm seed layer, the diameter is 100 nm 

and the length is 3 um. In both cases the deposition time was set in 3 hours. These 

results can easily be implemented in the gas sensor device. 

 

 

Figure 3.29: SEM images of hydrothermally grown ZnO nanowires obtained by using a 
ZnO seed layer of 100nm for 3 hours deposition. 

 

Figure 3.30: SEM images of hydrothermally grown ZnO nanowires obtained by using a 
ZnO seed layer of 200nm for 3 hours deposition. 
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3.6 CVD method 

Chemical vapor deposition (CVD) is a chemical process used to produce high-purity, 

high-performance solid materials. The process is often used in the semiconductor 

industry to produce thin films. In typical CVD, the substrate is exposed to one or more 

volatile precursors, which react and/or decompose on the substrate surface to produce 

the desired deposit. Frequently, volatile by-products are also produced, which are 

removed by gas flow through the reaction chamber [49]. 

In our case a sapphire substrate was used for the implementation of the method. CVD 

is a chemical process that follows bottom-up technique as presented in Figure 3.31. 

 

 

Figure 3.31: General CVD mechanism. 

 

The details of the technique we have used have been previously reported [50]. A ZnO 

nanowire array on a film structure is shown in Figure 3.32. Initially the a-plane sapphire 

substrate is deposited with Au particles by a quick coater. The diameter of the Au 

particles is around 10nm (DFM image Figure 3.32a). The increasing temperature in the 

CVD growth force the Au particles on the a-plane sapphire substrate to coalesce 

together in order to form large particles, as shown in Figure 3.32. An annealing 

experiment is taking place to prove the formation of large Au particles at elevated 

temperatures. Afterwards, an a-plane sapphire deposited with the same amount of Au 



Chapter 3. Synthesis and characterization of ZnO-based nanostructures gas sensors. 

 

 
38 

 

was annealed at 1000 °C for 15 s with Ar gas flowed through and without Zn and O 

sources at a pressure of 50 mbar. The cooling process follows to reinstate the Au-

deposited a-plane sapphire substrate to room temperature. The SEM image of the 

annealed sample is shown in Figure 3.32. After the annealing process large Au particles 

are formed with diameter varied from 75 nm to 25 nm. In the ZnO growth process with 

the Zn and O sources of this technique, the enlarged Au particles captured the Zn and 

O vapor to form Au–Zn alloy particles at elevated temperatures and serves as a catalyst 

to facilitate the ZnO nucleation. A fast growth of the ZnO nanowires and the ZnO film 

occurred due to the presence of a sufficient supply of Zn and O vapor sources. It is 

suggested that the large Au–Zn alloy particles could meet the minimum diameter 

requirement for the growth of nanowire in a VLS growth process [51], and supported the 

growth of the ZnO nanowires. Once the deposition is finished the substrate with the 

grown nanowires is placed into a suspension (usually isopropanol). Finally, the 

sonication method is applied to achieve the detachment of the nanowires from the 

substrate. 
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Figure 3.32: Schematic drawing of the CVD growth process of the ZnO nanowire array 
on a ZnO film structure on the a-plane sapphire substrate. (a) Au particles were 

deposited on the a-plane sapphire substrate. (b) Large Au particles were formed at 
elevated temperatures during the CVD process. (c) Au particles captured Zn and O 

vapor atoms to form the ZnO nuclei. The large droplets supported the growth of the ZnO 
nanowires and the small droplets supported the growth of the ZnO film. The ZnAl2O4 

buffer layer was also formed at the interfaces between the ZnO and the sapphire 
substrate. (d) The ZnO nanowire array on a ZnO film structure was formed after the 

CVD growth. (Adapted by [50]). 

3.6.1 Characterization 

Morphological observations were performed by using SEM. In average nanowires 

length was 30um and the diameter 100nm. The density of nanowires was quite high, 

namely from one singe substrate is possible to retrieve all the nanowires needed for the 

implementation of one gas sensor. Figure 3.33 verifies the high density since they 

present nanowires on top of a conductive substrates coming from a couple of 

suspension droplets. 

Nanowires length is 30 um in average and have 100nm diameter. Their density is quite 

high, namely is enough for the sensor’s fabrication. The good results are verified by 

Figure 3.33 which show the dispersed nanowires on top of a conductive layer being 

placed by a couple of droplets. 
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Figure 3.33: SEM images of some of the CVD nanowires dispersed on conductive layer 
exhibiting well formation and high density. 

 

 

The final implementation of nanowires on the alumina patterned substrate (host device) 

is presented in Figure 3.34. The deposition zone between the two golden parts is fully 

covered by nanowires creating numerous of bridges between the contacts. 

 

 

Figure 3.34: SEM images of the alumina patterned substrate host device functionalized 
by CVD nanowires (sensing material).
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Chapter 4 . Gas sensing’s set-up and sensing mechanism. 

The gas sensor setup was built at IMEM-CNR to measure the sensitivity of ZnO based 

nanostructures to different gases (reducing and oxidizing). Figure 4.1 shows the 

schematic representation of the setup. 

The test system consists of three main components: the gas mixture generation system, 

the sensor electrical test equipment and the data acquisition system. 

  

The gas mixture generation system can mix air with up to two different testing gases 

stored in cylinders. Air is divided in two lines in order to have a “dry” air line and a 

“100% humid” air-line. The second one is generated by bubbling dry air from the 

cylinder in warm water and then condensing the humidity excess at room temperature. 

By regulating the flows of these lines the testing mixture can be generated. The 

regulation is made by the flow controllers. The gas mixture then enters on one side of 

the test cell and exit from the opposite side.  

  

The test cell consists of a metal box that shields the external electrical noise and helps 

to keep thermalized the gas around the sensor at room temperature (25°C). Inside it 

there are the gas sensor to be tested, a humidity sensor, a temperature sensor and a 

pressure sensor. All the sensors beside the gas sensor are there only to monitor the 

“environmental” conditions and to assure that everything works properly during the 

measurements. The gas sensor has four contacts, two of them for the sensing element 

and two for the heater. Heater is connected to a temperature controller that keeps its 

resistance constant at the desired temperature value. The sensing element is 

connected to a DC voltage generator and to an amperometer that measures the current 

flowing through it. 

