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New aspects in the implementation of the quasi-static
method for the solution of neutron diffusion problems in

the framework of a nodal method

D. Caron, S. Dulla∗, P. Ravetto∗

Politecnico di Torino, Dipartimento Energia
Corso Duca degli Abruzzi, 24 - 10129 Torino (Italy)

Abstract

The ability to accurately model the dynamic behaviour of the neutron distri-
bution in a nuclear system is a fundamental aspect of reactor design and safety
assessment. Due to the heavy computational burden associated to the direct
time inversion of the full model, the quasi-static method has become a stan-
dard approach to the numerical solution of the nuclear reactor dynamic equa-
tions on the full phase space. The present paper is opened by an introductory
critical review of the basics of the quasi-static scheme for the general neutron
kinetic problem. Afterwards, the implementation of the quasi-static method in
the context of a three-dimensional nodal diffusion theory model in hexagonal-
z geometry is described, including some peculiar aspects of the adjoint nodal
equations and the explicit formulation of the quasi-static nodal equations. The
presentation includes the discussion of different formulations of the quasi-static
technique. The results presented illustrate the features of the various formula-
tions, highlighting the corresponding advantages and drawbacks. An adaptive
procedure for the selection of the time interval between shape recalculations is
also presented, showing its usefulness in practical applications.

Keywords: Neutron multigroup diffusion, Nuclear reactor dynamics,
Quasi-static method, Nodal method

1. Introduction

The design and safety assessment of the innovative nuclear systems proposed
for future development requires the accurate simulation of the behaviour of the
neutron distribution during typical operational and accidental conditions. As
the time inversion of the full model is often impractical due to computational5

limitations or even unnecessary as a result of the characteristics of the physical
processes, the quasi-static method initially proposed long ago (Henry, 1958) has
emerged as a standard approach to the modelling of nuclear reactor dynamics
on the full phase space.
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The present work is oriented towards the implementation of the quasi-static10

method in a nodal diffusion theory solver which comprises the neutronic mod-
ule of a coupled neutronics/thermal-hydraulics reactor analysis code (Bonifetto
et al., 2013b,a). Following a general review of the the theoretical basis of the
quasi-static method and solution algorithms, a detailed description of the im-
plementation of various formulations of the method in the framework of a nodal15

discretisation of the time-dependent multigroup diffusion equations is provided.
The results presented demonstrate the behaviour, both in terms of accuracy and
performance, of different variants of the quasi-static method with respect to the
reference, full inversion method.

2. Theoretical basis of the quasi-static method20

The theoretical basis of the quasi-static method of solution of the time-
dependent neutronics problems is critically reviewed in the context of neutron
transport theory. The problem is first posed in the framework of the proper
mathematical equations which describe the relevant physical phenomena. Af-
terwards, the fundamental hypotheses of the quasi-static approach are stated,25

thereby permitting the derivation of the full system of kinetics equations to be
solved by the quasi-static algorithm. Finally, the available methods of solution
of these equations are discussed.

2.1. Problem setting
The time-dependent neutron transport equation and delayed neutron pre-

cursors balance equations for a stationary medium may be written as

1

v(E)

∂

∂t
φ(r, E,Ω, t) = −L(r, E,Ω, t)φ(r, E,Ω, t) +Mp(r, E,Ω, t)φ(r, E,Ω, t)

+

R∑
i=1

χi(r, E)

4π
λici(r, t) + S(r, E,Ω, t),

χi(r, E)

4π

∂

∂t
ci(r, t) =Mi(r, E,Ω, t)φ(r, E,Ω, t)− χi(r, E)

4π
λici(r, t), i = 1, . . . , R,

(1)

and subject to appropriate initial and boundary conditions. In Eqs. (1), φ(r, E,Ω, t)
represents the time-dependent angular neutron flux, ci(r, t) is the time-dependent
delayed neutron precursor concentration for delayed neutron precursor family i
and the operators are defined by

L(r, E,Ω, t)φ(r, E,Ω, t) ≡ Ω · ∇φ(r, E,Ω, t) + Σt(r, E, t)φ(r, E,Ω, t)

−
∫
dE′

∮
dΩ′ Σs(r, E

′→E,Ω′ ·Ω, t)φ(r, E′,Ω′, t),

(2a)

Mp(r, E,Ω, t)φ(r, E,Ω, t) ≡ (1− β)
χp(r, E)

4π

∫
dE′

∮
dΩ′ νΣf (r, E′, t)φ(r, E′,Ω′, t),

(2b)

Mi(r, E,Ω, t)φ(r, E,Ω, t) ≡ βi
χi(r, E)

4π

∫
dE′

∮
dΩ′ νΣf (r, E′, t)φ(r, E′,Ω′, t).

(2c)
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In these expressions, the operator L(r, E,Ω, t) is the total reaction operator
except for fission and Mp(r, E,Ω, t) and Mi(r, E,Ω, t) are the prompt and
delayed fission operators, respectively. Similarly, the total fission operator is
defined as

M(r, E,Ω, t)φ(r, E,Ω, t) ≡Mp(r, E,Ω, t)φ(r, E,Ω, t) +

R∑
i=1

Mi(r, E,Ω, t)φ(r, E,Ω, t).

(3)

A reference system is defined as the initial, unperturbed steady-state con-
figuration from which the transient is initiated. By taking all time derivatives
in Eqs. (1) to be zero and by assuming that the delayed neutron precursors
concentrations are in equilibrium with the steady-state neutron flux, the static
neutron transport equation is obtained

−L0(r, E,Ω)φ0(r, E,Ω) +M0(r, E,Ω)φ0(r, E,Ω) + S0(r, E,Ω) = 0, (4)

where the subscript indicates the static, reference system. In addition to the
solution of the direct equation of the reference system, it is possible to obtain the
solution of the corresponding adjoint equation, the solution of which is physically
significant as it represents the distribution of the neutron importance (Wigner,
1992; Ussachoff, 1956; Lewins, 1965). The adjoint of Eq. (4) is

−L†0(r, E,Ω)φ†0(r, E,Ω) +M†0(r, E,Ω)φ†0(r, E,Ω) + S†0(r, E,Ω) = 0, (5)

where the dagger † represents an adjoint operator or an adjoint quantity. Both30

Eqs. (4) and (5) are accompanied by direct and adjoint boundary conditions,
respectively.

2.2. The quasi-static method
The quasi-static method of solution of the time-dependent neutron balance

equation and delayed neutron precursors balance equations (Henry, 1958; Ott35

and Meneley, 1969; Devooght and Mund, 1980) is based on the rationale that the
neutron flux may be factorised into the product of two separate but correlated
functions of the form

φ(r, E,Ω, t) ≡ T (t)ψ(r, E,Ω, t), (6)

where the amplitude function T (t) depends only on time and the shape func-
tion ψ(r, E,Ω, t) depends on all of the phase space variables. The amplitude40

function, which is proportional to the magnitude of the total reactor power, is
intended to follow the fastest evolving time scales while the shape function ac-
counts for spatial and spectral variations whose temporal evolution occurs on a
slower time scale. This assumption, combined with a suitable projection proce-
dure, allows to separate the original system of partial differential equations for45

the neutron flux and the delayed neutron precursors concentrations, Eqs. (1),
into two coupled systems of differential equations: a coupled set of ordinary
differential equations for the amplitude and a coupled set of partial differential
equations for the shape. The advantage of these operations is that it becomes
possible to solve separately for the unknowns on their respective time scales,50
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potentially offering a significant reduction of computational effort based on the
nature of the transient and the degree to which the system is coupled.

The mathematical formalism for the projection-separation procedure is as
follows. The flux factorisation, Eq. (6), is rendered unique by imposing an
initial condition on the amplitude function, T (0) = 1, and a normalisation
condition (Henry, 1958) on the shape function〈

φ†0(r, E,Ω),
1

v(E)
ψ(r, E,Ω, t)

〉
= γ(t) = γ0, ∀t, (7)

with γ0 an arbitrary constant and the scalar product notation 〈·, ·〉 denoting the
integration over all independent phase space variables.

