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Abstract—This paper motivates and describes the introduction
of network-aware scheduling capabilities in OpenStack, the open-
source reference framework for creating public and private
clouds. This feature represents the key for properly supporting
the Network Function Virtualization paradigm, particularly when
the physical infrastructure features servers distributed across a
geographical region. This paper also describes the modifications
required to the compute and network components, Nova and
Neutron, and the integration of a network controller into the
cloud infrastructure, which is in charge of feeding the network-
aware scheduler with the actual network topology.
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I. INTRODUCTION
Network-Function-Virtualization (NFV) and Software-

Defined-Network (SDN) are emerging as a solid opportunity
for the ISPs to reduce costs while at the same time providing
better and/or new services. The possibility to flexibly manage
and configure highly-available and scalable network services
is attractive and the adoption of such technologies is gaining
momentum. In particular, NFV proposes to transform the
network functions (e.g., NAT, firewall, etc) that today are
running on proprietary equipment into a set of software images
that could be installed on general purpose hardware, hence
becoming Virtual Network Functions (VNFs) and leveraging
high-volume standard servers (e.g., x86-based blades) and
computing/storage virtualization. A further step is the adoption
of such virtualized entities to create arbitrary graphs of VNFs,
so that also complex network services could be delivered with
unprecedented agility and efficiency, with a huge impact in
terms of costs, reliability and complexity of the network. The
SDN paradigm, instead, permits a centralised control over the
network and a more flexible way to hook the virtual instances
manager with the network manager.

In this scenario, a significant problem is to make as
easy and inexpensive as possible for service providers the
transition from the old to this new concept of networks.
This can be done only by trying to take advantage of the
general purpose software tools that companies already run on
general purpose hardware to provide those new services. In
this context OpenStack [1] comes into play as it represents
the reference open-source project for creating and managing
public and private clouds, although its scope is limited to the
datacenter environment and therefore it does not provide all the
functionalities required in other deployment scenarios, such as
when compute nodes are scattered across a distributed network
infrastructure. In fact, the “vanilla” version of OpenStack
has three main limitations when applied for our context.
First, it does not take the network topology into account,
assuming simply that the network is fast enough to support
the workload, which is not always the case when computing

resources are distributed across the entire infrastructure of
the telecom operator, from the Customer Premise Equipment
(CPE) located at the edge of the network and often connected
with slow links (e.g., xDSL) to the main data center. Second, it
does not consider the relationships among different network
functions, e.g., as service chains are (by definition) sequences
of possibly dependent VNFs, often traversed by huge amount
of traffic (I/O bound workloads). Third, it does not consider
the necessity to support arbitrary traffic paths between the
network functions belonging to each service graph, which
requires the availability of generic traffic steering primitives.

In our context scenario, where physical links may have
limited bandwidth and servers are far away from each other,
a much more careful consideration of network resources is
essential. Instead, the OpenStack scheduler, which in charge
of properly determining the placement of virtual machines
(VMs) through the Filter&Weight algorithm, schedules VNFs
(actually, VMs) without considering either possible interaction
among them or network-related parameters characterizing the
underlying infrastructure. We argue that knowing the physical
network resources (e.g., network topology, link capacities and
load conditions), VM placement can be optimized also from a
networking perspective, e.g., in a way that minimizes the load
over physical cables and reduce the network latency.

This paper investigates to what extent OpenStack needs
to be modified to support the deployment of network service
graphs in the NFV context. In particular, we discuss the
extensions required to introduce a network-aware scheduler,
i.e., with the capability to optimize the VM placement from
a networking perspective, which is essential for the efficient
deploying of VNF service graphs. As an additional feature,
we also extend OpenStack with traffic steering primitives,
which are used to instruct the traffic to follow arbitrary paths
among VNF, allowing packets to traverse network functions
without the need of explicit IP routing rules. Traffic-steering
is necessary to implement arbitrary service graphs featuring
transparent VNFs, i.e., applications that act as a pass-through
component in the service graph, such as a transparent firewall,
a network monitor, and more, and to allow the traffic exiting
from one VM to be split and sent toward different paths (e.g.,
web traffic to a first VNF, while the rest to a second VNF). All
these results have been achieved by modifying the two core
components of OpenStack, namely the compute part (a.k.a.,
Nova) and the network part (Neutron); in addition, we also
require the deployment of a separate network controller —
OpenDaylight (ODL) [2] in the specific case — to collect
network-related parameters, such as the network topology, and
communicate them to the scheduler.

