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Abstract

The information on river flows is important for a number of reasons including; the construction
of hydraulic structures for water management, for equitable distributiomatér and for a
number of environmental issues. The flow measurement devices are generally installed across
the workspace at various locations to get data on river flows but due to a number of technical and
accessibility issues, it is not always possildeget continuous data. The amount rainfall in a
basin area also contributes towards the river flows and intense rainfall can cause fl6bding.
extended rainfall maps for th&tudy areas to analyzbese extreme events can be of great

practical and theotieal interest.

This thesis cafbe generallyegarded as a work on catchment hydrology and mapping rainfall
extremes to estimate certain hydrological variables that are not only useful for future research but
also for practical designing and managementgssWe analyzed a number of existing
techniques available in literature to extend the hydrological information from gauged basin to
ungauged basin; and suggested improvements. The three main frontiers of our work are: Monthly
runoff regime regionalizatignFlow duration curves (FDCs) regionalization and preparing

rainfall hazardous maps.

The proposed methods of regionalization for runoff regime and FDCs are tested for the basins
located in northern Italy; whereas for rainfall extremes, the procedure lisdapp the data

points located in northern part of Pakistan.
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Chapter 1. Introduction
Water is, without any doubthe important and essential natural resource. Since it thoroughly

affects the life of earth, in every aspect, it is therefore important to understand the mechanism of
water availability not only for scientific reasons but also for an efficient manageidaveilable
water resources. The science that studies the movement, distribution pattern and occurrence of

water within each phase of water cycle is called hydrology.

The understanding on water cycle is extremely limited mainly because of involvement of
complex physical processes and also because these physical processes take placedever a w
range of both spatial and temporal scafes;example Siberian winds bring chilling winter in
Pakistan. Apart from a broader prospective, the study on hydrolag&ags is divided into

different areas of expertise e.g. water resources management, meterogical science etc.

This thesis cafbe generallyegarded as a work on catchment hydrology and mapping rainfall
extremes to estimate certain hydrological variablasdhe not only useful for future research but

also for practical designing and management issues.

A fundamental landscape unit that physically relates hydrological cycle with ecological,
climatological, morphological, geochemical and other pgses of ararea is termed as basin
[Sivapalan et al., 2003]. The aim of studying this interaction is to mainstream the concept of
fluxes through the basin boundaries, particularly from and towards the atmosphere and
groundwater (e.g. rainfall converted to surfaceoftiand a fraction of it percolates down to
recharge groundwater level). Among all other variables calculated during this interaction, surface
runoff or discharge is the one that stands out due to its importance in the study of flood
estimation, water magement and also ithe designing of hydraulic structures (i.e. dams,
reservoirs, barrage etc.). Since all the geomorphological and climatological processes converge
towards the magnitude of surface runoff, dischsyge some way summaries or at leastear

representative of catchment processes.

Due to ever changing enviromental, climatological and geomorphological parameters within a
complex system of basin; it is only possible through mabaracteristics like magnite,
frequency and duration dfydrological events to replicate badwehavior. The statistical laws



and theorems can be used to estimate these roharacteristics by trying to interpret the

hydrological patterns without having a prior knowledge about the physical processes.

The atire efforts in this thesis are made to estimate the magnitude of discharge at an
instantaneous time interval and magnitude of peak,flmang with its timing by simulating
monthly flow regime for an ungauged basin. Availability of flexceeding or @ualing a certain
value for a certain percentage of tineelaborated through the regionalization of flow duration
curve (FDC). Moreover, the primary cause of extreme flow, at feadPakistan is extreme
rainfall; therefore rainfall hazardous map is\geated for a certain return periodimadenthe
scope of our research.

The hydrological processes occurring in a basin play a pivotal role in shaping the life style of
human societies. For example, in ednlgtay a strong influence of river Nile ondHives of

early Egyptian civilization, for insince, is documented inakhak temple complex on the
northern sidellauro,2009]. The propitiatory values of flood level along the length of the river at

different locations are represented by hieroglyphics.

In the recent decadedue tothe increase in urbanization and change in land use patterns have
contributed towards the rapid exploitation of water resources. This emphasized the need for a
reliable classification of surface water flows based on their matgand time of occurrence in

order to manage this natural resource efficiently (reservoir operations). The demand of water on
the downstream for different, sometimes conflicting, necessities (e.g energy production plant,
agriculture, industry etc.) canake water management issues exponentially complex. Moreover
the environmental issues related to water quantity (water logging and wetland etc) and water
guality (industrial waste water, chemical industries and lather industries) need to be addressed
propely. Apart from meeting the water demands of commuters, it is also important to save the
community from the adversities related to water availability (drought and extreme floods in case
of extreme rainfalls). To address all the issues regarding water emaeayj it is desired to have

efficient long term information about certain hydrological variables.

The methods for studying the catchment behavior can be either direct or indirect. The direct
methods are more straight forward and reliable, and the imptatieeninvolves comprehensive

study of streamflow time series and the parameter related to it e.g. vegetation, soil characteristics



and precipitation etc. The application of this method requires the discharge data to be known at
the point of interest. Thatsite availability at data is entirely dependemhether or not the
measurement instrument are installed and working corregitlyhe site of interest. Both
instrument installation and operati@re unrealistic incase of remote sites and site is teased

an ungauged one. For hydrological characterization of an ungauged basin indirect methods are

generally called in for service.

The fundamental concept in the implementation of indirect procedure is to transfer the
hydrological information from the gaugestations to an ungauged station based on the
developed physical and statistical laws. The US national Research Council [1988] for hydro
meteorological modeling proposed a principle "substitute time for space" which summarized this
procedure. The lack orbaolutely no availability of hydrological data are compensated by
extrapolating the hydrological records from the neighboring gauged basins. This topic of
transferring data from gauged basin to an ungauged one is the back bone in the field of
catchment hywlogy and sensing its importance a whole decade was explicitly dedicated to

prediction of ungauged basin (PUB) initiative [Sivapalan et al., 2003].
Our work covers up the following dimensions of PUB:

- the current procedure used for the regionalizatiorfla regime is revisited and special
attention is given to estimate the instantaneous flow magnitude and peak flow occurring at data

scarce stations.
- the uncertainty in the results generated by application of the procedure were analyzed.

- the largescde statistical models developed by using local information are used for the

correction of estimates.
- the nonconvential descriptors data and procedures are used to make hydrological estimates.

More precisely, in chapter 2 a detailed discussion on relggatian procedure of monthly flow
regimes is being eleborated. The aim of the study is to overcome some of the limitations posed
by classical regionalization approaches while specifically giving attention to the position of peak
flow w.r.t time. In this egard the asite descriptors data and hydrological data are related

through regression modelsach regression model is passed through various statistical tests (VIF
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and mantel test) to check its stability. To transfer the information from gauged basgetgged

basin, unlike classical regression approach, this approach allows one to introduce even the
complex descriptors in the regression model. The regionalisation procedure assumed that any
variation occuring on descriptors space will be respondetheénsame mannegon discharge

space. The best model based on comprehensive MRM between distance matrices of discharge
and descriptors data and cross validation based on(dlfactor is selected to estimate flow

regime at an ungauged basin.

Streamflows are either constituted by runoff from rainfall or from melting of snow moving
downstreamas surface or subsurface flow.néh large quantity of water in the form of runoff

flows quickly into streams and riveripods occur. A number of factomfect magnitude of

floods like: (1) Intensity ofrainfall including its duration. (2) #ount of snowmelunder the

effect of temperature. (3)HE geology, vegetation cover, topography of the bagiis The
hydrological characteristics effecting rainfaktremes and snowmelt events. In third world
countries like Pakistan, extreme rainfall events in the recent past have caused natural hazard
because they are a source of degradation processes like flash floods, landslide triggering and
erosion which cause severe damage to the land and properties. In 2011, massive flooding as a
result of extreme rainfall in Pakistan affected over 6 million people. According to some rough
estimates made by the government of Pakistan, it destroyed over a million housesdimg) s

crops over 4.5 million acres of land. There was a serious need to study the extreme rainfall
events over the entire area of the country. Mapping the hazard of extreme rainfall is important as
it allows us to assess the spatial distribution of ¢lirmatic feature even at locations where no
climatic record exists. In the fields of regional planning and environmental management, rainfall
hazard maps, in general, can also be helpful as a part of decision making systems. The main
objective of our worlon rainfall extremes is to describe a method to obtain extreme precipitation
hazard maps. We also developed a probabilistic model for downscaling monthly rainfall data into
daily extremes. The probabilistic models used here are based on fitting GPD (Gamdbel
pareto) to the monthly values of precipitation. The procedure was applied to precipitation data
from 15 stations concentrated in northern part of the country. we use the extreme value theory, to
describe the occurrence of extreme rainfalls in a regutmch provides a complete analysis of

the statistical distribution of extreme precipitation events, and allowing the construction of

magnitudéfrequency curves by fitting the distribution on rainfall data.
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For the case when hydrological modeling is todmme for the estimation of FDC, a new
regionalization procedure is discussed in chapter 3. Although the procedure is still classified as
"regional”, the underlying idea is very different from what is described in chapter 2. The
dissimilarty between theléw regimes idunction not onlyof magnitudinal comparison but also

of lateral and vertical separation of peaks; but in case of FDCs, lateral and vertical dissimilarity
functions can be ignored due to its functional natubm the contrary to parametric
representation of FDCs, this approach represents FDCs as -parametric entity. The
dissimilarity between all the FDCs are executed and transformed into a distance matrix.