Substitution of the factorised form of the flux into Eqs. (1), projection of
both onto the adjoint solution of the reference system, subtraction of Eq. (5)
projected onto the solution of the direct problem from the first of the projected
Eqs. (1) and the use of the normalisation condition allows to write the amplitude
equations 

d

dt
T (t) =

ρ(t)− β̃(t)

Λ(t)
T (t) +

R∑
i=1

λic̃i(t) + s̃(t),

d

dt
c̃i(t) =

β̃i(t)

Λ(t)
T (t)− λic̃i(t), i = 1, . . . , R,

(8)

with the integral kinetics parameters given by the definitions

F (t) ≡
〈
φ†0(r, E,Ω),M(r, E,Ω, t)ψ(r, E,Ω, t)

〉
, (9a)

Λ(t) ≡ 1

F (t)

〈
φ†0(r, E,Ω),

1

v(E)
ψ(r, E,Ω, t)

〉
, (9b)

β̃i(t) ≡
1

F (t)

〈
φ†0(r, E,Ω),Mi(r, E,Ω, t)ψ(r, E,Ω, t)

〉
, (9c)

ρ(t) ≡ 1

F (t)

〈
φ†0(r, E,Ω), [−δL(r, E,Ω, t) + δM(r, E,Ω, t)]ψ(r, E,Ω, t)

〉
− 1

F (t)

〈
S†0(r, E,Ω), ψ(r, E,Ω, t)

〉
,

(9d)

c̃i(t) ≡
1

Λ(t)F (t)

〈
φ†0(r, E,Ω),

χi(r, E)

4π
ci(r, t)

〉
, (9e)

s̃(t) ≡ 1

Λ(t)F (t)

〈
φ†0(r, E,Ω), S(r, E,Ω, t)

〉
, (9f)

in which the delta notation δ indicates the absolute perturbation of an operator55

with respect to its value for the reference system.
In Eqs. (9), Λ(t) is the effective neutron lifetime, β̃i(t) is the effective delayed

neutron fraction for delayed neutron precursor family i, ρ(t) is the dynamic
reactivity, c̃i(t) is the effective delayed neutron precursor amplitude for delayed
neutron precursor family i and s̃(t) is the effective independent neutron source60

strength. The division by F (t), and thus the definition of F (t) itself, is arbitrary,
affecting only the magnitudes of the quantities Λ(t), β̃i(t) and ρ(t), but not the
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solution of the amplitude equations themselves. Defining F (t) according to the
present definition, which has the physical interpretation of the time-dependent
total fission importance, leads to an expression for the dynamic reactivity which65

is comparable to the perturbation theory expression for the static reactivity.
The origin of the time dependence of these terms arises from the variation

in time either of the operators or of the shape function. Hence, the quasi-static
approach foresees the computation of the integral kinetics parameters based on
a known value of the shape function, which itself is computed from the full70

inversion of Eqs. (1).

2.3. Multiple quasi-static approaches to the time integration of the neutron trans-
port equation

The discretisation of the time domain is shown in Fig. 1. A multiscale
approach is employed, comprised of three embedded time scales, which are, from75

largest to smallest: the shape time step ∆tϕ, the reactivity time step ∆tρ and
the amplitude time step ∆tT , which respect the hierarchy ∆tϕ ≥ ∆tρ ≥ ∆tT .
As implied by the symbolic notation, the shape time steps are intended to
resolve variations of the shape that are typically precipitated by a significant
modification of the characteristics of the physical system. The reactivity time80

steps are intended to account for variations of the integral kinetics parameters
which result from perturbations of the operators that do not necessarily involve
major distortions of the shape. Finally, the amplitude time steps are intended
to integrate the kinetics equations over an interval in which the shape and the
kinetics parameters exhibit minor variations but the amplitude is changing as85

a result of disequilibrium of the dynamic system.

t

∆tϕ ∆tρ ∆tT

Figure 1: Multiscale time discretisation for quasi-static computations. ∆tϕ: shape time step;
∆tρ: reactivity time step; ∆tT : amplitude time step.

Various quasi-static algorithms exist for the integration of the neutron trans-
port equation and the delayed neutron precursors balance equations in time;
these approaches may be classified into two algorithmic categories on the basis
of the quantities for which are solved at each of the various time steps. The
first algorithmic category involves solving the set of equations for the amplitude
and the shape while the second algorithmic category solves the set of equations
for the amplitude and the flux. Both employ the same two fundamental sets of
equations: the amplitude equations, Eqs. (8), and the time-dependent neutron
transport equation with delayed neutron emissions, Eqs. (1). However, whereas
the latter category can make direct use of Eqs. (1) to solve for the flux, the
former requires their alteration in order to solve for the shape; the modification,
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which results in the shape equations, may be written as

1

v(E)

∂

∂t
ψ(r, E,Ω, t) = −

[
L(r, E,Ω, t) +

1

v(E)

d

dt
log T (t)

]
ψ(r, E,Ω, t)

+Mp(r, E,Ω, t)ψ(r, E,Ω, t) +
1

T (t)

[
R∑
i=1

χi(r, E)

4π
λici(r, t) + S(r, E,Ω, t)

]
,

χi(r, E)

4π

∂

∂t
ci(r, t) = T (t)Mi(r, E,Ω, t)ψ(r, E,Ω, t)− χi(r, E)

4π
λici(r, t), i = 1, . . . , R,

(10)

where the additional loss term results from the application of the product rule
of differentiation to the factorised angular flux. If, instead of solving both sets
of equations, the shape is assumed not to vary from the reference state and
the only quantity for which is solved is the amplitude, the quasi-static method90

consistently reduces to the point kinetic (PK) method.

2.3.1. The improved quasi-static method
The improved quasi-static method (IQM) (Ott and Meneley, 1969) proposes

to advance the flux across a shape time step through the simultaneous integra-
tion of the amplitude equations and the time-dependent shape equations across95

the shape time step. As a consequence of this choice of independent variables,
the method requires a non-linear iterative approach due to the necessity to si-
multaneously solve for the shape and the amplitude such that the normalisation
constraint of the shape is satisfied. The integration across a shape time step by
means of IQM proceeds by integrating the amplitude equations to the end of100

the shape time step using integral kinetics parameters computed with the shape
at the beginning of the shape time step followed by iteratively solving for the
shape from Eqs. (10) until the normalisation condition is satisfied; within these
iterations, the derivative of the amplitude is updated according to its defini-
tion in Eqs. (8) by recomputing the integral kinetics parameters with the shape105

function of the previous iteration on the normalisation condition.
The improved quasi-static method has evolved from the elaboration of the

original quasi-static method (Ott and Madell, 1966), which disregards the time
derivative of the shape function in Eqs. (10) with the justification that the time
variation of the shape function is of lesser importance than that of the amplitude110

function. Both the original and the improved quasi-static methods may be
considered to be improvements upon that which is now known as the adiabatic
method (Henry, 1958), in which all time derivatives present in Eqs. (10) are
neglected on the basis that the system reaches its new asymptotic configuration
after only a few neutron lifetimes and thus may be described by the static115

balance equation of the perturbed system.
Another variant of the improved quasi-static method is that which may be

referred to as the implicit improved quasi-static method (IIQM). Whereas IQM
involves the integration of the amplitude equations across a shape time step
using integral kinetics parameters which are computed explicitly with the shape120

at the beginning of the shape time step, IIQM involves their integration using
integral kinetics parameters which are computed implicitly with the shape at
the end of the shape time step. Consequently, the integration of the ampli-
tude equations comprises part of the iterative procedure on the normalisation
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condition used by IIQM. As a result, the shape, the amplitude and the deriva-125

tive of the amplitude are all self-consistent, which is not necessarily true of IQM
which, when more than one iteration on the normalisation condition is required,
computes the amplitude using one set of integral kinetics parameters and the
shape from another. Although IQM and IIQM may be expected to yield dif-
ferent results across a shape time step in which the shape undergoes significant130

variation, the two approaches become identical as the variations of the shape
across a shape time step become negligible.