The rest of the paper is organized as follow: Section II



describes the modification applied to OpenStack, in Section III
the experimental validation is presented, while related and
future work are discussed in Section IV and V respectively.

II. EXTENDED OPENSTACK ARCHITECTURE
A. Enabling a Network-Aware Scheduling

The location of the several information required by a
network-aware scheduler to operate is shown in Figure 1.

Briefly, we need to feed the OpenStack scheduler with the
service graph, which is composed by a set of VMs (item (i) in
Figure 1) and the logical interconnections between them (item
(ii) in Figure 1). However, this information is either missing, or
scattered across different OpenStack components. With respect
to the missing information, Nova schedules one VM at a time
and does not have the notion of “group of VMs”, which is
required in order to be able to activate the scheduling task
only when all the components of the service graph have been
communicated to OpenStack. This requires the Nova API to
be extended with a new function that defines a group of VMs,
and forces Nova to call the scheduler only when all the VMs
belonging to that service graph are known. With respect to the
information that is present in OpenStack but is not known
by Nova, we can cite the logical interconnections between
VMs that are known only by Neutron, which requires the
definition of a new function that allow Nova to get access
to this information.

In addition to the service graph, the scheduler needs to
know the network topology and status (item (iii) in Figure 1),
which is known by the ODL network controller1. This requires
the definition of a function that reads the network topology
from ODL, and a last component (item (iv) in Figure 1) that
maps the location of each softswitch returned by ODL to the
proper server it is running in.

Given those requirements, OpenStack had to be modified
in several places, as depicted in Figure 2, where the circles
represent the components that had to be extended or modified
in order to support our use-case. The internal calls sequence is
depicted in Figure 3 with numbers as identifiers of each call.
In the following section we will refer to such calls with the
proper identifiers.

B. OpenStack call sequence
When the OpenStack orchestrator, Heat, receives a call for

a chain deployment (label 1 of Figure 3), a set of API are
called for Nova and Neutron. In particular, the orchestrator
requests Nova to deploy and start each VNF of the chain (2,
4). Nova will retain the requests until the last one is received.
A new API has been introduced in Nova and called by Heat
to specify constraints such as minimum amount of bandwidth
required in the connection between two VMs of the chain
(5). Once the Nova module has the set of VMs associated
to their ports, it can recreate the original graph retrieving from
Neutron the way virtual machines have to be interconnected
leveraging, in particular, on the call get_flowrules (6).
This way Nova scheduler has a model of the complete service
chain that has to be deployed comprehensive of VMs, links and
associated constraints. At this point, it is needed to provide to
the scheduler a map of how the physical servers are connected

1It is worth mentioning that the standard OpenStack installation does not
require a distinct network controller; in this case, Neutron will control only
software switches in the compute node, which are connected together through
a mesh of GRE tunnels.
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Fig. 1: Location of the information required by a network-
aware scheduler in the OpenStack architecture.
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Fig. 2: Overall OpenStack architecture: modified components.

and the links capacities. In order to do so, a call to ODL to
retrieve the physical topology is done with the provided API
(8); the topology is composed by nodes (virtual or physical
switches) and links with associated bandwidth capacities. The
Nova scheduler translates and compresses all the information
into a cost matrix in which the elements represent the min-cost
path values (in terms of bandwidth or number of hops) between
each softswitch residing in the different Nova compute nodes2.
The identifiers of these virtual switches are retrieved from
the Nova-agents. With all these information Nova is now
ready to solve the scheduling problem. From the Filter&Weight
algorithm of the legacy OpenStack we kept the first phase of
filtering in order to have as input of the problem only machines
compliant (in terms of type of OS, virtualization flavors and
possibly policy-rules) with the particular VMs that are going
to be scheduled.

The new Nova scheduler defines an objective function that
minimizes the traffic load on the physical links, which is

2Physical network devices operating in the network are not relevant for the
Nova scheduler, as this component needs to know the cost between a VM to
another, no matter how the physical path looks like.
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Fig. 3: OpenStack internal calls sequence.

weighted inversely to the bandwidth capacity of the links (i.e.
wl = k/Cl where k is a constant and Cl the link capacity).
In this paper, the definition of an efficient algorithm for the
Nova scheduler was not among the objectives, hence we use
a brute force enumeration algorithm in which all the possible
feasible solution are checked in order to have the optimum
allocation. Clearly, for a deployment in a real scenario a meta-
heuristic needs to be exploited and its complexity analyzed
in order to have a solution that can cope with hundreds of
variables involved. For example, the algorithms presented in
[3] seem to be a good starting point for a real implementation
in OpenStack. This is left as a future work.

