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Chapter 1

Introduction

The need for mobility that emerged in the last decades led to an impressive increase
in the number of vehicles as well as to a saturation of transportation infrastructures.
This is particularly true in urban areas whose population has been steadily growing
since the 50s. Consequently, traffic congestion, accidents, transportation delays, and
polluting emissions are some of the most recurrent concerns transportation and city
managers have to deal with (Dimitrakopoulos and Demestichas, 2010). However,
just building new infrastructures, as new roads or high capacity highways, might
be not sustainable because of their cost, the land usage, which usually lacks in
metropolitan regions, and their negative impact on the environment (Crainic et al.,
2009b). Therefore, a different way of improving the performance of transportation
systems while enhancing travel safety has to be found in order to make people and
good transportation operations more efficient and cost effective and support their
key role in the economic development of either a city or a whole country. The
concept of City Logistics (CL) (Taniguchi et al., 2001) is being developed to answer
to this need. Indeed, CL focus on reducing the number of vehicles operating in
the city, controlling their dimension and characteristics, and reducing the number of
empty vehicles (Benjelloun and Crainic, 2008). CL solutions do not only improve the
transportation system but the whole logistics system within an urban area, trying
to integrate interests of the several stakeholders (e.g. carriers, shippers, public
authorities and citizens) of the Supply Chain (SC).

This global view challenges stakeholders in the extension of urban SCs (Seuring

1



1 – Introduction

and Muller, 2008), which consider economic aspects (e.g. cost, performance and
customer satisfaction) related to carriers and shippers as well as the environmental
sustainability and the efficiency of transport that contribute to preserving the quality
of life of citizens. However, more complex SCs require an higher level of cooperation
and coordination. Coordination, in particular, becomes a key factor for the success-
ful of the new solutions proposed in CL projects. On the other hand, CL challenges
researchers to develop planning models, methods and decision support tools for the
optimization of the structures and the activities of the transportation system. In
particular, this leads researchers to the definition of strategic and tactical problems
belonging to well-known problem classes, including network design problem, vehi-
cle routing problem (VRP), traveling salesman problem (TSP), bin packing problem
(BPP), which typically act as sub-problems of the overall CL system optimization.
When long planning horizons are involved, these problems become stochastic and,
thus, must explicitly take into account the different sources of uncertainty that can
affect the transportation system. Various sources and type of uncertainty may be
defined in the urban system (Klibi et al., 2010), such as time (i.e. service time at
customers, the travel time due to traffic congestions) and demand (i.e. the revenue
associated with the shipping of the orders, the volume associated with the flows).
Due to these reasons and the large-scale of CL systems, the optimization problems
arising in the urban context are very challenging. Their solution requires inves-
tigations in mathematical and combinatorial optimization methods as well as the
implementation of efficient exact and heuristic algorithms. However, contributions
answering these challenges are still limited number.

This work contributes in filling this gap in the literature in terms of both mod-
eling framework for new planning problems in CL context and developing new and
effective heuristic solving methods for the two-stage formulation of these problems.

Three stochastic problems are proposed in the context of CL: the stochastic
variable cost and size bin packing problem (SVCSBPP), the multi-handler knap-
sack problem under uncertainty (MHKPu) and the multi-path traveling salesman
problem with stochastic travel times (mpTSPs).

The SVCSBPP (Crainic et al., 2014a) arises in supply-chain management, in
which companies, that want to be competitive in the market and fulfill customers’
requirements in a cost-efficient and flexible manner, outsource the logistics activities
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1 – Introduction

to a third-party logistic firm (3PL). The procurement of sufficient capacity, expressed
in terms of vehicles, containers or space in a warehouse for varying periods of time
to satisfy the demand plays a crucial role. The SVCSBPP focuses on the relation
between a company and its logistics capacity provider and the tactical-planning
problem of determining the quantity of capacity units to secure for the next period
of activity. The SVCSBPP is the first attempt to introduce a stochastic variant of
the variable cost and size bin packing problem (VCSBPP) considering not only the
uncertainty on the demand to deliver (Crainic et al., 2014b), but also on the renting
cost of the different bins and their availability.

A large number of real-life situations can be satisfactorily modeled as aMHKPu

(Perboli et al., 2014), in particular in the last mile delivery. Last mile delivery may
involve different sequences of consolidation operations, each handled by different
workers with different skill levels and reliability. The improper management of
consolidation operations can cause delay in the operations reducing the overall profit
of the deliveries. Thus, given a set of potential logistics handlers and a set of items
to deliver, characterized by volume and random profit, the MHKPu consists in
finding a subset of items which maximizes the expected total profit. The profit is
given by the sum of a deterministic profit and a stochastic profit oscillation, with
unknown probability distribution, due to the random handling costs of the handlers.

The mpTSPs (Tadei et al., 2014; Gobbato et al., 2014) arises mainly in City
Logistics applications. Cities offer several services, such as garbage collection, peri-
odic delivery of goods in urban grocery distribution and bike sharing services. These
services require the planning of fixed and periodic tours that will be used from one
to several weeks. However, the enlarged time horizon as well as strong dynamic
changes in travel times due to traffic congestion and other nuisances typical of the
urban transportation induce the presence of multiple paths with stochastic travel
times. Given a graph characterized by a set of nodes connected by arcs, mpTSPs

considers that, for every pair of nodes, multiple paths between the two nodes are
present. Each path is characterized by a random travel time. Similarly to the stan-
dard TSP, the aim of the problem is to define the Hamiltonian cycle minimizing the
expected total cost.

These planning problems have been formulated as two-stage integer stochas-
tic programs with recourse (Birge and Louveaux, 1997). Discretization methods
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1 – Introduction

are usually applied to approximate the probability distribution of the random pa-
rameters using a finite-dimension scenario tree (Mayer, 1998). The resulting ap-
proximated program becomes a deterministic linear program with integer decision
variables of generally very large dimensions, beyond the reach of exact methods.
Therefore, heuristics are required.

For the MHKPu, we apply the extreme value theory and derive a deterministic
approximation, while for the SVCSBPP and the mpTSPs we introduce effective
and accurate heuristics based on the progressive hedging (PH) ideas, initially pro-
posed by Rockafellar and Wets (1991) for stochastic convex programs. The PH
mitigates the computational difficulty associated with large problem instances by
decomposing the stochastic program by scenario. When effective heuristic tech-
niques exist for solving individual scenario, that is the case of the SVCSBPP and
the mpTSPs, the PH further reduces the computational effort of solving scenario
subproblems to optimality by means of a commercial solver. In particular, we pro-
pose a series of specific strategies to accelerate the search and efficiently address
the symmetry of solutions, including an aggregated consensual solution, heuristic
penalty adjustments, and a bundle fixing technique. Yet, although solution meth-
ods become more powerful, combinatorial problems in the CL context are very large
and difficult to solve. Thus, in order to significantly enhance the computational
efficiency, these heuristics implement parallel schemes.

With the aim to make a complete analysis of the problems proposed, we perform
extensive numerical experiments on a large set of instances of various dimensions,
including realistic setting derived by real applications in the urban area, and combi-
nations of different levels of variability and correlations in the stochastic parameters.
The campaign includes the assessment of the efficiency of the meta-heuristic, the
evaluation of the interest to explicitly consider uncertainty, an analysis of the impact
of problem characteristics, the structure of solutions, as well as an evaluation of the
robustness of the solutions when used as decision tool.

The numerical analysis indicates that the stochastic programs have significant ef-
fects in terms of both the economic impact (e.g. cost reduction) and the operations
management (e.g. prediction of the capacity needed by the firm). The proposed
methodologies outperform the use of commercial solvers, also when small-size in-
stances are considered. In fact, they find good solutions in manageable computing
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1 – Introduction

time. This makes these heuristics a strategic tool that can be incorporated in larger
decision support systems for CL.

This thesis is organized as follows. The Chapter 2 describes the concept of
CL, introducing the economic and social aspects considered and the planning issues
arising in the urban system.

The introduction of some CL initiatives in the urban SC is discussed in Chapter
3. In particular, we explore the need of new planning models for strategic and
tactical decisions.

In Chapter 4, we present a capacity planning application in freight transporta-
tion and introduce the SVCSBPP. After introducing the problem, we formulate
a stochastic two stage model and propose a meta-heuristic based on the PH algo-
rithm. In particular, we show how the model can be decompose in deterministic
subproblems and describe the strategies adopted in the algorithm to deal with the
existence of multiple equivalent solutions. Then, we present new instance sets for
tackling the problem partially derived by real parcel delivery applications and ex-
tensive computational results.

In Chapter 5, we present the MHKPu and the deterministic approximation for
the stochastic problem. The accuracy of this deterministic approximation is tested
against the two-stage stochastic program of the MHKPu.

In Chapter 6, we present the two-stage stochastic program of the mpTSPs,
where tour design makes up the first stage, while the best paths to use is selected
in the second stage. Then, Concorde is combined to the PH algorithm in order
to deal with new real instances derived from the speed sensor network of Turin, a
medium-sized city in Italy. Extensive computational results are presented to qualify
the algorithm and the impact of the uncertainty on the decisions.

Conclusions and future developments of the research activity are reported in
Chapter 7.
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Chapter 2

City Logistics

In this chapter, we recall the fundamental concepts of CL (Section 2.1). In partic-
ular, Section 2.2 describes the main planning issues related to this system, which
challenges researchers to develop appropriate models that incorporate the sources
of uncertainty of the urban context.

2.1 The concept of City Logistics

Before the 90s’, the urban transportation was not managed by public authorities.
The only type of interventions from the public authorities were restrictive measures
to deal with emergencies (e.g. pricing strategies, regulations of parking area, limited
traffic zones). Only in 90s’ and, in particular, at the beginning of the 21th century,
the urban traffic problem became relevant and first studies tried to define some
common policies for the freight transportation in the urban context. One of first
studies is COST Action 321: Urban Goods Transport that involved twelve European
countries. Nowadays, the continuous developments of the urban area are changing
the living conditions such as growth in population, increased of urbanization and
living standards as well as expansion of Just-In-Time delivery and the growth of
home delivery services. Due to the combination of these factors the urban area, on
one side, requires large quantities of goods and services for commercial and domestic
use, but, on the other side, is affected by a deterioration of the quality of life caused
by increasing congestion and pollution. These issues become even more critical
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2 – City Logistics

if we consider that, the global proportion of urban population increased from 13
per cent in 1900, to 29 per cent in 1950, 49 per cent in 2005, and 58 per cent in
2013. Seventy per cent of the global population is expected to live in urban areas
by 2050 (OECD, 2012). For these reasons, in the last decades, CL has emerged to
provide a solution to the negative impacts of freight transportation. Taniguchi et al.
(1999, 2001) defined the CL as "the process for totally optimizing the logistics and
transport activities by private companies in urban areas while considering the traffic
environment, the traffic congestion and energy consumption within the framework
of a market economy".

A variety of negative effects can be targeted in the urban freight transportation
including to economic, environmental and social factors (see Figure 2.1). One of
the main economic factors that is considered is the transportation cost. This cost
correspond to the total cost of the vehicles traveling in the city and it is also used
to calculate other indicators, such as the pollution or in some cases the noise. The
air pollution and the greenhouse gas (GHG) emission need to be reduced in order
to mitigate the environmental impacts of the freight transportation. The result
of the combustion of diesel fuel is the production of toxic gaseous emissions which
include Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides and Particulate Matter.
Another factor that has to be considered as an environmental aspect is the traffic
noise. Urban freight vehicles produce a significant amount of noise in a city affecting
the human health and the city comfort. It is not only produced by the engine,
but also by the (un)loading of freight. When considering the social aspects, the
safety of the city and the congestion of the streets are the most important effects
to be reduced. Citizens do not participate directly to the freight transportation but
they divide the same transportation network. With increasing freight transportation
activity the problem of safety and accidents become significant in urban areas where
pedestrians might be thought to be particularly at risk from freight vehicles. The
latter, in fact, frequently stop on-street to load and unload, blocking the flow and
causing congestion.

These negative effects and the inefficient activities related to the freight-vehicles
movements are the main reasons to carry out urban freight analysis and optimiza-
tion. In fact, CL focuses on the improving the efficiency of urban freight trans-
portation reducing traffic congestion and lessening environmental impacts without
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2 – City Logistics
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Figure 2.1: Relationship between freight transportation features (white blocks) and
negative effects (gray blocks)

penalizing the city social and economic activities. This holistic view leads CL initia-
tives to consider the transportation system as a whole. Moreover, they incorporate
a row of activities between different actors, from production, commerce and sup-
ply of different clients and inhabitants, who appear in form of inner urban goods
transport, or distribution of interurban freights, fulfilling a substantial contribution
to economy, city life and operation. The frame for CL is given by local and re-
gional economy, the transport infrastructure, the surrounding environment, legal
and regulatory conditions.

Taniguchi et al. (2001) identified four groups of key stakeholders of the city: ship-
pers, carriers, citizens and public authorities. All these stakeholders follow different
goals and have therefore different perspectives, too. Public authorities and citizens
share some of their problem views regarding externalities like accidents, congestion,
noise, air pollution caused by freight vehicles. These impacts are felt to reduce the
quality of life and the urban environment substantially. Shippers and carriers have
a completely different point of view. They have the goal to deliver/receive goods
as cheap as possible to maximize their own profits within a given regulatory frame-
work and a given transport infrastructure. Their priorities are therefore to remove
costly obstacles, which hinder them to deliver faster and cheaper without taking
into consideration externalities. The congestions caused by freight vehicles by load-
ing/delivering goods into/on vehicles, are often substantially negatively contributing
to air pollution and noise in sensitive living areas.
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2 – City Logistics

When we consider the urban freight SC (Boerkamps et al., 2000), stakeholders
can be grouped by the impacts of their decisions have on the SC . In particular, the
stakeholders are closely connected to at least one component of the SC, but loosely
connected to whole SC (see Figure 2.2). For example, carriers can plan the route in
order to avoid the congestion, but they cannot affect the traffic flow. Shippers and
citizens represent the demand for urban freight transport. Thus, they are strictly
related to the spatial organization (e.g. where people live and work, where facilities
are located, and where freight are produced and consumed) and trade activities. On
the contrary, carriers and public authorities are involved only in the transportation
components of the SC. The transport links demand and supply of transportation
services. Vehicle fleet, human resources and infrastructural provisions are important
supply aspects. Decisions in the transport market result in traffic flows, which are
made on the multimodal infrastructure network.

Spatial 
organization 
of activities 

Trade  
relations 

Transport 
services 

Multimodal 
infrastructure 

Traffic  
system 

Shippers Citizens Carriers 
Public 

authorities 

Figure 2.2: Urban freight supply chain model and relationships with the stakeholders

In attempting to reduce the scale of negative impacts and to optimize the deci-
sions at each level of the urban freight SC, a range of initiatives of CL have been
proposed and are actually implemented in several cities by stakeholders in order to
alter urban freight operations. Some of these initiatives will only address a single im-
pact, while others will address several impacts at the same time. In general, several
CL solutions focuses on the consolidation of freight in urban consolidation centers
(UCCs) (Benjelloun and Crainic, 2008; McKinnon et al., 2010), which is a logistic
platform located in a strategic node of the city, where the freight to deliver can be
consolidated and then performed by envitonmental-friendly vehicles. This initiative
needs both the consolidation of loads of different shippers and carriers within the
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2 – City Logistics

same delivery vehicles and the coordination of the resulting freight operations within
the city. We describe this topic and the impact of UCCs in the urban SC in the
Chapter 3.

Finally, we report the most recent CL initiatives and projects, organized for the
main goal. Other fundamental concepts, issues, trends, and challenges of CL may
be found in Taniguchi et al. (2001), Russo and Comi (2004), Benjelloun and Crainic
(2008) and the proceeding books of the City Logistics conferences available through
the Institute of City Logistics (1999) web-site. The latter, in particular, results in
the state-of-the-art of city logistics concepts and implementations.

• Researching future urban freight transportation requirements and strategies:
CITY FREIGHT Consortium (2005), CITYLOG Consortium (2010),
BESTUFS Consortium (2008);

• Investigating the feasibility of new logistics concepts for urban distribution
and supply (CITYBOX Consortium, 2002);

• Focusing on the application of intelligent transport systems for urban freight
transport (eDRUL Consortium, 2004; SMARTFREIGHT Consortium, 2008);

• Concerned with freight terminals serving urban areas (FV-2000 Consortium,
1999);

• Investigating changing modal split and encouraging rail use (IDIOMA Con-
sortium, 2001; PROMIT Consortium, 2009);

• Urban freight demonstration projects intended to improve freight efficiency
and reduce energy use (CITY PORTS Consortium, 2005; CIVITAS I Consor-
tium, 2006; START Consortium, 2009; PIEVERDE Consortium, 2014).

2.2 Planning issues

In urban context, where space is limited and infrastructure expansion can be enor-
mously expensive, importance of proper planning becomes essential. Similarly to any
complex transportation system, CL systems require planning decisions at strategic,
tactical and operational levels (Benjelloun and Crainic, 2008). Strategic decisions

10



2 – City Logistics

have a long term effect, tactical decisions have an effect over the medium term
(monthly or quarterly), and operational decisions have an immediate short-term
effect. One more level assumes a key role in the urban system: the real-time.

Individual levels differ by the impact they have on future activities:

Strategic level involves the highest level of management and requires large capi-
tal investments over long term horizon. Strategic decisions determine infras-
tructure aspects (e.g. location of UCCs), freight distribution networks, vehi-
cles and technological aspects and general development policies and strategies.
Corresponding decisions are complex and of high risk and uncertainty. These
decisions have a key role in the planning process. In fact, they constrain the
activities and the decisions made at tactical and operational levels.

Tactical level defines, over a medium term horizon, the usage of the available
resources in order to improve the system’s performance. In particular, it con-
cerns the efficient and effective use of transportation infrastructure and the
alignment of operations according to strategic objectives. Tactical decisions
includes the acquisition and replacement of resources (e.g. planning the ca-
pacity for freight deliveries), the definition of periodic tours used for the entire
planning horizon (e.g. tours of vehicles for the garbage collection service or
bike sharing relocation) and costs and performance analysis. In fact, tactical
level controls and evidences the strengths and the weaknesses of the strate-
gic decisions. On the other hand, decisions made here limit the activities of
operational and real-time management level.

Operational level concerns short term decisions, day-to-day operations and the
plan of next day activities. The time factor and a detailed representation of
the system, facilities and vehicles are essential at these level. The decisions
are made in a very dynamic environment. Thus, anticipate the future (e.g.
the congestion, the transportation demand) is fundamental. Here, logistic
service provider plan the routing, assigning the transportation request to the
transportation resources, and the handling operations.

Real-time level reacts on differences between information known at the moment
of planning decision and the actual state of the transportation system. Here,
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the activities are directly related to operational decisions and aims to mitigate
the effects of poor quality and reliability of operational planning. Errors in the
forecasting of the future may lead to inferior customer service or higher costs
to adjust the planning (e.g. rent one more vehicle for the day at the premium
cost).

More in general, planning means a certain level of look-ahead skills. The fore-
casting of random events assume a key role in the planning process. The variation
of the demand to be shipped or the costs of operations over the horizon of the plan-
ning levels, as well as delays at customer locations due to traffic conditions are only
some examples of the uncertainty sources in the urban context. They constitutes a
particularly important element to consider, as it may be a strong impact on deci-
sions and the efficiency of the urban freight transportation service. This information
may not be known at the initial planning stage, and/or may change during the plan
execution. This means that these events must be included in the decision process
at all levels.

Stochastic programming (SP) (Birge, 1982) can be used to model optimization
problems that involve uncertainty. The most widely applied and studied SP models
are two-stage linear programs. Here the decision maker takes some action in the
first stage, after which a random event occurs affecting the outcome of the first stage
decision. A recourse decision can then be made in the second stage that compensates
for any bad effects that might have been experienced as a result of the first-stage
decision. The optimal policy from such a model is a single first-stage solution and a
collection of recourse decisions defining which second-stage action should be taken
in response to each random outcome.

Solution approaches to SP models are driven by the type of probability distri-
butions governing the random parameters. A common approach to handling uncer-
tainty is to define a small number of scenarios to represent the future. In this case it
is possible to compute a solution to the SP problem by solving a deterministic equiv-
alent linear program. These problems are typically very large scale problems, and
so, much research effort in the SP community has been devoted to developing algo-
rithms that exploit the problem structure, in particular in the hope of decomposing
large problems into smaller more tractable components (Ruszczynski, 1997).
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Chapter 3

Emerging problems in the City
Logistics supply chain

In this chapter, we explore the impacts of urban consolidation centers (UCCs) and
environmental-friendly vehicles on the urban freight SC. They affect the "Transport
services" and the "Traffic system" blocks (see Figure 2.2). In particular, we discuss
the need of new strategic and planning problems for the resulting SC.

A major problem tackled by CL solutions is the inefficient utilization of freight ve-
hicles, which contributes significantly to congestion and pollution emissions. Among
the various CL initiatives, we investigate the opportunity to use UCCs in the urban
system. UCCs are platforms located close to the urban area (e.g. close to the access
of the city or ring highways) with the functions of collecting and dispatching goods.
They link the city to regional, national and international hubs, and, thus, must be
easily accessible and integrated with other logistics platforms. UCCs receive large
trucks of logistics companies and smaller vehicles. Logistics companies drop their
loads and avoid the need to enter congested urban areas and thereby saving time
and costs, while the local distribution is performed by often using environmentally
friendly vehicles such as electric and gas-powered light vehicles. Here, the freight
to deliver to the city is stored, sorted, and consolidated (de-consolidated) in an in-
tegrated way. The UCCs may so be viewed as an intermodal centralized platform
with enhanced functionality that efficiently coordinates the supply and the demand
to and from the city. They represent the first step toward a better CL organization
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and a more efficient freight movements. By improving the lading factor of vehicles
making final deliveries in congested locations, UCCs reduce the total distance trav-
eled by delivery vehicles in urban areas, as well as reducing GHG emissions and
local air quality pollutants associated with these journeys (Browne et al., 2011).

Example of the realization of UCCs can be Padova one in Italy or Brema one
in Germany. According to a study done by Gonzalez-Feliu et al. (2010) emissions
of GHG in 2008 were reduced of 68% respect to 2003 thanks to the installation
of a UCC called Cityporto. Another example is the UCC in Nijmegen which the
deliveries from multiple suppliers for the retailer and delivering the goods at the
retailer time requirements. Van Rooijen and Quak (2009) show that the UCC,
serving 98 retailers, leads to a reduction of the number of trucks and also the number
of kilometers.

When a single level of consolidation is considered and the freight distribution
starts at an UCC and arrives directly to customers in the urban area, the system is
called single-tier CL system. Most CL projects in Europe and Japan involved some
form of single-tier system, mostly considering a single UCC and a limited number
of shippers and carriers. However, this system does not appear interesting for large
urban areas or for cities with strong transportation issues. Indeed, UCCs results in
extra costs (e.g. need the support of public authorities), delays in the transportation
and limited benefits in term of gas emissions and pollutions. If the aim of UCCs is
to minimize the number of trucks in the urban areas, then heavy trucks should be
used in order to consolidate on the same vehicle as many orders as possible. This
implies that there will be large trucks moving within the urban areas, performing
long routes and causing congestion.