2.3.2. The predictor-corrector quasi-static method
The predictor-corrector quasi-static method (PCQM) (Kao and Henry, 1989)

(although not referred to by this name until later (Dulla et al., 2008)) proposes to135

directly integrate the time-dependent flux equations across the shape time step
and then apply the normalisation condition to acquire a shape. The shape thus
obtained is employed in the determination of the integral kinetics parameters,
consenting the successive integration of the amplitude equations to the end of
the shape time step.140

It has been shown that PCQM produces results of increased accuracy with
respect to those of the improved quasi-static method for equal time steps, es-
pecially in the limit of large time steps (Dulla et al., 2008). This behaviour is
attributed to two contributing factors. The first is the normalisation condition.
For a given shape time step, IQM may or may not be capable of satisfying145

the normalisation condition to within decent accuracy, which contributes to a
source of error that is absent from PCQM. The second is the shape itself used
to compute the integral kinetic parameters. Namely, IQM employs the shape
at the beginning of the time step, a quantity which is devoid of any information
regarding the evolution during the time step, while the PCQM makes use of150

the shape at the end of the time step. While this disadvantage is mitigated by
IIQM, normalisation remains an issue in IIQM, whereas in PCQM it does not.

Both in terms of algorithmic methodology and accuracy of results, PCQM is
superior to IQM. Yet, in terms of computational performance, there are situa-
tions when PCQM may prove inferior to IQM. In particular, the computational155

effort associated with solving for the flux in PCQM instead of the shape in IQM
becomes a drawback in divergent transients once the shape ceases to evolve, the
reason for which is that the shape is free from amplitude effects while the flux is
not. With the objective of addressing this deficiency, modifications to the basic
procedure of PCQM have been proposed. In the modified predictor-corrector160

quasi-static method (MPCQM) (Dulla et al., 2008), the amplitude equations are
preliminarily solved across the shape time step using integral kinetics parame-
ters computed with the shape at the beginning of the shape time step (hence,
in the same manner as IQM). The amplitude obtained from this calculation is
then used to scale the flux at the beginning of the shape time step and thereby165

provide to the flux solver an initial guess which, to some extent, accounts for
the variation in magnitude across the shape time step.

3. Implementation of the quasi-static method in the context of a
nodal method

The implementation of the quasi-static method in the specific case of the170

neutron diffusion equations is now considered. The practical application of the
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factorisation-projection technique to the nodal discretised form of the diffusion
equations needs particular attention and the relevant details of the process are
presented in the following. The starting point for the mathematical treatment is
the multigroup, continuous space and time neutron diffusion model with delayed175

neutron emissions, which is obtained by applying the multigroup diffusion theory
approximation to Eqs. (1).

3.1. Static and transient nodal equations of the direct problem
The reference multigroup equations are discretised in space according to a

nodal approach. The scheme which is employed in the present work is inspired180

by the coarse mesh polynomial nodal method in hexagonal-z geometry proposed
by Lawrence for implementation in the code DIF3D (Lawrence, 1983), which is
extended to the transient multigroup neutron diffusion equations with a possible
independent external source.

Following the application of these discretisation methods, the temporally
continuous, spatially discrete transient multigroup neutron diffusion equations
and delayed neutron precursors balance equations may be written in a general
matrix form as

V−1 d

dt

−→
Γ (t) = [Mp(t)− L(t)]

−→
Γ (t) +

R∑
i=1

λi
−→
Gi(t) +

−→
S (t),

d

dt

−→
Gi(t) = Mi(t)

−→
Γ (t)− λi

−→
Gi(t), i = 1, . . . , R,

(11)

with the vectors and the matrix operators defined by

−→
Γ (t) ≡

 Φ(t)
Jo(t)
Ji(t)

 , (12a)

−→
Gi(t) ≡

 Gi(t)
0
0

 , (12b)

−→
S (t) ≡

 S(t)
0
0

 , (12c)

V−1 ≡

 v̂−1 0 0
0 0 0
0 0 0

 , (12d)

L(t) ≡

 R̂(t)− T̂(t) T̂o(t) −T̂i(t)

−B̂(t) Â(t) −Ĉ(t)

0 −α̂(t) Î

 , (12e)
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Mp/i(t) ≡

 F̂p/i(t) 0 0
0 0 0
0 0 0

 . (12f)

Equations (11) represent, simultaneously for all nodes, all energy groups and185

all delayed neutron precursor families, neutron balance, Fick’s law in terms of
interface partial currents, continuity of interface partial currents and delayed
neutron precursor balance for a stationary medium. In order to facilitate dis-
cussion, it is convenient to consider the unknowns present in these equations
to adhere to a three-level structure: the first, outer level describes the discreti-190

sation in energy; the second, intermediate level describes the discretisation in
space; and the third, inner level accounts for the mathematical approach of the
spatial discretisation scheme. Accordingly, the structure may be interpreted as
shown in Fig. 2 for the matrices (those which comprise V−1, L(t), Mp(t) and
Mi(t)) while the same interpretation may be applied to the vectors (those which195

comprise
−→
Γ (t),

−→
Gi(t) and

−→
S (t)) by assuming a degenerate second dimension.

G

G

K

K

M

N

Figure 2: Structure of the matrices. G: total number of energy groups; K: total number of
nodes; M ,N : related to the mathematical scheme for the spatial discretisation.

The vectors Φ(t), Jo(t) and Ji(t) contain the spatial moments of the neutron
flux, the outgoing interface partial currents and the incoming interface partial
currents, respectively, for each node and each neutron energy group. The vectors
Gi(t) contain the spatial moments of the delayed neutron precursors emissivities200

divided by the decay constant for the delayed neutron precursor family i for each
node and each neutron energy group, while the vector S(t) contains the spatial
moments of the independent neutron source for each node and each neutron
energy group.

The matrices R̂(t), T̂o(t), T̂i(t), Â(t), B̂(t) and Ĉ(t) contain spatial cou-205

pling coefficients which depend on macroscopic removal cross sections, diffusion
coefficients and node dimensions. As concerns their structures, all of the pre-
ceding matrices are diagonal in energy but have differing structures at the lower
levels according to the geometry and the particularities of the nodal method in
consideration. The matrices T̂(t), F̂p(t) and F̂i(t) contain the elements of the210

group-to-group scattering matrix (save for the in-group scattering component,
which is embodied in R̂(t)), the prompt neutron production matrix and the
delayed neutron production matrix for the delayed neutron precursor family i,

9



respectively. These three matrices are all potentially full in energy but again
have differing structures at the lower levels according to the geometry and the215

nodal approach.
The matrix v̂−1 is a strictly diagonal matrix which contains the inverses of

the neutron group velocities. The matrix α̂(t) is the superposition of an albedo
matrix and a partial current permutation matrix. Therefore, the non-zero el-
ements of α̂(t) contain either albedo coefficients, which constitute boundary220

conditions at the external faces of the computational domain, or ones as neces-
sary to guarantee the continuity of the interface partial currents of the adjacent
nodes. The identity matrix is represented by Î.

In static form, the multigroup neutron diffusion equations reduce to

[M− L]
−→
Γ +

−→
S = 0, (13)

with

M ≡Mp +

R∑
i=1

Mi. (14)

These definitions are obtained by taking all time derivatives to be identically
zero and by assuming that the delayed neutron precursors concentrations are in225

equilibrium with the static neutron flux distribution.

