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ABSTRACT 

A numerical analysis on the feeding system of externally pressurized gas bearings, for the correction of the theoretical 

mass flow rate formula by means of a discharge coefficient, is presented. A flat aerostatic pad with a simple orifice-type 

feeding system was chosen as case on study, the authors having previously carried out experimental tests on such a 

prototype. Using the commercial CFD code Ansys Fluent ®, preliminary simulations were carried out on a pad’s 

geometry using three different flow models. Having selected the flow model able to give the best prediction of the pad’s 

behaviour in terms of pressure distribution along the air film, additional simulations were carried out on pads with two 

different diameters of the supply hole, varying the film thickness in a range from 9 to 14 μm.. A comparison between 

numerical and experimental results is presented. In addition, the effect of the flow intake used to perform experimental 

tests and of the shape of the orifice’s external edge on pressure distribution is analysed. 

 

Keywords:  aerostatic pads, discharge coefficient, numerical simulation 

1. INTRODUCTION 

Air bearings are widely employed for their low friction loss in applications where high precision 

positioning and, more recently, high rotary speed are demanded. Air, continuously flowing from an 
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external source to atmosphere between the two faced bearing surfaces, acts as lubricant and, at the 

same time, gives the bearing the capability to support an external load. 

The flow characteristics of air bearings are strongly dependent on the geometry of the supply 

system and on the air film thickness. Usually, simple orifice-type or pocketed orifice-type 

restrictors are used as supply systems [1]; in both cases, measuring the supply holes’ downstream 

pressure and the pressure distribution along the air film is fundamental for predicting air pads 

behaviour [2] [3]. Different methods have been proposed to calculate mass flow-rate in these 

devices, as discussed in [4]. A common approach consists in treating the supply system as a local 

resistance; as a consequence, the mass flow rate G can be calculated as: 

                                             td GCG                                                            (1) 

where Gt is the theoretical mass flow rate (isentropic expansion), worked out as for an ideal nozzle, 

and Cd is a discharge coefficient. 

Many authors have used a single number, usually ranging from 0.6 to 0.8, as Cd [5-7]; some other 

researchers have proposed empirical formulas [8- 10]. In both cases, formulas and numbers are 

derived, and thus are valid, in a very limited range. 

In [11], the authors presented a formula for the discharge coefficient of a simple-orifice type 

feeding system, based on the Reynolds number and on the geometrical parameters of the system, 

obtained by an extended experimental investigation. Pressure distributions and mass flow rates were 

measured on pads, whose supply holes had different diameters, under various operating conditions; 

in particular, the supply pressure and the air film thickness were varied by means of a suitably 

designed test bench.  

A CFD analysis of the pad’s feeding system could be an interesting alternative to experimental tests 

in terms of more cost effective and rapid determination of the discharge coefficient. Some research 

works were already performed with this method. For example, in [12] a value of critical pressure 

ratio ranging from 0.35 to 0.4, instead of 0.528, was recommended for calculating the theoretical 



mass-flow rate through an annular orifice feeding system, according to CFD simulations confirmed 

by experimental tests.  

The work herein presented deals with the numerical study of the same feeding systems that were 

experimentally tested in [11]. Comparison between the differently gathered data is, in fact, 

fundamental in order to choose the most correct physical model for performing simulations. 

The influence of the pressure intake needed for carrying out experimental tests on the flow was also 

evaluated. 

2. ANALYSED PAD’S GEOMETRIES 

Two aerostatic circular pads made in anodized aluminium, having identical outside dimensions 

(diameter 40 mm and height 22 mm), were chosen as case on study.  

Figure 1a shows a cross sectional view of the pad surface which air is supplied from. Figure 1b 

highlights the orifice at the centre of the pad and the geometrical parameters characterising the 

annular flow path: orifice diameter d, orifice length l, air film thickness h. In order to permit 

pressure measurements along the air film, a flow intake (dp = 0.2 mm) to be connected to a pressure 

transducer was provided on one of the pad’s surfaces.  