One of the trends is to substitute traditional single-tier systems with two-tier
ones. (Crainic et al., 2004) proposes an extension of UCCs with a net of smaller
facilities closer to the city center respect to UCCs called satellite platforms. Figure
3.1 represents a two-tier distribution system. UCCs (black square in the figure)
form the first level of the system and are located on the outskirt of the city (black
circle). The second level is constituted of satellites, where the freight, coming from
the UCCs or from external points, is transshipped again into vehicles adapted for
utilization in dense urban areas. Existing facilities can be used as satellites. Indeed,
satellites offer limited logistics services and storing of freight.

14



3 – Emerging problems in the City Logistics supply chain

Figure 3.1: A representation of the two-echelon distribution with city-freighter ve-
hicles (green vehicles). Yellow vehicles are the urban vehicles that bring freight
to satellite facilities (green triangles) from UCCs (black squares) around the city.
Dotted lines means that vehicles are empty.

Two types of vehicles are involved in a two-tier distribution system: urban-trucks
(yellow trucks in the figure) and city-freighters (green trucks in the figure). Freight
is moved by urban trucks from UCCs where it has been already consolidated, not
directly to consumer destinations, but to satellites. When it is possible, they use
streets specially selected to facilitate the access to satellites and reduce the impact on
the traffic congestion. Here, freight is transshipped into city-freighters. Both the ve-
hicles are supposed to be environmentally friendly, but, especially for city-freighters
that move only in the city areas, they must be environment-friendly vehicles, such
as electric-vehicles. Van Mierlo et al. (2003) report that electric vehicles, in average,
has more than three times lower environmental impact compared to a diesel trucks
and twice as low impact compared to liquefied petroleum gas trucks.
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This extension of previous system allows more benefits in terms of congestion
and emissions, in particular when small and environmental-friendly vehicles are used
inside the city. Although, the system increases the costs for the additional trans-
shipment operations, these costs will be compensated by the consolidation of the
freights, the decrease of empty trips (e.g. reverse logistics) and by the economy of
scale. However, two-tier distribution also needs of more complex cooperation and
planning decisions. In fact, the transshipment needs integration of different compa-
nies requirements and a reliable planning of vehicle routing to deliver shipments on
time. Several planning and operative problems arise in this context. The following
list briefly describes the main problems that stakeholders and decision makers of CL
system must address.

Satellite location problem As inbound flows to UCCs tend to be consolidated
in full trucks and outbound flows tend to be in smaller units, the number
of UCCs has a large effect on transport efficiency. Moreover, the number of
UCCs and satellites to be realized depends primarily on the size and struc-
tural characteristics of the urban system or the production chain approach,
especially in the case of perishable categories (e.g. food, pharmaceuticals).

Within literature there is a whole stream of research on facility location, which
mainly deals with the number and location of UCCs and satellites. Environ-
mental aspects of supply chain design and facility location in particular have
recently received considerable attention (Li et al., 2008; Diabat and Simchi-
Levi, 2009; Wang et al., 2011; Mallidis et al., 2012). However, only a few papers
concerning the location of satellites under uncertainty are currently available
(Ricciardi et al., 2002; Snyder et al., 2007; Tadei et al., 2009). For the first
time, Baldi et al. (2012b) addressed the congestion effects inside the trans-
shipment facilities, leading to a strategic planning location-allocation problem
that explicitly considers the fixed cost of locating the satellite, the transporta-
tion cost and the cost form handling operations. In fact, they integrated in a
comprehensive model the two levels of a two-echelon network (i.e. the design
and the management levels).

Two-echelon vehicle routing In two-tier freight distribution system, (1) freight
arrives at an UCC where it is consolidated into urban trucks, which, given a
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departure time and a first-level route, (2) travel to one or several satellites.
At a satellite, (3) freight is transferred to city-freighters, which (4) perform
a second-level route to serve the designated customers and (5) return to a
satellite (or a depot) for their next cycle of operations.

The two-echelon vehicle routing problems optimizes the routes of urban trucks
and city freighters, as well as coordinates the accesses to satellites. The lit-
erature on this problem in CL contexts is still somewhat limited. Crainic
et al. (2009a, 2010); Perboli et al. (2011); Crainic et al. (2013a) introduced
the problem, related issues and formal mathematical models. They also pro-
posed heuristic methods for the problem. Here, authors supposed that the
demand is known a priori. Thus, the demand consolidated at the first level
defines the number of city freighters to use in the second-level distribution.
This hypothesis is hard to be met in real application. Crainic et al. (2012a)
proposed for the first time a two-echelon CL tactical planning that focuses
on the uncertainty related to the variation of volume of demand to be dealt
with the day after. Several topics are still open: effective solution methods for
the tactical problem and the extension of the model integrating uncertainty
related to the transportation network (e.g. transportation cost, congestion,
travel and service time).

Capacity and fleet management The introduction of a UCC as additional block
in the urban freight SP expects strict compliance of logistics service providers
since storage space of UCCs is limited and, in the case of satellites, even not
available (or available only for a very short time). City-freighters can travel
along any street in the city-center area to perform the required distribution
activities, but they are vehicles of relatively small capacity.

Efficient freight distribution requires the management of the capacity within
warehouses of UCCs and satellites, as well as the design of different city
freighter types (e.g. capacity, power-train, functionality) within a given CL
system and the planning of the fleet of vehicles available for the next period
of activity. Logistics capacity planning is major challenge in supply chain
management (Monczka et al., 2008) that involves tactical planning decisions.

17



3 – Emerging problems in the City Logistics supply chain

When tactical decisions are made, no detailed knowledge on the future de-
mand and, thus, the real needs in terms of loads to be moved or stored, as
well as the availability and costs of capacity is available.

Here, the planning addresses the needs for sufficient capacity to store (e.g.
space in a warehouse) and move (e.g. dimension of the fleet of vehicles) freight
to meet demand in the next cycle of its activities. When logistic operations
are outsourced to logistics providers, this process becomes more critical and
results in a medium-term contract that ensures sufficient capacity for the plan-
ning horizon and a cost-effective logistics service. Chapter 4 introduces the
procurement process for logistics capacity and its mathematical formulation,
the SVCSBPP.

Handling operators management In the satellites different sequences of consol-
idation operations are done by different workers in order to transship freight
from urban trucks and city freighters. The different skill levels and reliability
of the handling operators can cause delay in the activities reducing the overall
profit. More in detail, the single orders can be managed by several handlers
(e.g. third-party logistics providers or sub-contractors), whose costs affect the
net profit of the item itself. The large number of possible handler cost sce-
narios and the difficulty to measure the associated handler costs require the
planning of transshipment operations for the future activities.

The capacity, in this case, becomes unique, being the actual capacity of the
satellite. Chapter 5 addresses the problem of planning transshipment opera-
tions in a multiple handler context with unknown items profit.

Satellite and vehicle replenishment A limited activities (e.g. load sorting, ve-
hicle replenishment or cross-docking transshipment) are performed at the satel-
lites. Moreover, intermediate storage is allowed at satellites only for a very
small time. This point is fundamental for the actual implementation of the
two-echelon distribution in the urban freight SC, since satellites do not need
special infrastructures and functions have to installed, but existing facilities
can be used (e.g. underground parking slots or municipal bus depots, or
spaces like city squares). Thus, no high additional costs have to be sustained
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for satellite activities (Crainic et al., 2004).

Satellites usually operate according to a vehicle-synchronization model. Urban
vehicles and environmental-friendly vehicles meet at satellites at appointed
times with only short waiting times being permitted. Here, in order to manage
the transshipment of freight and control the arrival time, the uncertainty on
traffic congestion have to be explicitly included in the decision process. We
address this problem in Chapter 6, where we propose the mpTSPs.
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Chapter 4

The Capacity Planning Problem
under Uncertainty

In this chapter, we introduce the SVCSBPP together with the stochastic model,
a lower bound and the solving strategy. After defining the problem in a formal
way, we propose a two-stage stochastic formulation that explicitly takes into ac-
count more sources of uncertainty arising in capacity planning problems. We then
present a lower bounds that can be easily solved by mean of commercial mixed-
integer programming (MIP) solvers and an heuristic based on the PH algorithm
for the SVCSBPP. The accuracy and the efficiency of the latter is demonstrated
through extensive computational experiments. A large number of instance sets for
the SVCSBPP are introduced, partially covering realistic parcel delivery appli-
cations with more than 10000 items. The instance sets are designed to challenge
the proposed methodology and provide insight into the impact of uncertainty on
capacity planning solutions.

This chapter is organized as follows. Section 4.1 discusses the connection between
the capacity planning problem and contract procurement with logistic providers.
Section 4.2 recalls the formulation of the problem; a lower bound and the heuristic
solution method are introduced in Sections 4.3 and 4.4, respectively. Section 4.5
presents the experimental plan and analyzes the computational results.
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4.1 Problem description and literature review

In this section, we analyze the process of contract procurement between a major
retail firm and a third-party logistics service provider (3PL) and its relevance to the
capacity planning problem.

The tactical capacity planning problem we address is relevant in many con-
texts, e.g., manufacturing firms desiring to secure transportation capacity to bring
in their resources or to distribute their products, wholesalers and retailers planning
for transportation and storage capacity to support their procurement and sales pro-
cesses, and logistics service providers securing capacity contracts with carriers for
long-distance, regular shipments. Manufacturing and whole/retail distribution firms
may negotiate directly with carriers and owners/managers of storage space but, very
often, they do business with a logistic service provider. Consequently, in order to
simplify the presentation, but without loss of generality, we describe the problem
within the context of the process of contract procurement between a major retail
firm and a third-party logistics (capacity) service provider (3PL).

In the contemporary economic and business environment, firms are engaged in a
continuous procurement process (Aissaoui et al., 2007; Rizk et al., 2008), and engage
in various collaborations with its supply-chain partners. Such inter-firm alliances
yield several benefits, including a reduction in inefficiencies, total cost, and financial
risks. The greatest advantages result from the outsourcing of logistics activities to
a 3PL (Marasco, 2008). The overall supply-chain process may then be summarized
as follows. The firm regularly orders products from suppliers in a given geographi-
cal region, according to current inventories, short-term forecast demand, estimated
lead times, and specific procurement and inventory policies (Bertazzi and Speranza,
2005; Bertazzi et al., 2007) The suppliers are instructed to deliver their goods to
a consolidation center (Crainic and Kim, 2007; Bertazzi and Speranza, 2012). The
3PL then consolidates the goods into containers and ensures their shipping, by con-
solidating these containers with those of other customers into the slots it secured
on long-haul cariers, e.g., ships and trains (Chen et al., 2001; Crainic et al., 2013b),
which generally operate according to a fixed schedule, e.g., twice a week.

A key factor in this process is the procurement of sufficient capacity, that we
express in the following in terms of bins, at different locations in the network and
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for varying periods of time, to satisfy the demand. This entails negotiations with
the 3PL to book the necessary capacity a priori, before operations start, at the best
rate (Ford, 2001). The results of these negotiations often take the form of medium-
term contracts specifying both the capacity to be used, the quantity and the type
of bins, and the additional services to be performed (storage, transportation, bin
operations, etc.) for a given planning horizon, e.g., a semester or a year. These
contracts guarantee a regular volume of business to the 3PL (e.g., a fixed number of
containers to ship every week for the next semester), which ensures a cost-effective
service to the firm.

We refer to the costs of bins selected in advance as fixed costs because they are
fixed by the contract and thus represent the specific rates offered by the 3PL for
bins of different sizes. The values of the fixed costs are in practice influenced by
several factors, including bin size, bin type (e.g., thermal or refrigerated containers),
physical handling operations required, the time period for which the bin is to be
used, and the economic characteristics of the departure location (e.g., access rules
and costs). The result of negotiations and the scope of the capacity planning problem
then is a tactical plan defining these quantities for the firm at each location, given
the proposed bin types and costs and an estimation of the demand over the planning
horizon. The plan thus specifies the set of bins of particular volumes and fixed costs
to be made available at each location to ship the estimated items.

Given the time lag that usually exists between the signing of the contracts and the
logistics operations, the negotiations are performed under uncertainty, without all
the necessary information concerning the demand, expressed as a number of items of
variable sizes to be shipped or stored at the particular locations. At each application
of the plan, variations in the demand may thus yield numbers and sizes of items
that differ from the estimation used at negotiation. These variations then require
further negotiations with the 3PL and an adjustment of the plan when the booked
capacity is not sufficient. Extra capacity (additional bins available at the shipping
date) must then be purchased, generally at a much higher cost (the so-called spot
-market value) than the fare negotiated initially. Moreover, while the 3PL generally
ensures the planned capacity for the firm, the extra capacity may not be available
when needed. The extra capacity must therefore be considered stochastic as well.
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4.1.1 Literature review

While different variants of the stochastic bin packing problem are present in the
literature, the strategic and tactical version of the SVCSBPP is recent. Crainic
et al. (2014b) introduced the variable cost and size bin packing problem with stochas-
tic items (VCSBPPSI), a stochastic variant of the VCSBPP, that considers not only
the renting cost of the different bins, but also their availability. Given a certain
number of bin types, their costs when we book them in advance and the costs if we
rent them when needed as well as the demand of goods to deliver, the VCSBPPSI
decides the capacity planning in terms of bins rented in advance in order to minimize
the total cost.

Other variants of stochastich bin packing problem arise mainly when strategic
and tactical problems must be solved and, in particular, when one has to plan
the capacity of his fleet (Crainic et al., 2012b) or stochastic costs and profits are
present in the problem (Perboli et al., 2012, 2014). In (Coffman Jr. et al., 1980;
Lueker, 1983; Rhee and Talagrand, 1993a,b) the source of uncertainty is the item
volume and strong hypotheses on the probability distribution of the random terms
are usually done. Recently, Peng and Zhang (2012) have studied a more general
stochastic variant with both item volumes and bin capacities are uncertain, while
Fazi et al. (2012) have recently studied the Stochastic VCSBPP, with the addition
of time constraints.

The mostly part of the literature on packing problems focuses on introducing
uncertainty on the arrival of the items, defining the so-called on-line versions of the
classic packing problems (Zhang, 1997; Seiden, 2000; Iwama and Taketomi, 2002;
Seiden et al., 2003; Han et al., 2010; Epstein et al., 2011). In particular, a lot of
studies focused on the on-line version of the Bin Packing Problem, i.e. the variant
of the Bin Packing where the items come one after the other and no knowledge (or
a limited one) on the volume of the next items is given to the decision maker. The
researchers studied policies for loading the items in the different bins giving results
on their absolute or asymptotic behavior.

Regarding the solving strategy, numerous algorithms for solving stochastic mixed-
integer programs (SMIPs) (Kall and Wallace, 1994) are based on decomposition by
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time stages of the scenario tree (e.g. vertical decomposition) by complete scenar-
ios (e.g. horizontal decomposition). PH algorithm is a horizontal decomposition
approach and has emerged as an effective method for solving stochastic linear, non-
linear, and linear SMIPs (Silva and Abramson, 1994; Crainic et al., 2011a; Ryan
et al., 2013; Watson et al., 2014).

PH is a natural algorithm for solving large-scale SMIPs. By decomposing the
recourse problem (RP) according to scenario, and iteratively solving penalized ver-
sions of the sub-problems, the PH gradually enforces implementability. However,
non-convergence of solution is possible in the case of non-convex optimization prob-
lems such as the SVCSBPP. Integer decision variables render SP problems non-
convex and significantly increase the difficulty of solution. For some smaller problem
instances, standard MIP solvers can be used (Crainic et al., 2014b) to directly solve
the RP. However, standard MIP solvers fail to consistently solve even individual
scenario sub-problems in realistic applications in the context of CL. In fact, solving
scenario problems separately, PH is particularly appropriate when there exist good,
fast heuristics for generating solutions of individual scenarios.

4.2 The stochastic VCSBPP model

We propose a two-stage stochastic programming formulation, where the first stage
concerns the selection of bins, and the second stage concerns the acquisition of extra
capacity when the actual demand information is revealed.

Let T be the finite set of bin types, which are are defined according to the
volume and fixed cost associated with the bins that are available at the first stage.
For τ ∈ T , let V τ and f τ be respectively the volume and fixed cost associated with
bins of type τ . We define J τ to be the set of available bins of type τ and J = ∪τJ τ

to be the set of available bins at the first stage.

Let set Ω be the sample space of the random event, where ω ∈ Ω defines a
particular realization. Let vector ξ contain the stochastic parameters defined in the
model, and ξ(ω) be a given realization of this random vector. Let the first-stage
variables be yτj = 1 if bin j ∈ J τ is selected and 0 otherwise. The two-stage model
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of the SVCSBPP may then be formulated as

min
y

∑
τ∈T

∑
j∈J τ

f τyτj + Eξ[Q(y, ξ(ω)] (4.1)

s.t. yτj ∈ {0,1}, ∀τ ∈ T , j ∈ J τ , (4.2)

where Q(y, ξ(ω)) is the extra cost paid for the capacity that is added at the second
stage, given the tactical capacity plan y and the vector ξ(ω). The objective function
(4.1) then minimizes the sum of the total fixed cost of the tactical capacity plan and
the expected cost associated with the extra capacity added during the operation,
while constraints (4.2) impose the integrality requirements on y.

To formulate Q(y, ξ(ω)), we consider the following stochastic parameters in ξ(ω):
Kτ (ω), the set of available bins of type τ at the second stage; K(ω) = ∪τKτ , the
set of available bins at the second stage; gτ (ω), k ∈ Kτ (ω), the associated fixed
costs; I(ω), the set of items to be packed; and vi, i ∈ I(ω), the item volumes. The
second-stage variables are defined as follows: zτk = 1 if bin k ∈ Kτ (ω) is selected,
0 otherwise; xij = 1 if item i ∈ I(ω) is packed in bin j ∈ J (ω), 0 otherwise; and
xik = 1 if item i ∈ I(ω) is packed in bin k ∈ K(ω), 0 otherwise.

We now define the function Q(y, ξ(ω)) as

Q(y, ξ(ω)) = min
y,z,x

∑
τ∈T

∑
k∈Kτ (ω)

gτ (ω)zτk (4.3)

s.t.
∑
j∈J

xij +
∑

k∈K(ω)
xik = 1, ∀i ∈ I(ω) (4.4)

∑
i∈I(ω)

vi(ω)xij ≤ V τyτj , ∀τ ∈ T , j ∈ J τ (4.5)

∑
i∈I(ω)

vi(ω)xik ≤ V τzτk , ∀τ ∈ T , k ∈ Kτ (ω) (4.6)

xij ∈ {0,1}, ∀i ∈ I(ω), j ∈ J (4.7)

xik ∈ {0,1}, ∀i ∈ I(ω), k ∈ Kτ (ω) (4.8)

zτk ∈ {0,1}, ∀τ ∈ T , k ∈ Kτ (ω). (4.9)

The objective function (4.3) minimizes the cost associated with the extra bins
selected at the second stage. Constraints (4.4) ensure that each item is packed in a
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single bin. Constraints (4.5) and (4.6) ensure that the total volume of items packed
in each bin does not exceed the bin volume. Finally, constraints (4.7) to (4.9) impose
the integrality requirements on all second-stage variables.

4.3 A lower bound for the SVCSBPP

We present in this section a lower bound (LB) for the SVCSBPP (4.1)–(4.9), which
provides a way to measure the quality of the heuristic proposed in Section 4.4.

LB is obtained by removing the item-to-bin assignment constraints (4.4) and
aggregating the individual bin feasibility constraints (4.5) and (4.6). The resulting
formulation (4.10)–(4.13) is a two-stage stochastic model with fixed recourse, which
yields an optimal set of bins, involving both the capacity plan and extra bins, with
a total capacity sufficient for the items considered (see constraints (4.11)). Thus,
the LB does not guarantee feasibility for individual bins.

min
y,z

∑
τ∈T

∑
j∈J τ

f τj y
τ
j + Eξ[

∑
τ∈T

∑
k∈Kτ (ω)

gτk(ω)zτk ] (4.10)

s.t.
∑
τ∈T

∑
j∈J τ

V τ
j y

τ
j +

∑
τ∈T

∑
k∈Kτ (ω)

V τ
k z

τ
k ≥

∑
i∈I(ω)

vi(ω), (4.11)

yτj ∈ {0,1} ∀τ ∈ T , j ∈ J τ , (4.12)

zτk ∈ {0,1} ∀τ ∈ T , k ∈ Kτ (ω). (4.13)

Note that the LB formulation is independent of the number of items. This
reduces the number of variables in the model and makes it possible to find an
optimal solution in a reasonable time, (e.g. using commercial MIP solvers).

4.4 Heuristic based on progressive hedging

Algorithm 1 describes the proposed heuristic for the SVCSBPP, which is inspired
by the PH algorithm.

The method first applies a scenario decomposition (SD) technique based on the
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augmented Lagrangian relaxation, which separates the stochastic problem by sce-
nario. Here, the Lagrangian multipliers are used to penalize a lack of implementabil-
ity due to differences in the first-stage variable values among scenario subproblems.
Section 4.4.1 describes how the SVCSBPP can be decomposed into deterministic
VCSBPP subproblems with modified fixed costs. Then, the method proceeds in two
phases. Phase 1 aims to obtain consensus among the subproblems. At each itera-
tion, the subproblems are first solved separately. Their solutions are then aggregated
into a temporary overall solution, as defined in Section 4.4.2. The search process is
gradually guided toward scenario consensus by adjusting the Lagrangian multipliers
and the subproblem penalties (Section 4.4.2), based on the deviations of the scenario
solutions from the overall solution, and by a variable bundle-fixing strategy (Sec-
tion 4.4.2). The search process continues until the consensus is achieved or one of
the termination criteria is met (see Section 4.4.3). When consensus is not achieved
in the first phase, Phase 2 (see Section 4.4.4) solves the restricted SVCSBPP ob-
tained by fixing the first-stage variables for which consensus has been reached, e.g.,
the bins used in all the scenario subproblems. Section 4.4.5 finally describes the
parallel implementation of the algorithm solving the subproblems concurrently on
multiple processors.

4.4.1 Scenario decomposition of the SVCSBPP

We first reformulate the SVCSBPP stochastic model (4.1)–(4.9) using scenario
decomposition. Sampling is applied to obtain a set of representative scenarios,
namely the set S, and these are used to approximate the expected cost associated
with the second stage.