3.2. Adjoint nodal equations
Preliminary to the derivation of the adjoint nodal equations, it is necessary

to define the scalar product, as its definition renders unique that of the adjoint
operators. To this end, it is convenient to define the scalar product using a
hybrid physical-mathematical approach〈−→v ,−→u 〉 ≡ −→v TA−→u , (15)

with −→u and −→v vectors in the same sense as
−→
Γ and with the matrix A given by

A ≡

 V̂ 0 0

0 N̂⊥ 0

0 0 N̂⊥

 , (16)

in which the matrices V̂ and N̂⊥ are diagonal matrices whose non-zero elements
are equal to the volumes and the transverse surface areas, respectively, of the
nodes. Thus, the definition of the scalar product expressed by Eq. (15) is the230

discrete equivalent of an integral scalar product defined for continuous phase
space variables.

For a reference configuration of the system, the adjoint nodal equations
which describe the balance of neutron importance may be formulated as[

M† − L†
]−→

Γ † +
−→
S † = 0, (17)

where the adjoint quantities are identified with a dagger. Starting from the
definition of an adjoint operator, making use of the scalar product in Eq. (15)
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and the diagonality of A to simplify notation, it is trivial to show that the matrix
operators of the adjoint problem satisfy the criterion

H† ≡ A−1HTA, (18)

with H an operator in the same sense as M or L. Equation (18) is similar to the
well known fact that the adjoint of a matrix is its conjugate transpose, which is
simplified in the present case as the matrix operators of this particular problem235

are known to be defined only on the real portion of the complex plane. In
general, H is not diagonal, hence the retention of the transpose notation and the
inability to simplify the left multiplication by A−1 and the right multiplication
by A. Furthermore, this operation is necessary in order to correctly weight the
off-diagonal elements of H when transposed, as this operation exchanges volume-240

averaged quantities (from the nodal balance equation) with surface-averaged
quantities (from the Fick’s law equation or the continuity equation).

For the problem in consideration, the adjoint matrix operators of the nodal
balance equations, following several simplifications which are permitted by the
structures of the matrices of the operators, are given by

L† ≡

 R̂− T̂T −V̂−1B̂T N̂⊥ 0

N̂−1
⊥ T̂T

o V̂ ÂT −α̂T

−N̂−1
⊥ T̂T

i V̂ −ĈT Î

 , (19a)

M† ≡

 F̂T 0 0
0 0 0
0 0 0

 . (19b)

As regards the adjoint independent source vector, one faces the issue of
correctly identifying, in physical terms, the adjoint of the independent source
itself. Since the the adjoint independent source is not uniquely defined, the245

resulting adjoint solution differs on the basis of the definition of the adjoint
independent source (Dulla et al., 2006). This situation is distinct from that of
a critical system, for which the adjoint solution is unique for a given definition
of the scalar product. As the purpose of this discussion is mathematical, it is
taken for granted that the adjoint independent source vector is known or at the250

least can be determined in terms of known physical quantities.
The adjoint node-averaged flux and the adjoint outgoing and incoming surface-

averaged interface partial currents which satisfy Eq. (17) with operators as in
Eqs. (19) represent the solution of the adjoint problem. Equation (17) possesses
several interesting characteristics that are not directly observed until the devel-255

opment of the response matrix equation to be used in the solution procedure.
The adjoint response matrix equation is obtained by first combining all of

the individual equations of Eq. (17) to obtain

Â†Jo,† = B̂†Q† + α̂T Ĉ†Jo,†, (20)
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with

Â† ≡
[
Â + N̂⊥B̂R̂−1T̂oN̂

−1
⊥

]T
, (21a)

B̂† ≡
[
N̂−1
⊥

(
α̂T T̂T

i − T̂T
o

)
V̂R̂−1

]
, (21b)

Ĉ† ≡
[
Ĉ + N̂⊥B̂R̂−1T̂iN̂

−1
⊥

]T
, (21c)

Q† ≡
[
F̂ + T̂

]T
Φ + S†. (21d)

The final steps in the derivation of the adjoint response matrix equation include
the partitioning of the off-diagonal blocks of the matrices Â†, B̂† and Ĉ† as
well as the inversion of the block-diagonal component of Â†, thereby allowing
to express the outgoing partial currents of a specific node in terms of an effective260

source and the incoming partial currents of that node. Such detail, however, is
beyond the scope of the present discussion and furthermore is unnecessary as
Eq. (20) is already abundant in information.

One interesting aspect of Eq. (20) is the matrix which multiplies the source
term. The definition of B̂† does well to emphasise that the source of neutron im-265

portance of a particular node is due to the neutrons produced in adjacent nodes
which arrive in the node itself reduced by the number of neutrons produced in
the node itself which are ultimately transmitted to other nodes. Another inter-
esting aspect of Eq. (20) is the implication which it has on the continuity of the
adjoint partial current. The fact that the albedo matrix (even if in transposed270

form) does not multiply the adjoint outgoing partial current directly, but rather
the quantity Ĉ†Jo,†, implies that in the adjoint problem, the interface partial
currents are discontinuous across nodal surfaces whereas the quantity Ĉ†Jo,† is
continuous.

3.3. Quasi-static nodal equations275

With the matrix operators and solution vectors as defined in Eqs. (12), it
is possible to derive the quasi-static form of the nodal balance equations in a
manner analogous to that earlier used with continuous phase space variables.

One begins with the factorisation of the flux, and consequently the current,
into the product of an amplitude function and a normalised shape function

−→
Γ (t) ≡ T (t)

−→
Ψ(t), (22)

where
−→
Ψ(t) is the shape of

−→
Γ (t) and T (t) is the amplitude defined such that

T (0) = 1. It is clear that there is but one amplitude, common to both the
flux and the partial currents, as the two quantities are directly proportional by
Fick’s law. The factorisation is rendered unique by imposing the normalisation
condition 〈−→

Γ †0,V
−1−→Ψ(t)

〉
= γ0, ∀t, (23)

where
−→
Γ †0 is the adjoint solution of the reference system and γ0 is an arbitrary

constant.280

Substitution of the factorised form of the flux and current into Eqs. (11),
projection of both onto the adjoint solution of the reference system, subtraction
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of Eq. (17) projected onto the solution of the direct problem from the first of the
projected Eqs. (11), use of the normalisation condition and finally the definition
of a fission importance analogous to that of the steady-state system allows to
write the amplitude equations, Eqs. (8), with the integral kinetics parameters
given by

F (t) ≡
〈−→

Γ †0,M(t)
−→
Ψ(t)

〉
, (24a)

Λ(t) ≡ 1

F (t)

〈−→
Γ †0,V

−1−→Ψ(t)
〉
, (24b)

β̃i(t) ≡
1

F (t)

〈−→
Γ †0,Mi(t)

−→
Ψ(t)

〉
, (24c)

ρ(t) ≡ 1

F (t)

〈−→
Γ †0, [δM(t)− δL(t)]

−→
Ψ(t)

〉
− 1

F (t)

〈−→
S †0,
−→
Ψ(t)

〉
, (24d)

c̃i(t) ≡
1

Λ(t)F (t)

〈−→
Γ †0,
−→
Gi(t)

〉
, (24e)

s̃(t) ≡ 1

Λ(t)F (t)

〈−→
Γ †0,
−→
S (t)

〉
. (24f)

The operators and sources of the pseudo-static fixed source problem to be
solved either for the shape or for the flux are both obtained in a similar fashion
once an approximation of the temporal variation of the spatial distribution of
the delayed neutron precursors concentrations has been made. By assuming that
the fission source per unit amplitude varies linearly across the shape time step,
the delayed neutron precursors concentrations can be evaluated analytically
according to the expression

−→
Gi(t+ ∆tϕ) = κ0,i

−→
Gi(t) +

1

λi

[
κ1,iMi(t)

−→
Γ (t) + κ2,iMi(t+ ∆tϕ)

−→
Γ (t+ ∆tϕ)

]
, i = 1, . . . , R,

(25)

with

κ0,i ≡ e−λi∆tϕ , (26a)

κ1,i ≡
1

λi∆tϕ

(
1− e−λi∆tϕ

)
− e−λi∆tϕ , (26b)

κ2,i ≡ 1− 1

λi∆tϕ

(
1− e−λi∆tϕ

)
. (26c)