Within the vicinity of regional model, the workspace is divided into differenttelssand a
separate regional model is found for each cluster. The regional models of each cluster use the
concept of dissimilarity to make estimates about hydrological parameters at an ungauged basin.
The estimations of hydrological parameters for remotelyated basins are improved by
swapping models and bringing the remotely located basin into an area with better coverage of its

neighbors around i60° degree pruning).
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Chapter 2 Monthly runoff regime regionalization through dissimilarity -
based methods

2.1. Introduction
The topic of estimation of flow regimes in an ungauged basin has received extensive research

efforts over the last two decad@Bloschl et al. 2013] The practical purposes for which
prediction of flow regimes is importamvolve design and management of hydraulic structures,
irrigation and hydropower systems, etc. In particular, the hydrological monthly flow regime is
generally defined as the curve obtained with the 12 average monthly flows in a year. The shape
and magnitde of flow regime curves depend on hydroclimatic processes and basin
characteristicsBower & Hannah, 2002in a complex wayBower and Hannali2002] noticed

that the basins associated with major aquifers within U.K. are characterized by more stable
regimes and the variability in regime shape is a function of seasonal variability and amount of
precipitation. They further stated that the double peaks are commonly observed in basins
associated with large aquifers, whereas climatological extremes may resitigie@ regime

shape dominating across the entire area.

A number of methods can be cited from literature about flow regime estimation at ungauged sites
[e.g. Hrachowitz et al., 2013Parajka et. al., 2013; Shoaib et al., 2018hese methods can be
theoetically divided according t®arajka et al, [2013] into: 1) Procesbased methods [e.q.,
Carrillo, 201] and 2) statistical methods [e.@allart et al., 2008; Samaniego et al., 2010;
Girolamo, 2011; Renner and Bernhofer, 2011; Archfield et al., ROTBe former are
fundamentally based on established physical laws which can capture the underlying dynamics of
the watershed. However, they are not suitable to the case of ungauged basins, which is the main
goal of the present approach, because they geneegllire the calibration of the parameters of

the model. A number of statistical methods are also available in literature for the prediction of
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hydrological data at an ungauged bagiden and Poff2003] provided a statistical frame work,

called index mthod, for the characterization of hydrologic regimes by focusing on the inter
relationships among the hydrologic indices. Similarly a number of methods have been worked
out for extrapolating flow regimes from gauged basins to ungauged ones using geasiatd
proximity methods using basin descriptors as predictor variables (e.g., Sauquet et al., 2000,
2008).Laaha and Blosch]2006] compared a number of clustering methods for the calculation

of low magnitude of flow from short stream flow records. yieund that the method of
clustering based on seasonality regions is the best one though all methods tend to underestimate
in very wet catchments. The basic idea underlying statistical methods is to bring hydrological
information from gauged basins to amgauged basin using some basin characteristics, known as

descriptors, as proxy of the hydrological i nf

Classic regionalization approaches work either on each single monthly value or on a smaller set
of representative parametefkrasovskaia et al., 1994]In case of classic regionalization
approach, one regional model is to be defined for each month with an advantage of doing
nothing on the hydrological data. Whereas, the parametric has an advantageirrig fewer
models (i.e. one for each parameter) but a fitting procedure makes it complicated. Moreover, a
distancebased method is also worked out which requires only one regional model, defined by a
suitable dissimilarity measure, with no fittingqrerement. Alternative methods are rnon
parameteric and tend to consider the estimation of the entire cewé@nora et al., 200@s a

whole unique variable.

Another relevant application of the dissimilarity framework is reportedséyaniego et. al.,
[2010] which incorporates copulas to find dissimilarity measures on daily streamflow time series

by using three (dis)similarity measure. One of the similarigasure considers the symmetry of
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the empirical copula density while the other two merge theegegf symmetry with correlation
coefficient between time series for a pair of two catchments. By using a local variance reducing
technique a transformation matrix was defined to relatémensional space intodimensional

transformed space measured vatordinate of meoscale hydrological model.

Ganora et al.,[2009] used regression method to predict flow duration curves by linking
descriptors data with hydrological data. To our knowledge no such technique has ever been tried
for flow regimes.The dissinilarity-based method (sometimes also referred to as dishasssl
method) proposed by Ganora et al. (2009), considers the dissimilarity between the hydrological
features of two basins measured by using a predefined metric in the hydrologic space. The
apdication of the dissimilarity measure to all the possible combinations of basins, ultimately
generates a distance matrbhe distance matrix of hydrological regimes can then be related to
analogous distance matrices computed between basin charactéoisticg/ couple of basins,

with the final aim of using close basins in the space of characteristics to predict the hydrological
behavior at an ungauged catchment. This procedure is delineated in the following sections 1 and
2. To our knowledge there is nther specific distance measurement technique available in the

literature for the estimation of flow regimes (non monotonic functions) at ungauged basins.

Regardless of any research done in this regard, the magnitude and timing of occurrence of flow
regimepeaks is never discussed explicitly.
2.2. Dissimilarity between regimes

The dissimilaritybased method we propose starts from the comparison of the flow regimes
of a pair of stations. For any two flow regimes belonging to the two gauged dasdiY,
constituted by 12 elements eacy N2~y 8 N2~y and Moy, N2y, 8 M2y , (i.e. the mean flows
of each month) a dissimilarity measure can be defined in different ways. For instance, a function
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of point to point (magnitudinal) distance betwewonthly value can be used. A more complex
definition of distance, accounting for the number and position of local maxima (peaks) and their
position can be considered for flow regimes.

The magnitudinal dissimilarity used IBanora el. al.[2009] reads

TH= AL A4 ()

whererjqs the monthly mean of the aforementioned stati¥os'y, Q;y; is the point to point
difference and(s the index riated to the monthly value.
Although eq 2.1) can be applied to flow regimes, it does not account for the possible shifting of
peak positioning which is an important feature of flow regimes. We thus propose to add to the
pointto-point differenceQyy; a fAl at er al d i0g, ), which eonsidersatbeutime 0  (
di fference between the occur eerticabd i osft apnecaek smeians t
(wy), which is the quantitative difference between these peaks. The two measures are then
combined in a unique metric to account for all the main features of the regime, i.e. the total
distance between two curves is the combination of these three mdtige®i( , @y ):

Oy= Cyep + Uiy + oy (22)

The Point to point difference, lateral and vertical separations are sketcheit fig.
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/Vemca\ Separation N =

Dimensionless Discharge
Dimensionless Discharge
Dimensionless Discharge

Figure 2.1. Distance betweernldw regimes in the month of May a) poitttpoint distance, b)
Vertical seperation of peaks aoplLateral seperation of peaks.

The vertical distance is estimated as
Tw= Adef Aifaq ()

whereng o, 1S the magnitude of the highest peak discharge at staWony.

Wy, gives more importance to peak. If the compared peaks occur in the same month both

.0 = 01 regimes §,R) sinceQyy; takes into account the effect of both these dissimilarities.

For estimating the lateral separation, we first need to define the number of peaks in flow regimes.
Studying the following we will consider all the values greater or equaB® ¢y, aspeaks.

The lateral separation is a circular variable. Therefore, once the peaks have been defined we need
to shift the regimes towards each other over the shortest possible span. For each time step of the
movement of peaks, we calculate the changeindifference. The process of moving the peak
stops, when the moving peak overshadows the peak of reference station. The peak being shifted

is referred to be in shifted state and the state of stationary peak is termed as actual.
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As an example, we compute the lateral separation megsucensidering station # 9 with a
peak dischargeS)) in April and station # 79 having a maximum dischargg) (in July as
described in figure2.2. The actual state’ | of flow regimes at these respective stations is
depicted in solid lines. Being the actual state, andthe shifted configuration, the lateral

separation reads:

Oin = BoQes;  Xet, @
o —— Station#9 (S,)
—— Station#79 (Ry)
---- 1-step shift (R)
N 2-step shift (R,)
A T [P - 3-step shift (R)
(@)
®
d o
B o
O
w
w
L
&
@®
E
e
e e

Month
Figure2.2. Compared peaks in actual stefig Ry) and movingRpasR; R, R; towardsS,.
with “he index of the shifted stated. By definition, we have to move any f®@ak Ry)
towards the other over shortest possible span of time. Therefore, we move through these months

backward (July June Mayd April) instead of moving forward (July August Setember
18



Octobei Novembef December January Feburary March April). The process of
moving peaks towards each other stops once they are exactly undeeatRy) (see figure
2.2). 0;4 Is then equal to the sum of poiakpoint distance computed for the actual configuration
(‘o= O ¥, Yo ) and the shifted configuration comprised of-step shift state ‘(; =
Oy "¥,'Y: ) and 2%step shift staté' » = Oy "¥,Y> ). For geneal case, the shift state can be

defined as o= Oy ¥, Yo With "Yeas & 2shift state of regiméY.
The total Lateral Separatiap;, for the exemplified and general case is then defined as:
Oy =B§ar '8 (25)

where(ls the difference in peak location in shortest possible Jathunderstand the difference
between using the simp@,y; distance and the comprehensive distddgef equation 2.2), we
compare the two definitions of distances in figu2e) basedon a set of 118 stations records
used in our work. Their quantitative comparison is done in Tafile where regimes from four

regions (A,B,C and D) are put in evidence
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Figure 2.3. Comparison between Magnitudinkétance method and Newly developed method.
The regimes in those four regions are highlighted in the figi#g, (whereas the points on the
bisector line in figure2.3 are representative of peaks of compared stations that are occuring in
the same montrhénce no lateral and vertical separation were to be considered). Let us compare
a set of regimes in blocks A and B of the figdr@, to understand the difference betw&zyand
Oy (0r 0AD). In figure 2.4, the regimes have been actually drawrfuidher eleborate the
difference. We will not only take into account, the trend (occurence of flow magnitude w.r.t
time) of the regimes but also the time of occurence of peaks. In #gyrihe regimes in block B
are similar to those in A (station # 84station # 89 and station # 15 ~ station # 27); the reason
being small timescale difference between the occurence of peaks and almost similar trends of

regimes being compared in both blocks. By the definition of dissimilarity, the distance of both
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theseblocks should somehow be similar. On the contr@y; distance changes dramatically
from A to B butOyremains consistent. Similarly, in block C(a), the regimes are more alike in
trend and peakccurence than those in block C(b) but the dissinglaméasures are otherwise
for G;q; While replicates the similar behavior f@r. A more simpler case is described in block
D, where besides being more similar in D(b) than in DQg), counts larger difference between
regimes in former and less in latter case. Whei@aseproduces seemingly more meaninful

translation of the results as shown in T&hle
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Table2.1. Qaulitative comparison of Absolute distance method and New method