For the first stage, let yτsj = 1 if bin j ∈ J τ of type τ ∈ T is selected under
scenario s ∈ S and 0 otherwise. For the second stage, define Ks = ∪τKτs, where
Kτs is the set of extra bins of type τ ∈ T in scenario s ∈ S, and let Is be the set of
items to pack under scenario s ∈ S. Then, variable zτsk is one if and only if extra bin
k ∈ Kτs of type τ ∈ T is selected in scenario s ∈ S, and xsij and xsik are item-to-bin
assignment variables for scenario s ∈ S. Given the probability ps of each scenario
s ∈ S, the SVCSBPP problem (4.1)–(4.9) can be approximated by the following
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Algorithm 1 PH-based meta-heuristic for the SVCSBPP
Scenario decomposition
Generate a set of scenarios S;
Decompose the resulting deterministic model (4.14)–(4.22) by scenario using aug-
mented Lagrangian relaxation;

Phase 1
ν ← 0; λτsνj ← 0; ρτνj ← f τ/10;
while Termination criteria not met do
For all s ∈ S, solve the corresponding Variable Cost and Size Bin Packing
subproblem → yτsνj ;
Compute temporary global solution

ȳτνj ←
∑
s∈S

psy
τsν
j

δ̄τν ← ∑
S∈S

psδ
τsν

Penalty adjustment
λτsνj = λτsν−1

j + ρ
τ(ν−1)
j (yτsνj − yτνj )

ρτνj ← αρ
τ(ν−1)
j

if consensus is at least σ% then
Adjust the fixed costs f τsν according to (4.46);

Bundle fixing
δ̄τνm ← min

s∈S
δτsν

δ̄τνM ← max
s∈S

δτsν

Apply variable fixing;
ν ← ν + 1

Phase 2
if consensus not met for a single bin type τ ′ (δ̄τ ′m < δ̄τ

′
M) then

Identify the consensus number of bins δ of type τ ′ by enumerating δ ∈
[
δ̄τ
′
m, δ̄

τ ′
M

]
(and variable fixing)

else
Fix consensus variables in model (4.14)–(4.22);
Solve restricted (4.14)–(4.22) model using a MIP solver.
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equivalent deterministic model:

min
y,z,x

∑
s∈S

ps

∑
τ∈T

∑
j∈J τ

f τyτsj +
∑
τ∈T

∑
k∈Kτs

gτszτsk

 (4.14)

s.t.
∑
j∈J

xsij +
∑
k∈Ks

xsik = 1 ∀i ∈ Is, s ∈ S, (4.15)

∑
i∈Is

vsix
s
ij ≤ V τyτsj ∀τ ∈ T , j ∈ J τ , s ∈ S, (4.16)

∑
i∈Is

vsix
s
ik ≤ V τzτsk ∀τ ∈ T , k ∈ Kτs, s ∈ S, (4.17)

yτsj = yτtj ∀τ ∈ T , j ∈ J τ , s, t ∈ S, (4.18)

yτsj ∈ {0,1} ∀τ ∈ T , j ∈ J τ , s ∈ S, (4.19)

zτsk ∈ {0,1} ∀τ ∈ T , k ∈ Kτs, s ∈ S, (4.20)

xsij ∈ {0,1} ∀i ∈ Is, j ∈ J , s ∈ S, (4.21)

xsik ∈ {0,1} ∀i ∈ Is, k ∈ Ks, s ∈ S. (4.22)

Constraints (4.18) are referred to as the non-anticipativity constraints. They
ensure that the first-stage decisions are not tailored according to the scenarios con-
sidered in S. Indeed, all the scenario solutions must be equal to produce a single
implementable plan. Thus, the non-anticipativity constraints link the first-stage
variables to the second-stage variables, and so the model is not separable.

To apply Lagrangean relaxation and make the model separable, we need a differ-
ent expression of the non-anticipativity constraints. Let ȳτj ∈ {0,1}, ∀τ ∈ T , j ∈ J τ ,
be the global capacity plan (i.e., the set of bins selected at the first stage). The fol-
lowing constraints are equivalent to (4.18):

ȳτj = yτsj τ ∈ T , j ∈ J τ , s ∈ S (4.23)

ȳτj ∈ {0,1} τ ∈ T , j ∈ J τ . (4.24)

Constraints (4.23) force the first-stage solution of each scenario to be equal to the
global capacity plan. Constraints (4.24) are simply the integrality conditions on the
selection of the bins. With this formulation of the non-anticipativity constraints,
when we apply Lagrangean relaxation to (4.23), we can penalize individually the
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difference between the scenario solution and the global solution for each bin in the
plan.

Following the decomposition scheme proposed by Rockafellar and Wets (1991),
we relax constraints (4.23) using an augmented Lagrangean strategy. We thus obtain
the following objective function for the overall problem:

min
y,z

∑
s∈S

ps

∑
τ∈T

∑
j∈J τ

f τyτsj +
∑
τ∈T

∑
k∈Kτs

gτszτsk +

∑
τ∈T

∑
j∈J τ

λsj
(
yτsj − ȳτj

)
+ 1

2
∑
τ∈T

∑
j∈J τ

ρτj
(
yτsj − ȳτj

)2
 (4.25)

where λsj , ∀j ∈ J and ∀s ∈ S, define the Lagrangean multipliers for the relaxed con-
straints and ρτj is a penalty ratio associated with bin j ∈ J τ of type τ ∈ T . Within
function (4.25), let us consider the quadratic term. Given the binary requirements
of yτsj and ȳτj , this term becomes:

∑
τ∈T

∑
j∈J τ

ρτj
(
yτsj − ȳτj

)2
=
∑
τ∈T

∑
j∈J τ

(
ρτj (yτsj )2 − 2ρτj yτsj ȳτj + ρτj (ȳτj )2

)
=

∑
τ∈T

∑
j∈J τ

(
ρτj y

τs
j − 2ρτj yτsj ȳτj + ρτj ȳ

τ
j

)
.

(4.26)

Therefore, the objective function can be formulated as follows:

min
y,z

∑
s∈S

ps

∑
τ∈T

∑
j∈J τ

(
f τ + λsj − ρτj ȳτj +

ρτj
2

)
yτsj +

∑
τ∈T

∑
k∈Kτs

gτszτsk


−
∑
τ∈T

∑
j∈J τ

λsj ȳ
τ
j +

ρτj
2
∑
τ∈T

∑
j∈J τ

ȳτj .

(4.27)

Given constraints (4.15)–(4.22) and the objective function (4.27), the relaxed
problem is not separable by scenario. However, if the overall plan ȳτj , ∀τ ∈ T and
∀j ∈ J τ , is fixed to a given value vector (i.e., the expected value of the scenario
solutions), then the model decomposes according to the scenarios in S and the
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scenario subproblems can be expressed as follows:

min
y,z,x

∑
τ∈T

∑
j∈J τ

(
f τ + λsj − ρτj ȳτj +

ρτj
2

)
yτsj +

+
∑
τ∈T

∑
k∈Kτs

gτszτsk (4.28)

s.t.
∑
j∈J

xsij +
∑
k∈Ks

xsik = 1 ∀i ∈ Is, s ∈ S, (4.29)

∑
i∈Is

vsix
s
ij ≤ V τyτsj ∀τ ∈ T , j ∈ J τ , s ∈ S, (4.30)

∑
i∈Is

vsix
s
ik ≤ V τzτsk ∀τ ∈ T , k ∈ Kτs, s ∈ S, (4.31)

yτsj ∈ {0,1} ∀τ ∈ T , j ∈ J τ , s ∈ S, (4.32)

zτsk ∈ {0,1} ∀τ ∈ T , k ∈ Kτs, s ∈ S, (4.33)

xsij ∈ {0,1} ∀i ∈ Is, j ∈ J τ , s ∈ S, (4.34)

xsik ∈ {0,1} ∀i ∈ Is, k ∈ Ks, s ∈ S. (4.35)

Furthermore, by noting that λsj and ρτj are exogenous constants for the model
(4.28)–(4.35), we can reformulate each scenario subproblem as follows. For scenario
s, let Bτs = J τ ∪ Kτs be the set of available bins of type τ in the subproblem. For
b ∈ Bτs, let f τb define the fixed cost associated with bin b ∈ Bτs. The value of fb is
given by

f τb =

f
τ + λsj − ρτj ȳτj + ρτj

2 τ ∈ T , b, j ∈ J τ

gτs τ ∈ T , b ∈ Kτs.
(4.36)

Thus, each scenario subproblem can be reduced to a deterministic VCSBPP with
modified fixed costs:

min
y,x

∑
τ∈T

∑
b∈Bτs

f τb y
τ
b (4.37)

s.t.
∑
τ∈T

∑
b∈Bτs

xsib = 1 ∀i ∈ Is, s ∈ S, (4.38)
∑
i∈Is

vsix
s
ib ≤ V τyτb ∀τ ∈ T ,∀b ∈ Bτs, s ∈ S, (4.39)

yτb ∈ {0,1} ∀τ ∈ T ,∀b ∈ Bτs, s ∈ S, (4.40)
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xsib ∈ {0,1} ∀τ ∈ T ,∀b ∈ Bτs, ∀i ∈ Is, s ∈ S (4.41)

where yτb = 1 if bin b ∈ Bτs of type τ ∈ T is selected, 0 otherwise.
It is time-consuming to solve a large VCSBPP to optimality using a commer-

cial MIP solver (Correia et al., 2008). Moreover, in the PH algorithm VCSBPP
subproblems must be solved multiple times. Thus, we need to use one of the effec-
tive algorithms developed for the VCSBPP (Crainic et al., 2007; Baldi et al., 2011;
Crainic et al., 2011c). We choose the algorithm of Crainic et al. (2011c), because
of its efficiency on instances with up to 1000 items. The algorithm implements an
adapted best-first decreasing strategy that sorts items and bins by nonincreasing
order of volume and unit cost, respectively. The heuristic then sequentially assigns
each item to the best bin, which is the bin with the maximum free space once the
item is assigned.

4.4.2 Obtaining consensus among subproblems

At each iteration of the meta-heuristic, the solutions of the scenario subproblems
are used to build a temporary global solution (the overall capacity plan). “Consen-
sus" is then defined as scenario solutions being similar with regard to the first-stage
decisions with the overall capacity plan and, thus, being similar among themselves.
Section 4.4.2 describes how the overall plan is computed given the symmetry chal-
lenge of the bin packing formulation. Moreover, we introduce strategies for the
penalty adjustment when nonconsensus is observed and techniques to guide the
search process by bounding the number of bins that can be selected at the first
stage.

Defining the overall capacity plan

Let ν be the iteration counter in the PH algorithm. At each iteration, the algorithm
solves subproblems (4.37)–(4.41), obtaining local solutions yτsνj , ∀s ∈ S, ∀τ ∈ T , and
∀j ∈ J τ . The subproblem solutions are then combined in the overall capacity plan
ȳτνj by using the expected value operator, as shown in Equation (4.42). The weight
used for each component is the probability ps associated with the corresponding
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scenario.
ȳτνj =

∑
s∈S

psy
τsν
j , ∀τ ∈ T , ∀j ∈ J τ . (4.42)

However, this definition does not take into account the presence of a large number
of equivalent solutions that is typical of packing problems (Baldi et al., 2012a).
In fact, packing problems present a strong symmetry in the solution space. Two
solutions are considered symmetric (and equivalent) if they involve the same set of
bins in different orders. Equation (4.42) concerns the use of the specific bin j ∈ J τ

and is therefore dependent on the order of the bins in the solution. Thus, it provides
misleading information on the consensus. For this reason, (4.42) cannot be used to
measure the convergence of the overall solution.

To deal with the symmetry of the solution space, we define an overall solution
based on the number of bins in the capacity plan. Let δτsν = ∑

j∈T τ y
τsν
j be the

total number of bins of type τ ∈ T in the capacity plan for scenario subproblem
s ∈ S at iteration ν. Equivalently to (4.42), using the expected value operator on
δτsν ∀s ∈ S, we can define the overall capacity plan for each bin type τ ∈ T as

δ̄τν =
∑
s∈S

psδ
τsν =

∑
s∈S

ps
∑
j∈J τ

yτsνj =
∑
j∈J τ

∑
s∈S

psy
τsν
j =

∑
j∈J τ

ȳτνj . (4.43)

Equation (4.43) breaks the symmetry of the solutions (the order of the bins in the
solution does not change the value of δτsν) and can be used to define the stopping
criterion. Thus, we consider consensus to be achieved when the values of δτsν ,
∀s ∈ S, are equal to δ̄τν .

It is important to note that (4.42) and (4.43) do not necessarily produce a fea-
sible capacity plan. When consensus is not achieved the overall solution may not
satisfy the integrality constraints on the first-stage decision variables. For noncon-
vex problems such as the SVCSBPP using the expected value as an aggregation
operator does not guarantee that the algorithm converges to the optimal solution.
Moreover, it cannot ensure that a good (feasible) solution will be obtained for the
stochastic problem. Therefore, (4.42) and (4.43) are used as reference solutions with
the goal of helping the search process of the PH algorithm to identify bins for which
consensus is possible. Both are used in the penalty adjustment, while (4.43) is also
used in the bounding strategy.
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Penalty adjustment strategies

To induce consensus among the scenario subproblems, we adjust the penalties in
the objective function at each iteration to penalize a lack of implementability and
dissimilarity between local solutions and the overall solution. We propose two dif-
ferent strategies for these adjustments, both working at the local level in the sense
that they affect every scenario subproblem separately.

The first strategy was originally proposed by Rockafellar and Wets (1991). Using
information on the bin selection (e.g., variable yτsνj ), it operates on the fixed costs
by changing the Lagrangean multipliers. For a given iteration ν, let λsνj be the
Lagrangean multiplier associated with bin j ∈ J τ for scenario s ∈ S, and let
ρτνj be the penalty deriving from the quadratic term. Note that the value of ρτνj
is variable-specific. This approach outperforms scalar ρ strategies and guarantees
faster convergence of the algorithm (Watson and Woodruff, 2011). At each iteration,
we update the values λsνj and ρτνj , ∀j ∈ J and ∀s ∈ S, as follows:

λsνj = λ
s(ν−1)
j + ρ

τ(ν−1)
j (yτsνj − ȳτνj ) (4.44)

ρτνj ← αρ
τ(ν−1)
j , (4.45)

where α > 1 is a given constant and ρτ0
j is fixed to a positive value to ensure that

ρτνj →∞ as the number of iterations ν increases.
We initialize λs0j = 0 for each scenario s ∈ S. Equation (4.44) can then reduce,

increase, or maintain this contribution according to the difference between the value
of the bin-selection variables in the subproblem solutions and the overall capacity
plan. The initial choice of ρτνj is important. An inaccurate choice may cause prema-
ture convergence to a solution that is far from optimal or cause slow convergence of
the search process. To avoid this, we set ρτ0

j proportional to the fixed cost associated
with the bin-selection variable: ρτ0

j = max(1, f τ/10), ∀j ∈ J τ and ∀τ ∈ T . The
value of ρτνj increases according to (4.45) as the number of iteration grows.

The second penalty adjustment is a heuristic strategy, which directly tunes the
fixed costs of bins of the same type. The goal of this strategy is to accelerate the
search process when the overall solution is close to consensus. When consensus is
close, the difference between the subproblem solution and the overall solution may
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be small, and adjustments (4.44) and (4.45) lose their effectiveness, requiring several
iterations to reach consensus.

Let f τsν be the fixed cost of bin j ∈ J τ of type τ ∈ T for scenario s ∈ S
at iteration ν. At the beginning of the algorithm (ν = 0), we impose f τs0 = f τ .
Then, when at least σ% of the variables have reached consensus, we perturb every
subproblem by changing f τsν as follows:

f τsν =


f τs(ν−1) ·M if δτs(ν−1) > δ̄τ(ν−1)

f τs(ν−1) · 1
M

if δτs(ν−1) < δ̄τ(ν−1)

f τs(ν−1) otherwise.

(4.46)

Here M is a constant greater than 1, while σ% is a constant such that 0.5 ≤ σ% ≤ 1.
The current implementation of this heuristic strategy uses σ% = 0.75 and M = 1.1.
The rationale for (4.46) is the following: if δτs(ν−1) > δ̄τ(ν−1), this means that in
the previous iteration the number of bins of a given bin type τ in scenario s was
larger than the number of bins in the reference solution δ̄τ(ν−1). Thus, the use of
bins of type τ is penalized by increasing the fixed cost by M . On the other hand, if
δτs(ν−1) < δ̄τ(ν−1), we promote bins of type τ by reducing the fixed cost by 1/M .

Bundle fixing

To guide the search process, we introduce a variable-fixing strategy. Because there
are multiple equivalent solutions, it might not be efficient to fix a single bin-selection
variable ȳτνj . We instead restrict the number of bins of each type that can be used,
specifying lower and upper bounds. We call this strategy bundle fixing.

Let δ̄τνm and δ̄τνM be the minimum and maximum number of bins of type τ involved
in the overall solution at iteration ν:

δ̄τνm ← min
s∈S

δτsν , (4.47)

δ̄τνM ← max
s∈S

δτsν . (4.48)

At each iteration, the bundle strategy applies two bounds as follows. The lower
bound δ̄τνm determines a set of compulsory bins that must be used in each subproblem;

35



4 – The Capacity Planning Problem under Uncertainty

to implement this we set the decision variables yτs(ν+1)
j to one for j = 1, ..., δ̄τνm . The

upper bound δ̄τνM is an estimate of the maximum number of bins of type τ available in
the next iteration; this reduces the number of decision variables in the subproblems.
To implement this we remove decision variables yτs(ν+1)

j for j = δ̄τνM + 1, ..., ‖J τ‖.

4.4.3 Termination criteria

There are to date no theoretical results on the convergence of the PH algorithm for
integer problems. Thus, we implement three stopping criteria for the search phase
of the proposed meta-heuristic, based on the level of consensus reached and the
number of iterations.

The level of consensus is measured through equations (4.47) and (4.48), as con-
sensus is reached when δ̄τνm = δ̄τνM , ∀τ ∈ T . To speed up the algorithm, we actually
stop the search, and proceed to Phase 2, as soon as consensus has been reached for
all the bin types except one, type τ ′, for which δ̄τ ′m < δ̄τ

′
M .

When neither of the preceding conditions has been reached within a maximum
number of iterations (200 in our experiments), the search is stopped and the meta-
heuristic proceeds to the Phase 2.

4.4.4 Phase 2 of the meta-heuristic

Phase 2 is thus invoked either when consensus is not achieved within a given max-
imum number of iterations, or the search was stopped when all but one bin type
were in consensus.

In the first case, there is only one bin type τ ′ with δ̄τ
′
m < δ̄τ

′
M , that is, not in

consensus. Given the efficiency of the item-to-bin heuristic, Phase 2 computes the
final solution by iteratively examining the possible number of bins for τ ′ (a consensus
solution is always possible because δ̄τ ′M is feasible in all scenarios):

For all δ ∈
[
δ̄τ
′
m, δ̄

τ ′
M

]
do

Set the number of bins of type τ ′ to δ;

Solve all the scenario subproblems with the VCSBPP heuristic;

Check the feasibility of the solutions;
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Update the overall solution if a better solution has been found;

Produce the consensus solution.

When the maximum number of iterations is reached, consensus is less close.
Phase 2 of the meta-heuristic then builds a restricted version of the formulation
(4.14)–(4.22) by fixing the bin-selection first-stage variables for which consensus has
been achieved, together with the associated item-to-bin assignment variables. The
range of the bin types not in consensus is reduced through bundle fixing, and the
resulting MIP is solved exactly.

4.4.5 Parallel implementation

Given the straightforward parallelization of the PH algorithm, we developed a syn-
chronous master–slave implementation. This implementation extends our heuristic
to a multiprocessor environment. The subproblems are assigned to a number of
slaves. The master collects the solutions from the slaves and waits until all the
scenario subproblems have been solved. The master then has all the solutions and
can proceed to calculate the overall solution. If consensus is not reached, the master
updates the penalties of each subproblem and starts a new iteration. The paral-
lelization reduces the computational time for each iteration and thus speeds up the
convergence to a consensual solution. The quality of the solutions is not affected by
the parallel execution. In fact, the search process follows the same dynamics as in
the sequential case.

It should be noted that when the computational time for the subproblems is
unbalanced, the parallel algorithm is less efficient. To mitigate this effect, the master
checks the current load of each slave (the number of subproblems remaining) and,
if necessary, it can reassign subproblems among the slaves.

The complete list of duties of the master and slaves is reported below.

• Master

1. Creates the pool of scenario problems;

2. Assigns each slave an equal number of problems;

3. Checks the load of the slaves and adjusts the assignments;
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4. Computes the global solutions, computes the bounds, and updates the
penalties.

• Slave

1. Solves the assigned subproblems;

2. Saves the solutions in a pool accessible by the master.

4.5 Computational results

We performed an extensive set of experiments. The goals of the experimental cam-
paign were to

1. analyze the performance of the proposed PH-based meta-heuristic by compar-
ing it to a state-of-the-art commercial MIP solver;

2. measure the impact of uncertainty and determine whether building a stochastic
programming model is really usefu;

3. explore the potential of the proposed model and algorithm by performing a
number of analyzes of the structure, sensitivity and robustness of the logistics
capacity plan under various problem settings.

We start by introducing the test instances generated for the numerical experi-
ments (Section 4.5.1). We then proceed with the following experimental plan orga-
nized as follows:

PH algorithm validation (Section 4.5.2): We analyze the performance of the
proposed meta-heuristic by comparing its results (objective values and compu-
tational times), those of the direct solution of the multi-scenario deterministic
problem (called RP in the following) (4.14)–(4.22), and the lower bound (LB)
(4.10)–(4.13). We also analyze the efficiency of the parallel implementation by
studying the scalability to 16 thread.

Impact of the uncertainty (Section 4.5.3): These tests show the benefits of using
the two-stage model with recourse compared to the perfect information prob-
lem (the so-called wait and see approach, WS) and the expected value problem

38



4 – The Capacity Planning Problem under Uncertainty

(EV). An important point when comparing RP and EV is to determine the
difference in the first-stage decisions, i.e., the bins booked in advance. We do
this via the well-known EV PI and V SS measures (Birge, 1982; Maggioni and
Wallace, 2012).

Solution analysis (Section 4.5.4): We study the solutions to determine whether
basic structure for the capacity planning exists and the dependence of the plan
on attributes of the problem setting (e.g., number of bin types, spread of items
to be loaded).

Sensitivity analysis (Section 4.5.5): We explore the sensitivity of the capacity
planning when policies on the bins available in advance are considered in the
contract. In particular, we consider the effect of lower and upper bounds on
the number of each type of bin.

Effect of the capacity planning as actual policy (Section 4.5.6): We imple-
mented a simulation approach to evaluate the robustness and reliability of
the capacity planning decisions for one year under various demand scenarios.
These scenarios represent realistic economic situations such as higher and lower
demands. We focus on the use of planned bins, the extra capacity required to
cover higher demand, and the corresponding cost.

We now list the approaches that we consider.

Exact approach. The RP and the LB are solved using CPLEX versione 12.5
(ILOG Inc., 2012), one of the most widely used commercial MIP solvers. We
impose a maximum running time of 24 h. The solutions obtained by RP are
the reference solutions for the validation of the PH algorithm.

Heuristic approach. As already noted, in the case of nonconvex problems, the
PH algorithm may not converge to an optimal solution and it can thus be
considered a heuristic method. We do not impose a maximum running time.
We terminate the algorithm when consensus is achieved or the number of
iterations reaches 200.
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Expected-value approach. Since SMIPs are difficult to solve, it is common to
solve a simpler deterministic problem in which the random parameters are re-
placed by their expected values. This approach does not guarantee optimality
or feasibility.

Monte Carlo simulation. We use Monte Carlo simulation to evaluate the robust-
ness of the solutions.