The pseudo-static fixed source equation from which to solve for the shape in
IQM is thus

[MQS − LQS ]
−→
Ψ(t+ ∆tϕ) +

−→
SQS = 0, (27)
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with

MQS ≡Mp(t+ ∆tϕ) +

R∑
i=1

κ2,iMi(t+ ∆tϕ), (28a)

LQS ≡ L(t+ ∆tϕ) +

[
1

∆tϕ
+
d

dt
log T (t+ ∆tϕ)

]
V−1, (28b)

−→
SQS ≡

[
1

∆tϕ
V−1 +

R∑
i=1

κ1,iMi(t)

]
−→
Ψ(t)

+
1

T (t+ ∆tϕ)

[
R∑
i=1

λiκ0,i
−→
Gi(t) +

−→
S (t+ ∆tϕ)

]
,

(28c)

while the pseudo-static fixed source equation of PCQM from which to solve for
the flux is identical to that obtained for full inversion by the implicit, backward
difference scheme

[MQS − LQS ]
−→
Γ (t+ ∆tϕ) +

−→
SQS = 0, (29)

with

MQS ≡Mp(t+ ∆tϕ) +

R∑
i=1

κ2,iMi(t+ ∆tϕ), (30a)

LQS ≡ L(t+ ∆tϕ) +
1

∆tϕ
V−1, (30b)

−→
SQS ≡

[
1

∆tϕ
V−1 +

R∑
i=1

κ1,iMi(t)

]
−→
Γ (t)

+

R∑
i=1

λiκ0,i
−→
Gi(t) +

−→
S (t+ ∆tϕ).

(30c)

3.4. Practical considerations
The integration of the shape (or the flux) equations and the amplitude equa-

tions across the shape time step, as well as the computation of the various de-
rived quantities, is performed under the hypothesis that, in all dimensions of
the phase space, the integral kinetics parameters, the fission source density per285

unit amplitude and the power density per unit amplitude vary linearly across
the shape or reactivity time step.

Under the assumption that the shape varies linearly across the shape time
step, the integral kinetics parameters are computed every reactivity time step
using a shape function which is linearly interpolated across the shape time290

step and operators which are evaluated at the beginning and at the end of
the reactivity time step. The actual values of the integral kinetics parameters
that are used in the integration of the amplitude equations are their respective
averages, obtained by assuming that each varies linearly across the reactivity
time step. The amplitude equations are then solved exactly across the reactivity295

time step under the hypothesis that the integral kinetics parameters are constant
on that same time step.
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Within a shape time step, the spatial distribution of the delayed neutron
precursors concentrations and the spatial distribution of the power are computed
under the assumption that the fission source density per unit amplitude and the300

power density per unit amplitude, respectively, vary linearly across the reactivity
time step, with their respective values at the beginning and at the end of the
reactivity time step computed with a shape which is linearly interpolated across
the shape time step. These assumptions are sufficient to ensure the continuity
of the delayed neutron precursors concentrations (if normalisation were perfect)305

and of the power contemporaneously with the amplitude.
The preceding hypotheses are primarily intended for use with IIQM and

PCQM, both of which have access to information about the shape at the end
of the shape time step and therefore may make use of the assumed variation
of the shape within the shape time step. Instead in IQM, the assumed varia-310

tion of the shape is redundant as the integration of the amplitude equations is
completed prior to the update of the shape function. Consequently, the delayed
neutron precursors concentrations and the power density are discontinuous at
the interface of successive shape time steps. While the delayed neutron pre-
cursors densities are intrinsically adjusted through their recomputation when315

the shape equations are solved, the power density is adjusted by imposing a
continuity condition on the total power (Dulla et al., 2008), though at the cost
of introducing a discontinuity on the amplitude.

3.5. Adaptive time integration procedure
In order to achieve maximum benefit from any of the quasi-static methods,320

it is expedient to introduce an appropriate algorithm for the adaptive control
of the integration procedure. The principal objective of such an algorithm is
the determination of the optimal shape time step for the current conditions
of the transient, which may be either an expansion operation so as to avoid
the unnecessary inversion of the full problem at times when variations of the325

shape, if any, are such that the system is insensitive to those changes, or a
contraction operation so as to maintain a desired level of accuracy at times
when variations of the shape are significant. This requires both appropriate
metrics which are capable of indicating whether or not the shape undergoes a
relevant and significant change as well as a practical algorithm which evaluates330

these metrics and employs them in the determination of new shape time steps.
An apposite indicator of the change in the shape function may take the

form of a weighted vector norm of the difference in the shape vector between
two points in time, normalised in order to permit a consistent comparison. As
regards the nature of the norm itself, an L2 vector norm is an appropriate335

measure of the magnitude of the weighted quantity. To this end, the indicator
proposed for use in an adaptive quasi-static algorithm, henceforth refered to as
the distortion of the shape function, is given by

ξψ(t+ ∆tϕ) ≡

∥∥∥W [−→
Ψ(t+ ∆tϕ)−

−→
Ψ(t)

]∥∥∥
2

1
2

∥∥∥W [−→
Ψ(t+ ∆tϕ) +

−→
Ψ(t)

]∥∥∥
2

, (31)

where W is a weight matrix and the notation ‖·‖2 indicates the L2 vector norm.
For an absolute measure of the distortion, the weight matrix is simply the340
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identity matrix
W ≡ I, (32)

while, for an importance-weighted measure of the distortion, the weight matrix
takes the form

W ≡ diag
(−→

Γ †0

)
. (33)

Although both of these weight functions (as well as others) are valid, the adjoint
solution of the reference system is the logical choice, as it is mathematically345

consistent with the weight used to compute the inner products of the integral
kinetics parameters and as it physically represents the neutron importance at
each point in the phase space, thereby placing emphasis on changes at points of
the phase space which are of significance to the solution.

The use of the parameter ξψ(t) in an adaptive time step selection algorithm350

is relatively straightforward. Consistent with the hypothesis that the shape
varies linearly across the shape time step, it is possible to predict a maximum
value for the shape time step over which the shape varies by a specified relative
amount. This may be written as

ξψ(tn−1)

∆tn−1
ϕ

=
ξmax
ψ

∆tnϕ
, (34)

with the index n introduced to differentiate among the different points in time355

and time steps and with ξmax
ψ the maximum allowed relative distortion of the

shape across a shape time step and is an input value. Thus, the maximum shape
time step which respects Eq. (34) can be written in terms of known quantities.

In practice, the adaptive time step selection algorithm should take into con-
sideration ancillary conditions other than merely the variation of the shape360

function. Based on historical experience (Meneley et al., 1967; Shober et al.,
1978), some such factors may be cited as: an absolute maximum shape time
step, a maximum multiple of the previous shape time step, a maximum relative
variation of the amplitude across the shape time step and the intervention of
a preset driving function. Each of these considerations can be used to suggest365

a value for the shape time step; the next shape time step is taken as the ab-
solute minimum of all of the proposals. In the present approach, the solution
computed to the end of the shape time step is accepted exclusively if each of
the criteria evaluated to predict the shape time step is truly verified by the
computed solution at the end of the shape time step; for IQM and IIQM, this370

includes the convergence criterion imposed on the normalisation condition.
Due to the latter requirement, the adaptive integration procedure requires

further modification when either IQM or IIQM is employed. Precise details are
omitted, however, in essence, the method further limits the expansion of the
shape time step based on the normalisation condition error and its reduction375

behaviour at the previous shape time step. A strategy of this type is an arbitrary
and, to some extent, conservative approach to the minimisation of the total
number of times that the shape equations are be solved during the transient
by attempting to minimise the probability of selecting a shape time step which
leads to a situation in which the normalisation condition cannot be satisfied. A380

more desirable approach may be to maximise the ratio of the shape time step to
the number of normalisation condition iterations required for that shape time
step, a task which is difficult as the ratio is non-linear and depends on several
factors.
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4. Results385

Results are presented for a transient applied to a small, non separable three-
dimensional system. The quasi-static methods are first compared in terms of
behaviour, accuracy and performance for a portion of the transient modelled
using a constant shape time step. Subsequently, the adaptive time step selection
procedure is enabled and the methods are once more assessed in terms of quality390

and performance.
The reactor under consideration is shown in Fig. 3 and consists of a cen-

tral hexagonal assembly surrounded by three full concentric rings of assemblies.
The axis is equipartitioned into two zones, with the lower and the upper zone
each comprised of the same material pattern, but out of phase by a rotation of395

180 degrees and inverted in the central assembly. The two materials, which are
approximately representative of a light water reactor, are described by the two
group diffusion theory parameters and the single delayed neutron precursor fam-
ily provided in Table 1. Zero incoming partial current boundary conditions are
imposed on all external surfaces of the system and the initial condition is critical.400

These specifications result in the initial distribution of the node-averaged flux
and the node-averaged spectral ratio for selected assemblies which are shown in
Figs. 4 and 5, respectively.
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Figure 3: Initial configuration of the system studied for the transient. Labels of the form
ml/mu indicate the material assigned to the lower (ml) and upper (mu) axial zone of each
hexagonal assembly.