Stations Region (o Dr
84, 89 A 20.37 14.23
15, 27 B 20.20 10.09
52, 28 C (a) 6.28 6.28
7,28 C (b) 7.56 5.58
71,43 D (a) 3.01 3.01
71,41 D (b) 6.39 2.80

2.3 Regional Model
The time series dataset of 118 stations in Northwestern Italy was considered for the application

with variable length from a minimum of 5 to a maximum of 52 years, with a mean value of 12
years; the runoff data was extracted from the publications of tineefoltalian Hydrographic
Service extended with the more recent measurements provided by the Regional Environmental
Agency (ARPA) of the Piemonte Region. Basic measurements are at the daily scale and have
been aggregated at the monthly scale for the parpbshis study. For effective application of

the model, the data was made dimensionless by normalizing with the average monthly value for

that site.

A number of geomorphological variables, referred to as descriptors, relative to the considered
basins areextracted from the database developed Ggrjora et al., 201J8or the region of
interest and based on the former CUBIST datab@&8B[ST Team, 200ANhich contains data

for more than 500 basins all over Italy. The catchment area of the considered bages r
between 22 and 7983 Kmand their average elevation ranges from 494 to 2694 m a.s.l.

Geomorphological characteristics of each basin were obtained from the NASA SRTM [Farr et
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al., 2007] digital terrain model (pq@ocessed to a 100 m cell grid) usiagtomatic GIS
procedures under the GRASS GIS environment. Climatic, vegetation and land use descriptors

were obtained by properly clipping thematic maps available for the area of interest.

The implementation of the regional procedure is based on thethdeaimilar hydrological
behavior is related to basin similarity in a subset of descriptors. Similar basins are then usually
pooled together by proximity in the descriptors sp&ajaniego et. al2010] and the average

of hydrological properties, e.fow regime is taken as valid for the whole group.

In the context of the definition of the proposed regional procedure, Section 1 provides different
ways to compute dissimilarities between streamflow regimes, with particular attention to the
location of gak discharge of regime. An analogous procedure should be applied to compute
dissimilarities between descriptors of two basins in order to implement the regional procedure. In
fact, based on the dissimilarity of descriptors, one is expected to find Isimilésity values for

t he basins wi t h Asimilaro hydrol ogi cal prop:
descriptors dissimilarity changes depending on the type of descriptors.

The simplest descriptors are basin elevation, basin area etc. and tmeilatisgi can be
computed simply as the absolute difference of the values. When the descriptor is represented by
a monotonic function (as the hypsographic curve) the dissimilarity can be computed as the point
to-point distance as in equatioB.X). For more complex descriptors (in this case the rainfall
regimes) théDydissimilarity is appropriate.

After the definition of descriptors dissimilarity matrices it is necessary to relate hydrological data
to basin characteristics. This step is fuméatal as only a small subset of descriptors is expected

to be useful to represent the hydrological variability. As there is no prior information about this

24



subset, it is defined through a statistical procedure which seeks for the descriptor distance
matrices more correlated with the distance matrix of the hydrological regime.

The correlation between distance matrices is investigated through the Mantéaestl[and
Valand, 1970]. In its simple version, it is used to evaluate the significance of thar line
correlation between two distance matrices. This test is performed by computing a statistic
(usually the Pearson correlation coefficient) between all the pair wise elements of the two
matrices. Its significance is tested by repeatedly permuting thet®bjeane of the matrices, and
recomputing the correlation coefficient each time; Permutations are performed simultaneously
exchanging two rows (randomly) and their corresponding columns of the matrickedseelre

et al., 1994). The significance of theatistic is assessed by comparing its original value to the
distribution of values obtained from the permutations, which are considered as many realizations
of the null hypothesis of no correlation.

The relation between the discharge distance matrixpel#fas -, and various combinations of

the distance matrices of descriptarsd) is in general more interesting than the relationship with
one single descriptor. To evaluate this kind of multiple relationship, a linear multiregressive

approach has beed@pted. We started considering a simple linear model,

. :ﬂ+ﬂ( I'I')+é .( + (26)

7 r)=

with 1) as number of descriptors selected among the whole set of available charactegasics,
the generic regression coefficientddids t he resi dual el ement of
as described byichstein[2007]. The simple Mantel test can be extended to multiple linear
regression models as described by equatd®) (with the aid of an extension introduced by
Smouse et alf1986] and later on deliberated and improved Uggendre et al[1994] and

recently practiced biichstein[2007] in the ecological field. As described bighstein[2007],
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the redundant values @ach distance matrix are eliminated and matrix is transformed into a
vector of distance and regression is performed in a classical way. Then, the elements in a
distance matrix of descriptors are permuted to construct a null distribution. The rows and the
columns of the matri0®@0 are permuted simultaneously and each regression coefficient is

tested individually, similarly to what described for the simple Mantel test.

Several combinations of models were investigated using linear regression. Theyitersiiy
different combination of (1) regimes distances, considering the three representations described
before (point to point, lateral and vertical). As per the descriptors distance matrigeall
possible combination from one to three descriptotrices have been taken into account. The
regressions were first tested for significance with the multiple Mantel test, with a significance
level of 0.05. Models passing the Mantel test were then ranked according to the adjusted

coefficient of determinatiodefined as (e.gKottegoda and Ross@997):

q4m-= 1 — (2.7)

In the above equatior2(7), ) stands for the number of descriptarss the total number of
basins andY? defines the standard coefficient of determination, which alongside regression
coefficients was computed in a standard way, defined_dégendre et al.[1994]. As the

distances inside a distance matrix are not mutually independent, it is advisable to use all the

values instead of classic%qs 1) o values. Furthermore, a test against multicollinearity has

been performed in order to exclude variablgh redundant information in the descriptors.
The 'Y2govalues observed with distance matrices of regression models are very low(always

jaunted between 0.20 and 0.55), although the results are significant, statistically. Which is to say

that regressiomare only used to select dominating descriptors and not for any direct estimation.
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This statistic is used to rank the models, but cannot be used to quantify the variance explained
by the linear model as in classic regresions due to the mutual corredétiba values in the
distance matricesBesidesYay,it is of great importance to investigate also the behavior of the
residuals along the regression line and its development with Hi€lfaining Module, 200R

which is very difficult to interpret.

To check the quality of model output, we need to device a cross validation procedure. Generally,
one station, in the entire dataset, is considered ungauged and its data (hydrological and
descriptors) are removed from thlatabase Afterwards, the modelare recalibrated and the

unknown flow regime is estimated.

We used predictive Leavaneout cross validation approach, to check the validity of regression
models, for its convenience and fast computation. The full scale model validation is often
extremelytime consuming and sometimes computationally impossible due to large size of
dataset and the complexity of model due to increasing number of descriptors. In our work, to
reduce the computational burden, the regression models havingvgeatles, filtere through

mantel test and VIF test are used to execute the regional regimes and that executed regime is
then compared with the empirical regime @y space. TheOy space is defined as

Oy i 4 5 G with —as an error maggude for a single station. The model producing least

overall error ¥), between actual and regional regimes was selected, defiréd Bl% whereg
is the number of stations.
The proposed methodology of distariz@sed measurement was carried out in thetaiistical

environment R development core team, 2)0desegregated for Mantel test and Multivariate

Regression Analysis in nsRFA packagmglione, 200T.
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Once the distanebkased model is estimated, we find the distance matrices of descriptors in the
selected model according to the type of the descriptors (Scalar or monotonic). After normalizing
them by average distance and then summing them up to find the single representative distance
matrix for finding the nearest neighbors of ungauged basin; emsydthe minimum value of

the distance relative to the stations from the distance matrix of descriptors. The beauty of this
technique lies in the ease with which a non monotonic function (complex descriptor) like rainfall
was introduced with a scalar daptor to define an appropriate space for the neighbor selection.
Another important step is to determine the optimum number of neighbors of an ungauged basin.
Since too few neighbors resulted in over simplication of the results and in some cases even
courter intruitive; whereas, too many neighbors may cause considerable error in the final results.
In the present work we used cresdidation procedure to set the number of neighbors and after
scrutinizing from 1 to 9, we finally found reasonable resulth Wiheighbors.

The best models obtained by one, two and three descriptors were only considered. The model

selection results is the combinations of descriptors which generated the lower va¥tersdof

reasonable values &, are enlisted in Tab@.2.
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Table2.2. Models with 1, 2 and 3 descriptors enlisted in the ordefqf

Model  Descriptors overall error ¥) Yoo
1 Annual NDVI 3.539 0.484
1 Hypsographi€urve 3.862 0.424
1 Mean Basin Elevation 4.067 0.374
1 Max Basin Elevation 3.884 0.216
1 Rainfall Regime 4.044 0.014
2 Fourier Coefficient, Annual NDVI 3.149 0.517
2 Annual NDVI, Rainfall Regime 2.720 0.494
2 Hypsographic Cuey Rainfall Regime 3.018 0.437
2 Mean Basin ElevationRainfall Regime 2.940 0.391
2 Land use Index (Nevegetated area), Rainfall Regime 2.960 0.314
3 Precipitation Intensity Coefficient, Annual NDVI, Rainfall Regime 2.759 0.531
3 Land use IndexNorrvegetated area), Annual NDVI, Rainfall Regime 2.798 0.515
3 Land use Index (Wetlands), Annual NDVI, Rainfall Regime 2.658 0.500
3 Basin Area, Annual NDVI, Rainfall Regime 2.759 0.495
3 Rainfall intensity Duration Curve, Annual NDVI, Rainfall Regime 2.736 0.494

Table2.2 shows the five best models for each combination with one, two and three descriptors,
where all the models have been tested for significance of regression coefficients with the Mantel
test with a level of significance of 0.05. It appears that, considering together the three
representations of combination of descriptors, the most significant descriptors are the rainfall
regime and hypsographic curve.