C. Traffic steering
Heat has been also extended to support the new Neutron

primitive FlowRule (3), which denotes the logical link be-
tween two VMs. The FlowRule describes how to steer the
traffic between the ports of the VNFs, which is required to
support traffic splitting among different network functions,
e.g., when the traffic exiting a first VNF (e.g., a software
router) has to be directed party to a second VNF (e.g., a stateful
firewall for web traffic), partly to a third VNF (e.g., a stateless
firewall for the rest)3. This primitive provides an interface
similar to the OpenFlow 1.0 flowmod; however, it allows
the traffic steering between virtual ports without knowing in
advance the physical server on which the respective VNFs
will be scheduled. In this way, only when Nova module has
scheduled the VMs and the involved ports attached to the
virtual switches become ACTIVE (10, 12), the FlowRules are
passed to the network controller (13), which has been modified
to accomplish the task of translating such rules into FlowMods
and to instantiate them into the switches along the minimum-
cost paths between servers where the VMs are allocated (14).
To accomplish this, Neutron has to pass the identifiers of the
switches chosen by Nova after the scheduling process so that
ODL can determine the end-points of each FlowRule. Note that
the switches involved could be either inside a Nova compute
node or physical switches used to interconnect several servers,

3Traditional service chains without traffic splitting can be supported by the
“vanilla” Openstack, without the need for traffic steering extensions.

but only those inside the Nova-agents could be the end-points
of the FlowRules.

Neutron has been modified from the northbound interface
to the mechanism driver of ODL to support the new RESTful
API URL and the basic CRUD (create-read-update-delete)
methods to permit the user or other components to manage
the FlowRules. Other than a new URL, this piece of code
takes care of providing a definition of the request via a XML
schema or a JSON structure (shown in listing 1) as well as
instructing the below component to redirect each request to the
proper corresponding entry point in the Modular Layer 2 (ML-
2) plugin component. The implication of the network controller
automatically enables traffic steering along VNFs belonging to
the same chain with simple OpenFlow rules derived from the
FlowRule abstraction.

POST h t t p : / / n e u t r o n I P : n e u t r o n P o r t / . . .

{
” f l o w r u l e ” :
{

” i d ” : ”< t e n a n t i d >−<unique name >” ,
” ha rdTimeou t ” : ” 0 ” ,
” p r i o r i t y ” : ”50” ,
” i n g r e s s P o r t ” : ”<VM port id 1 >” ,
” e t h e r T y p e ” : ”0 x800 ” ,
” t p S r c ” : ”80” ,
” p r o t o c o l ” : ”TCP” ,
” a c t i o n s ” : ”OUTPUT=<VM port id 2>”

}
}
Listing 1: JSON request example performed to the FlowRule
Neutron API extension

D. Minor modifications
In order to create an environment where our scheduler can

be actually deployed and tested, OpenStack (in its IceHouce
release) requires some further modifications. First of all, (i)
since a VNF may be a transparent function that hence needs
transparent ports (i.e. network ports without the TCP/IP stack
enabled), we introduced an emulation of this “port type” by
exploiting the above described traffic-steering feature. Fur-
thermore, (ii) we removed the constraint for all the traffic
entering and leaving its domain to pass through the Network
Node, the traffic concentrator point used in OpenStack. This is
crucial in a distributed environment where a frugal usage of the
bandwidth available on physical interconnections is essential.
This feature is obtained because deployed chain has its own
forwarding plan defined and instantiated through ODL instead
of Neutron.