As shown in the magnification in Figure 2, all the examined orifices have a fillet or a chamfer 

between their internal wall and the pad’s surface, whose radial dimension a is about equal to 5% of 

the value of the diameter. Table 1 summarises both nominal and measured diameters of the orifices, 

denoted as d and dreal, respectively; the measured values, obtained by using an optical fibre 

microscope (FORT- GLV154 model), are those used in the numerical models. All orifices have a 

length l of 0.3 mm. 

 



 

 

 

 

 

a) b) 

 

Fig. 1 a) Cross-sectional view of the pad under test; b) Detail of the orifice, flow intake and related 

parameters 

 

 

Fig. 2 Magnification of an orifice having a nominal diameter of 0.3 mm 

 

For each pad, air film thicknesses h equal to 9, 11, 14 µm were investigated, with a gauge supply 

pressure pS equal to 0.5 MPa. 



 

Orifice 

n° 
d [mm] reald [mm] a [µm] 

1 0.20 0.23 10 

2 0.30 0.31 20 

 

Table 1 Geometry of the orifices under study: nominal and measured dimensions  

 

3. EXPERIMENTAL EQUIPMENT AND PROCEDURE 

A test bench was previously constructed which made it possible to measure the static load 

capability, pressure distribution and air consumption of flat aerostatic pads as a function of the air 

gap. It consists of a fixed base, over which the stationary pad’s member is assembled, and of a 

movable part, actuated by a screw, carrying the second pad’s member provided by the feeding 

orifice. The air gap height is set by moving the second pad’s member vertically and is measured by 

micrometric transducers placed at three different radial positions. In order to permit pressure 

measurements along the air gap, the bearing’s stationary member, provided by a flow intake (Figure 

1b), can be moved radially with respect to the pad under test by means of a micrometric guide. The 

test bench is equipped by a load cell to measure thrust on the pad and by a float type flowmeter to 

measure pad’s air consumption. More details about the test bench structure can be found in [11]. 

A rigorous test procedure was defined in order to ensure a good repeatability of results. At first, the 

pad was supplied by compressed air and loaded with a force high enough to put in contact the 

movable and the fixed bearing members; in this condition no flow-rate was detected through the pad 

and the micrometric transducers were set to zero. Then, the load was decreased to set the air gap at 

the desired height, calculated as the average of the three micrometric transducers’ readings; turning 

air supply off and back on, the repeatability of sensors’ measurements were checked and a load 

correction was applied, if needed. Having set the gap’s height, pressure measurements were carried 

out placing the flow intake at different radial positions along the air gap. During each test, the pad’s 



supply pressure was kept constant by using a pressure regulator; ambient pressure and temperature 

of pad’s supply air were measured and recorded, respectively, by a barometer and a thermocouple. 

The same procedure was repeated for each examined value of air film thickness. 

 

4. NUMERICAL SIMULATION OF ANNULAR ORIFICES 

The commercial CFD software Ansys Fluent® was employed to numerically determine mass flow-

rate through the pad and pressure distribution along the air film. Since the air flow in the pad is 

axis-symmetrical, a two-dimensional model of the flow field was developed.  

Air was assumed to obey to ideal gas law. Upstream of the flow was assumed to have constant total 

gauge pressure equal to the supply pressure of the pad; downstream of the flow was set at 

atmospheric pressure. Both laminar and turbulent flow conditions were investigated.  

For turbulent flow, results from two different turbulence models, the Spalart-Allmaras and the two-

equation k-ε models, were compared. In fact, unfortunately, no single turbulence model is 

universally accepted as being superior for all classes of problems: for each specific problem an 

optimum model permitting  to avoid numerical diffusion must be found. The Spalart- Allmaras 

turbulence model, solving only one turbulence transport equation, is a low Reynolds number model 

designed specifically for flows involving separations and reattachment. The k-ε turbulence model is 

a semi-empirical model developed for high-Reynolds-number flows. Up to now, it has been used in 

most practical engineering flow calculations, because of its economy and reasonable accuracy for a 

wide range of turbulent flows. 