  

The data acquisition is performed via PC. This data acquisition system communicates 

with mass flow controllers and picoammeter in order to regulate and store flow values 

and the current data from the sensor. 
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Figure 4.1: Schematic of the gas sensor set-up. 

 

Figure 4.2 shows the real image of the sensor test setup for comparison reasons with 

the schematic one in Figure 4.1. The sensing gases used were commercially bought 

from SIAD. Nitrogen dioxide (NO2), Carbon Monoxide (CO) and Ethanol were used for 

our experiments. 
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Figure 4.2: Gas sensing set-up. 

 

 

 

The chemo-resistive properties of the whole obtained sensors towards every gas were 

measured by using the flow-through technique at a constant 500 cm3/ min gas flow. The 

DC generator which is connected to the sensing element was set at 5V for all the 

experiments. The change in current was monitored with respect to time through the 

connected Keithley 6485 amperometer, which was interfaced to the computer by a Lab-

View program. The recorded data was then used to evaluate the response of the sensor 

to the various gases. 
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4.1 Gas sensing fundamental mechanism – State of the Art 

The exact fundamental mechanisms that cause the gas response of MOS remain 

controversial. Nonetheless, it is generally admitted that the change in conductivity 

attributed to the trapping of electrons at adsorbed molecules and band bending induced 

by these charged molecules are responsible for a change in conductivity. Namely, MOS 

generally owe their conductivity to their deviation from stoichiometry. Defects such as 

interstitial cation or anion vacancies also play an important role in their conductivity. 

There are numerous models have been proposed to describe sensing mechanism. The 

band bending model in Figure 4.3 and Figure 4.4 are given for the complete explanation 

of the mechanism. In case of oxidizing gas the negative charge trapped in the oxygen 

species causes an upward band bending and thus a reduced conductivity compared to 

the flat band situation. When O2 molecules are adsorbed on the surface of metal 

oxides, they would extract electrons from the conduction band and trap the electrons at 

the surface in the form of ions. This will lead to band bending and to an electron 

depleted region [52]. The electron-depleted region is so called space-charge layer, 

whose thickness is the length of band bending region.  

 

Figure 4.3: Band model of conductive mechanism upon exposure to oxidizing gas. 

 

 



Chapter 4. Gas sensing’s set-up and sensing mechanism 

 

 
45 

 

Reaction of the oxygen molecules with a reducing gas decreases and can reverse the 

band bending, resulting in an increased conductivity (Figure 4.4). The reason about this 

is a competitive adsorption and replacement of the adsorbed oxygen by other 

molecules. It is believed by several groups [52] that O− is dominant at the operating 

temperature of 300-400 °C which is the most investigated working temperature for most 

MOS.  

 

 

 

Figure 4.4: Band model of conductive mechanism upon exposure to reducing gas. 
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4.2 Design of the experiments 

Analyzing the sensitivity of the ZnO based nanomaterials towards NO2, O2, Ethanol 

and CO is the main task in order to acquire the data needed for the assessment of the 

sensor’s performance. Different experiments showed repeatability and reproducibility of 

the results. Further experiments were carried out to confirm the effects of temperature 

and concentration, and from the structural point of view effect of grain size and 

thickness was addressed. Relative humidity was set at 30% for all the experiments in 

order to have comparable results. The operating temperature range was from room 

temperature to 400°C and gas concentration varies depending on the specific analyte. 

 

The same flow schedule in terms of time frame was used for all the measurements. In 

details, the sensors were allowed a stabilization time in the desired temperature of 60 

min in ambient, followed by exposure to the sensing gas for 60 min which was followed 

by exposure to air for 60 min and continue like this till the last step which is a long 

stabilization time in the air. 

 

Targeted simulations have been done in cooperation with partners in other group [53] to 

explain the experimental results. Their finding and evidences are presented in details in 

the results and discussion chapter. 
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Chapter 5 . Gas sensing results and discussion 

5.1 Grain-size and roughness effect on ethanol sensing properties of RF 

sputtered ZnO thin films 

In this chapter, we report the grain-size and roughness effects towards improving the 

ethanol sensing properties of ZnO thin films deposited by RF sputtering at low gas 

concentration levels. Specifically, the ethanol sensing tests were performed in the 10 to 

50 ppm gas concentration range under an operating temperature between 200 and 

400°C. Moreover, the morphological and structural properties of the films were analyzed 

as a function of sputtering power at room temperature and subsequent annealing 

treatment. The obtained results indicate the high potential of grain-size effect as an 

approach to the development of high-sensitivity ZnO ethanol sensors. 

 

As we have already discussed in the RF sputtering subchapter all ZnO thin films have 

wurtzite structure (see XRD patterns in Figure 5.1). Additionally, C-axis preferential 

growth orientation was observed for all ZnO films. Increasing sputtering power resulted 

in a continuous decrease of the grain size and increase of the surface to volume ratio 

and roughness, as it was shown in our previous work [39]. 

 

To better evidence the effect of the annealing treatment, the magnified evolution of the 

(002) diffraction peak is presented in Figure 5.1b. As one can see, an angle shift from 

34.2 to 34.5° is observed upon annealing indicating a crystalline change which is 

attributed to the relaxation of the initial tensile stresses within the film while the 

decrease in the width at half maximum indicated an increase in crystallite size and 

reduction of grain boundaries [54].  

However, the coupled effect of sputtering power and annealing on the grain size 

indicated a notable decrease only at low sputtering values, a plateau being reached 

above 100W [39].  
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Figure 5.1: (a) XRD spectra of sputtered ZnO films before and after annealing and (b) 
(002) diffraction peak evolution upon annealing treatment. 

 

The effect of the annealing treatment on the grain size was analyzed by AFM 

measurements as shown in Figure 5.2 depicting the morphology of 200 nm thick films of 

ZnO deposited at 70W, before and after the annealing procedure. The measurements 

confirmed the annealing treatment resulted in an increase of the grain size and 

roughness.  