The adoption of these two descrids coherent with the typology of investigated basins. In
fact, since we are considering mainly mountain basins, the annual NDVI descriptor is expected

to be relevant because of its strong relation to snow accumulation and snowmelt mechanisms.
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Similarly, the rainfall regime provides a synthetic description of flow pattern. The ranges of

some dominating descriptors are enlisted in Talde

Table2.3. Range of variation of descriptors used by the disthased model.

Descriptors Maximum Mean Minimum
Land use Index (Wetlands) 7.890 0.190 0
Rainfall intensity Duration Curve 37.88 23.40 11.88
Basin Area 25640 1330.11 22
Maximum Basin Elevation 4743 2750 368
Rainfall Regime Regime Regime Regime
Mean Basin Elevation 2682 1323.17 244
Hypsographic Curve Curve Curve Curve
Y-Coordinate 5129050 4977667 4886350
Land use Index (Nevegetated area) 78.68 16.03 0
Annual NDVI 0.644 0.447 0.082
Fourier Coefficient 49.563 -8.161 -56.554

The methodology can be summed up in the following steps

1) T Calculate the monthly mean discharge at each station.

2)-Identify the variable needed to calculate dissimilarities.

3)-Executedissimilarities between stations by using specified techniques {jogoaint, lateral
and vertical).

4)-Select best descriptor models by observing |&asglues and Multivariate regression
analysis.

5)-On the Descriptors space find the nearest neighdforsssing data station and by using those

NN execute a regime for that station.

30



2.4. Alternative Regional Models

2.4.1. Parametric representation of the regime
The dissimilaritybased approach was compared with a more traditional regional model based on

the parametric representation of the regime curve, which were calibrated on the same set of
basins. In contrast to the dissimilatltgsed approach which aims at considering the regime as a
whole element, heréaé shape of monthly averaged hydrologicagimees is represented by using

a certain of number of parameters. This parameterization is based on the fourier harmonic, and

its form reads:
m~y n W w290 W o 4%0
Q0 = 0g + 0q0GEI T+-1 + 0,0El T+°2 , (2.8)
where the harmonics represent thgehrscale and the-fhonthsscale fluctuations of the
hydrologic regime. This analytical model to represent the regime has 5 parameters, among which

0, can be neglected as the mean values is not considered in this work. Phasg ahifis, are

circular variables so large values may be very close to small values, which on transformation can

be sparse apart (e 1f 1;—0 and364° z 1270)' Therefore, in order to estimate them with a

regional procedure, it is better to resort to a different representation

Q0 = B+ 0,081 0 .GEi oy 8100 T0 i@y + 0,081 o .G .,

B,i"® 4To iQ.,, (2.9)

by separating the varioables that donét depend
= 0,680 — = 0,080 5 ;

<= 0@y 7= 0,® 2 ;

and those which depend on
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Wo=i® =—0; (9021@270;

Equation 2.9) now reads (neglectingy):

QO =T O0+—®QO0+—7300+—7.0O0, (2.10)
whose parameters can be easily fitted to a real dimensionless f@girmade of 12
observations by the least squares method (see fhirevhere the vectors,, &y, (3 andd are

calculated using= 1,238 8 ;12 andt = 12
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Figure2 5. Fitted regimes over original regimes with parametric models.
After the fitting procedure of th—parameters has been extended to all the 118 observed
regimes, we proceeded to the regionalization phase. Each paregé&terelated to the
cat c hme nt sQbydlmeacnodepof tlerfosm

0= Wt Q.Y+ OQO+E+R.Q -, (2.11)
wheredqare regression coefficients akds residual vector. The choice of a suitable regional

model is an important step in the estimation of generic parameters at an ungauged basin. Many
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linear models of the form of equatio®.]1) were considered and validated with a Studésst

with a siquificance level of 0.05 followed by a multicollinearity (VIF>5) test and subsequently
ordered by their values 'Y24,[e.9.,Montgomery et al2001].

The leaveoneout validation scheme was used for evaluating the amplitudes and phases of the
harmonts and reconstructing the regim&he predicted regime in an ungauged basin is
evaluated by combining the basi®; (%, and®) to the estimate—gobtained by using the

related descriptors. The best models for ezake;

—+= 4069210 1 69612 10 ° Qi £" QTGO VQ + 8.7952 10 * HUQ MBI NAD , (2.12)

—»= 12982 10" 1073210 2 iy + 25282 10 ® 665 @ DTN, (2.13)
—3= 1025+ 27792 10 ° "Qifji €' Q' CDO6I VQ + 1.2062 10 2 G854 (2.14)
—4= 35917+ 0.1473¢, 0.1684GE5 , (2.15)

wheredanddat are corine land cover and soil curve number respectively (for details see
Ganora et al., 2013). The error measurement between predicted and actual regimes was obtained

by comparing RMSE and NSE values.

2.4.2 Regionalization by geographical proximity
Thedissimilarity-based approach was also tested against the geoghraphical distance norm which

is used to measure the closeness (or dissimilarity) of basins in geoghraphical space. For the sake
of simplicity, Euclidean norm was used to find the nearest neighdfaan ungauged basin. The
efficiency of output was tested within a leaweeout crossvalidation scheme.
2.5. Results and Comparison

The three regional procedures presented in section 2 provide three different ways to estimate

the dimensionless montly regime at ungauged sites. All the methods have been extensively
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applied to the 118 basin dataset of Italian catchments described altbaeesactompared in the

present section.

Among all the possible models ranked by the distdoased approach, the model containing two
descriptors, namely annual NDVI and rainfall regime, was selected for its good global
performance in cross validation. Modescriptors can be used as well to obtain an enhanced
estimator, however increasing the number of descriptor might make the model less robust. For
the purposes of this work, the use of only two descriptors is shown to be effective, with

performances ovaking those of other regional approaches based on two or more descriptors.

A proper metric to quantify the quality of fitting is not trivial to find, for the purpose of
comparing the different models. Generally, the metrics are used to compare estinthted a
observed alues (single value comparison)hereas, we need to compare a non monotonic
function with a speci al emphasis on the peak
metrics to see the goodness of fit of each model by observing thg djttality of models at each

station and ultimately globally. We decided to use RMSE, which is one of the most commonly

used error index statistics, afd,since we are also interested in determining peak flow position.

On average the distanbased mode(DBM) has smaller error-§ than parametricRM) and
geographical proximityG&M) as shown in table2®). Although performances quantified with the
Oymetric are expected to favor the distahesed approach, due to pesdkift consideration, the
distarcebased approach prevails over other models even when RMSE was used for its

evaluation.

The newly developed non parametric distance based approach executed, by far, good results

compared to those of parametric and geographic proximity model®was &h figure 2.6). The
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Table 24 illustrates a comparison of RSME and NSE values among parametric model,
Geographic proximity and distanb@ased approach. It was observed that each parametric model
was able to execute good results for a certain subset of basins, but not at all, vdtkeortes
whole of the datasetThe graphical representation of errors-)( obtained in different
environments ©@Qyand RMSE) are shown in figur@.{). The total magnitude of error over the

entire sample and standar dTadle@s).ati on of error
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Table2.4. RMSE ,NSEandOvobtained in the various basins using three types of methods

Basin Area (G ?) New Method Euclidean Parametric Model
Stations RMSE NSE Oy RMSE NSE (oM RMSE NSE Oy
Codes
3 41 0.265 0.918 2.752 0.528 0.675 5.665 0.439 0.775 4.503
6 262 0.382 0.713 4.408 0.483 0.542 8.559 0.462 0.582 5.254
14 127 0.238 0.861 2.301 0.389 0.630 4.144 0.394 0.619 4.692
21 75 0.353 0.820 4.087 0.461 0.692 5.501 0.678 0.334 8.433
28 152 0.145 0.912 1.642 0.388 0.369 7.017 0.373 0.417 6.945
37 106 0.317 0.719 3.246 0.483 0.350 6.323 0.429 0.485 6.864
45 212 0.216 0.900 2.590 0.243 0.873 5.613 0.778 -0.305 13.216
47 102 0.081 0.991 0.814 0.497 0.660 6.185 1.207 -1.008 17.114
48 160 0.251 0.854 4.430 0.445 0.541 5.620 0.770 -0.376 10.089
54 333 0.205 0.605 2.392 0.412 -0.595 4.370 0.448 -0.885 5.409
55 131 0.210 0.729 2.119 0.289 0.486 3.079 0.718 -2.182 9.254
63 838 0.211 0.925 6.855 0.329 0.818 7.378 0.854 -0.228 12.103
70 38 0.157 0.932 1.537 0.390 0.581 4.807 0.532 0.221 7.532

Table2.5. Comparison of magnitudes of different errojsath corresponding Standard deviations

().

Model

yowa{9zZ10

”

Yy 6b{9Z @I 0

New Method
Geographical Method

Parametric Method

0.230(0.091)
0.280(0.11)
0.500(0.221)

0.812(0.293)
0.735(0.346)
0.273(0.595)

0.812(0.293)
0.735(0.346)
0.273(0.595)
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Figure2.6. Comparison between original and simulated regemeglected stations.
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Figure2.7. Error comparison of distance based modé&YinOandOyenviromentscompared
with (a) the Geograhical method anfb) the Parametric methodThe disance between the

empirical regimeand the estimated one, is reported indtatterplot fo each considered basin.