III. EXPERIMENTAL VALIDATION
A. Testbed setup

Figure 4 shows the testbed used to validate our network-
aware scheduler, which is composed by four physical server,
one hosting the orchestrator (OpenStack server and OpenDay-
light controller) and the remaining acting as compute nodes; in
addition, two workstations were used as traffic generator and
receiver. All the servers were equipped with 32 GB RAM, 500
GB Hard drive, Intel i7-3770 @ 3.40 GHz CPU (four cores
plus hyper-threading) and 64 bits Ubuntu 12.04 server OS,
kernel 3.11.0-26-generic. Virtualization were provided by the
standard KVM hypervisor. All the physical connections were
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point-to-point Gigabit Ethernet links; furthermore compute
servers were logically connected through a full mesh network
made by three point-to-point GRE tunnels; the network seen by
the OpenFlow OpenDayLight controller is shown with dashed
lines. In order to demonstrate the advantages of our scheduler,
the bandwidth of two (logical) links was artificially lowered
to 100Mbps.

B. Test conditions
Since our test aim at validating the advantages of the new

scheduler, we choose a rather conventional setup for the param-
eters that do have a major impact on the results. Particularly,
we allocated fully virtualized virtual machines (VMs), with
Ubuntu 12.04 server-64 bits as guest operating system. Each
VM was configured with two virtual interface cards bridged
with the standard linuxbridge tool, configured to forward
the traffic received from a NIC to the the other as fast as
possible. Finally, we configured OpenStack to limit to two
the number of virtual machines that can be executed in each
compute node.

To validate the new architecture, we asked OpenStack to
create and schedule the six different chains of VMs shown in
Figure 5 under different settings. First, we used the standard
OpenStack scheduler (the Filter&Weight) declined in two dif-
ferent configurations: distribute, which distributes VMs across
all physical servers, or consolidate, which needs to reach the
100% load on a given server before allocating a VM on the
next server. As evident, neither configuration take the network
topology or the shape of the service chain into consideration,
as the weighing process analyzes only the amount of memory
available on each server. VMs are scheduled according to their
identifier, starting with VM1 first.

Finally, the network was configured to force the test traffic
to traverse all the VMs of each chain in the proper order,
starting from the workstation acting as traffic generator toward
the traffic receiver. Latency was measured by issuing ping
requests between the traffic generator and receiver, while the
throughput of the chain was measured with iperf, configured
to generate TCP traffic.

C. Results
Results, shown in Table I, confirm that in the Filter&Weight

scheduler algorithm (in both configurations) the sequence of
requests is crucial when choosing the location where virtual
machines will be deployed. In particular, taking a look at
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scenarios (b) and (d) that features the same set of VMs
although chained (and then scheduled) in a different order,
it is evident the standard OpenStack scheduler (in both con-
figuration) allocates the VMs in the same way, despite the
different logical connections among the VMs of the chain.
Instead, our scheduler optimizes the placement of the VMs
taking into account both the connections among VMs and the
characteristics of the network, hence (i) allocating consecutive
VMs on the same server (VM1 and VM2 in case (b), VM1 and
VM3 in case (d)) and (ii) favoring Server3, connected with a
1Gbps link, against Server2, connected with a 100Mbps link.
In this particular example, this allows our traffic generators to
measure a throughput that is one order of magnitude higher
than the original scheduler.

Our scheduler is also able to satisfy possible requirements
in terms of minimum bandwidth among VMs. For instance,
scenarios (c) and (e) impose some limitations about the band-
width that must be available between VMs, which forces the
two involved VMs to be allocated on the same server. In fact,
the requested bandwidth (2Gbps) is higher than the speed of
any physical link, hence the only choice consists in allocating
both VMs on the same server where the (virtual) link speed
is assumed to be the bandwidth of the memory (25.6GBps in
our servers).

Our network aware scheduler shows a possible drawback
when analyzing the time needed to take its decision, which
increases dramatically as the number of compute nodes and
the size of the network increases, as shown in Table II. This
suggests that the brute force algorithm should be replaced with
a more lightweight heuristics in our future work, which looks
more appropriate to solve a problem of class NP.