Additionally, Figure 5.3 which was created from the post processing of the AFM results 

reveals that the roughness changes with respect to sputtering power and annealing. In 

details, when low deposition rates are employed (4,1nm/min in case of 70 W sputtering 

power) surface roughness is about 2,5 nm, but as the deposition rate increases (8,3 

nm/min in case of 150 W sputtering power) the surface becomes more rough reaching a 

value of about 2,95 nm. Annealing also has a crucial influence in the roughness 

parameter especially when is applied in a smooth surface as revealed by the big 

change between as-prepared and annealed sample which was fabricated in low 

deposition rate (case of 70W sputtering power). Specifically, the roughness is 

increasing from 2,95 to 5,4 nm in case of 70W sputtering power and from 2,5 to 3,6 nm 

in case of 150 W sputtering power. 
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Figure 5.2: AFM images of ZnO film deposited at 70W before (left) and after annealing 
(right). 

 

 

Figure 5.3: Roughness change with respect to increasing sputtering power and 
annealing. 

 

 

Figure 5.4 shows the evolution of the grain size obtained by post-processing of the AFM 

images [51] with respect to the thickness of the films. It was observed that thinner films 

exhibited larger grains independently on the sputtering power. On the other hand, the 

grain size change upon annealing was almost constant with the sputtering power for all 

the films. It is additionally noticed that the grain size of the low power deposited thick 

film of 200nm was affected more than the other films by thermal annealing treatment. 

 30.00 nm

 0.00 nm

200nm

 30.00 nm

 0.00 nm

200nm
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Figure 5.4: Grain size evolution with sputtering power and film thickness. 

 

 

5.1.1 Ethanol sensing properties 

Given the fact that the structural and morphological results evidenced marked grain size 

and roughness differences between the films deposited at low and high sputtering 

powers with and without subsequent annealing treatment, these films were further 

investigated for a better understanding of the gas sensing properties as a function of 

grain size and roughness. The sensor response in the presence of 50 ppm ethanol 

operated in a temperature range from 200°C to 400°C is depicted in Figure 5.5. It is 

clearly seen that the sensing response increased with the operating temperature, the 

highest value being recorded at 400°C independently of the sputtering power and 

annealing treatment. This result could be accounted to increased surface reaction for 

ethanol at higher temperature in accordance to several studies on the operating 

temperature influence on the sensitivity to alcohols and other organic vapours [55].  
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Figure 5.5: Sensor response for ZnO films to 50 ppm ethanol as a function of (a) 
annealing treatment of films sputtered at 70W and sputtering power of annealed films 

and (b) grain size and temperature. 

 

Figure 5.5a shows that the annealing treatment of the ZnO film sputtered at 70W 

resulted in a decrease of the sensing response e.g. at 400°C the response decreased 

from 16 to 9. Considering the effect of the sputtering power and roughness on the grain 

size, the sensing response monitored for the annealed ZnO films previously deposited 

at 70W and 150W is depicted in Figure 5.5a, as well. Annealed sample of low 

deposition rate presents 130 nm lateral grain size and 5,45 nm roughness. As-prepared 

samples instead are characterized by 115 nm lateral grain size and 2,97 nm roughness. 

However the sensing response of the samples does not differ that much to justify the 

big difference in roughness value, namely it could be assumed that grain size plays a 

crucial role in the sensing mechanism. Further to the sensing results analysis, it should 

be noted that the sensing response for the film sputtered at 150W was 5-6 times higher 

than the one deposited at 70W. On the other hand, increasing the operating 

temperature from 200 to 400°C resulted in almost 10 time larger sensing response. The 

obtained results were further correlated to the evolution of grain size for annealed ZnO 

films with sputtering power depicted in Figure 5.6a. As shown in Figure 5.6b, the ZnO 

films with smaller grains presented higher response values, i.e. 65 nm ZnO grains 

exhibited 6 times higher response than 130 nm grains, reaching a value of 55 at 400°C. 

Given the increase in the surface area by the decrease in grain size with sputtering 

power, these results could be explained by the adsorption of a higher number of ethanol 
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gas molecules. The increased concentration of oxygen ions would result into a larger 

change in capacitance that indicates a higher sensor response.  

Given the marked dependence of the resistance of a n-type semiconductor like ZnO film 

on the temperature and gas concentration, the gas sensitivity of annealed ZnO films 

was further monitored at 300°C and 400°C as a function of grain size (between 65 and 

130nm) and chemisorbed gas concentration. As it can be observed in figure 6a, the 

exposure to increasing ethanol concentration resulted in an increased response. The 

dependence on the ethanol concentration shows two sensitivity areas indicating a 

difference in ethanol adsorption below and above 20ppm [56], [57]. However, on a bi-

logarithmic scale (Figure 5.6b) the relationship is nearly linear, i.e. conductance change 

with the concentration followed a power law. Although the calculation of a precise limit 

of detection requires more experimental data in lower concentrations range, considering 

a minimum sensing response (Response >3), the limit of detection value extrapolated 

from the plot in figure 6b was observe to decrease from 1.15ppm to 0.61ppm at 400°C 

when grain size decreased from 115 to 65nm, while at 300°C showed little variation 

(from 0.84ppm decreases to 0.83ppm). 

 

Figure 5.6: Response (a) and bi-log scale of response (b) as a function of the ethanol 
concentration. 

 

The calibration curve in Figure 5.6a clearly reveals that the response generally 

increased with decreasing grain size. Moreover, when the grain size decreased to 65nm 

the magnitude of sensor response increased more and faster at the highest operating 
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temperature of 400°C. These results could be explained by a synergistic effect of grain 

size and the nature of adsorbed oxygen species on the material surface with the 

operating temperature, that change the electron concentration near the oxide surface 

and the surface conductivity, respectively. It was reported that the dominant oxygen 

species above 300 °C are O2- ones [58], that are much more unstable and energetic 

than O2, O2
- or O- [59] and thus, they could be accounted for the increased sensitivity at 

higher operating temperature due to an enhanced reaction with the ethanol molecules, 

similarly to formaldehyde [60]. 

The dynamic response monitored at each tested gas concentration confirmed the 

temperature effect on the sensor response, as presented in Figure 5.7 that is depicting 

the properties of ZnO films with 65nm grains at 300 and 400°C. The plots in Figure 5.7 

also indicate the sensor had a reversible response to ethanol with good recovery time at 

each given gas concentration that is, when exposed to a certain concentration of 

ethanol, the response increased rapidly and reached its equilibrium sensitivity and once 

ethanol was removed, the response decreased quickly to the baseline, pointing out a 

good reproducibility of the sensor. 

 

Figure 5.7: Dynamic response of the sensor with 65nm grains to 10-50ppm ethanol 
concentrations. 