38



The solid linerepresents the ratio 1:ktween the errors, while dashkoes delimit the areas

where errors for the distant@sedmodel are twice the parametric ones and vice versa. Points
above the solid line represerdggimesbetter estimated by thdistancebased method; gints

above the top dashed line represent regimash better estimated by the distabesed method.

From these results it can be concluded that the present method led to the most suitable results for
flow regimes prediction in most basins with respect to RMSEGyd hough the new model
performed generally well in all types of catchments, it presented some slight issues of
magnitudinal differences between observed and simulated flow regimes for ba#ins
extremely large (1000 2) or small areas<( 100k 2). The model predicted peaks of each
regime correctly with slight variation in flat peaks but even in those cases the magnitude of

discharge is very close to that of original peak discharge28y.
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Figure2.8. Estimation of regime in case of flat peak

2.6. Conclusions

The dissimilarity technique between the flow regimes has been revisited in this paper. It has been
shown that a good amount of information can be lost by considering, only, magnitude differences
(e.g. the monthhdifference of streamflow datd)etween theflow regimes. While serveral
authors contributed on the identification of the main parameters affecting the shapes of flow
regimes, to our knowledge this is the first study which actually tries to integrate all those
parameters into a dissimilarity measuent. This measure between regimes is used to account

for both the magnitude and the position of the peaks, thus allowing one to quantitatively compare
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any couple of regimes. This concept is extended to the basin descriptors, so that a dissimilarity
indexbetween two sets of basin characteristics can be computed as well.

Information on both flow regime and basin descriptors have been combined to calibrate a
regional model: the value of a vegetation index and the average rainfall regime of an ungauged
basinare used to identify a set of gauged basins similar to the ungauged one. These are grouped
together, and their streamflow records are used to predict the regime at the ungauged site.

The results made available by our distabesed model are comparabledaare reasonably

better than what we obtained by using other traditional approaches. Moreover, the ability of our
model in prediction of complicated annual regimes can be achieved by using only two
descriptors.

This approach demonstrates also that isipdss e t o expl oi t the infort
descriptors, in this case the average rainfall regime, without requiring any kind of

parameterization and thus making the prediction procedure easily applicable.
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Chapter 3. Regionalization of FDCs

3.1. Introduction
Theflow datain river, particularlythoseof lower magitude, areof great importance to meet the

requirements of developmental projects for the management of water resdhecgsoblem of
estimating hydrological variables in ungaudeabkins located in difficult terrain hdmeenthe

object of intense research activity in recent years. There are different methods which have been
used to perform such estimation with the central idea of either extending or transferring the
hydrological dad from gauged to ungauged sites.

A flow duration curve is a cumulativieequency curve which defines the relationship between
magnitude of streafflows of a certain time resolution (hourly, daily or monthly) and frequency

of occurrence in any basin by tedating the percentage of time for which a certain magnitude of
flow equals or exceeds a certain flow value.

The most recent efforts in this field involved the construction of a distaameed regionalization
model for the execution of flow duration ges (FDC) at sites with no or limited available data
[Razavi and Coulibaly2013]. Classically, FDC at an ungauged basin are obtained bjesimp
regression models. This allows establishiaglink between flow quantiles or distribution
parameters to the knaowcharacteristics of basins. A distance based technigse been
introduced byGanora et al.,[2009], which utilizeda cluster analysis approach to group the
similar basins by using ngmarametric approachn that methodthe dissimilarities between
FDCs were quantified as distances measured by comparing magnitudes of flows on FDCs
occurring at the same time and then giving the computed dissimilarities among curves, a matrix
form (i.e. distance matrix). The distance matrix was themretaied, by means olinear
regression models to the distance matrices of each descriptor (mantel test). A strelagoso

value identifed significant descriptor. Finlgl cluster analysis was applied to group basins of
similar characteristics; a suitable number of clissteere selected in order to provide adequately
homogeneous (in statistical sense) pooling groups for which a single dimensionless flow duration
curve was assumed as representation of the whole cluster. The study was conducted on 95 basins
of Switzerland ad northwestern lItaly.

The distance between FDCs of any two stations was calculated by the use of following simple equation

0;=Bg10a O (3.9
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where the valu®; is total magnitude of dissimilarity between FDCs of statidfisahd 'l " having
flow magnitude Of)"g andf)-g respectively. The practical implementation of(8dl) is also

exemplified in Figure 3.1
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Figure 3.1. Distance calculation between two FDCs by using equation (1).

There were certain combinations of descriptors (2 to 5) which were tested against distance matrix of
FDCs. The selected model was used for regionalization. The complete information regarding

regionalization procedure is presentedhia form of flow chartn Fig. 3.2
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Figure 3.2. Schematic diagram representing the steps involved in regionalization procedure followed
by Ganora et al[2009].

It can be noted thategression analysis used to estimate flow duration curve at an ungauged site is
generallycomprised of regression models between hydrological and geomorphological characteristics at
gauged site to indentify dominating descriptors. A drawback of this approach is that the selected model
deteriorates as it extends over the entire worksda@aghpand Bloschl 2006]. The shape of unknown

flow duration curve thus obtained may be far from correct. In the present work, this problem was dealt
with by a two pronged approach,- hbtaining best operational model for the whole work space and
dividing the work into praelefined number of clusters -2)eselectingthe best model for each cluster
intending to avoid or minimize the deterioration in model output due to its extension over the entire

workspace.

3.2. Methodology

3.2.1. Descriptors analysis
Thefirst step of the procedure is to defitiee representative descriptors (dominating descriptors). To

start with, we will first determine the distance matrix for each descripgby absolute ditance

measurement method (eq. 3ahd for FDCs'Qy;) by a predefined metric, in a classical way.
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The dominating descriptors are bracketed by their relationship with FDCs. The multiregressive approach
was used to assess the relationship between distance matrix of discharge and descriptors. The statistical

modelcan be written as
Q5 =T 1Q +T2Q +13Qy + E+T 40Oy + &, (3.2)

whereC; and'C;, are distance matrices of discharge and descriptors respectively unfolded to be represent
able as vectord) is the number of descriptors involvé ljs regression coeeficient adg is residual

matrix. The strength of regression is determined by

N — w2 &1
Yao=1 1 VS

(3.3)

with € as thenumber of basins arYas standard coefficient of determination [ekgpttegoda and Rosso,
1997].

Due to the large number of regressdhr®re is every chance déihding models with a non negligible
correlation between descriptors. In these casesyahance inflation factor (VIF) [e.gMontgomery et

al., 2001],which in terms of quantity, measurtee undesirability ofmulticollinearityin a least square
regression analysis become unignorable. It quantifies, through an index estimation, the inflation occurred
in variance of an estimated regression coefficiégnicut-off value of 5 was used beyond which the

selected model was dropped.

Mantel Test Mantel and Valand1970], was also applied to check the significance of the correlation
between the distance matricdsitially, mantel test was proposed to correlate tdistance matrices
however,modified version of mantel test called Partial Mantel Test made it possible to correlate three
distance matrices by correlating two distance matrices while controlling tdenthirix. The correlation
process was done by unfolding the distance matrix into a vector. For more compleXicastem et al.,

[2007] provide a method for multiple regression on distance matrices (MRM) to correlate a number of
distance matrices. MRMan extension of partial Mantel analysis, is mathematically simple and can work
on all data types. They further deliberated that this method can define any type of relationship such as
linear, nonlinear, or nonparametric between a response distance amatrixny number of descriptor

distance matrices.

The regression models having godgl,values (previouslyiltered through mantel test and VIF teate
used to executdé FDCs at an ungauged basiheTsimulated FDC is then compared with the emgliric

FDC in'Q; space. The models producing lea@stbetween actual and regional FDCs were selected by
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using the statisticsas an error measure, wheres defined as the dissimilarity between the empirical
and the estimated FDC.

The proposed metholtmy of distancédbased measurement was carried out in the R statistical
environment R development core team, 2)1desegregated for Mantel test and Multivariate Regression
Analysis in nsRFA packag#&/iglione, 200T.

The best results is the combinatiamfsdescriptors which generated the lowest values of error by Leave
oneout cross validation (LOOCV) proceduré B§ —) and'Yago. The'Yago values obtained with
regression models with distance matrices are low, @adfhhothe descriptors result amgatistically

significant. Lower’Yémyalues arise from simpler models with only two descriptors, as in Table 2.

3.2.2. Cluster Analysis
The procedure of the estimation of FDCs in an ungauged basin is based on the basins located nearest to

it. For evey ungauged basin we want to locate the basins around it that have geomorphological and
climatical characteristicsimilar to that of ungauged basin. The FCDs of neighboring basins will be
used to execute the FDCs for ungauged basin. There are differeatlpres available in the literature

to choose the neighbouring basins, for exantipdormation of fixed regions through cluster analysis
[Hosking and Walllis, 199¥iglione et al., 2007bor based on region of influencRQI) [Burn, 199(.

Unlike Ganora et al. [2009], we will use the combination of classification techniques (e.g. fixed
regions andROl) having straight forward application. We do cluster analysis on dominating descriptors
selected in the previous stefhien byROI technique in each clustere assess FDC of an ungauged
basin. We used ward hierarchical algorithmafd, 1963] as it was able to generate compact clusters
with evenly distributed basins in each of them. The wards algorithm starts by considering each basin in
a single cluster and &m progressively merge basins closet to each other in terms of descriptors
magnitude.Ganora et al.[2010] also used a reallocation procedure to bring every element closer to
center of each cluster. A controversial point in the reallocation procedure ¢omhplication which

may arise in case of many clusters. In our work we cluster on the basis of dominating descriptors space
and treat each cluster as a separate erititg means thabo reallocation or homogeneity test for

cluster independence is required is required.