The tests are performed on a machine at the high-performance computing cluster
of Politecnico di Torino (DAUIN, 2014) with 16 AMD Bulldozer cores at 2.3GHz
and 64GB of RAM.

4.5.1 Instance set

We have developed two new sets of instances, denoted T and R, based on existing
instances for different BPP problem variants (Monaci, 2002; Crainic et al., 2007,
2011c, 2012c, 2014b) and real applications of parcel delivery. Set T represents test
cases with a limited number of items, and set R reproduces realistic cases of parcel
delivery applications in urban and inter-city contexts. These instances are charac-
terized by the number of bin types, the availability and the cost of the bins, and the
number and volume of the items. The characteristics of the two sets are as follows:

Set T allows us to explore the structure of the capacity planning solutions for
different configurations of bin types and items to be loaded. Moreover, this
set aims to measure the effect of different levels of uncertainty in the demand
and the extra capacity. The instances have the following characteristics:

• Number of types. We consider instances with 3 (T3), 5 (T5), and 10
(T10) bin types. The volumes are:

– 50, 100, 150 for T3;
– 50, 80, 100, 120, 150 for T5;
– 50, 60, 70, 80, 100, 110, 120, 130, 140, 150 for T10.

• Availability of bins. The number of bins of type τ ∈ T available in
advance, ‖J τ‖, is the minimum number of bins of volume V τ needed
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to pack all items in the worst-case scenario (the scenario with the most
items). This number is

‖J τ‖ =
⌈

1
V τ

max
s∈S

∑
i∈Is

vsi

⌉
. (4.49)

At the second stage, we consider a large variability. The number of bins
of type τ ∈ T at the second stage, ‖Kτs‖, is uniformly distributed in the
range [0, ‖J τ‖]. This means that the worst-case scenario may involve a
limited number of extra bins.

• Fixed cost of bins. For the set of bins available in advance the fixed
cost is

f τ = V τ (1 + γ), (4.50)

where γ is uniformly distributed in the range [-0.3, 0.3]. According to
Correia et al. (2008) this range replicates realistic situations. The fixed
cost for extra bins gτs at the second stage is the original fixed cost f τ

multiplied by a factor (1 + αsτ ), inversely proportional to the availability
of extra bins of type τ in scenario s ∈ S, where

αsτ = 1− ‖Kτs‖∑
τ∈T
‖Kτs‖

· β, (4.51)

and β ∈ U [0, 0.5]. Thus, the maximum increase in the fixed cost is 50%.

• Number of items. The number of items at the second stage is uniformly
distributed in the range

– [25, 100] for T3 and T5;

– [100, 500] for T10.

• Volume of items. The items are organized as follows:

– Small item (S): volume in the range [5, 10];

– Medium item (M): volume in the range [15, 25];

– Big item (B): volume in the range [20, 40].
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These categories are then combined into four volume-spread classes re-
flecting different realistic settings:

– SP1 has a high percentage of small items S = 60%,M = 20%, B =
20%;

– SP2 has a high percentage of medium items S = 20%,M = 60%, B =
20%;

– SP3 has a high percentage of big items S = 20%,M = 20%, B =
60%;

– SP4 has no restrictions on the maximum number of items in each
category.

• Number of instances. For each combination of the parameters men-
tioned above we define 10 instances with different scenarios. This gives a
total of 120 instances.

Set R represents instances involved in real applications of parcel delivery companies
(DHL, TNT, UPS, etc.), which need sufficient vehicles to deliver the unknown
demand to the customers. We consider two applications: (R2) inter-city parcel
delivery and (R3) parcel delivery in urban areas. The differences between the
two settings are the volumes of the vehicles (and thus of the bins) and the cost
of the bins. In these applications, the bins represent the vehicles used for the
delivery of the items to the customers. There are usually two or three vehicle
types, and the number of items per vehicle is of the order of 100 for urban
delivery and 1000 for inter-city delivery. The different loads are a result of
different logistics (e.g., maximum driver hours per day) and different vehicle
types (inter-city services use large vehicles).

The instances have the following characteristics:

• Number of types. We consider up to 3 bin types with the volumes

– 1000, 1200, 1500 for R3;
– 10000, 15000 for R2.

• Availability of bins. The number of bins of type τ ∈ T available in
advance, ‖J τ‖, is defined by Equation (4.49). At the second stage, the
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number of bins of type τ ∈ T , ‖Kτs‖, is uniformly distributed in the
range [0, ‖J τ‖].

• Fixed cost of bins. Equation (4.50) defines the fixed cost of the set
of bins available in advance, and the fixed cost for extra capacity is the
original cost multiplied by (1+αsτ ) where αsτ is defined in Equation (4.51).

• Number of items. The number of items at the second stage is uniformly
distributed in the range

– [3000, 4000] for R3;
– [9000, 11000] for R2.

• Volume of items. The volumes are uniformly distributed in the range

– [5, 20] for R3;
– [10, 15] for R2.

• Number of instances. For each combination of the parameters men-
tioned above we define 10 instances with different scenarios S. This gives
a total of 20 instances.

Regarding the scenario tree, we assume that the random parameters have a finite
number of possible outcomes at the end of the period considered. The discrete values
that the random variable can assume are represented by a finite set of scenarios
and are assumed to be exogenous to the problem. Consequently, the probability
distribution is not influenced by the decisions. With these assumptions we can
represent the stochastic parameters using a scenario tree that contains a root and a
finite set of leaves. A total of s = 1, . . . ,100 scenarios are generated. This number
of scenarios guarantees that the model has in-sample stability (Kaut et al., 2007),
which means that the value of the optimal decisions of the first-stage variables does
not change when a different set of scenarios is considered.

4.5.2 PH algorithm validation

Before studying the performance of the PH algorithm, we analyze the computational
effort of CPLEX. Commercial MIP solvers such as CPLEX struggle to compute a
good lower bound for models that include integer variables, and thus to prove the
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optimality of the best incumbent solution in a reasonable computational time. The
difficulty is even greater if there is a high degree of symmetry in the solutions, which
is unfortunately typical in packing problems.

The quality of the solutions is measured by the optimality gap. This gap is
defined as the difference between the best known solution UBCP (i.e., the incum-
bent solution) and the best bound LBCP . We present the relative optimality gap
(Equation (4.52)), which is the optimality gap expressed as a percentage:

∆CP = UBCP − LBCP

LBCB
· 100. (4.52)

The initial experiments on T3 and T5 showed that ∆CP was greater than 10%
after 24 hours of execution. We then considered using CPLEX in parallel mode.
Figure 4.1 shows the trend of the average relative optimality gap for T3 and T5
with respect to the number of parallel threads. The gap decreases rapidly as the
number of threads increases. With 16 parallel threads, the CPLEX has an average
optimality gap below 6%. We therefore decided to execute CPLEX in parallel with
16 threads to obtain relevant computational results.

CPLEX PH
Set Spread ∆CP tCP [s] ∆PH

UB tPH [s]

T3

SP1 5.38 86400 -1.19 1.21
SP2 5.74 86400 -1.39 2.38
SP3 6.38 86400 -1.06 0.40
SP4 5.77 86400 -0.86 0.48

T5

SP1 4.99 86400 -1.17 2.08
SP2 5.23 86400 -1.38 0.75
SP3 6.44 86400 -1.98 0.62
SP4 5.20 86400 -1.36 2.70

Table 4.1: Comparison of RP solutions from CPLEX and PH

Table 4.1 shows a detailed comparison of CPLEX and PH on T3 and T5; CPLEX
is unable to solve T10, R2, and R3 with a reasonable optimality gap. We report,
for each combination of instance set (Column 1) and item spread class (Column 2),
the average optimality gaps ∆CP of CPLEX (Column 3), the average running times
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Figure 4.1: Average relative optimality gap (%) with respect to the number of
parallel threads used by CPLEX

tCP of CPLEX (Column 4), the average running times tPH of PH (Column 6), and,
in Column 5, the average gaps ∆PH

UB of PH computed as

∆PH
UB = UBPH − UBCP

UBCP
(4.53)

where UBPH is the PH objective value. Note that the value of ∆PH
UB may be positive

or negative. When ∆PH
UB is negative, the PH solution is better than the CPLEX

solution.
As stated before, CPLEX cannot solve SVCSBPP to optimality with a reason-

able time limit for any instances considered. The average optimality gap after 24
hours is always greater than 5%, with a maximum value of 6.44%. This is mainly
due to the number of variables in the two-stage models and the presence of equiva-
lent solutions. Reducing the number of scenarios and thus the number of variables
does not guarantee in-sample stability, so the capacity plan cannot be used in prac-
tice. The PH algorithm is accurate and effective on all T3 and T5 instances. It
always converges quickly to better solutions than those obtained by CPLEX. The
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gap ∆PH
UB is negative for all instances and, on average, the improvement in the solu-

tions is between 0.86% and 1.98%. PH always converges to a consensual solution in
less than 3 s. This performance is directly related to the efficiency of the heuristic
solver for the VCSBPP, which is able to solve deterministic subproblems in negligible
computational times.

Despite the use of concurrent computation, CPLEX is not able to compute a
good feasible solution for T10, R2, and R3 in a reasonable computing time (e.g.,
24 h). These instances can easily involve more than 10 million variables. They
require a huge amount of memory for the branch and bound (e.g., more than 64GB
of memory occupied just after 2 h of computation). For these instances, the memory
becomes the bottleneck, and CPLEX cannot run for the assigned time. Thus, to
validate the PH algorithm on the remaining instances, we compare the PH solutions
with those obtained by solving the LB (4.10)–(4.13). We recall that the LB does not
consider item-to-bin assignments, which drastically reduces the number of variables
in the model. The reduced model can be solved to optimality by CPLEX with a
limited computational effort. The time depends on the number of bins involved, so
CPLEX requires only a few seconds to solve LB for sets T3, T5, R2, and R3, and it
needs at most 120 s for set T10.

Table 4.2 reports, for each instance set (Column 1) and item spread class (Col-
umn 2), the percentage gap ∆PH

LB between the objective functions obtained by PH
and LB (Column 3), and the average and maximum percentage increase in the ob-
jective function (Columns 4 and 5) resulting from the use of the LB solutions for
the capacity planning. Except for set R2, for which the gap is greater than 4%, on
average, the gaps are smaller than 2%. These results demonstrate the accuracy of
the PH algorithm. We can further investigate its accuracy by evaluating the quality
of the LB solutions. We do this by fixing the capacity-planning decisions defined
by LB in the original problem and computing the recourse cost. For T3, T5, and
T10, the average increase in the objective function is smaller than 0.25%, and in
some cases there is no increase. When CLB is zero, the capacity plans defined by
LB and PH match exactly. However, for R2 and R3, CLB becomes significant (e.g.,
2.77% and 1.23%, respectively), showing that LB struggles to correctly identify a
tight bound when the number of bin types is limited. This is further underlined by
the maximum increase, CLB

max. The capacity plan may cost 25% more than expected.
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In fact, when the choice is limited to a few types of bins (e.g., R2 includes only two
types), an error in the selection can involve a high recourse cost. For this reason,
although on average the LB decisions are similar to or the same as those of PH, LB
cannot be used for real applications such as those represented by R2 and R3.

Set Spread ∆PH
LB CLB CLB

max

T3

SP1 0.88 0.21 1.45
SP2 0.72 0.22 1.79
SP3 0.68 0.05 0.45
SP4 1.21 0.00 0.00

T5

SP1 1.57 0.09 0.63
SP2 1.45 0.00 0.00
SP3 1.03 0.06 0.47
SP4 2.03 0.10 0.77

T10

SP1 0.81 0.04 0.31
SP2 0.79 0.03 0.18
SP3 0.76 0.02 0.19
SP4 0.86 0.01 0.06

R2 - 4.3 2.77 24.9
R3 - 0.71 1.23 8.5

Table 4.2: Comparison of LB and PH solutions

We conclude our validation of the PH algorithm by analyzing the scalability of
the parallel implementation up to 16 threads. The computational times tPH for each
instance set (Column 1) and item spread class (Column 2) are reported in Table 4.3,
and the speed-up, defined as the ratio of the sequential running time to the parallel
running time, is shown in Figure 4.2.

The computational times are negligible for T3 and T5 and become significant
for the larger sets. However, the maximum sequential time is of the order of 600 s,
several orders smaller than the time required by CPLEX. The computational effort
increases with the number of items and especially with the number of bin types.
Indeed, despite the large number of items involved in the realistic instances of R2
and R3, the computational times for these instances are shorter than those for T10.
The latter has 10 bin types and at most 500 items, whereas R2 and R3 have only 2
and 3 bin types, and at most 11000 and 4000 items.
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Set Spread tPH1 tPH2 tPH4 tPH8 tPH16

T3

SP1 1.21 0.87 0.73 0.50 0.30
SP2 2.36 1.73 1.41 0.97 0.59
SP3 0.41 0.29 0.25 0.17 0.10
SP4 0.49 0.35 0.29 0.20 0.12

T5

SP1 2.08 1.48 1.15 0.83 0.50
SP2 0.75 0.53 0.42 0.30 0.18
SP3 0.62 0.44 0.35 0.25 0.15
SP4 2.70 1.93 1.50 1.08 0.65

T10

SP1 625.17 350.10 187.08 89.02 45.62
SP2 580.59 325.52 174.53 85.05 42.56
SP3 432.48 241.24 122.87 74.25 31.52
SP4 524.87 293.35 155.24 75.85 38.47

R2 - 366.76 201.98 99.70 52.20 26.38
R3 - 521.63 280.98 137.79 72.91 36.99

Table 4.3: Average computational times for PH algorithm with respect to parallel
threads

The scaling of the parallel implementation is quite linear. This is guaranteed by
the performance of the heuristic, which solves every problem in a similar computa-
tional time. These times ensure that the slaves have balanced loads and lead to a
linear speedup. For T3 and T5, the best speedup is about four, obtained with 16
parallel threads. This is due to the negligible computational times for the sequential
execution of these instances. For the larger instances, the average speedup is below
the ideal value: it is 80% of the latter in the worst case. The loss in performance is
related to the functions that are inherently sequential in the algorithm. The mas-
ter calculates the overall solution, checks the termination criteria, and updates the
penalties, while the slaves wait for the assignment of new subproblems.

4.5.3 Impact of uncertainty

In this section, we show the benefit of using the two-stage model with recourse for the
SVCSBPP. We do this by considering the most important measures in stochastic
programming: the expected value of perfect information (EV PI) and the value of
the stochastic solution (V SS).
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Figure 4.2: Speed-up of PH algorithm for different numbers of parallel threads

The EV PI is defined by the difference between the objective values of the
stochastic solutions and the wait-and-see solutions when the realizations of all the
random parameters are known at the first stage:

EV PI := RP −WS. (4.54)

The V SS indicates the expected gain from solving the stochastic model rather
than its deterministic counterpart in which the random parameters are replaced
with their expected values:

V SS := EEV −RP (4.55)

where EEV denotes the solution value of the RP model, where the first-stage deci-
sion variables are fixed at the optimal values obtained by using the expected values
of the coefficients.

We present the results in an aggregated form in Table 4.4. The results are
grouped for instances in the same set and spread class. Table 4.4 reports, for
each combination of instance set (Column 1) and item spread class (Column 2),
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the average and maximum percentage EV PI (Columns 3 and 4), computed as
EV PI/RP · 100, and the average and maximum percentage V SS (Columns 5 and
6), computed as V SS/RP · 100.

Set Spread EV PI [%] EV PImax [%] V SS [%] V SSmax [%]

T3

SP1 5.66 6.97 5.63 6.89
SP2 4.35 7.08 5.28 7.66
SP3 5.42 7.10 4.21 6.94
SP4 6.18 6.67 8.10 11.25

T5

SP1 5.72 7.01 5.98 6.92
SP2 6.28 7.29 4.18 6.07
SP3 5.51 7.38 4.47 5.76
SP4 5.35 8.10 12.34 14.17

T10

SP1 11.73 14.52 8.09 15.95
SP2 11.52 12.62 6.66 9.37
SP3 10.87 12.51 7.25 12.00
SP4 11.17 15.20 9.67 17.70

R2 - 2.85 4.96 2.75 5.92
R3 - 2.82 4.60 2.69 5.06

Table 4.4: EV PI and V SS comparison

We first analyze T3, T5, and T10. The EV PI percentage is around 10%, showing
the benefit of having information about the future in advance. It increases with the
problem dimension to a maximum value above 15%. The average and maximum
values of the V SS increase as the size of the instance increases. The gap between
the expected-value solution and the stochastic solution is significant for all sets
considered. Even for small instances, the maximum V SS reaches 11%, and it shows
the losses incurred by following the capacity plan of the deterministic solution. The
most critical item spread class is SP4; this is the most representative class for the
shipping of freight over long distances. SP4 represents the situation in which we
have no information about the category distribution of the items to be shipped. Its
maximum EV PI is 15.20% and its maximum V SS is always greater than 7% and
reaches 17.70%.

We now discuss the realistic instances of R2 and R3. These applications are usu-
ally characterized by a limited number of vehicle (bin) types and limited variability
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in the items, which are quite small. For these reasons, both EV PI and V SS are
smaller than the corresponding values for the testing instances. The average values
are below 3%, and the maximum values reach 5.92%. However, the maximum values
are sufficiently large to justify the use of the stochastic approach.

We now consider to what extent the first-stage decisions differ. On average, the
EV problem overestimates the demand to be loaded (the total volume of the items
is larger than the actual volume) and the availability of extra bins (a larger set of
bins is available for the recourse action). This can lead to two situations. First, EV
may plan to use a set of bins that is not actually required for the set of scenarios
considered. Although the capacity plan is more expensive (i.e., the cost increases
by 17.70%), the solution is feasible and thus implementable. Second, EV may plan
an insufficient capacity for a subset of scenarios in which the actual availability of
bins is very limited. The capacity plan is infeasible for these scenarios. This is rare,
occurring for only 2% of the instances. However, the results clearly show the need
to explicitly consider uncertainty in capacity-planning applications.

4.5.4 Solution analysis

This analysis focuses on the structure of the capacity-planning solutions and in par-
ticular on the use of bins in the plan. Table 4.5 reports, for each combination of
instance set (Column 1) and item spread class (Column 2), the average number of
bin types NT used in the capacity plan (Column 3), the percentage of the objective
function value achieved in the first stage ObjFS (Column 4), and the average per-
centage fill level of the bins at the two stages, fFS and fSS respectively (Columns 5
and 6).

Only a few bin types are used in the plan. The number is close to 1 for T3,
R2, and R3, and it is between 2 and 3 for T5 and T10, which have five and ten
bin types, respectively. Furthermore, the number of bins is not evenly distributed
among the types. Almost all of the bins included in the capacity plan are the same
type; only one or two bins are of different types. This is, in our opinion, a result
compatible with the rules used in practice, i.e., the larger the number of bin types
used, the higher the loading/unloading costs because it becomes impossible to use
standardized loading schemes. Concerning the spread classes, it is interesting to
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Set Spread NT ObjFS [%] fFS [%] fSS [%]

T3

SP1 1.4 80.59 91.94 86.28
SP2 1.2 78.10 93.25 87.27
SP3 1 81.91 94.47 79.47
SP4 1.3 86.02 95.68 85.78

T5

SP1 2 77.10 95.38 87.29
SP2 1.8 80.57 97.34 85.35
SP3 1.5 82.00 95.64 81.46
SP4 2.1 81.60 94.66 85.68

T10

SP1 2.5 80.99 94.76 83.32
SP2 2.1 79.88 94.23 84.35
SP3 2 78.90 95.58 84.62
SP4 2.3 81.63 95.17 82.49

R2 - 1.1 94.59 96.23 71.57
R3 - 1.5 88.12 99.26 89.45

Table 4.5: Structure of solutions

note that when the stochastic problem considers a demand with a high percentage
of small items (classes SP1 and SP4), NT is maximum. In fact, small items may be
loaded in any bins (large items cannot be placed in bins with limited capacities),
and they are usually used to fill near-empty bins. Thus, it becomes attractive for
the model to mix bin types.

The percentage of the objective function achieved in advance is about 80%,
reaching 90% for the realistic instances. This means that the tactical decisions must
be conservative: the company should book sufficient capacity in advance to limit
the adjustment necessary when the actual demand becomes known. Moreover, this
indicates that 10%-20% of recourse is a good compromise between cost reduction
and uncertainty management.

Finally, the fill level of the bins selected at the first (second) stage is greater than
90% (70%). This indicates the effectiveness of the capacity plan, which requires only
targeted adjustments at the second stage.
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4.5.5 Sensitivity analysis

We now analyze the changes necessary when contractual policies are imposed by
the 3PL. We define two policies. The first policy (P1) imposes a minimum number
of bins for each bin type τ included in the capacity plan. The second policy (P2)
reduces the number of bins of each type, which requires us to combine different types
of bins in the most efficient way.

Let uτ = ‖J τ‖ be the number of bins of type τ that can be selected for
the capacity plan. We define the minimum number of bins to be m · uτ , with
m = {10%, 20%, 30%}. The maximum availability is reduced to m · uτ with m =
{0.50, 0.75, 0.80}. To impose these policies, we introduce additional constraints
(4.56) for the first policy and (4.57) for the second policy:

∑
j∈J τ

yτsj ≥ m · uτ ∀τ ∈ T , s ∈ S (4.56)

∑
j∈J τ

yτsj ≤ m · uτ ∀τ ∈ T , s ∈ S. (4.57)

We use the PH algorithm and compare the new solutions with the original so-
lutions. Tables 4.6 and 4.7 report the average results of the sensitivity analysis for
each set of instances (Column 1), the original number of bin types used in plan NT
(Column 2), the policy type (Column 3), and the associated value of factor m (Col-
umn 4). For each policy, we show the changes in the solutions with respect to the
number of bin types used (N ′T , Column 5) and the extra cost for the policy (∆′Obj,
Column 6).

We can immediately note that the instances with a limited availability of bin
types (T3, R2, and R3) are more sensitive to policy P1. For these sets P1 penalizes
combinations of bin types (e.g., for m = 30% all the problems in R2 and R3 use
a single type), causing an increase in the cost of the capacity plan or the recourse
action, which purchases more bins. This cost increases as the bin types available
decrease. It is approximately 2% for instances with 3 types and reaches 3.1% for R2.
Similarly, P1 tends to penalize the use of bin types for T5 and T10, but the impact
on the objective function is limited. The wide choice of bins that characterizes
these instances allows them to efficiently implement the policy, reducing the cost

53



4 – The Capacity Planning Problem under Uncertainty

Set NT Policy m (%) N ′T ∆′Obj

T3 1.2

P1 10 1.2 0.90
P1 20 1.2 1.46
P1 30 1.2 2.35
P2 50 1.2 0.83
P2 75 1.2 0.00
P2 90 1.2 0.00

T5 1.8

P1 10 1.8 0.18
P1 20 1.8 0.21
P1 30 1.8 0.34
P2 50 2.0 0.86
P2 75 1.8 0.00
P2 90 1.8 0.00

T10 2.2

P1 10 2.0 0.14
P1 20 1.8 0.25
P1 30 1.5 0.37
P2 50 2.2 0.00
P2 75 2.2 0.00
P2 90 2.2 0.00

Table 4.6: Sensitivity of capacity-planning solutions

Set NT Policy m N ′T ∆′Obj

R2 1.1

P1 10 1.0 3.1
P1 20 1.0 3.1
P1 30 1.0 3.1
P2 50 2.0 9.67
P2 75 1.1 0.00
P2 90 1.1 0.00

R3 1.5

P1 10 1.3 0.69
P1 20 1.2 1.01
P1 30 1.0 1.38
P2 50 2.0 5.25
P2 75 1.6 0.33
P2 90 1.5 0.00

Table 4.7: Sensitivity of capacity-planning solutions
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associated with the second stage.
P2 reduces the set of bins available in advance. Thus, it is necessary to combine

the available bins for each type (replacing the large bins that cannot be selected with
more small bins). The policy becomes significant only in extreme cases in which the
original availability of the bins is halved. Because of the high number of items to
be loaded in R2 and R3, the increase in the cost may be higher than 9% and 5%,
respectively. The solutions will include more bins, resulting in a higher fixed cost.
In the worst case, where the plan does not meet the demand, the recourse selects
extra capacity at a premium cost.