 

The response-recovery behaviour is a very important characteristic for assessing the 

performance of gas sensors. The corresponding curves plotted as a function of grain 

size and temperature, as depicted in Figure 5.8, confirm the different sensing properties 

with the operating temperature: while at 300°C a slow decreasing trend of the response 
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time could be observed, at 400°C a minimum is exhibited at 20ppm ethanol 

concentration, in agreement with previous observation. Moreover, it can be observed 

that the response got slower at higher operating temperature: for example, at 400°C the 

response to 30ppm ethanol required 138sec instead of 74 sec at 300°C for 115nm 

grains and 362 sec instead of 93 sec at 300°C for 65nm grains.  

The response time evolution was markedly influenced also by the grain size: smaller 

grains exhibited the largest response time in Figure 5.8, in agreement with other reports 

[61].  One explanation could be related to the components of the response time as the 

time required for the gas molecule to diffuse to the surface and the time for the gas 

molecule to be adsorbed on the surface. Since the operating conditions were constant, 

the time for diffusion can be ignored while the time required for adsorption gets 

dominant. Film thickness is another parameter to consider: according to Korotcenkov 

and Hyodo, films thicker than 100nm respond slower than thinner ones [62], [63]. 

 

Figure 5.8: Response and recovery time evolution with grain size and operating 
temperature. 

 

Opposite to the response behaviour, the recovery time evolution in Figure 5.8 showed 

good stability over the whole concentration range, especially for smaller grains. This is 

an improvement to take into account for gas-sensing applications since it is known that 

small grain size can lead to a loss of structural stability [64] and as a consequence to a 



Chapter 5. Gas sensing results and discussion 

 

 
55 

 

change of the sensing mechanism of the material [65]. Although the smaller grains 

appeared to respond slower to the tested gas, they recovered faster than the larger 

grains and the recovery change with grain size was notably higher at 400°C than at 

300°C. As in the case of response behaviour, the recovery took place faster at 300°C 

than 400°C, i.e. the recovery from 50ppm ethanol took about 170sec at 300°C for both 

grain sizes, while at 400°C it required 147 sec for smaller grains and 388sec for larger 

ones. 

Various models are presently applied to rationalize the electro-physical properties of 

polycrystalline materials, such as the grain-model or neck-model [66], given that the 

grain size and the width of the necks are the main parameters that control gas-sensing 

properties in metal oxides. For example, in the case of SnO2 films, Bose et al. showed 

that both the grain and grain boundary contributed to the sensing mechanism of grains 

of 5 to 14 nm below 300 °C, while at higher operating temperatures (above 300 °C), the 

grain boundary contribution for the conductivity was dominant [67].  

From the analysis of the results one can conclude that the sensing mechanism of RF 

sputtered ZnO films is influenced by grain size, tested gas concentration and the 

operating temperature. As the grain size decreases, the total surface area increases 

leading to an increase in sensor response. The sensitivity dependence of sputtered ZnO 

films on the ethanol concentration indicated a combined grain-size effect on the 

sensitivity from both the necks connecting the grains and the grain boundaries at 

operating temperature of 400°C[68]. The sharp increase with temperature indicated a 

synergetic effect of the grain size and temperature towards the sensitivity that could be 

explained by an enhanced reaction with ethanol molecules with more energetic oxygen 

species, dominant as O2- ones above 300°C [58], [69]. Since the temperature influences 

also the dissociation of ethanol molecules, the resulted intermediate species need to be 

taken into account for the reaction with adsorbed oxygen ones. However, it is necessary 

to point out that the relationship to grain size is dependent on the type of metal oxide, 

detection mechanism, and the analyzed gas. 
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5.1.2 Conclusions 

The structure and morphology measurements showed the grain size of ZnO films 

obtained by room temperature RF sputtering decreased with the thickness and 

sputtering power while annealing treatment resulted in an increase of it. On the other 

hand, roughness was increased with both RF sputtering power and annealing. Upon 

exposure of ZnO films to ethanol vapors in concentration range 10-50 ppm, the ZnO film 

with 65 nm grains and 3,48 nm roughness exhibited higher sensitivity than the one with 

130 nm grains and 5,45 roughness that was markedly increased with the operating 

temperature. The films with 65nm grains and 3,48 nm roughness required longer time to 

respond to exposure to ethanol but recovered faster than the films with larger grains. 

Both the response and recovery time values were below 400 sec. The results indicated 

that the optimization of the grain size with operating temperature is an important factor 

for improving the ethanol sensing properties of ZnO. 

5.2 Investigation of surface-to-volume ratio and depletion layer impact 

through CO detection in advanced nanostructures.  

In this chapter, CO which has one reaction with O2 (single reaction) was chosen for the 

investigation of surface-to-volume ratio and depletion layer impact on gas sensing. For 

the demand of this study two sensors have been fully measured in CO enviroment in 

different conditions. Sensor A was a thin-film-based ZnO nanosensor while sensor B 

was identical to A but with the difference that had dispersed CVD NWs on top of the 

film. The deposition of the film was made using a swadow mask to define the deposition 

area. The same shadow mask is used for the deposition of the CVD NWs as well. The 

schematic of the sensors is presented in Figure 5.9. 
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Figure 5.9: Schematic of the two obtained sensors nanostructures. 

 

5.2.1. Theory: Impact of structural characteristics on sensing properties 

The factors affecting the sensing properties of thin film or bulk and nanostructures are 

different with each other. Several sensing mechanisms along with proposed models 

taking into account the effect of surface-to-volume ratio and depletion layer in the ZnO-

based nanostructures [70], [71], [72]. 

 

5.2.1.1. Thin film and bulk 

It has been reported that sensing properties of thin films are affected by crystallite size 

D of the sensor materials in conjunction with the space charge depth L; to that direction 

three kinds of resistance-control models [70] have been proposed which assume that a 

sensor consists of chain of uniform crystallite of size D connected mostly with each 

other through necks and sometimes by grain boundaries, as shown in Figure 5.10. 

When D is less than 2L, the grain resistance dominates the resistance of the whole 

chain which dominates the sensor resistance. Thus, grains control the sensitivity. 

Among the three models grain control is the most sensitive condition and in turn smaller 

grain size would be more sensitive than larger ones as we have experimentally proved 

in our group’s previous work (previous chapter).  
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Figure 5.10: Schematic models for grain effects [71]. 