Moreover,Ganora et al.[2009] defined regional curve as representative of a whole cluster (unlike the
present procedure where each station is treated as a sepétgieteerefore defining the number of
clusters to account for the variation in FDCs in the working area is extremely important. Yet, no
specific procedure was defined in the procedure to access the optimal number of clusters and the

variation of regimesvithin the cluster is ignored.
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Generally, the aim is to get minimum number of clusters, so that each cluster has large enough number
of elements in it. In our work, the number of clusters is selectedslmg NbClust package in R
statistical environmenwhich provides best clustering scheme by observing results obtained by varying
number of clusters, distance measurement and clustering techiitaerdd et al.,2014]. The
noticeable point in the whole procedure is that the cluster analysis shouldtakeén its usual sense

of homogeneity. The aim of doing cluster analysis isdlect a model for each regiexecuted by
dividing the entire workspace purely on the descriptors values to reduce the error magnitude resulting
from extension of single motlever the whole work spacedaha and BloschR006].

3.3. Remotely located basins in Descriptors spaddodel swapping)
When we talk about assessing hydrological data at the remote catchments, there will always be a

considerable amount of error in tfieal calculation due to scarcity of data, which prevents the usage of
standard modelsPllicciotti et al, 2013. Generally, in any work space constituted by the selected
descriptors (models), the stations located away from rest of the basins aredsmmaptbte stations (see

figure 3.3. In the space of dominating descriptors there can be stations having entifetgnti
descriptors values from the rest of the sampéthe values of descriptors directly affect the hydrological
properties of basins therefore the assessment made on its hydrological properties from its neighboring
basins can introduce a reasonalf®ant of error (Ganora et al.2009;Pechlivanidis et al.2014].

From the previous discussighcan be interpreted that the selection criteria for the model of each cluster
are'Yagoand delta valuest is assumedhat any two models having almost s&Yggand delte(Y)
values can act as a proxy for each otfidére concept omodel swappingan be used to cope with the
problem of remotely located basins; intending that model which passes statisteaefied earlier and
hasalmost similai'Yagoand delta value ¥ will have smaller error values for the stations arranged in the

middle of cluster of stations (seegbire 3.3. Thiswould bring the remotely located basin to a location
where it is crowled byother stations around it. In our work wall this regionComfortable zoneThe
definition of comfort zone came frokorn et al,.[2000], who were the first to studReverse k Nearest
Neighbors(RkNN) queries. They answeredkRN query by drawing a circlef predefined diameter
around each data point (sBy such that NN oP lies on the perimeter of the circle. La®tanoi et al.

[2000], solve RkNN queries by partitioning the whole wespacearound the data point into six equal
regions (each d80°). We usethe same concept in defining the confidence zone of an unknown data
station in our work with a slight modification, since too few stations which could resulicisatmuous

filter, and continuous refinement phases, may result in over simplificatibmabfresults. The reason of
locating the unknown data station in the middle of other stations is due to the fact that descriptors vary

spatially and temporallfHessami et al.2007; Wilby and Dawson2007] We try to observe this
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variation of the desiptors along the defined six sections by selecting such an orientatizare

unknown data station is surrounded by its neighbors from every direction

Principally, the stations having different descriptor values than rest of basins in the selectedogorkspa
are classi fi ed Palgciofii etaln20i2leTo sur knowiledge, shere if no mathematical
definition present in literature for the definition of remotely located basins. In our work, we use following

procedure to define remotely located basins;

1) A comparison of stationeighbors distance for gnselected station, say X, with station
neighbors distances of rest of the stations.

If R is the sum of stationeighbors distances for the baginthen for more general casegofiumber of

basins, we can write

I
g =St (3.4)
where™Q. is average statieneighbors distances for the entire basins in the workspficean be a

remotely located basin% > 15;

2) Observing the neighbors in siggions around the station.

Generally, due to unigue position afmote basin in the workspace, its nearest neighbors are either
concentrated in one of the six regions around it or basin is covered from all sides [see Figure, 3]. The

swapped model should increase the covering of basin by its neighbors.

Practically spedkg, the orientation of NN for station #(@ red filled point) inx;,y; is more desirable

than that OfXj ’yJ .
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The strength or efficiency] of this procedure depends on the number of stations surrounding, in the

six regions, the ungauged basir) @nd their distancel() from the ungauged basivt € "=, \)).

Once the models are enlisted on the basitheir'Yag,and delta valugst is advisable to select a

sufficient number of models for each cluster so that each basin is well surrounded by other basins from

all directions in case of remotely located basins.

After performing statistical tests, evselected models with 2 descriptors for clusters and overall

workspace.

Ideally, each descriptor value of each station should be uniformly scattered over the entire workspace,

which is measured by density plots of each descriptors by considering is shap
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3.3.1 Example of model swapping procedure
Let us dissect the concept of changing operational model to have better spatial coverage around unknown

data point. We compare the output of nearest neighborhood analysis, for station # 4 (represented with red
filled dot in Fig3.4) in cluster 1 and statio# 45 (represented with red filled dot in B) in cluster 2,

before and after improving the spatial coverage of neighbors (represented with green filléthelot).
selected 5 models for overall workspace and selected clusters are enlisted in Taita tawhresy

values andY¥ag,of the models. The outputs of originally selected and swapped models (in terms of

RMSE, NSE and MAE) for the considered station are represented in Table (2).
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Table 3.1. Descriptor models for overall workspace and clusters enlisted in the ofi&gsof

Model Descriptors "Yero VIF  Delta Factor
Overall
G863, HOE I & 63 [ '@ (P 0.024 <5 59.00
© KRS €3, QM) " QD661 VT 0.041 <5 59.66
ROEEN &¢I 1 "Q (7, 0 OwEE £ 5 0.030 <5 60.26
0 'Oay@iE & £5, Q0o 6 0.023 <5 60.48
0 GBI AEA €3, 6800 & Y 0.033 <5 60.82
Clusterl
0 60 {6, 0 OwCEEES 0.035 <5 57.33
Gy °, b i nto 0.048 <5 58.85
ROEEN & (3 1A (7, 6 OWEE & &5 0.038 <5 59.06
coia®, cacy 0.047 <5 59.74
AOEAN & G [ A (¥, "QuNi €"Q 6N DI VT2 0.049 <5 59.84
Cluster2
OO A (I i "Q ¢F, ' XBody G A3 0.066 <5 51.46
oyt NOE & ¢ § @ 6F 0.069 <5 53.66
ROEA &¢I i "Q (¥, O OwEE £ &5 0.065 <5 56.17
0 601,06 _"©ot° 0.029 <5 56.24
OO A ¢i A 6P, 6 Qo 0.066 <5 57.64

percentage area of the basin as wetlands

“maximum elevation of the basin (m)

3atitude of basin (m)

*hypsographic Curve (m m.s.l)

®annual Normalized Difference Vegetation Index (NDVI)

Sinterquartile distance between basin elevation at 25% and 75% afamé@ated by hypsographic curve (delta_z)
"average basin Evelation (m) (quota_media)

8annual Normalized Difference Vegetation Index (NDVI)

percentage area of the basin which is not vegetated (e.g mining areas, landfills and construction sites, trahlestdat communication
networks)

coeff. of variation in rainfall patterns

Ypercentage area of the basin as wetlands

hypsographic Curve (m m.s.|)

ime Interval Between Maximum and Minimum Monthly Averages of Rains (delta mese)

“average totadnnual rainfall [mm] (MAP)

Scoeff. of precipitation intensity (C_int)
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Figure 3.4. a(i) Basins arrangement in selected model for overall cluster 1; a(ii) detailed view of selected
basin and its neighbors; b(i) and b(ii) swapping model to give bettginlrai coverage and detailed view

respectively.
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Figure 3.5. a(i) Basins arrangement in selected model for overall cluster 2; a(ii) detailed view of selected
basin and its neighbors; b(i) and b(ii) swapping model to give better neighbor coverage e \deta

respectively.

Table 3.2. Models with 1, 2 and 3 descriptors enlisted in the ordfgf,

Basins  Cluster Number  Original Model RMSE NSE Oy Swapped Model RMSE NSE Oy

4 1 MAP_std, NDVlanno 0.144  0.960 34.071 Quota_massima, 0.075 0.989 21.492
NDVlanno

45 2 Quota_massima 0.214  0.949 59.600 Quota_massima, 0.155 0.973 41.972
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The complete procedure of execution of FDCs woalglire: (1) For each station, we first found the
dissimilarity index by a predefined metric, (2) The distance matrix of each descriptor was found by
comparing their magnitudinal values for each basin, (3) The delta factor and MRM will give us
operational radels for overall workspace, (4) In the vicinity of selected model for overall workspace,
the workspace is divided into smaller regions, (5) Based on the previously defined procedure of model
selection, model is selected for each smaller region, (6) Rbmotated basins were given better
spatial coverage by swapping model technique, (7) The regional dimensionless FDCs are estimated by
nearest neighborhood NN method.

3.4. Alternative Procedures

3.4.1. Parametric Model
Since the flow duration curve represents the number of days in a year during which flow is available to a

certain extent. It is immediately evident that the duration can be expressed in terms of frequency or
percentage of time in which a certain level lofif is equaled or exceeded. In the contexrefjuency it

is equivalent to the frequency of exceedance of the flow over a designed discharge. It is therefore natural
to interpret the FDCs as the frequency curves and represent them in an analyticalth@yn@ans of

probability distributions.