For laminar flow, adiabatic (null heat flux through the solid wall boundaries) and isothermal flow 

conditions were compared. In case of adiabatic conditions, air viscosity μ  was calculated as a 

function of absolute temperature T :    3/2
00 T/T  , where  0  and  0T  are respectively air 



viscosity and temperature under standard conditions; environmental pressure and temperature 

values were set equal to those recorded during experimental tests.  

A refined mesh was applied close to the orifice, as shown in Figure 3. A fillet having radial dimension 

a = 10 µm was provided between the orifice’s wall and the pad’s surface. 

 

Fig. 3 Grid system used for numerical simulations 

4.1 Flow model identification 

In order to determine the flow model able to give the best prediction of the pads’ behaviour, 

preliminary simulations were performed on a single pad using a laminar adiabatic model, a laminar 

isothermal model, a one equation Spalart-Allmaras turbulence model and a two-equation k-ε 

turbulence model. Results were compared with experimental ones.  

The graph in Figure 4a shows pressure distribution along the entire pad, while Figure 4b highlights 

the air flux behaviour nearby the feeding orifice. Represented data refer to simulations performed on 

feeding orifice n°1 (Table 1), with its real dimensions, supplied with pressure pS of 0.5 MPa, having 

set the air film thickness h to 14 μm.  

 

 



  

a) b) 

 

Fig. 4 Experimental and numerical pressure distribution. a) Along the entire pad; b) Close to the 

feeding orifice 

 

As can be seen, both experimental and numerical data exhibit a pressure drop, more abrupt in the 

numerical curve, nearby the feeding orifice until a minimum value p1 is reached. This minimum static 

pressure value corresponds to a minimum of the air flux area, where a velocity increase occurs. While 

air flows through the pad, part of the kinetic energy is recovered as pressure energy, so that pressure 

distribution exhibits a local maximum p2. From this point, losses are essentially due to viscous forces.  

It can be seen that the laminar models and the Spalart-Allmaras turbulence model reproduce with 

good accuracy the pad’s behaviour in terms of p2 value and position. On the contrary, the k-ε 

turbulence model overestimates the local maximum, whose position is closer to the feeding orifice, 

and underestimates mass flow-rate through the pad. It can also be noted that the adiabatic and the 

isothermal laminar models give same results, except a little difference in the value of the local 

minimum p1. 



Figure 5 shows both static (thin lines) and dynamic (bold lines) numerical pressure distributions, 

varying the radial distance from the orifice axis to the pad outlet; the dynamic pressure was evaluated 

in the middle of the air film. It can be noted that the k-ε model calculates a lower flux velocity, 

corresponding to a wider cross-section of the air flux; this justifies the fact that, using this model, 

pressure energy is recovered after a shorter radial distance. 

 

Fig. 5 Static (thin lines) and dynamic (bold lines) numerical pressure distributions 

 

On the basis of this preliminary analysis, the laminar model, which gave good results and was less 

time consuming, was chosen to perform all following simulations. In particular, since the two 

laminar models gave almost the same results, with only a small difference close to the feeding 

orifice, adiabatic conditions were taken into account to perform all the following simulations. In 

fact, the flow through the feeding orifice can be treated like the flow through a nozzle, without 

enough time for heat exchange. 

5. RESULTS COMPARISON AND DISCUSSION 

5.1 Effect of a flow intake on air flux 

As discussed in the previous paragraph, numerical results show a good agreement with the 

experimental ones, in terms of local maximum p2 and viscous pressure drop.  



On the other hand, close to the feeding orifice numerical results exhibit a pressure drop, due to 

velocity increase, more abrupt than that observed by experimental tests; consequently, dynamic 

pressure increases as shown in Figure 5. Local minimum p1 seems to be shifted closer to the orifice 

axis. 