 

 

Additionally, a detailed formula (Eq.1) has been proposed by Niyom Hosgsith e al [72] 

to give the response of a sensor.  

 

   Rg =
Γtkgas(Oads

ion
)b

n0
X

b + 1 

 

Where X is the target gas, b is the number of electrons, kgas(T) is the reaction rate 

coefficient, n0 is the electron density of the sensor, Γt is a time constant and Oads
ion

 is the 

adsorbed oxygen ions. In case of a ZnO thin film based sensors the formula can easily 

be applied and provide response values of the sensor.  

 

5.2.2 Nanostructures 

In case of nanostructures the Eq.1 cannot stand alone; two important parameters 

including surface-to-volume ratio and depletion layer width need to be considered in 

order to explain the sensing characteristics.  
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5.2.2.1 Surface-to-volume ratio 

The surface to volume ratio is strictly related to the density of the adsorbed oxygen ions. 

It is rational that when the surface to volume ratio increases for the same operating 

conditions the density of the adsorbed oxygen ions is increasing as well. If in Eq.1 the 

density of the adsorbed oxygen is substituted by surface-to-volume ratio, the equation 

becomes: 

 

(2)     Rg =
Γtkgas(

σ0ΦVm

Vs
)b

n0

X
b + 1 

 

 

Where σ0 is a number of oxygen ion per unit area, Φ is a ratio of surface area per 

volume of material (Vm) and Vs is the system volume. 

The above equation shows that response strongly depends on the surface-to-volume 

ratio Φ. An example based on our sensors can be given to justify this statement. 

Sensing element of sensor A covers an area of 1,3 mm2 and 200nm thickness, while 

sensor B covers exactly the same area with dispersed nanowires on top as we have 

already mentioned. The surface-to-volume ratio can be calculated and put in Eq.3 for 

the sensitivity ratio as below: 

 

(3)       
RΦ(B)−1

RΦ(A)−1
= (

ΦΒ

ΦA
)b  

 

ΦΒ is bigger than ΦA and this means that response of sensor B will be higher than that 

of sensor A. 
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Several studies have been made to provide experimental evidences on the surface-to-

volume ratio impact on the sensor response [73]. All agree that the larger the nano-

object in terms of both length and diameter the higher the response. Figure 5.11 

presents an example of ethanol detection (reducing gas) which shows that even when 

the NWs are vertical aligned (not aligned along the conductive direction) the response is 

higher than that of bulk or thin film  and in case of spaggeti like formation the response 

is enhanced even more.  

 

Figure 5.11: Sensor sensitivity for different ZnO sizes and morphologies with ethanol 
concentration of 1,000 ppm [73]. 

 

5.2.2.2. Depletion layer 

It is important to distinguish the resistance occurring between nanowires, which is due 

to band bending, namely due to potential barrier between nanowires, and the resistance 

along the nanowires which is due to surface depletion layer and conductive channel. 

Several models have been proposed to describe the depletion layer in nanostructures 

[73], [74]. The most rational approach claims that a cylinder, which is close to the 

nanowire structure, is considered and a conductive channel is assumed to be along the 

axis of the cylinder. At an operating temperature, the oxygen ions were adsorbed by 

capturing an electron on the surface of the cylinder. Therefore, the depletion layer is 

formed on the surface of cylinder with a thickness of L, and then a size of conductive 

channel is reduced along the radial direction as shown in Figure 5.12a. 
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Figure 5.12: Schematic diagram of depletion layer on the surface of nanowire. a) 
example of much bigger diameter than depletion layer width ratio and b) diameter 

similar to twice depletion layer. 

 

 

Based on this model the sensing mechanism can be described as follows: When the 

nanowire is exposed to the CO atmosphere, the CO reacts with oxygen ions on the 

surface and gives back electrons to ZnO sensing material resulting in increasing 

conductive channel, namely decreasing depletion layer.  

 

The diameter of the nanowire plays the most crucial role in the depletion layer width in 

respect to the sensing properties. The categories are classified in literature in details 

[72]. In case of the present study nanowires diameter is in order to few nanometer 

which means that nanowire diameter is comparable with twice the depletion layer width. 

Thus, the depletion layer has strong effect make the sensor’s response depend also on 

it. Figure 5.12b shows the impact that depletion layer has in case of our sensor 

expecting both the conductance and the response of the sensor to increase. 
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5.2.3 Results and discussion 

5.2.3.1. Structural and morphological characteristics 

The SEM images of the sensor before and after CVD NWs deposition are presented in 

Figure 5.13a and Figure 5.13b respectively. In Figure 5.13a thin film is distinguished 

from the alumina strip; however alumina is still visible because of the transparency of 

the film. The border line between the deposition area and alumina is also visible. 

In Figure 5.13b the whole area is covered by nanowires in spaghetti like formation 

creating extra conductive ‘’bridges’’ between the golden area and increasing the surface 

to volume ratio. Some extra SEM images analysis has revealed the dimensions of the 

nanowires which are 500nm in diameter and the length varies from 10 to 40 um. 

          

Figure 5.13: a) SEM image of ZnO thin film based sensor on alumina patterned 
substrate. b) SEM image of ZnO thin film based sensor on alumina patterned substrate 

enhanced with CVD nanowires on top. 

 

AFM image (Figure 5.14) arises from thin film before the deposition of CVD nanowires 

giving information about the grain size and the roughness which are 115nm and 2,95nm 

respectively. 
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Figure 5.14: AFM image of ZnO thin film based sensor. 

 

5.2.3.2 CO sensing properties 

The present study is focused on the investigation of gas sensing differences between 

the two fabricated sensors considering the impact of the differences of surface-to-

volume ratio and depletion layer of the active element. The high operating temperature 

of 400 °C is of major interest for the automotive industry and consequently is the one 

mainly applied in our measurements. 

The calibration curve in Figure 5.15 clearly reveals that the response increased for the 

advanced nanostructure sensor B. These results could be explained by the combination 

effects of increasing surface-to-volume ratio and decreasing depletion layer width. 