4.5.6 Effect of the capacity planning

This section focuses on capacity-planning decisions over a long period (e.g., 1 year).
The goal is to evaluate the robustness and reliability of the decisions when the
demand differs from the estimation (e.g., average demand larger than demand con-
sidered in the set of scenarios S).

We use a Monte Carlo simulation on a subset (10%) of the testing and realistic
instances. The simulation considers four demand scenarios:

1. High demand (Figure 4.3a): The average demand is higher than the demand
of the scenarios in S. This case study measures the cost of overusing the spot
market to obtain the extra capacity.

2. Low demand (Figure 4.3b): The average demand is lower than the demand
of the scenarios in S. This case study measures the cost of not using part of
the planned capacity.

3. Economic crisis (Figure 4.3c): The demand initially decreases rapidly to
a value below the estimated demand. It then stabilizes below the average
demand of the scenarios in S.

4. Economic recovery (Figure 4.3d): The demand is initially below the average
estimated demand, but it increases rapidly to a peak above the maximum
estimation. It then stabilizes.

The overall process of the simulation can be described as follows:
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• Given an instance and an associated set of scenarios S, find the capacity-
planning solution using the PH algorithm.

• Create a new set of scenarios S ′ as follows. Extract from S the maximum and
minimum demand and compute the difference ∆ between them. Select the
demand scenario and find K∆, where K = {10, 20, 30, 40, 50}% is an offset
factor that defines how far the demand distribution is from that estimated in
set S (see Figure 4.3). Finally, define 365 scenarios respecting the trends of
the demand and the characteristics of the instance (number of bin types and
spread class of items).

• For each scenario s ∈ S ′, build a VCSBPP with the bin set formed by the
bins included in the capacity-planning solution and the bins at premium cost
defined in the scenario, and the demand in terms of the items to be loaded.
The resulting VCSBPP is then solved by the heuristic solver.

• Given the optimal solution, compute the expected value of the total cost and
statistics related to the use of the capacity plan and the extra capacity.

To obtain the most reliable results, we repeat this process ten times and average the
results.

Figures 4.4 and 4.5 show the results of the Monte Carlo simulation for a testing
instance from T10 and a realistic instance from R3. The figures report, for each
demand scenario, the percentage usage of the capacity plan defined as the ratio of
the number of bins used in the solution to the total number of bins available in the
plan (Figures 4.4a and 4.5a), the percentage of extra bins in the solution defined
as the ratio of the number of extra bins to the total number of bins in the solution
(Figures 4.4b and 4.5b), and the percentage of the objective function associated with
the capacity plan (Figures 4.4c and 4.5c) for the offset factor K.

Despite the great difference between T10 and R3 in terms of the number of items
and thus of the total capacity to be loaded, the trends are similar. This indicates
that capacity-planning decisions are valid for widely varying problem settings. We
now analyze the individual results of the simulation. Increasing the offset factor
K increases or decreases the percentage of the capacity actually used according to
the demand trend in different demand scenarios. In fact, for the LOW and CRISIS
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scenarios, the use of the planned bins decreases, in the worst case, to 77% for T10
and 96% for R3. In contrast, for the HIGH and GROWTH scenarios, the number
of bins actually used in the solution is always greater than 90% and close to 100%
for realistic instances.

The results for the extra capacity are similar. The reduction in the capacity
used corresponds to a decrease in the need for extra capacity. This is particularly
evident for T10, for which no extra capacity is needed when the demand is minimum
(LOW scenario and K = 50%). Similarly, R3 needs only 5% of extra capacity,
which in this case corresponds to less than 2 bins. Conversely, when the demand
is underestimated, it may be necessary to purchase additional capacity: more than
20% for the HIGH scenario (about 10 bins for R3 and 7 bins for T10) and between
10% and 15% for the GROWTH scenario (about 7 bins for R3 and 4 for T10). These
results show the limited use of the spot market and further demonstrate the validity
of the solutions found.

The limited use of the spot market is also indicated by the objective function
for the capacity planning. It corresponds to the total fixed cost of the bins that
are selected in advance. This cost increases as demand decreases in the demand
scenarios. Indeed, when the demand is overestimated (scenarios LOW and CRISIS)
the capacity plan is generally adequate, and only a few adjustments are required for
a small set of scenarios. This means that most of the cost is due to the capacity
plan. For the instances considered, the range is 75% to 100%, values that indicate
the robustness of the solution even when the estimation errors are considerable.

The fill level of the planned bins and the extra bins is always between 99%
and 80% even for the LOW and CRISIS scenarios. This result demonstrates the
robustness of the capacity-planning decisions that need targeted adjustments in the
spot market to meet the demand. Other instances give similar results, and thus the
analysis is still valid.

Regarding the sensitivity to the various demand scenarios considered, we note
that the GROWTH scenario has a limited impact on the results with variations of
a few percentage points, while the most significant scenarios are LOW and HIGH.
Moreover, it is interesting that the CRISIS and LOW scenarios exchange roles for
values of K greater than 30%. For small values of K, CRISIS is the worst-case
scenario because of the decrease in the demand. For high values of K, LOW has
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the most significant impact because of the error in the estimation of the demand,
which is constant over time (for each scenario in S ′).
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Figure 4.3: Demand trends for the Monte Carlo simulation
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Figure 4.4: Monte Carlo simulation for a testing instance
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Figure 4.5: Monte Carlo simulation for a realistic instance
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Chapter 5

The Multi-Handler Knapsack
Problem under Uncertainty

This chapter introduces the MHKPu together with the stochastic formulation.
From this formulation, a deterministic approximation and a two-stage stochastic
model are derived. We show that, under a mild hypothesis on the unknown prob-
ability distribution, the deterministic approximation becomes a knapsack problem
where the total expected profit of the loaded items is proportional to the logarithm
of the total accessibility of those items to the set of handlers. The accuracy of such a
deterministic approximation is tested against the two-stage model. Very promising
results are obtained on a large set of instances in terms of both accuracy of solutions
and computational effort.

This chapter is organized as follows. In Section 5.1 the description of the problem
context and the literature review are reported. The stochastic model of theMHKPu

is described in Section 5.2 Section 5.3 is devoted to presenting the deterministic
approximation of the MHKPu, while in Section 5.4 its two-stage program with
fixed recourse is given. Finally, in Section 5.5 the deterministic approximation and
the two-stage program with fixed recourse are tested and compared on a set of newly
introduced instances.
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5 – The Multi-Handler Knapsack Problem under Uncertainty

5.1 Problem description and literature review

A large number of real-life situations can be satisfactorily modeled as a MHKPu,
e.g. in financial and resource allocation. The general idea is to think of the capacity
of the knapsack as the available amount of a resource (i.e. budget) and the items as
activities to which this resource can be allocated (i.e. shares). Moreover, these items
present profits which are random variables. The MHKPu may also appear as a
subproblem of larger optimization problems. A specific application of the MHKPu

can be found in the automotive sector (Tadei et al., 2002). There the delivery of cars
from manufacturers to dealers is not managed by the manufacturers themselves, but
is delegated to specialized companies. These companies manage both the finishing
operations on the cars (e.g. removal of the protective wax, installation of specific
accessories, etc.) and the logistics operations linked to delivery to the dealers. In
order to have a more flexible structure, the fleet of auto-carriers used to deliver
the cars is only partially owned by each company, while a substantial part of the
deliveries is sub-contracted to micro-companies with highly variable random costs.
Moreover, the auto-carriers have different capacities due to the presence of specific
technical features. From the point of view of the cars that must be delivered, the
net profit for the company is affected by different factors, including delays in the
finishing operations, additional costs due to violations of the negotiated deadlines
or additional transportation costs.

Another example of real-world applications of the MHKPu comes from trans-
continental naval shipping operations, where freight transportation from eastern
ports to Europe and North America is managed by specialized companies. The
competition between the transportation companies, as well as the possibility of
managing the port cranes by different operators, force the companies to consider
both the profit given by the shipped items and the additional costs due to the
logistics operations.

The problem can be also seen as a relaxation of container loading problems
where the capacity of the given containers are collapsed into one single container.
This leads to an approximation of the real problem suitable in strategic and tactical
planning, where the stochastic nature of the profits in more relevant than the actual
loading of the items. Moreover, it is required to obtain accurate solutions within a
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5 – The Multi-Handler Knapsack Problem under Uncertainty

limited computational effort in order to explore multiple scenarios of the underlying
business model.

Other applications of the MHKPu come from the domain of Smart City and
City Logistics, and particularly in the last mile delivery. In Chapter 3, we described
the managements of consolidation operations in the satellites. A similar problem is
present in yard management, where the profit oscillations are given by the operations
done by workers working for yard management companies, different in skills and
reliability.

In general, the MHKPu arises in logistics and production scheduling applica-
tions, where a single item can be managed by several handlers (third-party logistics
providers or sub-contractors), whose costs affect the net profit of the item itself. The
large number of possible handler cost scenarios and the difficulty to measure the as-
sociated handler costs suggest the representation of these net profits as stochastic
variables with unknown probability distribution.

5.1.1 Literature review

While different variants of the stochastic knapsack problem are present in the lit-
erature, the MHKPu is absent. For this reason, we will consider some relevant
literature on similar problems, highlighting the main differences with the problem
faced in this paper.

A first group of studies consider deterministic profits and random volumes, with
the goal of maximizing the total expected value of selected items, while ensuring that
the probability to satisfy the knapsack capacity is limited by some upper bounds.
Usually, heavy assumptions on the distribution of the random volumes are considered
(e.g. (Kleinberg et al., 2000; Goel and Indyk, 1999) where item volumes have a
Bernoulli distribution, and (Merzifonluoglu et al., 2012; Cohn and Barnhart, 1998)
where the distribution is a Normal one). These assumptions on the distributions
heavily limit the possibility to extend the results to other variants of the problem.

A second group of studies deals with random profits and the goal to assign a
set of items to the knapsack in order to maximize the probability of achieving some
target total value. They are usually more related to financial and economic issues
than to the impact of the operations on the final revenue (Lisser and Lopez, 2010;
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Henig, 1990; Steinberg and Parks, 1979). Unfortunately, these problems differ from
MHKPu because they consider the random profit associated only to the item, while
in MHKPu the randomness is given by the interaction between the item and the
handler managing the loading/unloading operations.

Finally, from a methodological point of view, the study most similar to the
present paper is (Perboli et al., 2012), where the authors consider the stochastic ver-
sion of the Generalized Bin Packing Problem, a recently introduced packing problem
where, given a set of bins characterized by volume and cost and a set of items char-
acterized by volume and profit (which also depends on bins), a subset of items is
selected for loading into a subset of bins which maximizes the total net profit, while
satisfying the volume and bin availability constraints (Baldi et al., 2012a). Similarly
to MHKPu, the item profits are random variables and the probability distribution
of these random variables is assumed to be unknown.

5.2 Problem formulation

In the MHKPu the item profits are random variables. They are composed by
a deterministic profit plus a random term, which represents the profit oscillation
due to the handling costs occurred by the different handlers for preparing items
for loading. In practice, such profit oscillations randomly depend on the handling
scenarios adopted by the handlers for preparing items for loading and are actually
very difficult to be measured. This implies that the probability distribution of these
random terms must be assumed as unknown.

Let it be

• I: set of items

• J : set of handlers

• L: set of handling scenarios for loading items into the knapsack

• pi: non-negative deterministic profit of item i

• pij: non-negative deterministic profit of item i when loaded by handler j
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• θ̃jl: random profit oscillation of any item when it is loaded by handler j under
scenario l ∈ L

• p̃ij(θ̃jl) = pij + θ̃jl: random profit of item i when loaded by handler j under
scenario l

• yi: boolean variable equal to 1 if item i is loaded, 0 otherwise

• xij: percentage of item i handled by handler j

• wi: volume of item i

• W : knapsack capacity.

The MHKPu is formulated as follows

max
{y,x}

∑
i∈I

piyi + E{θ̃jl}

∑
i∈I

∑
j∈J

∑
l∈L

p̃ij(θ̃jl)xij

 (5.1)

subject to

∑
i∈I

wiyi ≤ W (5.2)
∑
j∈J

xij = yi i ∈ I (5.3)

yi ∈ {0, 1} i ∈ I (5.4)

xij ≥ 0 i ∈ I, j ∈ J. (5.5)

The objective function (5.1) expresses the maximization of the profit of the items
loaded into the knapsack plus the expected value of the handling profit; constraint
(5.2) ensures that the capacity of the knapsack is not exceeded; constraints (5.3)
guarantee that any item is completely processed by some handlers only if it is loaded.
Finally, (5.4)-(5.5) are the integrality and non-negativity constraints, respectively.
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5.3 The deterministic approximation

Let us assume that θ̃jl are independent and identically distributed (i.i.d.) random
variables with a common and unknown probability distribution

F (x) = Pr{θ̃jl ≤ x}. (5.6)

Let us define with θ̃j the maximum of the random profit oscillations θ̃jl for
handler j among the alternative scenarios l ∈ L

θ̃j = max
l∈L

θ̃jl j ∈ J. (5.7)

Because F(x) is unknown, θ̃j is still of course a random variable with unknown
probability distribution given by

Bj(x) = Pr
{
θ̃j ≤ x

}
j ∈ J. (5.8)

As, for any handler j, θ̃j ≤ x⇐⇒ θ̃jl ≤ x, l ∈ L and θ̃jl are independent, using
(5.6) one gets

Bj(x) =
∏
l∈L

Pr
{
θ̃jl ≤ x

}
=
∏
l∈L

F (x) = [F (x)]|L| j ∈ J. (5.9)

We assume that the knapsack loading is efficiency-based so that, for any item i

and any handler j, among the alternative scenarios l ∈ L the one which maximizes
the random profit p̃ij(θ̃jl) will be selected. This does not mean that, in the stochastic
problem, we select the model scenario which maximizes the profit, but that, when
the actual profits become known (e.g. in day-by-day operations, the profits of a
given day), the choice among the different alternatives is done by taking the most
profitable one.

Then, the random profit of item i when it is loaded (i.e. yi = 1) by handler j
becomes

p̃ij(θ̃j) = max
l∈L

p̃ij(θ̃jl) = pij + max
l∈L

θ̃jl = pij + θ̃j i ∈ I : yi = 1, j ∈ J. (5.10)
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The maximum profit oscillation θ̃j can be either positive or negative, but, in
practice, its absolute value does not overcome the profit pij, so that p̃ij(θ̃j) is always
non negative.

The expected maximum total profit of the loaded items is obtained by solving
the following problem

E{θ̃}

max
{x}

∑
i∈I:yi=1

∑
j∈J

p̃ij(θ̃j)xij

 (5.11)

∑
j∈J

xij = 1 i ∈ I : yi = 1 (5.12)

xij ≥ 0 i ∈ I : yi = 1, j ∈ J. (5.13)

The objective function (5.11) maximizes the expected total profit for the loaded
items. Constraints (5.12) guarantee that each loaded item is completely processed
by some handlers, while (5.13) are the non-negativity constraints.

For each item i, let us consider the handler j = i∗ (for the sake of simplicity, we
assume it is unique), which gives the maximum random profit for loading the item.

The maximum random profit for loading item i then becomes

p̃i(θ̃i
∗) = max

j∈J
p̃ij(θ̃j) i ∈ I : yi = 1 (5.14)

and the optimal variables {xij} are

xij =

1, if j = i∗

0, otherwise
, (5.15)

which satisfy (5.12) and (5.13).

Using (5.14), (5.15), and the linearity of the expected value operator E, the
objective function (5.11) becomes

E{θ̃∗}

 ∑
i∈I:yi=1

p̃i(θ̃i
∗)
 =

∑
i∈I:yi=1

E{θ̃∗}
[
p̃i(θ̃i

∗)
]

=
∑

i∈I:yi=1
p̂i (5.16)
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where
p̂i = E{θ̃∗}

[
p̃i(θ̃i

∗)
]

i ∈ I : yi = 1. (5.17)

The MHKPu (5.1)-(5.5) then becomes

max
{y}

∑
i∈I

(pi + p̂i)yi (5.18)∑
i∈I

wiyi ≤ W (5.19)

yi ∈ {0,1} i ∈ I. (5.20)

However, the calculation of p̂i in (5.18) requires to know the probability distri-
bution of the maximum random profit for loading item i, i.e. p̃i(θ̃i

∗) in (5.17), which
will be derived in the next section.

By (5.10) and (5.14), let

Gi(x) = Pr
{
p̃i(θ̃i

∗) ≤ x
}

= Pr
{

max
j∈J

[
pij + θ̃j

]
≤ x

}
i ∈ I (5.21)

be the probability distribution of the maximum random profit for loading item i.
As, for any item i, maxj∈J

[
pij + θ̃j

]
≤ x ⇐⇒

[
pij + θ̃j

]
≤ x, j ∈ J , and

the random variables θ̃j are independent (because θ̃jl are independent), due to (5.8)
and (5.9), Gi{x} in (5.21) becomes a function of the total number |L| of handling
scenarios for loading as follows

Gi(x, |L|) = Pr
{

max
j∈J

[
pij + θ̃j

]
≤ x

}
=
∏
j∈J

Pr
{[
pij + θ̃j

]
≤ x

}
=
∏
j∈J

Pr
{
θ̃j ≤ x− pij

}
=
∏
j∈J

Bj (x− pij)

=
∏
j∈J

[F (x− pij)]|L| i ∈ I. (5.22)

First, let us consider the following aspect: the optimal solution of problem (5.11)-
(5.13) does not change if any arbitrary constant is added or subtracted to the random
variables θ̃j.

Let us choose this constant as the root a of the equation

1− F (a) = 1/|L|. (5.23)
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Let us assume that |L| is large enough to use the asymptotic approximation
lim|L|→+∞Gi(x, |L|) as a good approximation of Gi(x), i.e.

Gi(x) = lim
|L|→+∞

Gi(x, |L|)) i ∈ I. (5.24)

The calculation of the limit in (5.24) would require to know the probability
distribution F (.) in (5.6), which is still unknown. From Perboli et al. (2012), we know
that under a mild assumption on the shape of the unknown probability distribution
F (.) (i.e. it is asymptotically exponential in its right tail), the limit in (5.24) tends
towards the following Gumbel (Gumbel, 1958) probability distribution

Gi(x) = lim
|L|→+∞

Gi(x, |L|)) = exp
(
−Aie−βx

)
i ∈ I (5.25)

where β > 0 is a parameter to be calibrated and

Ai =
∑
j∈J

eβpij i ∈ I (5.26)

is the accessibility, in the sense of Hansen (1959), of item i to the set of handlers.

The accessibility in the sense of Hansen is defined as the potential of opportunities
for interaction and is a measure of the intensity of the possibility of interaction. Here
the interaction is between item and handlers. (5.26) shows that the accessibility of
an item to the set of handlers is proportional to a function of profits associated to
the different handlers.

Using the probability distribution Gi(x) given by (5.25), after some manipula-
tions, p̂i in (5.17) becomes

p̂i =
∫ +∞

−∞
xdGi(x) =

∫ +∞

−∞
x exp

(
−Aie−βx

)
Aie

−βxβdx = 1/β(lnAi + γ) i ∈ I
(5.27)

where γ ' 0.5772 is the Euler constant.

By (5.27), the MHKPu (5.18)-(5.20) becomes

max{y}
∑
i∈I

piyi + 1
β

∑
i∈I

yi lnAi + γ

β

∑
i∈I

yi =
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= max{y}
∑
i∈I

piyi + 1
β

ln
∏
i∈I
Ayii + γ

β

∑
i∈I

yi =

= max{y}
∑
i∈I

piyi + 1
β

ln Φ + γ

β

∑
i∈I

yi (5.28)

subject to (5.19)-(5.20), where Φ = ∏
i∈I A

yi
i is the total accessibility of the loaded

items to the set of handlers.
It is interesting to observe that the total expected profit of the loaded items is

proportional to the logarithm of the total accessibility of those items to the set of
handlers.

In the following, we will refer to the deterministic approximation of theMHKPu

as DA-MHKPu.

The following theorem holds

Theorem 1. At optimality, the percentage of each item i handled by handler j, xij,
is given by

xij = eβpij∑
j′∈J e

βpij′
, i ∈ I, j ∈ J. (5.29)

Proof. At optimality, the probability that item i is handled by handler j is equal to
the probability that handler j is that one of maximum profit. Then, from the Total
Probability Theorem (DeGroot and Schervish, 2002), one obtains

xij =
∫ +∞

−∞

∏
v /=j

exp
[
−e−β(x−piv)

]
d
[
exp

(
−e−β(x−pij)

)]
=

= eβpij
∫ +∞

−∞
βe−βxexp(−Aie−βx)dx =

= eβpij
∫ +∞

0
e−Aitdt = eβpij

Ai
=

= eβpij∑
j′∈J e

βpij′
i ∈ I, j ∈ J (5.30)

where t = e−βx.

It is trivial to check for xij the satisfaction of constraints (5.12) and (5.13).
Expression (5.29) represents a multinomial Logit model, which is widely used in

choice theory (Domencich and McFadden, 1975). In our case, it describes how the
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optimal handling of item i is split among different handlers j, due to the stochastic
handling profit of item i.

5.4 A two-stage stochastic model with fixed re-
course

Approximating the profit stochasticity by discretizing the probability distributions
and generating a set of scenarios S ⊆ L, theMHKPu (5.1)-(5.5) may be interpreted
as a two-stage program with fixed recourse.

Let be the variables

• yi : first stage decision variable equals to 1 if item i is loaded, 0 otherwise

• xij : first stage decision variable which represents the percentage of item i

handled by handler j

• y+s
i : second stage decision variable equals to 1 if item i is loaded under scenario
s, 0 otherwise

• y−si : second stage decision variable equals to 1 if item i is unloaded under
scenario s, 0 otherwise

• x+s
ij : second stage decision variable which represents the percentage of loaded

item i handled by handler j under scenario s

• x−sij : second stage decision variable which represents the percentage of un-
loaded item i handled by handler j under scenario s.