It was considered that experimental pressure distribution along the air film was obtained measuring 

pressure by means of a pressure transducer connected to a static flow intake manufactured on the 

movable pad’s surface. For a better understanding of the influence of the flow intake, simulations 

on three-dimensional models of pads equipped with a flow intake were carried out. The flow intake 

was placed at various radial distances from the axis of the feeding orifice, as it was done during 

experimental tests. Figure 6 shows an example of simulated geometry. 

 

Fig. 6 a Three-dimensional model of a pad, with a static flow intake placed at a radial distance of 

0.3 mm from the orifice axis 

 

As an example of the obtained results, Figure 7 compares the velocity flow field close to orifice n°2 

(Table 1), supplied at 0.5 MPa and with an air film thickness of 14 μm, without any flow intake and 

when a flow intake is placed at a radial distance of 0.22 mm from the axis of the orifice. As shown, 

the presence of the flow intake both modifies the flow field, causing a detachment of the fluid 



stream from the pad’s surface, and causes an error in pressure measurement; in fact, not only the 

flow static pressure, but also a part of dynamic pressure is sensed by the measuring instrument. 

 

Fig. 7 Velocity flow field of a pad equipped with orifice n°2, supplied at 0.5 MPa, with an air film 

thickness of 14 μm a) Without flow intake; b) With a flow intake placed at a radial distance of 0.22 

mm from the axis of the orifice 

 

Finally, the graph in Figure 8 compares experimental results, numerical two-dimensional ones and, 

finally, numerical three-dimensional results obtained placing the static flow intake in four different 

positions nearby the feeding orifice. According to previous remarks, the use of a flow intake causes 

a shift of the local minimum in the curve of pressure distribution and an increase in the measured 

pressure. Nevertheless, the influence of the flow intake was found out to be meaningful only when 

measuring is made really close to the feeding orifice. 



 

Fig. 8 Pressure distribution along a pad equipped with orifice n° 2: comparison among experimental 

and numerical 2D and 3D results 

 

Having proved by the 3D model mismatching between numerical and experimental results are due 

to problems in carrying out experiments close to the feeding orifice without affecting the flow, the 

2D axis-symmetric model was used to perform further analysis.  

 

5.2 Influence of smooth or sharp edges in the geometry 

The influence of the presence of a chamfer or a fillet, with the same radial dimension, between the 

wall of the supply orifice and the pad surface, instead of an ideal sharp edge, was also evaluated 

using the 2D model.  

Graph in Figure 9 points out that pressure distribution is not sensitive to the presence of a fillet 

rather than a chamfer, while a sharp edge causes a higher pressure drop, because of the higher 

reduction of flow area.  

 



 

Fig. 9 Comparison of pressure distributions with different shapes of the orifice’s external edge 

 

5.3 Influence of the film thickness 

Having defined the physical characteristics of the model, further simulations were carried out on 

axis-symmetrical models of the pads with different diameters d of the supply hole, while varying 

film thicknesses h.  

Table 2 summarises experimental and numerical mass flow rates for all the examined pad’s 

configurations, with a supply pressure of 0.5 MPa. As shown, the higher is the film thickness the 

lower is the difference between the numerical and the experimental results; setting the film 

thickness at a precise value during experimental tests, in fact, was not an easy task. 

Orifice 

n° 
h [μm] 

𝑚̇ [kg/s] 

measured 

𝑚̇ [kg/s] 

numerical 

1 9 1.1·10-5 0.8·10-5 

1 11 1.4·10-5 1.1·10-5 

1 14 1.7·10-5 1.5·10-5 

2 9 1.1·10-5 0.9·10-5 

2 11 1.7·10-5 1.4·10-5 

2 14 2.2·10-5 2.0·10-5 

 

Table 2 Experimental and numerical mass flow rate through the pad, at a supply pressure of 0.5 

MPa 



 

As an example of the obtained results, Figure 10 shows pressure distributions along the pad for 

feeding orifices n° 1 and 2 (Table 1), while air film thicknesses are set at 9,11,14 μm. In particular, 

numerical and experimental data are compared nearby the feeding orifices. The matching between 

numerical and experimental results is in general satisfying, with an exception in case of orifice n°2, 

with a gap of  9 μm (Figure 10b). This can be ascribed to already mentioned experimental 

difficulties in setting the air film thickness; nevertheless, the error in identifying the value of p2 is 

low (about 5%). 