Increasing response attributed to the surface-to-volume ratio increase as we justified 

before; the nanowires on top of thin film increase the surface-of the sensing element to-

volume ratio. Moreover, in the case of nanowires used, their diameter of 500nm is 

comparable to the depletion layer width [72] indicating strong effect of the depletion 

layer. Thus, the depletion layer width decreases resulting in the increase of the 

conducting channel and therfore in the  increase of the sensor sensitivity and response 

as well. 
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Figure 5.15: Response as a function of the CO concentration at 400°C. 

 

The dynamic response monitored at each tested gas concentration confirmed the 

surface-to-volume ratio effects on the sensor response, as presented in Figure 5.16. 

Sensor B shows two to three times higher response than sensor A in the whole 

concentration range. An additional information depicted is the reversible response to 

CO with good recovery time at each given gas concentration. When exposed to a 

certain concentration of CO, the response increased rapidly and reached its equilibrium 

sensitivity and once CO was out, the response decreased quickly to the baseline, 

pointing out a good reproducibility of the sensor. Some noise is noticed in the 

measurements especially at 20ppm and 30ppm gas concentration that is due to 

undefined reasons but hardly influence the final results. 
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Figure 5.16: Dynamic response of the sensors in10-50 ppm CO concentration at 400°C. 

 

 

The response-recovery time behavior is another sensing parameter that was assessed. 

The corresponding curves plotted as a function of concentration are depicted in Figure 

5.17. The response and recovery behavior is quite stable over the whole concentration 

range for sensor B. On the other hand sensor A appears to respond slower to CO 

without showing a specific relationship between recovery time and gas concentration. 

Recovery time is similar for both sensors and always between 190 and 250 sec. which 

means that the speed of desorption of oxygen molecules is not depended on the kind of 

nanostructure. Thus, also in this testing sensing property sensor B has better 

performance than sensor A. 
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Figure 5.17: Response and recovery time evolution with concentration of CO at 400°C. 

 

Measurements at 300°C have been performed to investigate the impact of the operating 

temperature in the response and sensitivity of sensor B. Figure 5.18 presents the 

dynamic response diagram of 50ppm which was the only concentration value that 

revealed a small difference between the two operating temperatures. It is clear that the 

impact is not high since the only observation is a small response increase of about 8% 

at 50ppm concentration. This means that for several applications that targeting in the 

detection of a much lower CO concentration this difference is rather negligible. 
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Figure 5.18: Dynamic response of the sensor as a function of operating temperature. 

 

 

From the analysis of the whole results it is noticed that gas sensing mechanism is 

enhanced by the addition of nano-objects on top of a seed layer. Surface-to-volume 

ratio and depletion layer are the two parameters contributing to this fact, while operating 

temperature appears to play a weak role to the detection of CO when sensing material 

with advanced nanostructure sensors are used.   

 

5.2.5 Conclusions 

The measurements showed that advanced nanostructures present better sensing 

performance that thin films based mainly on the surface-to-volume ratio advantage and 

depletion layer effects. Upon exposure of ZnO film and advanced nanowires-based 

nanostructure to CO vapours in the concentration range 10-50 ppm, the ZnO film 

exhibited almost 55% lower sensitivity than the advanced nanostructure. The film 

required a longer time to respond, but recovery time instead was quite similar for both 

sensors. Last but not least, there was not observed any remarkable optimization with 

the increase of temperature for the advanced nanostructures. 
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5.3 Comparison between sensing properties of different ZnO-based 

nanostructures in Ethanol. 

In this chapter, we report the growth of different nanostructures fabricated by several 

deposition methods and the investigation of their ethanol sensing properties. For the 

demand of this study three sensors have been fully measured in ethanol environment in 

different conditions. Sensor A is a thin-film-based ZnO nanosensor while sensor B is 

identical to sensor A but with the difference that had dispersed CVD NWs on top of the 

film. Sensor C has tetrapods on the sensing area without any seed layer beneath. 

The deposition of the film and nano-objects (nanowires and tetrapods) also in this case 

was made using a swadow mask to define the deposition area. The schematic of the 

sensors is presented in Figure 5.19. 

 

 

Figure 5.19: Schematic of the three obtained sensors nanostructures. Sensor A based 
on thin film, Sensor B based with seed layer and CVD nanowires on top, Sensor C 

based on tetrapods. 
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5.3.1. Structural and morphological characteristics 

The XRD patterns presented previously in (Figure 5.1) hexagonal wurtzite structure for 

the ZnO thin film along with the diffraction peaks of alumina substrate. C-axis 

preferential growth orientation was observed as well [12]. The grain size of the thin film 

used as both sensor and seed layer was 115nm and its thickness 200nm. 

 

The study of morphology by SEM imaging in tetrapods showed that their legs generally 

are 50–200nm thick (cross-section) and a few microns in length (Figure 5.22a). The 

nanowires were on average 20 nm in length and 200nm in diameter as appear at the 

SEM images in Figure 5.21. It can be also observed the presence of nanoflakes which 

could be attributed to the impurities during the growth process. 

 

 

 

Figure 5.20: AFM  image of ZnO thin film with 115nm grain size and 200nm thickness 
corresponds to sensor A. 
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Figure 5.21: SEM images of sensor B with the grown ZnO nanowires and nanoflakes on 
top. 

 

   

Figure 5.22: SEM image of Sensor C with grown ZnO tetrapods on top. 
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Figure 5.23: SEM image of the grown ZnO tetrapods depicted from literature for direct 
comparison to our tetrapod-sensor. 

 

 

5.3.2. Ethanol sensing properties of nanostructures 

The present study is focused on the investigation of sensing differences between 

several structures (based on ZnO) in ethanol. These series of experiments have been 

performed to investigate which structure could show the highest sensitivity which is of 

major importance for the development of a detector with high accuracy and 

performance. 

To this direction the suspension of tetrapods and of CVD nanowires in isopropanol had 

to be equally concentrated. Repeatable experiments helped to approximate the 

minimum declination. Additionally, to avoid precipitation problems the deposition was 

done using continuous sonication of the suspensions. Nonetheless, tetrapods appear to 

mingle between each other creating a structure that seems like porous film. CVD 

nanowires instead create simple bridges which do not give an extra volume to the 

structure. 