A compensated transient is initiated by instantaneously interchanging the
materials (material 1 is substituted with material 2 and vice versa). While405

a configuration of this type is of course not feasible in an actual system, it
does allow to consider a situation in which an initially critical system, after
the transient initiator, retains its critical condition while it undergoes a strong
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Table 1: Group constants used for the test calculations.
mat. g vg [cm·s−1] Dg [cm] Σrg [cm−1] Σg1 [cm−1] νΣfg [cm−1] χg [-] χg1 [-] a

1 1 1.000e+07 1.500 0.026 – 0.010 1.000 0.950
1 2 3.000e+05 0.500 0.180 0.015 0.200 0.000 0.050

2 1 1.000e+07 1.000 0.020 – 0.005 1.000 0.950
2 2 3.000e+05 0.500 0.080 0.010 0.099 0.000 0.050

a: R = 1 with λ1 = 0.08 s−1 and β1 = 0.00750.
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Figure 4: Initial axial distribution of the node-averaged flux shape in selected assemblies.
Marker placement corresponds to the location of the node centre. Numbering corresponds to
the assemblies along the radius at an angle of 60 degrees from the positive x-axis in Fig. 3.

spatial and spectral distortion of the neutron population, therefore testing the
performance of quasi-statics to follow these modifications. Test cases of this410

nature have been extensively used in the literature in the development and
testing of quasi-static algorithms (Yasinsky and Henry, 1965). In the present
situation, the distributions in Figs. 4 and 5 of the asymptotic configuration of
the system are more or less reflected through z/H = 1/2, though not exactly as
the system is not perfectly symmetric due to the material pattern of the central415

assembly.

4.1. Study of the performance of the quasi-static schemes
The transient is modelled using each of the available quasi-static methods.

Relative convergence criteria of 10−10 are imposed on the effective multiplication
eigenvalue of the initial system and 10−8 on the L2 norm of the flux at each in-420

version of the problem. Quasi-static computations are performed with constant
shape time steps employing a reactivity time step of 10−5 s and one ampli-
tude time step per reactivity time step, solving exactly the amplitude equations
across the reactivity time step. For calculations which use IQM or IIQM, the
normalisation condition iterations are stopped if the relative change in the γ425

value (see Eq. (7)) falls below 10−6 or after a maximum of three normalisation
condition iterations.

The time-dependent behaviour of the normalised total power computed with
the quasi-static methods is presented in Fig. 6, where the reference solution is
the result of a full inversion of the problem using a fully implicit integration430

scheme on a fine discretisation of the time domain (∆tϕ = 10−6 s). These results
demonstrate the typical features of the quasi-static approaches. In IQM, the
shape at the beginning of the shape time step is projected forward, resulting in
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Figure 5: Initial axial distribution of the node-averaged spectral ratio in selected assemblies.
Marker placement corresponds to the location of the node centre. Numbering corresponds to
the assemblies along the radius at an angle of 60 degrees from the positive x-axis in Fig. 3.

an evolution of the power which is identical to that of the PK solution up to the
time at which the shape is updated. At this same point in time, a discontinuity435

of the first derivative of the power is introduced by the normalisation condition
iterations. Instead, in IIQM and PCQM, the availability of the shape function
at the end of the shape time step, together with its use in the approximation of
the behaviour of the shape within the shape time step by something other than
a constant, results in an evolution which begins to diverge from the PK solution440

from the very start. The similarity of the results produced by IIQM and PCQM
is as expected, as both methods, although by different algorithms, employ the
same equations and the same approximations to describe the power.

The time-dependent behaviours of the integral kinetics parameters are pre-
sented in Figs. 7, 8 and 9 for the various methods of solution and the various445

discretisations of the time domain. In each case, the reference value is obtained
by employing the normalised reference solution in the appropriate definition.
For each of the dynamic reactivity, Fig. 7, the neutron lifetime, Fig. 8, and
the effective delayed neutron fraction, Fig. 9, it is observed that the ability to
approximate the reference value is enhanced through the approximation of the450

shape function as being linear across the shape time step. In comparing the
results of IIQM and those of PCQM, it can be noted that PCQM computes
visibly better results, especially at large time steps, for precisely the reason that
satisfaction of the normalisation condition is automatically guaranteed. From
Fig. 7, one can observe that the reactivity after 250 reference lifetimes is not455

zero; in fact, the new asymptotic steady-state condition is reached only when
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Figure 6: Time-dependent behaviour of the total power for the compensated transient (Λref =
1.94724 · 10−5 s). 20



full equilibrium between neutrons and precursors is established, which happens
later in time.

In Figs. 10 and 11, the time-dependent behaviours of the amplitude and the
effective delayed neutron precursor amplitude are reported. The discontinuities460

which are present for both the amplitude (IQM) and the effective delayed neu-
tron precursor amplitude (IQM and IIQM) are a consequence of the different
algorithmic methodologies. In IQM, the unavailability of the shape at the end
of the shape time step, hence the inability to apply the approximations that
the power density per unit amplitude and the fission source density per unit465

amplitude vary continuously across the shape time step, inevitably lead to dis-
continuities of the effective quantities if the continuity of the physical quantities
is to be enforced at the interfaces of a shape time step over which the shape has
significantly varied. Instead, both IIQM and PCQM have access to the shape at
the end of the shape time step, thereby permitting the assumption of a continu-470

ous variation of the physical quantities across the shape time step and therefore
leading to the contemporaneous, continuous evolution of both the effective and
the physical quantities, or at least would do so if normalisation was satisfied.
Figure 10 shows that the amplitude is not approaching asymptotically the ini-
tial unitary value, because the space-energy transient induced by the material475

modification is causing a change in the total number of neutrons that affects
the final steady-state of the system. This is also the reason for which the power
level, as can be seen in Fig. 6, is changing between the two critical steady-states.