 

  

a) b) 

 

Fig. 10 Experimental and numerical pressure distribution varying air film thickness a) Close to the 

feeding orifice n°1; b) Close to the feeding orifice n°2 

6. DISCHARGE COEFFICIENT 

In order to determine the discharge coefficient, the pad under study can be approximated by a 

simpler pneumatic system consisting of two lumped resistances in series: the orifice’s resistance 



and the gap’s inlet resistance, grouped in a single resistance, causing a first pressure drop; the 

resistance due to the narrow gap between the pad’s surfaces, causing pure viscous losses. 

In [11] the theoretical mass flow rate through each resistance was obtained using the isentropic 

formula for an ideal nozzle:  
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where Pu and Pd are the resistances’ upstream and downstream absolute pressures, T is the absolute 

temperature upstream of the nozzle, S is the passage section area, R = 287.1 J/(kg·K) is the air 

constant, and k = 1.4 is the specific heat ratio of air at constant pressure and volume. 

Upstream and downstream pressures were put, respectively, equal to the pad’s supply pressure pS 

and to the local maximum p2 of the experimental pressure distribution curve; this way, the airflow 

behaviour before reaching pressure p2 did not affect Cd calculation. 

For each investigated geometry at varying supply pressures, the discharge coefficient Cd was 

obtained as the ratio between the experimental flow rate and the theoretical one, according to 

equation (1). Analyzing and processing the experimental data, the authors proposed in [11] an 

empirical formula for the discharge coefficient, based on Reynold numbers and on the feeding 

system’s geometry. 



Since the numerical results herein presented showed a good matching with the experimental ones in 

determining the local maximum p2 of the pressure distribution along the pad, this work confirms the 

effectiveness of that formula. 

 

7. CONCLUSIONS 

Numerical simulations were carried out on aerostatic pads provided by simple orifice-type feeding 

system and results were compared with experimental ones, previously obtained on the same 

devices.  

Preliminary simulations performed using three different models of the fluid flow showed that the 

laminar flow model, both considering adiabatic and isothermal conditions, gives the best prediction 

of the pad’s behaviour. 

Pressure distribution along the pad is characterized, both in case of experimental tests and 

numerical simulations, by a first pressure drop nearby the feeding orifice until a minimum value p1 

is reached, followed by a pressure recovery up to pressure p2. Downstream the local maximum p2, 

pressure is reduced only because of viscous forces. Nevertheless, comparing numerical and 

experimental data, differences can be noted confined in a small zone of the fluid film close to the 

supply orifice. It was shown that this mismatching can be ascribed to modifications of the flow due 

to the presence of a pressure intake in the experimental tests. In particular, when measurements are 

carried out very close to the supply orifice, measured values do not correspond to static pressure, 

but also part of dynamic pressure is sensed. Conversely, a good agreement between the differently 

gathered data was found in the zone where pressure drop is purely due to viscous forces.  

Since the empirical mathematical formulation for the discharge coefficient Cd previously proposed 

by the authors was based on pressure p2, this work confirms the effectiveness of that formula. At the 

same time, the reliability and the benefit of the numerical approach as a support to experimental 

tests has been proved.  



As aerostatic pads performance is highly dependent on the air film thickness, experimental tests 

aimed at determining the discharge coefficient Cd required the use of a test bench designed with 

specific care to ensure high stiffness; furthermore, a rigorous operative procedure had to be applied 

for ensuring results repeatability. CFD simulations could be a valuable instrument for a quicker 

analysis of different kind of feeding systems, especially in the phase of selection and optimisation 

of the most promising geometries. 
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