To assure that the same material in terms of quantity could be deposited in both cases, 

in both cases 10 mm3 of suspension placed one by one in the deposition area waiting 

meanwhile for the fully evaporation of isopropanol. The deposition stopped when an 

infinite number of contact ‘‘bridges’’ between the golden parts was observed. 
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The calibration curves in Figure 5.24 which present the current to time changes and 

response to time graph at 400°C respect to different concentration clearly reveal the 

difference that has been observed in previous chapter between thin film based 

nanostructures and their identity which is enhanced by CVD nanowires on top in terms 

of current flow and response. The additional information here is that the sensor with 

tetrapods shows current flow and response almost equal to that with TF and nanowires 

structure. These results could be explained by surface-to-volume ratio increase. 

According to SEM images surface to volume ratio is increasing more in the case of 

tetrapods due to tangle which observed with each other. This fact results definitely to 

increased sensitivity. Moreover, it seems that it is sufficient to overcome the absence of 

the seed layer since it acts as a porous film with spongy extensions. The current for all 

three sensors is increasing slowly with ethanol concentration (from 10 to 50 ppm) and 

the response for all sensors is more than doubled between the minimum concentration 

of 10 ppm and the maximum of 50 ppm. Additionally as the concentration is increasing 

the difference in response between sensor B and C is becoming smaller. In the lowest 

concentration response is 15 for sensor B and 12,5 for sensor C, while it is 35 and 34 

respectively in the highest concentration.  

 

 

 

Figure 5.24: Response as a function of the ethanol concentration at 400°C and 
corresponded current-time diagram (from left to right).  
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The response-recovery behavior is the second major factor (after the sensitivity) that 

enhances the performance of the sensor. The corresponding curves plotted as a 

function of concentration, as depicted in Figure 5.25 for the advanced nanostructures of 

sensor B and C. The response time is decreasing with the increasing concentration for 

both sensors. This means that in higher concentration values the sensors based on 

advanced nanostructures give signal of change from the very first moments of ethanol 

influx. This is a characteristic that could be of major importance in the implementation of 

such a device. The recovery time on the other hand seems to be long enough for both 

sensors since it is always more than 280 sec and in case of 30 ppm concentration 

reaches also the 550 sec for sensor B.  What is noticeable is that the behavior of these 

sensors does not differ that much also in case of recovery time. The possible 

explanation could be that the speed of desorption of oxygen molecules is not depended 

on the kind of nanostructure as has been already mentioned in previous chapter.  

 

 

Figure 5.25: Response and recovery time evolution with concentration of ethanol at 
400°C for advanced nanostructures. 
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5.3.3 Conclusions 

The measurements showed that advanced nanostructures of tetrapods and thin film 

with nanowires on top present better sensing performance than thin films based mainly 

on the surface-to-volume ratio increase. Additionally, in case of sensor C the formation 

of a tetrapods porous film was observed, which could explain the similar sensing 

performance (3-5% of declination) with sensor B since the surface was rapidly 

increased. On the other hand tetrapods based sensor presents slightly better response 

and recovery time than sensor B. Moreover, the stability of sensor A should be 

underlined since it has been tested in several gases for many experiments with high 

reproducibility in time. This enhances the conclusion that sensors based on thin film are 

reproducible, stable and reliable.  

 

 

5.4 NO2 gas sensing mechanism based on ZnO sensor: a combined 

experimental and theoretical study 

In this chapter, the ZnO thin-film based sensor is used for NO2 detection; theoretical 

studies verify the experimental results and vice versa. Based on conductometric 

measurements, sensor had optimal performance at 200 °C, with detection of NO2 lower 

concentration of 0.1 ppm being achieved. Furthermore, ab initio simulations revealed 

that the sensing mechanism is driven almost exclusively by competitive adsorption 

between NO2 and atmospheric oxygen mediated by temperature change. The present 

chapter provides insights which may pave way for development and optimization of ZnO 

sensor for NO2 gas. 

 

5.4.1. Computational details 

All calculations were performed using the Quantum Espresso suite [75], which performs 

fully self-consistent DFT calculations to solve Kohn-Sham equation [76]. The 

generalized gradient approximation using Perdew, Burke and Ernzerhof (PBE) 

functional was employed. The core-electrons were replaced by ultra-soft pseudo 

potentials as described in Vanderbilt's formulation [77], and the electronic wave function 

(charge density) were expanded in a plane wave basis with an energy cutoff of 28 Ry 
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(280 Ry). The surface was modelled as a periodic slab in a supercell, and unless 

otherwise stated, the results presented relate 3x2 supercell. A thick vacuum layer (-15Å) 

was included in the direction perpendicular to the surface to ensure no interaction with 

its periodic images. Integration over Brillouin zone was performed using Monhorst and 

Pack18 with k-point sampling mesh of 4x4x1, and structures were relaxed until forces 

on all atoms were lower than 0.02 eV/Å. Adsorbates were symmetrically introduced on 

both top and bottom surfaces to avoid spurious electrostatic interactions between 

adjacent replicas. DFT failure to predict band gap was addressed by employing DFT+U 

only for the relaxed structure, with Hubbard U values of 12.0 eV on Zn 3d orbitals and 

6.5 eV on oxygen 2p orbitals being used, as have been shown to work well for ZnO. 

Finally, spin polarization was included in calculations involving oxygen molecule. 

 

5.4.2. Results and discussion  

The sample exhibit a hexagonal wurtzite structure without impurity phases; it is noted 

that both polar and non-polar are present with non-polar facets being prominent, as 

shown in Figure 5.26.  

 

 

Figure 5.26: XRD spectra of sputtered ZnO film. 
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Conductometric measurement were performed using through technique at  a constant 

rate of 0.5 L/min for a temperature range of 200 °C and 400 °C and heating rate of 3 

K/min and at the relative humidity is kept at 30 % similar to real environment. Before the 

influx of gas into the chamber, the temperature within the sensor is stabilized. The 

procedure usually takes 1-3 hours, and it has been observed that when stabilization is 

achieved, the resistance of the sensing element is higher at lower temperature, with 

highest resistance being recorded at 300 ⁰ C. The explanation of this phenomenon 

could arise from the semiconductor conductance behavior with respect to the increasing 

temperature in ambient conditions. In case of ZnO, heating up the material to 200 °C 

follows the ionization step which increases the conductance of ZnO. At that point 

chemisorption is initiated and the conductance again decreases until 300-350 °C 

temperature when the saturation of available surface oxygen adsorption sites occurs. 