In literature there are different functions@afmulative probability whichepresent the FDCs, such as the
Generalized Pareto distribution with three paramet&enressey1994], the Gumbel distribution
[Kottegoc and Red,1997], the distribution normal [&gh et al.,, 2001] and, usualiyvo or three
parameters logormal distribution Fennessey and Vogdl990, Claps and Fiorentino1997]. In more
recent times other distributions have also been used, for exaimpléappa Castellarin et al.2007] or

the EtaBeta lhcobellis, 2008]. The choice of the distribution depends on the ability to adapt to the

observed data and the possibility to estimate parameters in awayust

The difficulties encountered in choosing an appropriate distribution to represent FDCs, among those
commonly used in the field hydrological, substantially led to the introduction of other types of
distribution. Among them, particularly convenient is Burstdbution (also known as Burr type XllI)
introduced byBurr [1942] [see alsdRodriguez 1977]and is used in diffrent scientific fields, buittle

known in the field of hydrology3hao et al.2004;Nadarajah and Kotz2006].

The cumulativedistribution function of Burr withits 3-parametes can be written as

Fe = + & 3.5
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where®is the scale parametecyand@are the two shape parameters. The presence of two shape

parameters allows us to represent adequately, the various forms of FDCs.

The analytical form of (3)5allows to derive simple expressions for the probability density

AL AL

_J|'|=: I o T T
- =1 + 4 I (3.6)

andthe quantile function

.1
I 4 v 1 @1 @
0b = o 222" 3.7

Furthermore, the Burr distribution has a limitation wdzequals to 0 (fod © 0); a condition for which

wbecomes undefined, and therefore the vatdiél®w become negative.

There are two limiting cases for Burr distributions, in particular:

T

the lower limit corresponds to the case whm© 0 and the distribution becomes a two
parameter Weibull;
the upper limit corresponds to the case in wi® B and the distribution becorsea two

parameter Pareto.

To decide which distribution we are going to use, we useddments as a descriptive statistical indexes

of FDC which, like moments contain information on the average value of the variability, asymmetry, etc.,

of distribution.

We define following applications to select the distributions:

0, calledL-moment of order 1, which represents the average of a distribution;

00wis defined as the dimensionless ratio betweendment of order 2 arb;, which represents
the variabilityof the distribution (analogous to the coefficient of variation of theory of moments);
000 is defined as the dimensionless ratio betweemioment of order 3 and-tnoment of order

2, representinghe asymmetry of the distribution (similar to the coééint of asymmetry or
skewness of theory of moments);

0'®i &', the dimensionless ratio betweenotder noment 4 and tmoment of order 2
representsthe flattening of the distribution (similar to the coefficient of flatness or kurtosis of

theory & moments).
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In the space of the variabl06w and000, the Burr distribution has a spinebaped domainsge

Ganora et al.2014], delimited by a lower and an upper limit, respectively, by the following equations

066F0= = 2+ 23 P@  + 3066 (3.9

nwwion 1430660
Lon - - -
000 3050 (3.9
The estimation of the parameters a, b, and c is also made using the methndroéhts.
~1 1 - 1
_ & Ug 74l 3
V1= @™ o (3.10
L. Lagdl g
VOW= —7 T 1 (3.11
u = .U[—:- -
w w
11 2 1 3
g d ¥ d, ,¥e d
nan Gl e el
Loo = T T 71 (3.12
Yo @ ,¥g d
o] ¢3)

Whereq].] is the gamma function.

It is necessary, in some casesgstimatethe FDCs by the Weibull distribution or the Paretavdf fall in
the limiting case of the distribution Weibull parameters to 2, the shape of cumulative probability function
becomes:

o

0w=1 exp[ % “1 (3.13

where the subscrij® indicates that the parametadsindcrefer to the distribution of Weibull. The

guantile function becomes:
@0 =6, log(l 0) Y& (3.19

whose parameters can be easily estimated from-therhents as:

T log (2)

G = log (1 06w) (3-13
v (.)16(‘1)

Wy = 3.1
> = Gty (3.16
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Similarly, when you fall in the limiting case of the Pareto distribution with 2 parameters, the cumulative

function is:

)
et

Dw=1

(3.17)

&|e

where the subscrij0: indicates that the parametcisndrefer to the Pareto distribution. The quantile

function becomes:

T

GO =¢y 1 0V (3.19
whose parameters are estimated from tmadments as:
v 08G+1

VT 2060 (3.19

&y = 01(17 oy) (3.20

&

3.4.2. Geographical distance method
A more common and straight forward way for the selection of NN is to use geographical distance
method. In the vicinity of geographical space it is assumed that the stations having similar hydrological
properties are located aer to each other and hence it is reasonable to asses hydrological properties of
ungauged catchmés based on spatial proximitlpschl, 2005] The Euclidean distance norm is

generally used to calculate distance between a pair of catchments.

In newly devéoped distance based method described in section 2, we decided to adopt models with
two descriptors because of their higher robustness and primarily for an ease of comparison with

Euclidean distance, which is also a combination of two descriptors (Lasinddeongitude).

3.5. Result
The results generated by our model, geographical distance method and parametric model are tested by

using crossvalidation procedure. It was done by considering one station as ungauged, removing it
from the whole database and estimating FDC for that stalibe process was repeated for all the
stations and error was measured between estimated FDCs and empirical FDCs. Generally, the

agreement between actual and predicted FD@®mie qualitative
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Figure 3.6 Comparison of simulated FDCs with actual&at selected stations.

As performance indexes, the root mean square error (RNCBERd NaskSutcliffe efficiency (NSE)
have been evaluated. These performance indexes for the 3 considered procedures are listed in table (1)
for some selected basins, fegha complete comparison of 4 &tations is shown in figure (3.7 The

newly developed method performed better for most of the stations then its other counterparts.
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Figure 3.7. Comparison of RMSE ari@;, of distancebased model, geoghraphical method and parametric

model.

Geographical Method

Parametric Method

SRMSEsmpiricat sstmates

00 02 04 06 08 1.0
o
B
8

00 02 04 06 08 1.0

D,

UL S —

Geographical Method

Parametric Method

150 200

100

50

100 150 200

50

%%
— <
— o ',’; < <
.,-’o
4 @
% S
1R o
O
o
| | |
50 100 150 200

50

D,

100 150 200

59



Table 3.3 RMSE,NSEandQ; obtained in the various basins using three types of methods

Basin Area (G ?) New Method Euclidean Parametric Model

Stations RMSE NSE Q, RMSE NSE Q; RMSE NSE Q,

Codes
3 41 0.166 0.970 42.028 0.342 0.874 104.835 0.516 0.713 127.837
5 43 0.223 0.950 56.305 0.258 0.934 66.931 0.385 0.852 54.362
7 350 0.296 0.947 36.794 0.460 0.873 79.695 0.884 0.530 80.096
24 133 0.122 0.982 25.610 0.187 0.960 51.476 0.520 0.691 53.362
38 207 0.297 0.726 77.000 0.413 0.471 77.132 0.432 0.421 72.378
46 256 0.185 0.963 28.915 0.230 0.943 35.408 0.266 0.924 27.031
65 74 0.145 0.970 26.745 0.320 0.848 56.499 0.878 -0.149 144.930
70 360 0.151 0.916 45.943 0.316 0.635 91.332 0.548 -0.101 79.154
72 3956 0.141 0.928 31.355 0.307 0.662 61.000 0.502 0.096 62.735
76 25640 0.174 0.867 36.706 0.486 -0.030 93.631 0.526 -0.203 90.795

Table 3.4 Comparison of magnitudes of differenterras)( wi t h correspondi.ng St an

Model yowa{9Z1 0 YOob{9zZzwv@x1' 0
New Method 0.271(0.26% 0.863(0.210 53.721(37.698
Geographical Method 0.3100.266) 0.7830.470) 62.735(38.75p

Parametridviethod 0.535(0.240) 0.327(0.240)

83.465(35.490)
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3.6. Conclusion
The procedure is applied to 124 basins in Northern Italy and Switzerland. The basins used in our

analysis present differenydirological behavior and coverwide range of descriptors (area, elevation

etc). The distancdased modeproposed here is able to reproduce thenomin FDCs in an efficient

way if compared to geographical distance method and parametric model. Unlike classical parametric
approach; the present approach slealh FDCs as a whol&nction The discharge distance matrix is

linked to basin descriptors' distance matricesuph regressin. By using theéYagoand delta values

models were selected for overall work space. Later the workspace, comprised of descriptors in best
model, was divided into different clusters and the best models are found for each cluster. The
simplicity of theproposed procedure makes it a valuable tool for FDCs assessment in an ungauged
basin. The results obtained by our model are comparable with and better at many basins than other
models.

The present work also covered some of the short falls in previoksdooe byGanora et al.[2009]:

(1) each cluster was characterized by a single dimensionlessHeD€e a reasonable error might be
introduced in case of remotely located ba€in. the contrary,n our work regime of each ungauged
basin is assessed thréugredefined number of neighbors and incase of remotely gauged basins the
model waschanged to eliminate remoteness. (R)c8 the basins are scattered over a wide range of
descriptors values, therefore using only a single model for the whole work spaee ssmplification.

In the new modelhis issue is addressed by dividing the whole workspace into smaller clusters and a
separate model for each cluster was found, (3) reallocation procashlied previously by Ganora et

al., [2009]might be complicaiin case of many clusters whereas no reallocation procedure is required
in the proposd methodology, (4) Finallgluster analysis is simultaneously done on descriptors and
hydrological data spaces consequently clusters may not necessarily ovehagixact same manner

and this causemagnitudinal errorri final regime. h the present procedyreluster analysis is only

done on descriptor space.
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Chapter 4. Rainfall Extremes Analysis

4.1. Introduction
The topic of analysing rainfall extreme events is curreoily of the leading topicen the field

of climatology because of its adverse impacts on human lives and propeotest[al.,2014.