The error of the quasi-static methods is a time-dependent quantity in virtue
of the manner in which the method accounts for the time-dependence of the flux480

and the manner in which the method both resolves and accounts for the phe-
nomena that occur within the various levels of the multiscale discretisation of
the time domain. This is demonstrated, for example, by examining the temporal
evolution of the relative error of the total power with respect to the reference
solution, as shown in Fig. 12. For a fixed temporal discretisation, all methods485

exhibit two distinct regions: one in which the error is greater and possibly a
function of time and one in which it is notably less and approximately constant.
The former results from the ability of the quasi-static method to accurately
solve for the shape, and consequently all of the derived quantities, during parts
of the transient characterised by the evolution of the spatial and/or spectral490

distributions. Naturally, the error is controlled only when the discretisation suf-
ficiently resolves these variations. As the spatial and/or spectral effects become
less prominent, the shape can be computed with increasing accuracy, causing
the global error to decrease and ultimately leading to the latter region, the
residual of which characterises the error accumulated during the spatial and/or495

spectral transient.
As regards a comparison among the methods, IIQM and PCQM are char-

acterised by a lower error than IQM for a given shape time step thanks to the
use of the shape function at the end time step over which the integration is
performed. All methods regularly decrease the error in all parts of the tran-500

sient as the shape time step is decreased; however, IIQM and PCQM exhibit
convergence rates which are more favourable than that of IQM. The irregu-
lar behaviour seen for the finest discretisations in the calculations which use
IIQM and PCQM are attributed to numerical noise caused by the magnitude
of the error of the temporal discretisation and, in the case of IIQM, that of the505

normalisation condition, approaching the magnitude of the global error of the
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Figure 7: Time-dependent behaviour of the dynamic reactivity for the compensated transient
(Λref = 1.94724 · 10−5 s). 22
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Figure 8: Time-dependent behaviour of the neutron lifetime for the compensated transient
(Λref = 1.94724 · 10−5 s). 23
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Figure 9: Time-dependent behaviour of the effective delayed neutron fraction for the compen-
sated transient (Λref = 1.94724 · 10−5 s). 24
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Figure 10: Time-dependent behaviour of the amplitude for the compensated transient (Λref =
1.94724 · 10−5 s). 25
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Figure 11: Time-dependent behaviour of the effective delayed neutron precursor amplitude
for the compensated transient (Λref = 1.94724 · 10−5 s).26
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Figure 12: Time-dependent behaviour of the relative error of the total power for the compen-
sated transient (Λref = 1.94724 · 10−5 s). 27



solution.
Some insight into the last point is obtained by examining the behaviour of

the normalisation condition error in parallel with that of the power. The time-
dependent behaviour of the normalisation condition error is shown in Fig. 13510

for both IQM and IIQM, indicating also the number of normalisation condi-
tion iterations performed at each discrete point in time. For a fixed number of
normalisation condition iterations, the normalisation condition error decreases
as the spatial and/or spectral effects of the transient disappear, ultimately be-
coming such that the convergence criterion imposed on the normalisation con-515

dition error can be satisfied in fewer iterations and, accordingly, the iterative
algorithm terminates sooner. However, this can produce drastic jumps of the
accepted normalisation condition error between successive shape computations,
which in turn can lead to the oscillatory behaviour observed in Fig. 12 when
the normalisation condition error becomes the dominant source of the error.520

Another set of observations regarding Fig. 13 may be made in reference to
the relative values of the normalisation error between IQM and IIQM. Namely,
when multiple normalisation condition iterations occur, it appears that the nor-
malisation error of IQM tends to be less than that of IIQM. This is justified
by recalling the different iterative methodologies, with particular reference to525

the fact that in the normalisation conditions of IIQM with respect to those
of IQM, more quantities are computed implicitly on the basis of the shape at
the end of the shape time step, thus causing an amplification of any variation
which occurs from normalisation iteration to normalisation iteration. Despite
this apparent drawback of IIQM in comparison to IQM, at least in the present530

example, the normalisation condition error does not lead to a situation in which
IIQM produces results which are worse than those of IQM.

A final, overall assessment of the accuracy of the computed solution and the
computational efficiency of the methods is presented in Table 2. The comparison
is made at 10−1 s, after the error has stabilised for the solution computed by all535

methods. As regards accuracy, it is again observed that IIQM and PCQM are
superior to IQM both in terms of the accuracy itself and the rate of convergence.
Moreover, for both IIQM and PCQM, the quasi-static solutions computed with
the finest discretisation of the time domain differ from the reference solution,
which is computed with a time step that is an order of magnitude less, only in540

the last significant digit.
In terms of performance, PCQM is able to perform fewer inversions of the

flux equations than IQM is required to perform of the shape equations due to
the necessity to satisfy the normalisation condition. However, for a shape time
step which is sufficiently small so as to decrease the number of normalisation545

condition iterations, the total number of outer iterations may be less for IQM
than for PCQM in virtue of the fact that in solving for the shape, possible am-
plitude effects are not present. This benefit decreases as the shape time step
is increased, namely due to the fact that the number of normalisation condi-
tion iterations per shape time step tends to increase. The technique employed550

by MPCQM can significantly reduce the number of outer iterations for suffi-
ciently small shape time steps in comparison to PCQM, rendering the method
comparable to IQM in terms of the number of outer iterations. Again, the
benefit depends on the shape time step and decreases, possibly even becoming
detrimental, as the shape time step is increased due to the lower probability to555

predict the correct amplitude at the end of the shape time step. The required
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Figure 13: Time-dependent behaviour of the normalisation condition (n.c.) error for the
compensated transient (Λref = 1.94724 · 10−5 s).

29



number of inversions of the shape equations and the number of outer iterations
of IIQM are more or less comparable to those of IQM; however, as IIQM per-
forms the integration of the amplitude equations as part of the normalisation
condition iterations, the computational time required is slightly greater. This560

hardly seems pertinent in light of the discussion of the accuracy of IIQM with
respect to that of IQM.

Table 2: Comparison of the performance and the quality of the computed solution for the
quasi-static algorithms (evaluation at 10−1 s).

IQM IIQM

∆tϕ [s] NI NO e2
φ [-] e2

p [-] e∞p [-] NI NO e2
φ [-] e2

p [-] e∞p [-]

1.00e-05 10065 19146 1.83e-05 1.83e-05 1.83e-05 10111 21719 5.61e-07 5.79e-07 5.70e-07
2.00e-05 5050 17207 2.49e-05 2.51e-05 2.50e-05 5067 18035 4.14e-06 4.18e-06 4.15e-06
1.00e-04 1116 12166 7.21e-05 7.25e-05 7.22e-05 1073 10877 3.18e-05 3.21e-05 3.19e-05
2.00e-04 607 9474 1.17e-04 1.18e-04 1.17e-04 588 8579 6.17e-05 6.22e-05 6.19e-05
1.00e-03 221 6800 2.68e-04 2.70e-04 2.69e-04 215 6495 1.78e-04 1.79e-04 1.78e-04

PCQM MPCQM

∆tϕ [s] NI NO e2
φ [-] e2

p [-] e∞p [-] NI NO e2
φ [-] e2

p [-] e∞p [-]

1.00e-05 10001 27095 4.11e-07 4.18e-07 4.13e-07 10001 19723 4.53e-07 4.59e-07 4.53e-07
2.00e-05 5001 20967 3.96e-06 3.99e-06 3.97e-06 5001 16801 4.02e-06 4.04e-06 4.02e-06
1.00e-04 1001 6960 3.12e-05 3.13e-05 3.12e-05 1001 7837 3.12e-05 3.13e-05 3.12e-05
2.00e-04 501 5793 5.98e-05 6.01e-05 5.99e-05 501 6684 5.98e-05 6.00e-05 5.98e-05
1.00e-03 101 2420 1.86e-04 1.87e-04 1.86e-04 101 2980 1.86e-04 1.87e-04 1.86e-04
NI: total number of inversions of the flux or shape equations performed up to
the point of evaluation; NO: total number of outer iterations performed up to
the point of evaluation; e2

φ: L2 norm of the flux distribution; e2
p: L2 norm of

the power distribution; e∞p : L∞ norm of the total power.

4.2. Study of the adaptive time integration procedure
The points evidenced in the preceding discussion support the idea that an

adaptive time integration procedure is the natural complement of a quasi-static565

method. In comparing the results of the quasi-static computations using con-
stant shape time steps, it is observed that the quality of the results propagated
throughout the transient depends on how well resolved are the most onerous
parts of the transient. The introduction of an algorithm which is capable of
an adaptive handling (either refining of coarsening, as may be required) of the570

shape time step can simultaneously provide better resolution of the most dif-
ficult portions of the transient and eliminate superfluous computations of the
shape as the system tends to an asymptotic configuration.