Therefore, the resistance is expected to be lower at 200 °C and higher at 300 °C before 

the infux of the gas as it is indeed (Figure 5.28). 

 

 After the influx of the gas the resistance versus time plot (Figure 5.27) shows that 

resistance is directly related to the concentration of NO2 and complete recovery is 

obtained in air. In addition, highest resistance is obtained at 200 °C for 0.5 ppm gas 

concentration while at 400 °C negligible changes in resistance is noted, for all gas 

concentration considered. Conductivity of the sensing element is temperature 

dependent, and it is persistent before the influx of NO2 to the chamber and complete 

recovery is achieved upon exposure to air, as shown in Figure 5.28. Thus, essential in 

unraveling NO2 gas sensing mechanism.  
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Figure 5.27: Resistance versus time for tested sensor in operating temperatures. 

 

 

Figure 5.28: Resistance versus time for tested sensor in air and in operating 
temperatures. 
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A series of first principle calculations has been performed to assess the influence of the 

NO2 on the electronic properties of ZnO, and the corresponding electronic structures 

are presented in Figure 5.29 illustrates, it is evident that the defect-free ZnO is 

semiconductor, and when doped with hydrogen it becomes n-type conductor, as shown 

in Figure 5.29a where Fermi level shift to conduction band, consistent with experimental 

measurements. 

 

 

Figure 5.29: Density of State (DOS) for the (a) clean H-doped ZnO (1-100) surface, (b) 
Nitrogen molecule and (c) Oxygen molecule adsorbed on the H-doped ZnO (1-100) 

surfaces. The Fermi level is indicated by the dotted (dotted dashed line) for all systems. 

 

Introducing NO2 in a 3x2 supercell, as shown in Figure 5.29b, the Fermi level shift back 

to valence band edge, signaling reduced conductivity, which is attributed to NO2 ability 

to trap electrons from the conduction and leads to reduced carrier concentration. The 

binding energy (BE) was obtained using the expression shown below: 

 

BE = Eads+surf - (Eads + Esurf ) 
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where Eads+surf is the total energy of relaxed surface with adsorbate, Eads is the total 

energy of free adsorbate, and Esurf is the total energy of the relaxed ZnO (1-100) 

surface. Based on binding energies, it is predicted that NO2 would bind strongly to the 

surface at lower temperature compared to O2.   

 

 

 

Adsorbate binding energies 

NO2 -0.57 

O2 -0.32 

Table 3: Calculated binding energies for NO2 and O2 molecules, respectively. 

 

 

The adsorbate was allowed to freely relax on the surface in all direction, and after the 

adsorption, NO2 molecule was observed to be slightly distorted, in particular, the N-O 

bond elongated by 0.05Å, while the bond angle contracted by 12°.  

AIMD simulation of the most stable configuration of NO2 adsorption on the ZnO (1-100) 

surface was performed at 200 °C, 300 °C and 400 °C which correspond to temperature 

at sensor was operated in the experimental set-up. The evolution of the distance 

between the adsorbate and the closest surface atoms over the simulation time is 

recorded, and distant greater than that of local minimum-energy structure gives an 

indication as to when the adsorbate is considered to be desorbed. 

As presented in Figure 5.30 at 200 °C, NO2 molecule was found to oscillate at an 

average distance 2.67 A above the surface atoms, an indication that the molecule is still 

attached to the surface. At 300 °C, the distance between adsorbate and surface remain 

unchanged initially, but after 2.65 ps, NO2 drift away from the surface to a distance of 

3.58Å, indicating some level of desorption. While at 400 °C, NO2 is desorbed from the 

surface after simulation time of 0.34 ps. Thus, these results indicate that NO2 is 

removed from the surface at alleviated temperatures. These results are essential in 

unraveling the mechanism responsible for NO2 detection and the role of temperatures.  
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Figure 5.30: Evolution of NO2 adsorbate on the surface, the distance is taken from 
surface Zn atom and O atom of NO2 molecule. The variation of distance is monitored 

for temperature range 473-673 K. 

 

NO2 detection is performed in oxygen rich environment, thus the role of oxygen gas in 

detection NO2 gas is investigated. Our calculations revealed that that oxygen molecule 

binds to the surface with BE which is slightly lower than that of NO2 (Table 3). 

Therefore, it is predicted that due to NO2 ability to binds more strongly to the surface in 

ambient condition, it is able to remove pre-adsorbed oxygen molecules found on the 

surface, which can be correlated with decreased conductivity due to NO2 ability to 

capture electrons from the CB, as shown in Figure 5.30. Indeed, MD calculations 

showed that oxygen molecule is stable on the surface up to 400 °C in particular, the 

molecule appears to oscillate at an average distance of 2.69Å from the surface atoms. 

Thus, it is anticipated that at high temperatures oxygen molecules would be re-

adsorbed, replacing NO2 which tend to be unstable at high temperatures. 
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Response with respect to temperature and concentration presented in Figure 5.31 is in 

agreement with the theoretical findings since response towards NO2 appears to be 

higher at lower temperatures and higher concentrations. The maximum response 

appears in 0.1 ppm NO2 concentration at 200 °C. In 200 °C response appears to be 10 

times higher than this at 300 °C and 15 times higher than this at 400 ⁰ C. 

 

 

Figure 5.31: Sensors response respect to temperature and concentration. 

 

Moreover, the sensitivity is increasing rapidly with concentration at 400 °C as presented 

in Figure 5.32. The sensor is quite sensitive also in the minimum tested concentration 

appears 500%/ppm sensitivity while presents 8800% for the maximum concentration of 

0,5ppm. 
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Figure 5.32: Sensors sensitivity respect to NO2 concentration at 400 ⁰ C. 

 

 

5.3.4 Conclusions 

Our results reveal that the sensor had optimum performance at 200 °C, in terms of 

sensitivity and response, with NO2 concentration as low as 0.1 ppm being detectable. 

Furthermore, we showed that NO2 detection is driven almost exclusively by competitive 

adsorption with atmospheric O2. It is observed that at elevated temperatures, NO2 

undergoes molecular desorption and is replaced by oxygen molecules, which is 

associated by increased conductivity. Our united study gives insights on detection 

mechanism, which may provide crucial insights essential for improving the performance 

of ZnO based devices for NO2 detection and related application. 
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