Moreover, we define by
π+s
ij = pi + pij + θ̃js (5.31)

and
π−sij = −π+s

ij − π′ij (5.32)

the stochastic profits related to loading and unloading operations in the second
stage, respectively, where −π′ij represents an extra cost to be paid for unloading
item i by handler j in the second stage.
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Finally, given the probability ρs of each second-stage scenario s, the two-stage
program with fixed recourse, named 2S-MHKPu, is formulated as follows

max
{y,x}

∑
i∈I

piyi +
∑
i∈I

∑
j∈J

pijxij +
∑
s∈S

ρs

∑
i∈I

∑
j∈J

π+s
ij x

+s
ij +

∑
i∈I

∑
j∈J

π−sij x
−s
ij

 (5.33)
∑
i∈I

wiyi ≤ W (5.34)∑
j∈J

xij = yi i ∈ I (5.35)
∑
i∈I

wiyi +
∑
i∈I

∑
s∈S

wiy
+s
i −

∑
i∈I

∑
s∈S

wiy
−s
i ≤ W (5.36)∑

j∈J
x+s
ij = y+s

i i ∈ I, s ∈ S (5.37)
∑
j∈J

x−sij = y−si i ∈ I, s ∈ S (5.38)

y+s
i ≤ 1− yi i ∈ I, s ∈ S (5.39)

y−si ≤ yi i ∈ I, s ∈ S (5.40)

x+s
ij = x+s′

ij i ∈ I, j ∈ J, s, s′ ∈ S (5.41)

x−sij = x−s
′

ij i ∈ I, j ∈ J, s, s′ ∈ S (5.42)

yi ∈ {0, 1} i ∈ I (5.43)

y+s
i ∈ {0, 1} i ∈ I, s ∈ S (5.44)

y−si ∈ {0, 1} i ∈ I, s ∈ S (5.45)

xij ≥ 0 i ∈ I, j ∈ J (5.46)

x+s
ij ≥ 0 i ∈ I, j ∈ J, s ∈ S (5.47)

x−sij ≥ 0 i ∈ I, j ∈ J, s ∈ S. (5.48)

The objective function (5.33) expresses the maximization of the total profit,
given by the sum of the first stage profit plus the expected profit of the items han-
dled in the second stage. Note that constraints (5.34) and (5.35) are the first stage
constraints, while constraints (5.36)-(5.42) are the second stage ones. In particu-
lar, constraints (5.34) and (5.36) ensure that the capacity of the knapsack is not
exceeded in first and second stages, respectively. Constraints (5.35) guarantee that
any item is completely processed by some handlers only if it is loaded. Constraints
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(5.37) and (5.38) guarantee that if an item is loaded or unloaded in the second stage
it is completely processed by some handlers. Constraints (5.39) establish that no
item can be handled for loading in the second stage if it has already been loaded in
the first stage. Similarly, constraints (5.40) establish that no item can be handled
for unloading in the second stage if it has not been loaded in the first stage. Con-
straints (5.41) and (5.42) are the non-anticipativity constraints. Finally, constraints
(5.43)-(5.45) and (5.46)-(5.48) are the integrality and the non-negativity constraints,
respectively.

The optimal solutions of the two-stage model 2S-MHKPu and the deterministic
approximationDA-MHKPu are strictly related. Let us suppose to have an optimal
solution of model DA-MHKPu. This model gives us a feasible approximation of
the first-stage variables yi, while it gives, by (5.29), a continuous relaxation of the
assignment variables xij. Notice that, given the values of the variables xij in (5.29),
one can derive a feasible first-stage solution of 2S-MHKPu by fixing to one, for
each item with yi = 1, any xij variable associated to it (for example, the one with
the greatest value). This means that the information given by model DA-MHKPu

is related to the first level only, while to obtain the possible recursion we need to
force the first-level solution in the two-stage model.

5.5 Experimental plan

The first goal is to assess the behavior of the 2S-MHKPu, the two-stage program
with fixed recourse for the MHKPu proposed. In particular, we aim to study the
structure of the solutions and impacts of uncertainty on them. The second is to
evaluate the effectiveness of the deterministic approximation of the MHKPu we
derived. Moreover, we want to calculate and evaluate the handling costs obtained
by using our approximated results as first-stage decisions of the 2S-MHKPu.

The two-stage program with fixed recourse was implemented with CPLEX 12.4.
Experiments were performed on a Intel i7 2 Ghz workstation with 6 GB of RAM.
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5.5.1 Instance set

No instances are present in the literature for this stochastic version of the knapsack
problem. We then generated instances, partially based on those available for the
deterministic knapsack problem (Pisinger, 2005).

Generate pi and pij according to
(Pisinger, 2005) and compute p̄ as
the mean of pi + pij

Scenario 1

θ̃j1 = D(θ̃js;Kp̄/2, 0, Kp̄)

Scenario 2

θ̃j2 = D(θ̃js;Kp̄/2, 0, Kp̄)

...

Scenario |S|

θ̃j|S| = D(θ̃js;Kp̄/2, 0, Kp̄)

Figure 5.1: Scenario tree generation

Instances were created with the goal of providing the means to explore the im-
pact of both the correlation between volume and profit of the items and the different
probability distributions of the profit oscillations. Thus, the instances are character-
ized by various correlation strengths, as well as different probability distributions.
Ten instances were randomly generated for each combination of the parameters.

• Number of items in the interval [100, 1000].

• Number of handlers in the interval [3, 5].

• Item volume uniformly distributed in the interval [1, R], where R = 1000.

• Deterministic item profits generated according to the following three rules
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UC: the deterministic item profits are uncorrelated to item volumes. They
are uniformly generated in the interval [1, R] (Martello and Toth, 1979;
Pisinger, 2005).

SC: the deterministic item profits are strongly correlated with the item vol-
umes. The profit is defined as wi+R/10, where wi is the item volume
(Martello and Toth, 1979; Pisinger, 2005).

PC: the deterministic item profits are proportionally correlated with the item
volumes.The profit is defined as αwi, where α is uniformly drawn from
the interval [1, 5].

• Capacity of the knapsack was computed according to h
H+1

∑
i∈I wi, where H is

the number of instances for a set of parameters and h ∈ [1, H] is the identifi-
cation of an instance in that subset. This approach covers a large number of
cases, diversifying the correlation between the parameters and the maximum
capacity of the knapsack.

• Scenario generation. For each combination of the parameters described above,
we first generate, for all the scenarios, the deterministic the item profits ac-
cording to the above three rules. Given the average value of the deterministic
profits, let p̄, let PK = Kp̄ be the maximum profit oscillation, where K be-
longs to the set {0.1, 0.3, 0.5}. The item profit oscillations were generated as
θ̃j|S| = D(θ̃js;Kp̄/2, 0, Kp̄), where D(θ̃js;µ,min,max) is the distribution D
with mean µ and truncated between the values min and max (see Figure 5.1).
In our tests we used the Uniform and the Gumbel distributions.

Having solved the instances 10 times each and computed the standard deviation
and the mean of the optima over the runs, we derived that the appropriate number
of scenarios is 50. For each instance, this value ensures a maximum ratio between
the standard deviation and the mean for the optima which is less than 1%.

The parameters were also chosen to reflect realistic cases of supply chain ap-
plications. In details, the different levels of correlation between item volumes and
profits have the double effect to explore more challenging instances from the com-
putation point of view (Pisinger, 2005) and explore price policies quite common in
transportation Crainic et al. (2011c). The interval of item volumes and their link
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to the knapsack capacity is derived from Pisinger (2005). Finally, the bound of
the stochastic oscillations has been set as in Tadei et al. (2012) and reflects typical
boundaries for profit oscillations in logistics.

5.6 Computational results

In this section, we report the computational results for the instances presented. After
the calibration of the β parameter (Section 5.6.1), we first study the effects of the
uncertainty on the 2S-MHKPu in Section 5.6.2. Then, we compare the solutions
obtained by means the two-stage program and the approximation in Section 5.6.3,
while the use of solutions of the approximation as first-stage decision of the 2S-
MHKPu is analyzed in Section 5.6.4.

5.6.1 Calibration of the model

The deterministic approximation of the MHKPu given by (5.28) requires an appro-
priate value of the positive parameter β. This parameter describes the propensity
of the model to choose among the set of the handlers characterized by different
handling profits.

β is obtained by calibration as follows. Let us consider the standard Gumbel
distribution G(x) = exp (e−x). If an approximation error of 2%� is accepted, then
G(x) = 1⇔ x = 6.08 and G(x) = 0⇔ x = −1.76. Let us consider the range [m,M ]
([0, PK ] in our case) where the stochastic profit oscillations are drawn from. The
following equations hold

β(m− ζ) = −1.76 (5.49)

β(M − ζ) = 6.08 (5.50)

where ζ is the mode of the Gumbel distribution G(x) = exp
(
e−β(x−ζ)

)
. From (5.49)

and (5.50) one gets the corresponding value of the parameter β

β = 7.84
M −m

= 7.84
PK

= 7.84
Kp̄

. (5.51)
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More sophisticated methods to calibrate β can be found in Galambos et al.
(1994).

5.6.2 Impact of uncertainty

In this section, we show the benefit of using the two-stage model with recourse for
the 2S-MHKPu. We do this by considering EV PI and V SS.

For each combination of the number of item (Column 1) and item profit gen-
eration rule (Column 2), Table 5.1 reports the average and maximum percentage
EV PI (Columns 3 and 4 for the gumbel distribution, and Columns 5 and 6 for
the uniform distribution). Similarly, Table 5.2 reports the average and maximum
percentage V SS.

IT PROFIT GUMBEL UNIFORM
EV PI [%] EV PImax [%] EV PI [%] EV PImax [%]

100 UC 3.99 7.79 4.57 8.71
SC 4.15 7.90 5.11 8.96
PC 4.25 8.49 4.88 9.54

1000 UC 4.14 8.11 4.79 9.19
SC 4.31 8.42 5.23 9.33
PC 4.68 9.47 5.39 10.24

Table 5.1: EVPI comparison

IT PROFIT GUMBEL UNIFORM
V SS [%] V SSmax [%] V SS [%] V SSmax [%]

100 UC 3.08 6.24 3.54 6.67
SC 3.24 6.37 3.69 6.94
PC 3.37 6.71 3.78 6.93

100 UC 3.34 6.35 3.99 6.71
SC 3.52 6.52 4.03 7.14
PC 3.98 6.93 4.15 7.19

Table 5.2: VSS comparison

The EV PI percentage is, in average, larger than 4%. The maximum varies
between 7.79% and 10.24%. It increases with the problem dimension and it is
maximum when the uniform distribution is considered. The average and maximum
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values of the V SS increase as the size of the instance increases. The gap between
the expected-value solution and the stochastic solution is always larger than 3%
for all sets considered. Even for smaller instances, the maximum V SS reaches 6%,
showing the losses incurred by following the the expected solution. It is interesting
to note that the most critical item profit generation rule is PC. PC, in fact, presents
the higher variability of the stochastic item profit. The results clearly show the
benefit of SP approach for the 2S-MHKPu.

5.6.3 Comparison of the two-stage program and the approx-
imation

The two-stage program solutions showed a common trend: the 2S-MHKPu re-
serves half of the total knapsack capacity in the second stage. For this reason, no
items are unloaded in 99% of the instances. This means that the 2S-MHKPu uses
the knowledge given by the scenarios in order to forecast what items can be im-
mediately loaded, while preserving a proper loading space for items to be arranged
in the recourse. This leads to a drastic reduction of the unloading and rearrang-
ing operations. Thus, the 2S-MHKPu policy is quite far from the usual supply
chain approach of almost fully loading the knapsack in advance, while the unload-
ing/rearranging operations are made at a later time and the percentage gap with
the optimal solution can easily overcome 10%.

Here we summarize the results for all instances and different combinations of the
parameters. The performance, in terms of optimality gap, is defined by the relative
percentage error of the approximated solution when compared to the optimum.
Moreover, we estimate the solution likelihood as the percentage of items loaded by
the approximated solution which are also present in the optimal solution.

Note that the comparison results do not consider the number of handlers, which
does not seem to affect the average performance of the deterministic approximation.

Table 5.3 reports the percentage optimality gap and the solution likelihood of the
deterministic approximation for all combinations of the parameters, while varying
the probability distribution (either Gumbel or Uniform). The first column displays
the number of items, while Columns 2-3 and 5-6 report the mean and variance of the
optimality gap, and Columns 4 and 7 show the mean percentage solution likelihood.
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The best mean values are obtained for the Gumbel distribution, that is very close to
the optimum (0.12% for larger instances) and characterized by a negligible variance.
Moreover, increasing the number of items gives better results for the deterministic
approximation. Similarly, in terms of likelihood, this method guarantees results
close to the optimum for both distributions.

IT GUMBEL UNIFORM
mean var likelihood mean var likelihood

100 0.25 0.05 97.12 1.33 0.74 96.26
1000 0.12 0.01 98.54 1.33 0.52 97.31

Table 5.3: Optimality gap and solution likelihood of the deterministic approximation

Table 5.4 reports the percentage optimality gap and the solution likelihood per-
formance of the deterministic approximation while varying the correlation between
profits and volumes of items (Column 2) and the probability distribution (Columns
3-8). The results indicate that the strongly correlated instances (SC) yield the
worst gaps, as well as the worst solution likelihood, with an average optimality gap
of about 0.27% and 1.54% for the Gumbel and the Uniform distributions, respec-
tively. For uncorrelated instances (UC) and the Gumbel distribution, some solutions
of the deterministic approximation exactly match the two-stage program solutions.

IT PROFIT GUMBEL UNIFORM
mean var likelihood mean var likelihood

100 UC 0.23 0.05 98.78 1.20 0.57 98.21
SC 0.27 0.06 95.28 1.54 0.93 95.19
PC 0.25 0.05 97.31 1.26 0.68 95.19

1000 UC 0.10 0.01 99.31 1.14 0.38 98.92
SC 0.15 0.02 98.06 1.56 0.55 96.40
PC 0.11 0.01 98.23 1.29 0.55 96.62

Table 5.4: Optimality gap and solution likelihood for the profit correlation rules

The analysis of the impact of the maximum profit oscillations on the results
accuracy is proposed in Table 5.5, considering different probability distributions
(Columns 3-8). Recalling the definition of the maximum profit oscillation PK = Kp̄,
column 2 represents the percentage K of the mean profit p̄ of the instances. The
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gap and the solution likelihood are clearly inversely proportional to the range of the
oscillations. Indeed, the best mean values are obtained for K = 0.1.

IT K GUMBEL UNIFORM
mean var likelihood mean var likelihood

100 0.1 0.09 0.01 97.56 0.53 0.04 96.67
0.3 0.30 0.06 97.02 1.33 0.27 96.54
0.5 0.36 0.06 96.80 2.13 0.64 95.58

1000 0.1 0.04 0.00 98.81 0.55 0.04 97.88
0.3 0.12 0.01 98.56 1.39 0.13 97.29
0.5 0.30 0.01 98.23 2.09 0.26 96.76

Table 5.5: Optimality gap and solution likelihood for the maximum profit oscillations

In conclusion, the results are very promising. The procedure performs very well
for all types of instances and distributions and guarantees a high accuracy. The best
performance is obtained if the random profits have a Gumbel distribution, that is
usually the case for real market oscillations. Moreover, the variance of the results is
tight and in some cases close to zero. With respect to the solution likelihood, the
mean values are all greater than 95% and increase according to the number of items.

As we expected, the mean optimality gap slightly increases for instances with
Uniform distributed profit oscillations, but results are stable for each combination of
the parameters and improve with respect to the number of items. Furthermore, it is
interesting to note that the hardest subset of instances are the stronglly correlated
ones. In fact, this kind of instance is characterized by a peculiar profit-volume
correlation, as shown in Pisinger (2005).

From a computational point of view, the average CPU-times to solve to opti-
mality the 2S-MHKPu and to compute the deterministic approximation are about
120 seconds and less than one second, respectively.

5.6.4 Usage of the approximated model as a decision tool

In the last part of this computational analysis, we analyze the losses, in terms of
optimality gap, obtained by plugging the solution of the deterministic approximation
of the MHKPu into the first-stage decision of the 2S-MHKPu (Maggioni and
Wallace, 2012). In this way we can measure the accuracy of the approximated model
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when used not only as a method to calculate the optimum, but also as a decision
tool to actually choose the items to be loaded. This means that the only degrees of
freedom to maximize the objective function are the item-to-handler assignments and
the handling operations in the second stage. Indeed, the effect of this strategy is the
increase of the unloading operations, which does not exceed 6% of total operations,
however.

Next, we present the comparison results organized as in Section 5.3. Tables 5.6,
5.7, and 5.8 summarize the average gap for all combinations of the parameters, for
the profit correlations and for the maximum profit oscillations, respectively.

IT GUMBEL UNIFORM
mean var mean var

100 1.18 0.44 1.99 1.40
1000 1.22 0.48 1.99 1.15

Table 5.6: Optimality gap with fixed first stage decision

IT PROFIT GUMBEL UNIFORM
mean var mean var

100 UC 1.05 0.31 1.77 1.06
SC 1.36 0.59 2.31 1.74
PC 1.12 0.38 1.88 1.28

1000 UC 1.01 0.28 1.75 0.88
SC 1.49 0.64 2.32 1.25
PC 1.15 0.42 1.91 1.18

Table 5.7: Optimality gap with fixed first stage decision for the profit correlation
rules

As expected, the best performance is obtained by instances with the Gumbel
distribution (Table 5.6). With respect to the profit correlations, the observed gap
of SC instances is worse than other rules (Table 5.7). Finally, the gap increases
according to the maximum range of the random profits (Table 5.8).
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IT K GUMBEL UNIFORM
mean var mean var

100 10 0.47 0.03 0.81 0.09
30 1.24 0.10 2.01 0.48
50 1.82 0.26 3.13 0.93

1000 10 0.47 0.02 0.82 0.08
30 1.26 0.10 2.08 0.29
50 1.92 0.26 3.07 0.53

Table 5.8: Optimality gap with fixed first stage decision for the maximum profit
oscillations
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Chapter 6

The Multi-Path Travelling
Salesman Problem with stochastic
travel times

In this chapter we consider the mpTSPs, a recently introduced variant of the stan-
dard TSP related to Smart City and City Logistics applications (Tadei et al., 2014).
After defining the problem and the source of the uncertainty, we propose two two-
stage stochastic formulation of mpTSPs: one based on the sub-tour elimination
constraints and one based on network flow constraints. We then present an heuris-
tic strategy based on the PH algorithm for the first formulation, which decomposes
the mpTSPs in deterministic TSP problems and guides the search process towards
the consensus among them. Whilst, the second formulation is solve by means of
CPLEX proving a reference solution to validate the heuristic. The accuracy and the
efficiency of the latter is demonstrated through extensive experimental campaign. A
set of realistic instance sets based on the traffic sensor network of the city of Turin is
introduced. The instance set is designed to analyze the effectiveness of the heuristic
proposed and to measure the impacts of uncertain on the problem.

The paper is organized as follows. In Section 6.1 the description of the problem
and a detailed literature review on related works are given. In Section 6.2 the two-
stage models with recourse are presented, while the PH algorithm is introduced in
Section 6.3. The experimental plan and the computational results are then given in
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Section 6.4.

6.1 Problem description and literature review

The mpTSPs arises mainly in City Logistics applications. In fact, while at the
operational level it is possible to know with a good approximation, for each path,
the actual travel time, this is not the case at the planning level, where the tour
must be built in order to cope with different working days. In the case of delivery
express companies, for example, new experimental delivery policies concerns some
small storage boxes (BentoBox) in malls (CITYLOG Consortium, 2010). This means
that their drivers have a fixed tour to reach the malls, valid for a period of several
days (usually one month). Moreover, for operational reasons due to the usual door-
to-door deliveries, the tour can start in different working hours. Thus, at this level,
even knowing the order of the nodes to visit, the exact paths between the nodes
and their travel times are random variable. A similar behavior can be seen in
the management of fleets of hybrid vehicles in urban freight delivery. In this case
the different paths represent the different operational modes of the hybrid vehicle,
e.g. pure electric, traditional with battery recharge or traditional without battery
recharge. The actual battery consumption/recharge is affected by several factors,
including time distribution of the vehicle speed, street type, road congestion, number
of Stop&Go. As this information is only partially known at the moment of the trip
planning, it is surrogated in a unknown oscillation of the mean usage of the battery
itself.

6.1.1 Literature review

While different stochastic and/or dynamic variants of TSP (and more in general of
vehicle routing problem) are present in the literature (Gendreau et al., 1996; Golden
et al., 2008; Pillac et al., 2013), the mpTSPs has been recently defined. For this
reason, we also consider some relevant literature on similar problems, highlighting
the main differences with the problem faced in this paper.

In Tadei et al. (2014) the authors introduce the problem and derive a determinis-
tic approximation. The quality of the deterministic approximation is then evaluated
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by comparing it with the Perfect Information results obtained by means of a Monte
Carlo method. The comparison shows a good accuracy of the deterministic approx-
imation, with a reduction of the computational times of two orders of magnitude.

In the literature several stochastic variants of the TSP problems can be found.
In these problems a known distribution affecting some problem parameters is given
and the theoretical results are strongly connected with the hypotheses on such dis-
tribution. The main sources of uncertainty are related to the arc costs (Leipala,
1978; Toriello et al., 2012) and the subset of cities to be visited with their location
(Jaillet, 1988; Goemans and Bertsimas, 1991).

If we consider general routing problems, different types of uncertainty and dy-
namics can be considered. The most studied variants are related to the online arrival
of customers, with the requests being both goods (Hvattum et al., 2006, 2007; Ichoua
et al., 2006; Mitrović-Minić and Laporte, 2004) and services (Beaudry et al., 2010;
Bertsimas and Van Ryzin, 1991; Gendreau et al., 1999; Larsen et al., 2004). Only
in recent years the dynamics related to travel times has been considered in the lit-
erature (Chen et al., 2006; Fleischmann et al., 2004; Güner et al., 2012; Kenyon and
Morton, 2003; Tagmouti et al., 2011; Taniguchi and Shimamoto, 2004), while, to the
best of our knowledge, service time has not been explicitly studied. The last variants
of vehicle routing problems are related to the dynamically revealed demands of a
known set of customers (Novoa and Storer, 2009; Secomandi and Margot, 2009) and
the vehicle availability (Li et al., 2009a,b; Mu et al., 2011). For a recent review, the
reader can refer to (Pillac et al., 2013).

All the papers presented in this survey deal with uncertainty and/or dynamic as-
pects of the routing problems where the magnitude of the uncertainty is limited and
the parameter values are revealed in a time interval compatible with the operations
optimization. Then the multi-path aspects can be ignored, being possible an a priori
choice of the path connecting the two nodes. In our case, the mpTSPs is thought
to be used for planning a service. Thus, the enlarged time horizon as well as strong
dynamic changes in travel times due to traffic congestion and other nuisances, typ-
ical of the urban transportation, induce the presence of multiple paths connecting
every pair of nodes, each one with its stochastic cost. This is, to our knowledge, an
aspect of the transportation literature considered only in transshipment problems,
where the routing aspect is heavily relaxed (Baldi et al., 2012b; Maggioni et al.,
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2009; Tadei et al., 2012).