IV. RELATED WORK
The necessity of a network-aware scheduler has been

discussed in the OpenStack community [4], but no work has
been done ever since the implementation of the blueprint is
marked as “deferred”. An example of extended OpenStack
architecture for a dynamic resource allocation scheme can be
found in [5], where the authors provide an extensible set of
management objectives among which the system can switch at
runtime during the process of resource allocation for interactive
and computationally intensive applications. However, they do



Algorithm Server Sched. Thr Lat.
#1 #2 #3 time [s] [Mbps] [ms]

a
Consolidate VM1, VM2 0.242 840 1.16
Distribute VM1 VM2 0.236 82 1.89
Network-aware VM1, VM2 0.0008 840 1.16

b
Consolidate VM1, VM2 VM3 0.310 79 2.19
Distribute VM1 VM2 VM3 0.325 60 3.50
Network-aware VM1, VM2 VM3 0.0011 748 2.14

c
Consolidate VM1, VM2 VM3 0.312 79 2.20
Distribute VM1 VM2 VM3 0.323 60 3.51
Network-aware VM1 VM2, VM3 0.0014 760 2.15

d
Consolidate VM1, VM2 VM3 0.312 77 2.41
Distribute VM1 VM2 VM3 0.320 58 3.50
Network-aware VM1, VM3 VM2 0.0011 750 2.12

e
Consolidate VM1, VM2 VM3, VM4 0.392 76 2.57
Distribute VM1, VM4 VM2 VM3 0.399 59 4.02
Network-aware VM1, VM3 VM2, VM4 0.69 750 2.23

f
Consolidate VM1, VM2 VM3, VM4 0.396 57 2.38
Distribute VM1, VM4 VM2 VM3 0.402 47 3.48
Network-aware VM1, VM3 VM2, VM4 0.011 683 2.20

Reference - No virtual machines between client and server 864 0.458

TABLE I: Comparing different scheduling algorithms: VM
locations, traffic throughput and latency.

# of compute nodes
1 2 3 4

#
of

V
M

s
(#

of
links)

1(0) 0.00041 0.00043 0.00043 0.00044
2(1) 0.00047 0.00049 0.00060 0.00073
2(2) 0.00048 0.00053 0.00067 0.00080
3(2) - 0.0010 0.0016 0.0078
3(3) - 0.008 0.019 0.19
3(6) - 0.003 0.54 59
4(3) - 0.0017 0.0092 0.031
4(4) - 0.017 0.26 1.5
5(4) - - 0.47 15
5(5) - - 5.1 75

TABLE II: Processing time of the “brute force” scheduler
(seconds).

not cope with NFV deployment, which is instead the central
topic in [6], [7], [8] and [9]. In [6], the authors propose
modifications to the Nova-scheduler of OpenStack to solve a
joint optimization problem of the NFV Infrastructure resources
under multiple stakeholder policies. They introduce constraints
for the NFV deployment related to QoS, fault-tolerance and
network topology redundancy, but they do not discuss the
interaction between OpenStack and the network controller. [7]
proposes an architecture for NFV by leveraging on a set of
OpenFlow enabled physical switches programmed and man-
aged by a centralized controller, which provides an interface
for the deployment of fine-grained traffic steering policies. In
our implementation, the flow rules for steering come from
the cloud controller through Neutron which in turn delegates
the instantiation to the network controller. [8] presents an
end-to-end platform for NFV that lays on OpenStack and
OpenDaylight as our extension does. However, they focus on
the high-level description of the framework rather than on the
identification of the implementation and the technical issues
existing in OpenStack which hinder the capability of NFV
deployment. Finally, [9] probably offers the most complete
framework for NFV orchestration and deployment: the authors
describe an orchestration layer for virtual middleboxes which
provides efficient and correct composition in the presence of
dynamic scaling via software-defined networking mechanisms.
However their implementation is not based on OpenStack and
they do not cope with a distributed cloud environment, which
is the target scenario for the algorithms presented in [3].

V. CONCLUSION AND FUTURE WORK
This paper proposes an extended architecture for NFV

and network-aware scheduling in OpenStack. In particular,

we extended the already available API of Nova for a bulk
scheduling of VMs belonging to the same user chain and
introduced a new primitive in Neutron for traffic-steering.
This is crucial in an operator network, where xDSL users are
connected through a link with limited bandwidth, especially
if some compute nodes are located at the network edges, in
which our network-aware scheduler shows its main advantages
compared to the standard Filter&Weight algorithm.

In our scheduler we used a brute force approach to obtain
the optimum VM placement. However, the implementation of a
meta-heuristic algorithm is necessary to provide a sub-optimal
solution in a reasonable amount of time when the number
of VMs and servers increases. Other future works concern
the capability to support more complex service graphs and a
scheduling algorithm that takes into account policy-constraints
in order to define administration rules to determine the VM
placement. Finally, the network controller of OpenStack should
be redesigned to support awareness of dynamic changes in the
underlying network.
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