In this context, the behaviour of the relative distortion of the shape function,
ξψ(t), for the transient under consideration is introduced in Fig. 14. For brevity,575

only the results of the solution computed by the full inversion method are shown;
results obtained by the quasi-static methods which use constant shape time steps
exhibit similar behaviour. Regardless of the value of the shape time step, the
general behaviour of the relative distortion is analogous. As the spatial and/or
spectral effects diminish, the distortion decreases and ultimately tends to a580

constant value which may be accompanied by numerical noise. The magnitude
of the distortion at any point in time depends on that which has occurred in
the preceding time step. Thus, at equal points in time, the magnitude of the
distortion decreases with decreasing shape time step.
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The results for two weighting procedures are shown: one which equally585

weights all points of the phase space and one which weights on the adjoint solu-
tion of the initial configuration. For this particular transient, the results are not
strongly affected by the two choices of the weight function; however, the adjoint-
weighted distortion is consistently less than the unit-weighted distortion. This
behaviour is not universal, but rather problem dependent. Henceforth, when590

reference is made to the distortion of the shape function, the adjoint weighting
procedure is implied.
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Figure 14: Time-dependent behaviour of the relative distortion of the shape function for the
full inversion method (Λref = 1.94724 · 10−5 s).

The same transient is modelled again using the quasi-static methods with the
adaptive integration procedure enabled. Convergence criteria are as before and
the integration parameters are fixed at a maximum shape time step of 10−1 s595

and a maximum reactivity time step of 10−2 s.
A comparison of the asymptotic solution computed by the various quasi-

static algorithms using the adaptive integration procedure is presented in Ta-
ble 3. It is observed that each of the individual methods exhibits convergence
for a maximum permissible distortion less than 10−2 and that in allowing the600

permitted distortion to increase to 10−1, the effect on the solution is minimal.
The latter observation implies that the starting procedure of the algorithm and
the maximum multiple by which the shape time step is allowed to expand be-
tween successive shape time steps are relatively conservative. As concerns a
comparison of the methods, IQM and IIQM reach the asymptotic state at ap-605

proximately the same time, which is slightly later than that of PCQM, and IQM
yields results which are different than those of IIQM and PCQM, both of which
are nearly the same. As in the case of a constant shape time step, IQM and
IIQM do give different results due to their different treatment of the physical
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quantities during the normalisation iterations, while IIQM and PCQM yield610

identical results provided that the normalisation error is sufficiently small. In
the present case, the additional difference between IIQM and PCQM may be at-
tributed to the different means by which the shape time step is managed for the
two methods, namely that IIQM applies additional constraints which ultimately
lead to a slower rate of expansion of the shape time step and, consequently, a615

better resolution of the time domain in the vicinity of the perturbation.
Comments which may be made on the performance are dependent on the

method. Considering first PCQM and MPCQM, both the number of times the
flux equations are inverted and the number of outer iterations monotonically in-
crease with an increasingly stringent limit on the maximum permissible distor-620

tion, but the ratio of the number of outer iterations to the number of inversions
decreases, all of which is as to be expected. While PCQM and MPCQM employ
the same number of inversions of the flux equations, the number of outer iter-
ations for MPCQM is greater than that for PCQM in this particular transient.
This is a consequence of the fact that for a compensated transient, the most625

significant changes are to the shape rather than to the amplitude; therefore,
the potential benefits offered by MPCQM do not necessarily come into effect.
Considering next IQM and IIQM, the performance behaviour is more disor-
dered due to the non-linearities of these two quasi-static algorithms and due to
the additional constraints imposed by the adaptive integration procedure in the630

management of the shape time step, making any general observation difficult.
Regarding a comparison between IQM and IIQM, IIQM requires both a greater
number of inversions of the shape equations and a greater number of outer iter-
ations than IQM, but the number of outer iterations per inversion is less. This
is related to normalisation requirements through the error reduction behaviour635

of the normalisation condition error and, therefore, to the adaptive integration
procedure.

Table 3: Comparison of the performance and the quality of the computed solution for the
quasi-static algorithms (evaluation at the asymptotic state).

IQM IIQM

ξmax
ψ [-] t∗ [s] p(t∗)/p(0) [-] NI NO t∗ [s] p(t∗)/p(0) [-] NI NO

1.00e-03 1.7417e+02 8.7813e-01 8541 310402 1.7415e+02 8.7890e-01 29148 901599
1.00e-02 1.7391e+02 8.7813e-01 9163 341764 1.7392e+02 8.7889e-01 39540 1020065
1.00e-01 1.7385e+02 8.7810e-01 7195 283304 1.7392e+02 8.7889e-01 36476 1014204

PCQM MPCQM

ξmax
ψ [-] t∗ [s] p(t∗)/p(0) [-] NI NO t∗ [s] p(t∗)/p(0) [-] NI NO

1.00e-03 1.6853e+02 8.7889e-01 2012 29955 1.6853e+02 8.7889e-01 2012 63683
1.00e-02 1.6859e+02 8.7889e-01 1730 28466 1.6855e+02 8.7889e-01 1730 62356
1.00e-01 1.6861e+02 8.7888e-01 1704 28368 1.6856e+02 8.7888e-01 1703 62164
t∗: time at which asymptotic state is reached, determined through the appli-
cation of a least squares fit to the logarithm of the power evolution and the
identification of the earliest time for which the fit satisfies all downstream val-
ues with a norm of the residual less than 10−7; NI: total number of inversions
of the flux or shape equations performed up to t∗; NO: total number of outer
iterations performed up to t∗.

Instead, a more insightful approach may be to consider also the employed
shape time step, as is shown in Fig. 15. In the case of the linear approach used
by PCQM and in the absence of other factors, the shape time step expands640
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proportionally to the minimum of the ratio of the maximum permissible distor-
tion to the distortion at the current shape time step or the maximum allowable
rate of expansion until it reaches its maximum absolute value. However, in the
non-linear cases of IQM and IIQM, the expansion of the shape time step is
furthermore limited by considerations on the normalisation requirement. In the645

present algorithm, this implies further decreasing the rate of expansion (possibly
to zero) on the basis of the normalisation condition error at the previous shape
time step, which results in the additional plateaus at shape time steps which
are less than the maximum absolute value. In all cases, the occasional instan-
taneous drops in the shape time step are attributed to the algorithm adjusting650

itself so as to generate output at a specific point in time requested by the user.
In conclusion to this study on the adaptive integration procedure, it is worth

noting that a single parameter study is not completely representative of the
situation. There are several parameters which are evaluated by the time step
selection algorithm, of which the relative distortion of the shape function is655

only one. Consequently, a completely consistent basis for comparison among
the methods is difficult to ensure.

Results obtained with the application of the adaptive algorithm are presented
only in the absence of thermal feedback. Since the time step adaptation is based
on the rate of change of the neutron shape, the presence of thermal feedback and660

the consequent modification of the shape should not influence the application
of the algorithm.

5. Conclusions

A quasi-static solver for the solution of the time-dependent neutron diffu-
sion equations is implemented in the neutronics module of a multiphysics re-665

actor analysis code. The paper includes an introductory critical review of the
quasi-static scheme, illustrating the classic formulation as well as the novel mod-
ifications recently proposed to overcome some of the drawbacks of the original
method. The various formulations of the method are then applied within a
three-dimensional spatial nodal discretisation scheme in hexagonal-z geometry670

for the multigroup diffusion model for nuclear reactor kinetics applications.
Results and comparisons of some transient test calculations clearly demon-

strate the characteristics of the different quasi-static approaches, highlighting
advantages and problems that may arise in their application. It is also realised
that the quasi-static scheme can be efficiently used only in connection to a con-675

sistent procedure to adapt the time step between shape recalculations according
to the evolution of the neutron distribution within a system in a specific tran-
sient. The paper proposes a novel adaptive time stepping algorithm that is
shown to be potentially capable to significantly improve the effectiveness of the
quasi-static procedure for realistic transient calculations.680
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Figure 15: Time-dependent behaviour of the shape time step (Λref = 1.94724 · 10−5 s).
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