6.2 Problem formulation

To include the random nature of the travel time process in a urban context, we
consider a two-stage stochastic linear program with recourse. The travel time oscil-
lation ∆k

ij by using path k between nodes i and j, is then described by a stochastic
process represented using a discrete random variable. All possible discrete values
that the random variable can assume, is represented by a finite set of vectors, named
scenarios. We represent each realization (scenario) of random travel time oscillation
process by ∆ks

ij . We denote with S the set of time scenarios, and the probability
of each scenario s ∈ S by ps. In two-stage stochastic programming, we explicitly
classify the decision variables according to whether they are implemented before of
after an outcome of the random travel time variable of each path is observed. In the
multi-path traveling salesman problem, in the first stage the decision maker does
not have any information about the travel time oscillation. However, the routing
among the nodes should be determined before the complete information is available.
Thus, the first-stage decision variable yij is represented by the nodes i and j to be
visited in a tour. In the second stage, travel time oscillations are available and the
paths k between each pair of nodes i and j, xksij (recourse actions) can be calculated.
The objective of the two-stage stochastic model with recourse for the mpTSPs is
the minimization of the total cost due to paths congestion. In the next subsections
we consider two different model for this problem:

1. A sub-tour elimination based two-stage stochastic model with recourse, which
is an is an extension of the classical deterministic sub-tour elimination model
(Cook, 2012);

2. A flow-based two-stage stochastic model with recourse derived from the MIP
model of the Two-Echelon VRP problem by Perboli et al. (2011).
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6.2.1 A sub-tour elimination based two-stage model with
recourse for the mpTSPs

First we consider a sub-tour elimination based two-stage stochastic model with re-
course. The notation adopted is the following:
Sets:

• N : set of nodes

• U : subset of N

• S: set of time scenarios

• Kij: set of paths between nodes i and j

Parameters:

• c̄ij ≥ 0: estimation of the mean unit travel time cost between nodes i and j

• cksij ≥ 0: unit random travel time cost of the path k ∈ Kij under the time
scenario s ∈ S

• ∆ks
ij = cksij − c̄ij: error on the travel time cost estimated for the path k ∈ Kij

under time scenario s ∈ S

• ps: probability of time scenario s ∈ S

Variables:

• yij: boolean variable equal to 1 if node j is visited just after node i, 0 otherwise

• xksij : boolean variable equal to 1 if path k ∈ Kij is selected at stage 2, 0
otherwise.

The deterministic equivalent formulation of the sub-tour elimination based two-
stage stochastic model with recourse is as follows:

min
{y,x}

∑
i∈N

∑
j∈N

c̄ijyij +
∑
s∈S

ps
∑
i∈N

∑
j∈N

∑
k∈Kij

∆ks
ij x

ks
ij

 (6.1)
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subject to

∑
j∈N :j /=i

yij = 1 i ∈ N (6.2)

∑
i∈N :i /=j

yij = 1 j ∈ N (6.3)

∑
i∈U

∑
j /∈U

yij ≥ 1 ∀ U ⊂ N (6.4)

∑
k∈Kij

xksij = yij i ∈ N, j ∈ N, s ∈ S (6.5)

xksij ∈ {0,1} k ∈ Kij, i ∈ N, j ∈ N, s ∈ S (6.6)

yij ∈ {0,1} i ∈ N, j ∈ N (6.7)

Problem (6.1)-(6.7) is a large-scale binary problem. The first sum in the ob-
jective function (6.1) represents the first-stage travel cost, while the second sum
represents the recourse action, consisting in choosing the best path k ∈ Kij under
time scenario realization s ∈ S. Constraints (6.2) and (6.3) are the standard first-
stage assignment constraints and (6.4) represent the first-stage sub-tour elimination
constraints. Constraints (6.5) guarantee that path k between nodes i and j can be
chosen at stage 2 only if nodes i and j were part of the tour fixed at stage 1. Finally,
the integrality constraints (6.6)-(6.7) define the first-stage and second-stage decision
variables of the problem. By solving problem (6.1)-(6.7), one finds a single tour yij,
∀i, j ∈ N , with minimum travel time cost overall scenarios included in S.

The main problem when dealing with this formulation are the constraints (6.4),
which are exponential in their number and they require a dynamic cut generation
method only (Applegate et al., 2007). This makes difficult to incorporate such a
model in a MIP solver. On the other hand, as we will show in Section 6.3, this
model makes quite easy to define an efficient PH-based algorithm.

6.2.2 A flow-based two-stage model with recourse for the
mpTSPs

We consider now a flow-based two-stage stochastic model with recourse for the
mpTSPs. The notation adopted is the same as in the previous subsection. A first
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stage real variable φij associated to the flow on the arc (i, j) is also introduced.

The deterministic equivalent formulation of the flow-based two-stage stochastic
model with recourse is as follows:

min
{y,x}

∑
i∈N

∑
j∈N

c̄ijyij +
∑
s∈S

ps
∑
i∈N

∑
j∈N

∑
k∈Kij

∆ks
ij x

ks
ij

 (6.8)

subject to

∑
j∈N :j /=i

yij = 1 i ∈ N (6.9)

∑
i∈N :i /=j

yij = 1 j ∈ N (6.10)

∑
i∈N :i /=j

φij −
∑

k∈N :k /=j
φjk = 1 ∀j ∈ N \ {1} (6.11)

∑
i∈N :i /=1

φi1 −
∑

k∈N :k /=1
φ1k = 1− |N | (6.12)

∑
k∈N :k /=1

φ1k = |N | (6.13)

φij ≤ |N |yij i ∈ N, j ∈ N (6.14)∑
k∈Kij

xksij = yij i ∈ N, j ∈ N, s ∈ S (6.15)

xksij ∈ {0,1} k ∈ Kij, i ∈ N, j ∈ N, s ∈ S (6.16)

yij ∈ {0,1} i ∈ N, j ∈ N (6.17)

While the meaning of the objective function (6.8) and the constraints (6.9) and (6.10)
is the same of (6.1), (6.2), and (6.3) in the previous model, the sub-tour elimination
constraints (6.4) are rewritten by means of the constraints (6.11), (6.12), (6.13), and
(6.14). Without loosing in generality, let us consider node 1 as the starting point
of our tour. Constraints (6.12) and (6.13) force the node 1 to have an outbound
flow equal to to the number of nodes |N | and an inbound with value 1. Thus,
the subtours are forbidden by constraint (6.11), which obliges every node to reduce
by 1 the outbound flow if compared to its inbound one. If a subtour exists, this
constraint is violated by at least one of the nodes in the subtour (see Perboli et al.
(2011) for further details). Finally, constraint (6.14) links the binary variables yij
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to the existence of a flow in an arc. This constraint, with the constraints (6.9)
and (6.10), force to have exactly one arc with a non zero flow both as inbound and
outbound.

This flow-based model is more suitable to be solved by means of MIP solvers,
involving O(N) constraints instead of the exponential number of constraints (6.4).

6.3 Heuristic based on progressive hedging

This section introduces an heuristic method based on the PH algorithm for the
mpTSPs. The steps of the method are summarized in the Algorithm 2.

As stated in the Chapter 4 for the SVCSBPP, the method applies a SD tech-
nique based on the augmented Lagrangean relaxation, which separates the stochastic
problem following the possible scenarios of the random event. Section 6.3.1 shows
how the mpTSPs can be decomposed into deterministic TSP subproblems with
modified fixed costs. Then, the method proceeds in two phases. Phase 1 aims
to obtain consensus among the subproblems formed by the SD (see Section 6.3.2),
iteratively solving the individual penalized subproblems at each iteration. The indi-
vidual solutions are then aggregated in order to obtain a reference solution. Section
6.3.3 proposes adjustment strategy of the penalties based on the deviation of the
scenario solutions from the reference solutions that gradually guides the search pro-
cess toward scenario consensus. The search process continues until the consensus
or termination criteria are met (see Section 6.3.4). When consensus is not achieved
in the first phase, Phase 2 solves the restricted mpTSPs obtained by fixing the
first-stage variables for which consensus has been reached.

6.3.1 Scenario decomposition of the mpTSPs

We refer to the sub-tour formulation (6.1) - (6.7), which presents a structure, in
terms of variables and constraints, closes to the classical formulation of the TSP
problem. This enables the use of a specialized method in the PH algorithm.

To apply the SD scheme proposed by Rockafellar and Wets (1991), we define
the following vectors: ysij ∈ {0,1}, ∀i, j ∈ N and ∀s ∈ S. In doing so, a copy of the
first stage variables is created for each scenario s ∈ S. Model (6.1)-(6.7) can now
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Algorithm 2 PH-based meta-heuristic for the mpTSPs

Scenario decomposition
Generate a set of scenarios S;
Decompose the resulting deterministic model ((6.1)–(6.7)) by scenario using aug-
mented Lagrangian relaxation;

Phase 1
ν ← 0, λsνij ← 0, ρνij ← c̄ij/2
while Termination criteria not met do
For all s ∈ S,

solve the corresponding Traveling Salesman Problem subproblem → ysνij ;
Compute temporary global solution

ȳνij ←
∑
s∈S

psy
sν
ij

Penalty adjustment
λsνij = λsν−1

ij + ρ
(ν−1)
ij (ysνij − ysνij )

ρνij ← αρ
(ν−1)
ij

Building a feasible tour
Apply algorithm 3 to the reference solution ȳνij → ŷνij;
Evaluate ŷνij and update the best solution if necessary;

if consensus is at least σ% then
ȳνij = ŷνij

Phase 2
if consensus is not met then
Fix consensus variables in model ((6.1)–(6.7));
Solve restricted ((6.1)–(6.7)) model using a MIP solver.
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be rewritten as follows:

min
{y,x}

∑
s∈S

ps

∑
i∈N

∑
j∈N

c̄ijy
s
ij +

∑
i∈N

∑
j∈N

∑
k∈Kij

∆ks
ij x

ks
ij

 (6.18)

subject to

∑
j∈N :j /=i

ysij = 1 i ∈ N, s ∈ S (6.19)

∑
i∈N :i /=j

ysij = 1 j ∈ N, s ∈ S (6.20)

∑
i∈U

∑
j /∈U

ysij ≥ 1 ∀U ⊂ N, s ∈ S (6.21)

∑
k

xksij = ysij i ∈ N, j ∈ N, s ∈ S (6.22)

ysij = ytij i ∈ N, j ∈ N, s, t ∈ S (6.23)

xksij ∈ {0,1} k ∈ Kij, i ∈ N, j ∈ N, s ∈ S (6.24)

ysij ∈ {0,1} i ∈ N, j ∈ N, s ∈ S (6.25)

Equations (6.23) are referred to as the non-anticipativity constraints. These
constraints are used to make sure that the decisions on the tour are not tailored
according to the scenarios considered in S. All the scenario tours must be equal
to each other to produce a single implementable tour. At this point, an important
observation may be made: relaxing constraints (6.23) the problem (6.18)-(6.25)
becomes scenario separable. However, it should be noted that the number of con-
straints defined in (6.23) may become large given the size of S. Therefore, a different
expression of the non-anticipativity constraints is required.

If ȳij ∈ {0,1}, ∀i, j ∈ N is defined as the overall tour vector (i.e. the tour for all
scenarios considered), then the following constraints are equivalent to (6.23):

ȳij = ysij i ∈ N, j ∈ N, s ∈ S (6.26)

ȳij ∈ {0,1} i ∈ N, j ∈ N, (6.27)

Constraints (6.26) force each scenario tour to be equal to the overall tour. As
for (6.27), they are simply the required integrality conditions on the overall design.
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By using this particular formulation for the non-anticipativity constraints, when La-
grangean relaxation is applied on (6.26), one can penalize individually the difference
between the scenario solution and the overall solution for each node within the tour.

Constraints (6.26) are relaxed using an augmented Lagrangean strategy. We
thus obtain the following objective for the overall problem:

min
{y,x}

∑
s∈S

ps

∑
i∈N

∑
j∈N

c̄ijy
s
ij +

∑
i∈N

∑
j∈N

∑
k∈Kij

∆ks
ij x

ks
ij

+
∑
i∈N

∑
j∈N

λsij
(
ysij − ȳij

)
+ 1

2
∑
i∈N

∑
j∈N

ρ
(
ysij − ȳij

)2
 ,

(6.28)

where λsij, ∀i, j ∈ N and ∀s ∈ S, define the Lagrangean multipliers for the relaxed
constraints and ρ is a penalty ratio. Within function (6.28), let us consider the
quadratic term. Given the binary requirements for the scenario tour variables and
for the overall tour vector, this term becomes:

∑
i∈N

∑
j∈N

ρ
(
ysij − ȳij

)2
=
∑
i∈N

∑
j∈N

(
ρ(ysij)2 − 2ρysij ȳij + ρ(ȳij)2

)
=

=
∑
i∈N

∑
j∈N

(
ρysij − 2ρysij ȳij + ρȳij

)
.

(6.29)

Therefore, the objective of the relaxed problem can be formulated as follows:

min
{y,x}

∑
s∈S

ps

∑
i∈N

∑
j∈N

(
c̄ij + λsij − ρȳij + ρ

2

)
ysij +

∑
i∈N

∑
j∈N

∑
k∈Kij

∆ks
ij x

ks
ij


−
∑
i∈N

∑
j∈N

λsij ȳij + ρ

2
∑
i∈N

∑
j∈N

ȳij.

(6.30)

Given the constraints of the model and considering the objective function (6.30),
the relaxed problem is not scenario separable. However, if the overall design ȳij,
∀i, j ∈ N , is fixed to a given value vector, then the model decomposes according
to the time scenarios included in set S. All scenarios subproblems can then be
expressed as follow:

min
{y,x}

∑
i∈N

∑
j∈N

(
c̄ij + λsij − ρȳij + ρ

2

)
ysij +

∑
i∈N

∑
j∈N

∑
k∈Kij

∆ks
ij x

ks
ij

 (6.31)
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subject to

∑
j∈N :j /=i

ysij = 1 i ∈ N, s ∈ S (6.32)

∑
i∈N :i /=j

ysij = 1 j ∈ N, s ∈ S (6.33)

∑
i∈U

∑
j /∈U

ysij ≥ 1 ∀U ⊂ N, s ∈ S (6.34)

∑
k∈Kij

xksij = ysij i ∈ N, j ∈ N, s ∈ S (6.35)

xksij ∈ {0,1} k ∈ Kij, i ∈ N, j ∈ N, s ∈ S (6.36)

ysij ∈ {0,1} i ∈ N, j ∈ N, s ∈ S. (6.37)

At optimality, the paths of the problem (6.31)-(6.37) within the tour are given
by x

ks
ij = ysij i ∈ N, j ∈ N, k = k∗

xksij = 0 i ∈ N, j ∈ N, k /= k∗,
(6.38)

where k∗ ∈ Kij is the path between nodes i and j with minimum travel time cost.
Thus, each scenario subproblem can be reduced to a TSP as follows:

min
{y}

∑
i∈N

∑
j∈N

(
c̄ij + ∆k∗s

ij + λsij − ρȳij + ρ

2

)
ysij (6.39)

subject to

∑
j∈N :j /=i

ysij = 1 i ∈ N, s ∈ S (6.40)

∑
i∈N :i /=j

ysij = 1 j ∈ N, s ∈ S (6.41)

∑
i∈U

∑
j /∈U

ysij ≥ 1 ∀U ⊂ N, s ∈ S (6.42)

ysij ∈ {0,1} i ∈ N, j ∈ N, s ∈ S. (6.43)

An important observation can be made. The subproblems (6.39)-(6.43) are de-
terministic TSP with modified travel time costs. From a methodological perspective,
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this turns out to be very interesting since one is able to use some of the more efficient
algorithms that have been developed for the deterministic TSP. Concorde (Apple-
gate et al., 2007; Cook, 2012) is used to address these problems, which, embedding
a cutting-plane algorithm within a branch-and-bound search, is currently one of the
best procedures for the TSP.

For all scenarios s ∈ S within the subproblems (6.39)-(6.43), the Lagrangian
multipliers λsij, ∀s ∈ S, and the value ρ, are used to penalize the differences that may
exist between the scenario tour and the fixed overall tour, which serves as a reference
point. Therefore, these penalties can be adjusted in order to drive all scenario
subproblems to converge to a single design that is defined by ȳij, ∀i, j ∈ N . Next
sections describe how the search process guides the consensus among the scenarios.

6.3.2 Defining the overall capacity plan

Let ν define the index of the current iteration of the PH algorithm that sequentially
solves subproblems (6.39)-(6.43) ∀s ∈ S and then, produces an overall tour yνij
∀i, j ∈ N using an aggregation operator on first-stage decision variables of each
scenario subproblem ysνij ∀s ∈ S and ∀i, j ∈ N . For the mpTSPs, we simply use
an average function to combine scenario solutions into a single solution where the
weights are the probabilities associated with the scenarios:

yνij =
∑
s∈S

psy
sν
ij , ∀i, j ∈ N. (6.44)

It is very important to note that (6.44) does not necessarily produce an overall
feasible tour. Considering all scenario decision variable for a given pair of nodes
i, j ∈ N (e.g. ysνij ∀s ∈ S), if it has consensus for all scenarios, then yνij ∈ {0,1}.
Otherwise, there is non-consensus and 0 < yνij < 1, which is infeasible given the
integrality constraints on the variables. In the case of non-convex problems, like
the mpTSPs, the aggregation operator defined above does not guarantee that the
algorithm converge to an optimal solution. Moreover, it cannot ensure that a good
(feasible) solution will be obtained for the present stochastic problem.

However, (6.44) is used as a reference solution with the objective of guiding the
search process of the PH algorithm to identify arcs for which a consensus is possible.
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In fact, when there is no consensus for a given pair of nodes i, j ∈ N , the value yνij
provides information concerning the convergence of the overall solution. More in
detail, if yνij is close to zero, the PH changes the Lagrangean multipliers in order to
forbid the arc between nodes i and j in the overall tour. Otherwise, if the value of
yνij is close to one, the algorithm prompts the use of the associated arc.

To produce a feasible solution ŷνij, ∀i, j ∈ N for the problem (6.39)-(6.43) using
values yνij, ∀i, j ∈ N , a simple constructive heuristic is applied. The heuristics, sum-
marized in the Algorithm 3, simply adds one arc after the other ordering them by
non-increasing order of consensus. It should be noted that although the obtained fea-
sible solution can be used as the reference point within the PH algorithm, whenever
the consensus is low, ŷνi′j′ it may wrongly bias the search process of penalization of
the non-consensus scenario solutions with respect to the referencer point. Therefore,
feasible solutions are only used to accelerate the convergence in advanced iterations
of the algorithm. More in detail, when at least σ% of the first stage variables have
reached consensus, we use the feasible solution as reference solution for the next
iteration. The current implementation of this heuristic strategy uses σ% = 75%;

Algorithm 3 Constructive method for a feasible solution for mpTSPs

Initialization
{i′, j′} ← {i, j} : max

i,j∈N
yνij

N ′ ← {i′, j′}
ŷνi′j′ ← 1

while An Hamiltonian cycle is not built do
i′ ← j′

j′ ← j : max
j∈N/{N ′}

yνi′j

N ′ ← N ′ ∪ {j′}
ŷνi′j′ ← 1

6.3.3 Strategies for penalty adjustments

Given the scenario solutions obtained, i.e., the Hamiltonian cycle designed in each
scenario, and using the aggregation operator (6.44), the methodology proposed gen-
erates a reference solution that serves as the overall tour. To induce consensus
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among the scenario subproblems, the travel times are then adjusted to penalize non-
consensus between scenario solutions and reference point. This section describes the
strategy used to perform these adjustments for the mpTSPs.

Recalling that PH uses a scenario decomposition based on an augmented La-
grangean relaxation, for a given iteration ν, let λsνij define the value of Lagrangean
multiplier associated with the relaxed non-anticipativity constraint for the decision
variable on the arc between nodes i and j for the scenario s and let ρνij define the
value of the ratio for the quadratic penalty. Following the innovations for the PH
algorithm proposed by Watson and Woodruff (2011), our strategy uses a variable-
specific and per-iteration quadratic penalty ρνij. Then, at each iteration ν, the values
λaνij and ρνij are updated as follows, ∀i, j ∈ N and ∀s ∈ S:

λsνij = λsν−1
ij + ρν−1

ij (ysνij − yνij) (6.45)

ρνij ← αρν−1
ij , (6.46)

where α > 1 is a given constant, ρ0
ij is fixed to a positive value to ensure that

ρνij → ∞ as the number of iterations ν increases. It is important to note that an
inaccurate choice of ρ0 may cause a premature convergence of the search process to
a solution that may be quite far from an optimal one. To avoid this situation, we
select ρ0

ij proportional to the unit-cost in the objective function of the associated
decision variable: ρ0

ij = c̄ij/2.
For a particular scenario s, the equation (6.45) can reduce, increase or maintain

unchanged the contribution in the objective function of the scenario problem. On
the contrary, the value of ρνij simply increases as the number of iteration grows
according to (6.46).

6.3.4 Implementation of the methodology

We conclude the description of the algorithm by introducing the stopping criteria
and the parallel implementation.

Although there are not, yet, theoretical results on the convergence of the PH
algorithm in integer cases, the proposed methodology for mpTSPs converges to
a consensual solution in a finite number of iterations. However, stopping criteria
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based on maximum limit of CPU time and number of iterations are implemented
in the algorithm. Precisely, we defined the following criteria: one hour of CPU
time and 200 iterations. However, letting the method stop on such criteria may
entail solutions that have not been converged. Thus the algorithm proceeds in two
phases. Firstly, the algorithm described in previous sections is executed until it
stops if consensus is achieved for all scenarios or once it satisfies one the stopping
criteria. Secondly, if necessary, the restricted RP (6.1)-(6.7), obtained by fixing all
arcs for which the consensus has been achieved, is solved to optimality by means of
branch-and-bound using CPLEX.

Concerning the parallel implementation, the proposed method implements the
master-slave synchronous strategy presented in the Section 4.4.5 for the SVCS-
BPP. The master controls the search, computes the global design, and performs
the parameters updates, while the slave processors modify the costs associated to
the arcs of the graph and solve the resulting scenario subproblems. Synchronization
is performed at the end of each iteration.

6.4 Computational results

In this section, we report the experimental plan, the set of instances considered for
the tests and the computational results.

PH algorithm validation (Section 6.4.2): mpTSPs includes many binary vari-
ables in both the stages. This makes the model hard to solve when exact
methods such as a commercial MIP solver. We discuss this issue and, then,
we present extensive results showing that, compared with a commercial MIP
solver, PH finds a good solutions in less time. More in detail, we compare the
results (objective values and computational times) from the PH algorithm and
the direct solution of the RP (6.8)–(6.17). Being the two models equivalent
and following the computational results presented by Perboli et al. (2011), we
consider the flow-based two-stage stochastic model, using CPLEX 12.5 as MIP
solver.

Impact of the uncertainty (Section 6.4.3): These tests show the benefits of using
the two-stage model with recourse compared to the WS and the EV. Here, the
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goal is to measure the impact that uncertainty on the travel time has on the
planning of the tour. An important point when comparing RP and EV is to
determine the difference in the first-stage decisions, i.e., the arcs of the tour
planned in advance. This analysis is done by comparing the solution obtained
from PH and those obtained by solving a simpler deterministic problem in
which the random parameters are replaced by their expected values. The
latter does not guarantee optimality or feasibility.

All the tests were performed on an Intel I7 2 GHz workstation with 8 GB of
RAM. Concerning the parallel computation, CPLEX and PH are executed with a
limit of 8 parallel threads.

6.4.1 Instance set

No real-life instances are present in the literature for this stochastic version of the
TSP problem. Then, with the purpose to analyze the effectiveness of the method-
ology proposed for the mpTSPs with respect to the RP approach and to measure
the impacts of uncertain travel time cost in TSP problems, we generate an instance
set based on the real traffic sensor network of the medium sized city, Turin in Italy,
which allows to better reflect real cases of City Logistics applications.

According to the guidelines presented in (Kenyon and Morton, 2003), instance
are characteristics by the following inputs:

• Instance size. We considered instances with a number of nodes up to 200.
This number is of the same order of magnitude of a day trip of the main
parcel and courier delivery services as TNT and DHL. In particular, we split
those instances into three sets: instances with up to 50 nodes (N50), up to 100
nodes (N100) and up to 200 nodes (N200).

• Nodes. Given a square of 14 km edge, which is equivalent to a medium sized
city like Turin, nodes are mapped in such portion of plane and then partitioned
into two subsets:

– Central nodes: the nodes belonging to city center, which are the nodes
in the circle with the center coincident with the geometric center of the
14 km square and a radius equals to 7 km;
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– Suburban nodes: the nodes which are not central.

• Nodes distribution strategies. In order to define the spatial distribution of
nodes,we divided the portion of plane in 12 neighborhoods (Q1 to Q12), 8 in
the city center and 4 in the suburban area. For each neighborhood, nodes are
randomly generated according with the following distribution strategies:

– D1: the nodes are distributed only in the city center;

– D2: the nodes are distributed only in the suburban area of the city;

– D3: the nodes are distributed in all neighborhoods both central and
suburban in ratio 3:1 respectively;

– D4: the nodes are distributed in all neighborhoods both central and
suburban in ratio 1:1 respectively.

Figure 6.1 shows the subdivision of the 14 km square in neighborhoods and,
for each distribution strategy, the neighborhoods involved.

• Multiple paths. The number of paths between any pair of nodes is set to 3.
The choice of this number is related to hybrid vehicles applications, where the
typical number of power train modes is 3 (Tadei et al., 2014).

• Pair of nodes types: the pairs of nodes can be homogeneous or heterogeneous.

– Homogeneous: they are pairs of nodes where the starting node i and the
destination node j are both central or suburban. In this case all the
multiple paths between the nodes present the empirical speed profile of
a central or suburban speed sensor, respectively.

– Heterogeneous: they are pairs of nodes where the starting node i and the
destination node j belongs to a different subset. In this case the multiple
paths between the nodes present the empirical speed profile of a central
speed sensor for 1/3 of the paths and a suburban one for the 2/3 of them.

• Speed data. We build central and suburban speed profiles from real data on
the traffic of Turin available at the website http : //www.5t.torino.it/5t/. The
data of the mean vehicle speed, expressed in kilometers per hour (km/h), are

101



6 – The Multi-Path Travelling Salesman Problem with stochastic travel times

(a) Nodes partition strategy D1 (b) Nodes partition strategy D2

(c) Nodes partition strategy D3 (d) Nodes partition strategy D4

Figure 6.1: Subdivision in neighborhoods and admissible areas (grey) for each dis-
tribution strategy

accessible with an accuracy of 5 minutes. We aggregated them into blocks of
30 minutes, for a total of 48 observations per day. The instances refer to 50
central speed sensors locations and 100 suburban ones in the period since 13
to 17 February 2013 (see the two circles in Figure 6.2, giving the distribution
of the actual sensors).

102



6 – The Multi-Path Travelling Salesman Problem with stochastic travel times

• Scenario tree generation. We assume that the random variable travel time
oscillation has a finite number of possible outcomes at the end of the period
considered. All possible discrete values that the random variable can assume,
are represented by a finite set of scenarios and are assumed to be exogenous
to the problem. Consequently, the probability distribution is not influenced as
well by decisions. Making these assumptions we can represent the stochastic
process travel time oscillation using a scenario tree which contains a root and
finite set of leaves. Empirical velocity profile distributions vksij associated to
the path k between i and j under scenario s are then generated as inverse of
the Kaplan-Meier estimate of the cumulative distribution function (also known
as the empirical cdf) of the speed real data on the traffic of Turin. From this
distribution, a total of s = 1, . . . ,100 scenarios were generated both for the
central and the suburban areas.

• Time blocks. Given the real observations of speed profiles and in order to
represent different traffic flows cases, we use data corresponding to 8.00, 12.00
and 16.00, which represent the hours of maximum oscillation of the travel
times due to traffic congestions.

• Path travel times. The travel time cksij is a function of the Euclidean distance
between nodes i and j ∈ N , ECij, the type of pair of nodes, k, and the
empirical velocity profile distributions vksij associated to the path k between i
and j under scenario s. In details, this travel time has been computed as

cksij = ECij

vksij
(6.47)

and
c̄ij = Es∈S

ECij

Ek∈Kij
[
vksij
] . (6.48)

is the average travel time over all scenarios s ∈ S when an average empirical
velocity is considered for all path k ∈ Kij between nodes i and j, where Es∈S
and Ek∈Kij are the expectation operators. The random travel time oscillations
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are then computed as

∆ks
ij = cksij − c̄ij = ECij

vksij
− Es∈S

ECij

Ek∈Kij
[
vksij
] (6.49)

For each combination of the parameters mentioned above (i.e., 3 graph’s sizes, 4
nodes distribution strategies, and 3 time blocks) we define 5 graphs. Moreover, for
each graph, 10 different sets of scenarios S are generated according with the scenario
tree generation method. This gives us a final set of 1800 instances.

Figure 6.2: Distribution of central (dark gray circle) and suburban (ligth gray circle)
speed sensors in the city of Turin in Italy.

6.4.2 Progressive Hedging validation

This first set of tests aims to qualify the usage of the PH method as a solution
method for the mpTSPs. To make the comparison we consider the PH and we
compare its results with respect to the two-stage models. In order to qualify the
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results both of the PH and the two-stage models, we first perform a tuning of the
number of scenarios needed to obtain stable results. The first outcome is that the
two-stage models, from a pure computational effort perspective, cannot reach the
optimality with a reasonable time limit (5 hours) for instances with 100 customers
when the number of scenarios is more than 50 (e.g. the average opimality gap
after 5 hours is greater than 3%). Moreover, even with such a small number of
scenarios, they become impracticable with more than 100 customers. This is mainly
due to the size of the models in terms of number of variables. This issue will be
discussed in a more detailed way in the following part of this section. Thus, the
two-stage models cannot be used to properly tune the number of scenarios. For
this reasons, we performed this tuning by means of the PH. In order to perform
this task we used a subset of 180 instances defined by selecting a single realization
(i.e. a set of scenarios) for each combination of the parameters mentioned in Section
6.4.1. For every instance we considered both the first and the second stage objective
functions. The results are presented in Figure 6.3, where in the horizontal axis we
report the number of scenarios and in the vertical one the mean of the first and the
total objective functions over the 180 instances. In particular, the continuous line
represents the contribution of the first stage objective function, while the dotted line
total objective function, respectively. Notice that, being the values in the first-stage
objective functions the reference values of the costs for each arch (i, j), the complete
total objective function has, at convergence, a value at most equal to the first-stage
one. The difference measures the improvement due to the recourse actions that
selects the right path between two nodes. From the graph in Figure 6.3 it is evident
how the convergence is substantially reached with 100 scenarios, while, for a full
stability, one should fix the number of scenarios to 300. Unfortunately, fixing the
scenarios to 300 means to have computational times with more than 1 hour with
the PH and several hours with the two-stage with recourse models even with the
smallest instances (N50). Thus, we fixed both for the PH and the two-stage with
recourse models the number of scenarios to 100.

Table 6.1 reports the detailed comparison between CPLEX and the PH. This is
performed on N50 instance set only, being the only one where CPLEX is able to
solve and to prove optimality of all the instances in the time limit. We also tried to
increase the time limit for CPLEX, but, while the number of nodes increases, the
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optimality gap is not closed. This is mostly due to the large number of variables
involved in the two-stage formulation. The first two columns reports the instance
set and the node distribution strategy. Column 3 gives the percentage gap between
the optimal solution given by CPLEX and the PH one. Finally columns 5 and 6
provide the computational time in seconds of the two solution methods, respectively.
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Figure 6.3: Sensitivity of the first stage objective function (solid line) and the total
objective function (dotted line) with respect to the number of scenarios

N D Gap% TCPLEX [s] TPH [s]

N50

D1 0.04 60.6 170.8
D2 0.03 55.9 179.3
D3 0.04 138.8 171.9
D4 0.05 162.4 181.9

Table 6.1: Comparison of the results between CPLEX and the PH algorithm

The computational results show how the PH is accurate, with a gap from CPLEX
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of less than 0.1% with all the node distribution strategy. By considering the compu-
tational effort, CPLEX is more efficient in distribution strategies D1 and D2, while
the results become comparable in D3 and D4.

When we increase the number of nodes, the computational time of the PH in-
creases almost linearly with the number of nodes, while CPLEX is unable to solve
to optimality the instances in set N100 in the given time limit. Moreover, in these
instances the solution found by CPLEX is or of the same quality or worst than the
one found by the PH.

Up to N100 the PH never reaches neither the time limit, not the iteration one,
while the iteration limit is reached in some of the N200 instances. From a pure
computer architecture point of view, the PH uses far less resources than CPLEX. In
fact, CPLEX requires up to 2GB for N50 and more than 4GB for N100 instances,
thus imposing the use of 64 bit machine. On the contrary, the PH algorithm never
uses more than 300 MB even when it addresses N200 instances. Due to the accu-
racy and the efficiency at dealing with larger size instances, we use for the results
presented in the next sections the PH as the solver for the mpTSPs.

Regarding the benefit of parallel implementation, the scaling of the parallel im-
plementation is quite linear. This is guaranteed by the performance of the heuristic,
which solves every problem in a similar computational time. These times ensure
that the slaves have balanced loads and lead to a linear speedup. For N50, the best
speedup is in average 5.6, obtained with 8 parallel threads. For the larger instances
(e.g. N100 and N200), the average speedup is below the ideal value: it is 75% of the
latter in the worst case.

6.4.3 Impact of uncertainty

This section is devoted to qualify the mpTSPs by showing the benefits of using the
two-stage with recourse models when compared to the Perfect Information case and
theEV . This is done by considering the well known EV PI and theV SS measures
defined in equations (4.54) and (4.55), respectively.

As shown in subsection 6.4.2, using directly the two-stage models with recourse
is not possible for instances with 100 customers and more. On the contrary, the
PH is both accurate and efficient from the computational point of view. Thus, the
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results presented in this section are all computed by means of the PH. Due to the
large number of instances involved, the results are presented in an aggregated form
in Table 6.2. The meaning of the columns reported is the following:

• Column 1: instance size (N);

• Column 2: time block (Hour);

• Column 3: node distribution strategy (D);

• Column 4: computational time in seconds needed by the PH. The value is a
mean over the instances with the same values of the parameters N , Hour, and
D;

• Column 5: percentage EV PI corresponding to the mpTSPs stochastic solu-
tion RP , computed as EV PI/RP · 100. The value is a mean of the instances
with the same values of the parameters N , Hour, and D;

• Column 6: maximum percentage EV PI of the instances with the same values
of the parameters N , Hour, and D;

• Column 7: percentage V SS corresponding to thempTSPs stochastic solution
RP , computed as V SS/RP · 100. The value is a mean of the instances with
the same values of the parameters N , Hour, and D;

• Column 8: maximum percentage V SS of the instances with the same values
of the parameters N , Hour, and D.

First of all we can highlight how the computational effort is stable with respect
to the time block and the node distribution strategy and it increases almost linearly
with the instance size. The overall computational effort is limited, being of the order
of magnitude of 10 minutes for the 200 customers instances. This makes the PH a
strategic tool that can be incorporated in larger Decision Support Systems.

The percentage EV PI present values of about 30%, showing the relevance, for
a decision maker, to have the information about the future in advance. Notice that
the EV PI is stable regardless the instance parameters N , Hour, and D.
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When considering the V SS, we can see how it is increasing both in mean and
in maximum values while the size of the instance increases. In particular, the gap
between the expected value solution and the stochastic solution becomes relevant
when the number of nodes is between 100 and 200, which is the typical size of the day
tour of a single vehicle in the parcel delivery and courier services in a medium and
large city. Even when considering small instances (50 nodes) the V SS is relevant,
with values of the maximum gap up to 6% and it shows the losses obtained by
following the tour suggested by the deterministic solution. When analyzing the
results with respect to the node distribution strategy, the most critical ones are D4
and D3. This finding is relevant, being the latter the most representative of the
distribution of customers in a city (Perboli et al., 2013).

Notice that, due to the combinatorial nature of the problem, measures of the
quality of deterministic solution (Maggioni and Wallace, 2012) like loss using the
skeleton solution LUSS, obtained fixing at zero all first stage variables which are
at zero in the expected value solution and then solving the stochastic program,
correspond to V SS. The same for the loss of upgrading the deterministic solution
LUDS, obtained by considering the expected value solution variables as a stating
point to the stochastic model; the reason can be explained as follows: if an arc
has been opened in the EV solution, then it must be used also in the stochastic
setting, on the contrary if an arc is closed in the EV solution it can be opened in
the stochastic one. But since the EV solution is a cycle and the stochastic solution
cannot add or remove any arc because of the subtour elimination constraints and of
the LUDS condition, then LUDS = V SS.

An important point when comparing the solutions of the Recourse and the Ex-
pected Value problems is to determine how much the first stage decisions, i.e., the
sequence of the nodes to visit, differ in the two problem solutions. We analyzed this
issue, seeing how the two decisions differ of more than 15%. An example of this
issue is given in Figure 6.4, where the first stage decisions are highlighted for an
instance with 50 customers. In particular, Figure 6.4c overlaps the two solutions,
presenting the arcs differing in the two solutions with a long-dotted line for the
Expected Value Problem solution and a short-dotted line for the Recourse Problem
one, respectively. From the pictures we can see how the gap in terms of objective
functions (and recourse actions in particular) is determined by a change of a relevant
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part of the central area tour, with 11 arcs involved, corresponding to about 20% of
the first stage decisions. A specific point is the suburban arc in the South-West
portion of the Expected Value Problem solution, which is inserted in this solution
for its mean value, which is unfortunately misleading in terms of actual cost for the
variance that the cost oscillation has in the different scenarios. On the contrary,
the Recourse Problem solution considers this issue, removing the suburban arc and
consequently updating the overall tour, causing a reduction of the overall cost of
3.89%.
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N Hour D TPH [s] EVPI% max EVPI% VSS% max VSS%

N50

8.00

D1 174.71 32.67 38.81 2.50 4.92
D2 174.06 30.62 35.48 3.09 5.66
D3 174.49 27.41 32.07 2.94 6.43
D4 178.49 28.04 31.70 2.76 8.52

12.00

D1 159.31 31.58 36.92 2.81 4.82
D2 188.16 30.18 34.57 3.73 6.43
D3 168.3 26.58 30.17 2.60 5.11
D4 189.60 26.60 30.98 2.32 3.81

16.00

D1 178.42 32.32 38.45 3.21 6.28
D2 175.68 29.97 33.29 3.70 5.83
D3 172.97 29.40 30.89 2.69 5.60
D4 171.40 26.65 30.77 2.56 4.71

N100

8.00

D1 335.91 29.40 34.44 6.82 11.77
D2 336.09 30.09 34.68 6.80 10.13
D3 338.38 29.27 33.30 6.70 9.77
D4 368.45 29.00 33.71 7.20 14.07

12.00

D1 357.84 29.15 32.96 5.67 8.80
D2 361.18 30.42 33.47 6.16 8.57
D3 393.69 29.57 32.52 6.07 10.20
D4 382.42 29.06 31.84 6.28 12.33

16.00

D1 332.12 28.71 33.23 6.06 8.46
D2 367.57 29.99 34.45 7.53 13.84
D3 336.48 28.62 32.81 6.47 10.41
D4 387.26 28.85 32.92 6.63 14.51

N200

8.00

D1 704,13 31,76 38,19 7,66 10,16
D2 694,85 31,87 36,53 8,12 12,87
D3 727,09 28,85 34,59 7,61 11,51
D4 702,16 28,89 34,17 7,88 11,67

12.00

D1 635,44 30,63 37,39 7,80 11,55
D2 654,46 30,61 35,21 7,69 11,87
D3 640,05 26,70 30,77 7,50 11,16
D4 629,21 26,93 31,69 7,60 10,69

16.00

D1 667.12 31,70 38,76 7,87 12,99
D2 633.10 30,55 35,16 7,76 10,63
D3 646,27 26,46 31,94 7,65 11,36
D4 695,66 27,00 31,75 7,22 10,50

Table 6.2: Full instance set results: EV PI and V SS values comparison
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(a) Expected Value Problem solu-
tion (b) Recourse Problem solution

(c) Solutions comparison

Figure 6.4: Comparison of the first-stage Expected Value Problem solution (a) and
the Recourse Problem solution (b). Figure (c) shows the common arcs (solid line),
arcs used only in the Expected Value Problem solution (long-dotted line) and arcs
used only in Recourse Problem one (short-dotted line).
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Chapter 7

Conclusions

In this thesis, we have introduced and studied three new planning problems arising
in City Logistic applications, where the design and the optimization of the freight
transportation process is essential. These problems are the stochastic variable cost
and size bin packing problem (SVCSBPP), the multi-handler knapsack problem
under uncertainty (MHKPu) and the multi-path traveling salesman problem with
stochastic travel times (mpTSPs), which explicitly take into account the presence
of uncertainty on parameters, constraints and activities that characterize the sys-
tem of urban areas. We have addressed these new problems in order to overcome a
noteworthy portion of a gap in the literature concerning the development of models
for City Logistics solutions in terms of comprehensive study on the sources of uncer-
tainty related to and methodologies in order to solve them in efficient and accurate
way.

Our main results concerned the development of problems and methodologies of
these new problems characterized by the presence of different sources of stochasticity
that strongly affect the long and medium term decisions. The problems prosed play
crucial part in the supply chain proposed in City Logistics solutions. The trend is
to substitute traditional single-echelon routing structures with two-echelon ones and
to introduce satellites and the use of environmental friendly vehicles. SVCSBPP
may be used to plan the capacity of the fleet and of the transshipment satellites.
In the satellites different sequences of consolidation operations are done by different
handler. The selection of handler with different skill levels may be planned with
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the MHKPu. Finally, the mpTSPs plans the tour of environmental friendly ve-
hicles to cope with different working days and to synchronize the transshipment
operations between urban truck and city freighters that occur in satellites. To miti-
gate the computational difficulty associated with these stochastic problems, we have
proposed heuristic strategies based on the Progressive Hedging algorithm (with the
exception of the MHKPu, for which the deterministic approximation derived is
effective and guarantees an high level of accuracy of solutions). The heuristics use
specialized solving strategies to solve the deterministic subproblems obtained from
the scenario decomposition of the stochastic model. Moreover, we implemented ad-
vanced strategies that directly operate on the data of the problem (e.g. cost of the
bins) in order to accelerate the convergence, and that deal with the symmetry of the
solution space, a typical property of bin packing problems. Extensive computational
tests on a large set of instances, including realistic applications, show that heuristics
outperform the use of commercial solvers. The computational time is reduced of
several orders, assuring an high accuracy of the solutions quality.

Two future directions need to be further investigated.
First, the problems proposed in this thesis only partially cover realistic applica-

tions in the urban context. The SVCSBPP is based on the hypothesis that the
capacity is completely available at the shipping day. This hypothesis may be not
always true. Considering the parcel delivery services, some deliveries have not been
carried the previous day (e.g. missing customer), which have to be delivered with
the next shipment, reducing the available capacity. The rental of extra capacity at
premium cost is required to compensate this effect. One can generalize the SVCS-
BPP explicitly introducing this unknown loss of capacity. Similarly, the mpTSPs

considers arcs with a stochastic time-independent travel time, which means that
the travel time does not varies during the tour, or more in general, during the day.
To represent more realistic applications with time-dependent travel times, a multi-
stage stochastic model is needed and more sophisticated methodologies are required
to deal with the complexity of the model. Moreover, additional technology con-
straints related to the state of charge level of the battery of hybrid vehicles should
be considered. This issue becomes of particular interest, being both the stochastic
oscillation of the costs and the state-of-charge level of the battery originated by
the same sources of uncertainty (e.g. travel times, traffic congestion, number of
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Stop&Go).
Second, two practical issues can drastically affect the efficiency of solving meth-

ods based on Progressive Hedging ideas and need to be investigated: the commu-
nication overhead and the solution time-variability. The first relates to the relative
balance of communication and computation involved in the solution of scenario sub-
problems. When subproblems solve quickly, as in the case of the SVCSBPP and
the mpTSPs, communication may degrade the parallel efficiency. The second issue
relates to the presence of the barrier synchronization in the master algorithm. If
solving effort of subproblem presents high variability (e.g. using a commercial MIP
solver), parallel efficiency will degrade dramatically as the number of scenarios in-
creases. To mitigate this effects, alternative approaches have to be considered for
parallel implementations. Somervell (1998) describes several asynchronous imple-
mentations of the PH algorithm, including asynchronism within each iteration and
not solving all of the scenarios within each iteration. He showed that updating penal-
ties immediately after a scenario subproblem has been solved fails to converge even
on very small problems, while waiting for at least half of solutions leads to a good
or the optimal solution. Instead, no formal proposals have been explored for coop-
erative parallel schemes (Crainic and Toulouse, 2010) applied to PH. The research
on asynchronous and cooperative schemes for heuristics based on the Progressive
Hedging ideas is still an open problem.

Currently, we are developing an innovative PH-based heuristic method that
makes use of multiple solutions of scenario subproblems. We named these solutions
as candidate solutions. In order to provide an overall solution, the PH proposed
in literature aggregates one solution (e.g. the optimal solution) for each scenario
subproblem weighted by the probability of the scenario. On the contrary, the new
method involves an aggregation operator that assigns to each candidate solution a
weight that reflects its relative importance. More in detail, the weight considers, on
one hand, the probability of the scenario subproblem and, on the other hand, the
quality of the candidate solution (e.g. difference of the objective function from the
best candidate solution) and the similarity of the candidate solution with respect to
the current overall solution. While the factor related to the probability of scenarios
remains constant during the entire search process, the second factor may change
according to the state of the search. At the beginning, the aggregation of candidate
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solutions is guided by the quality of solutions, then, when the consensus is close, the
similarity of solutions will be promoted.

The algorithm has been applied to the SVCSBPP. First experiments show
its advantages: the computational time is always reduced by at least two times
and the iterations needed to meet the consensus are less than 5 for all instances
considered. Further experimentations are required on different stochastic problems
characterized by a higher computational effort such as the network design (Crainic
et al., 2011b). These tests allow the calibration of the algorithm before the definition
of asynchronous and cooperative implementations.
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