The researches have shown quite iaterest in this field reently and bmost the entire
community of researchergithin the climatic change paradigagrees on a hypothesihat there

is going be an increase in the migdes of extreme events due ttee increase in climatic
variability [see Neumayer and Barth@011;Bouwer 2011a;Barthel and NeumayeR012, and
references thereJnA clear increment in magnitude of extremesets has been documented by

BEH [2013, which resulted in adverse impacts ammenunity and the environent [PCC,

2007. In third world countries like Pakistan, extreme rainfall events cause natural kazard
because they are a source of degradation processes like flash floods, landslide triggering and

erosion which can cause a severe damage to the land and properties.

Mapping the hazaslof extreme rainfall allows us to assess the spatial distribution of this
climatic feature even at locations where no climatic record exists. In the fields of regional
plannng and environmental managemedlimatic hazard maps, in general, can also be uklpf

as a part of decision making systems. The main objective of our work on rainfall extremes is to

describe a method to obtain extreme precipitation hazard maps.

The rainfall data provides point information which needs to be translated to a spatially
coninuousvariable. Over the course of research done in this regdfdreit variables have
been proposedo describe the rainfall extremes. For exampRrudhomme[1999] and
Prudhomme and Regd999] usedthe median of the annual maximum daily precipitgtio
Lorente and Beguerii2002] usedthe median of the annual maximum precipitation audated

in 1, 3, 5, and 7 day#\ccording to some authors a median value of extreme precipitation is not
the most adequate variabto express extreme evenBefueriaand VicenteSerrano,20049.
Attempts have also been made by using absolute maxima with a very little Jigaesa Ruiz

et al, 2000}

To describe the occurrence of extreme rainfalls in a retjiengextreme value theooan be used
which provides a congte analysis of the statistical distributiohextreme precipitation events
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and allowsthe construction of magnitutiigequency curve by fitting theselectedlistribution to

rainfall data. The degree of hazard related to extreme precipitation at a given location can be
expressed by using driven statistical laws like quantile estimates in which average magnitude of
an extreme event for a given return period is simulated. p&igas distribution of the hazard of
extreme rainfalls can be mapped by combining quantile estimates with spatial interpolation
techniques. For exampl&ajic-Capka[1991] and Lana et al, [1995] used local interpolation
methods to map quantile estimatiooistained by fitting a Gumbel model to series of annual
maxima.Begueria and Lorentld999] provided the 10§r daily maximum rainfall estimates by

the fitting of Gumbel model on rainfall data at several points in the study area, by using ordinary
regresn against relief parameteM/eisse and Boif2001] modelled 10 and 108yr rainfall
estimates for rainfall duration off 24 h by comparing kriging and ordinary regression against
topography.

The main limitations of existing techniques argl) calculaton of the extreme quantiles by the
extreme value theory in these examples was reduced-giie aestinations of the model
parametersthe existence of a spatial sttue was not addressd@) If extremerainfall hazard
are to bemappedfor a different return period or hazard level, newsigg quantile estimations
and intepolation a&e needed.

In our work we explore the possibilitgp build aprobability model over a spatially continuous
space by allowing the parameters of fitted dittion vary spatially. Many probability
distributions have been considered, for the probabilistic modeling of extreme precipitation events
like the extreme value distributions (Generalized Extreme Value (GEV), Gumbel and Log
normal distributions), the digbutions of the transformed normal or gamma families [e.g.,
Kottegoda and Ross@997]. The parameters of fitted distributions are measured by fitting it on
at-site rainfall data anthenwith spatial interpolatioriechriques,the eecuted parameters are
distributed spatidly. The estimation of spatial model from distribution paranmseteelps in
estimating hazardous rainfaftapsfor different return periodsvithout having a need to apply
new spatial interpolations. The advantage of using analysis ofpttelsdistribution of the
model parameters, relative to using a set of unrelatsdeaprobability models is that it results

in a much more robust regional probability model.
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4.2. Study area and elaboration of the database
We have tested our methodojogn Pakistan in which extreme precipitation is frequent and

causes important social, eamic, and environmental damag&/iite et al. 1997; GarciaRuiz
et al, 2000; Lasanta2003] For example, flood events of 2011, which levelled off the whole

sindh province of the country resulting in the loss of human lives and properties.

Pakistan has a very high seasonal interannual variability because of dominating atmospheric
patterns in dferent pats of country. The variation in annual precipitation oscillates between
131mm in gilgit situated in extreme north to 1761mm centradisth in balakot. Due to these
extreme fluctuations the precipitation magnitude, in soea@sy exceeds the nmegalue whilein

other years, the country faces long droughts periods which are particularly frequent in areas of
Baluchistarand Sindh.

Globally, raingauges are always d€e measure the depths and rates of rainfall events. The
original database consisteof 21 series of daily precipitation with different lengths mostly
concentrated in the nothern paf the country. There were raingaugiations in our analysis e.g.
Balakot aml Kotli, where within the same locality; position of the observatories wéiftechFor

these cases by merging the data of the observatories located in the same location, we created new
series. At some sites we faced a problem of missing rainfall values. To overcome this challenge
we selected a data series widsd than 15% misginvalues Karl et al, 1995] for a common

record period of 50 years (192010). The reason of adopting this strict criterion is to ensure
that all of the time series data are sufficiently long so that they not only provide reliable
estimates of the extrarevents probabilitjiJones 1997] but also cover the same record period

to avoid variability in the estimation of the parameter as a result of inter annual climatic cycles.

This led to a final database of 15 observatories.

The actual rainfall data was w@ined for the raingauges which are concentrated in the northern
part of the country (see Fig.7). This caused a serious problem of very small spatial coverage.
The reduction of the spatial coverage of the weather stations can introduce some lintgations
theanalysis of climatic variables becauseassess certain rainfall coefficients for extreme events
analysis, we need to have a high resolution daita Austin and Houzel972,R o d r éltgribee z

and Mejig 1974]. The spacing between raingaulgeated across any research area are generally

very large and do not correspond to the variability of rainfall spatigéiggte and Readl975].
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The problem is even more magnified on small scales. In addition, the density of rainguages is
extremely low @er the difficult terrainSatellite precipitation data can be used due to its high
resolution. Satellite missions generate data of various temporal and spatial scalesthl® get
data the satellite missiomse mounted with either infrared or more rebenticrowave devices.

The former although have an ability to cover large spatial and temporal sctheyate unable

to maprainfall evens efficienly because otheir lower penetration into ¢hdense clouds. To
overcome thdack of penetration poweinfrared radiations have recently been replaced by
microwave radiations as in case of TRMM mission. The TRMM mission takes data from
multiple satellites and by using simple possible wihg valuesare averagetb produce a best
estimate of the mean raififaate over the selected intervafififfman 2007]. The TRMM data

was downloaded on 327 grid points shown in figlifé located across the whole country.

The length of the dataset is an important aspect in the analysis of climatological variables, but in
the case of extreme value analysis as the samples are reduced to only the highest values in the
range of the variableJpnes 1997], the length of dataset becomes critical. Pakistan can be
characterized by high interannual variability of climate and simcdhe recent decades,
significant differences in the annual averages have been found therefore the need of long time
series to provide robust estimate is seriously needed. Significant temporal variability and trends

in extreme events have also been foimdifferent areas of the Pakistan.

The adequacy of the length of series required to obtain reliable estimations about the frequency
of extreme preceipitatio events is subject to debaten$ authors indicatthat forthe return

interval estimations of 5r, by fitting gumbel distribution on annual maxima with 25% error,
require 39 years of dat8¢nson 1960]. While the others analyzed that 20 years of data provide
the estimates for extreme events against retariogls with a 20% rate of errodata for more

than 25 years or more reduces this error magnitude to less tharP2@¥odt al, 2001].

Considering the previous discussion, despite the reduction of spatial coverage due to
concentration of rainguages in nqrtlve decided to maintain a large temporaleat of the
database (50 yr). W used statioyear method for the construction of growth curve and to
analyze the probability of the extreme precipitation events which do not reqomaplete data

time seriesinsteadthe entire data was arranged in a single vector.
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The checking of data quality and homogeneity of daily climatological recetdsh is required

for the construction of growth curvis, a very complex procedure. There are a number standard
tools n the scientific literature to test the hogeneity of climatic dataset [s&ishand,1981

for detaild, becausalifferent authors have addressed the problem in a differenf Maryton et

al., 2001; Brunetti et al, 2002] Hosking and Wallis, 1997 used tmoments to find the
homogenity of a climatic region. This has been the method followed in this $todythe
preparation of extreme rainfall hazardous map for a certain return period, a single growth curve

was prepared for statistically homergus regions.

4.3. Downscaling
Annual maxima of dailyrainfall for the years 1962010are moddkd for fifteen locations in

Pakistan (chosen to give a good geographical representation of the country). The gumbel
distribution is fitted to data from eacbclation to describe the extremes of daily rainfall and to
predict its future behavior from monthly data. We find evidence to suggest that the Gumbel
distribution provides the most reasonable model for four of the fifteen locations considered. We
explore tle possibility of trends in the data but find no evidence suggestilagy trend We

derive estimates of 2, 50, 100, 500 year return levels for daily rainfall.

Thesatellitedata consist o total monthly rainfall and number of monthly wet days dataHer
years from 1961 to 2010 for the 327 grid peimpointed out in figure 4.7The data were
extracted from the websitgtp://badc.nerc.ac.usf the British Atmospheric Data Centre, which

lists the monthly rainfalfigures for 327 grid points in Pakistan. But there are only 15 sites that
have data going back to 1961 (the earliest year for which data are available). Our analyses are
limited to 15 of these grid points. These fifte@amgaugeslocatedin northern parbf Pakistan,

are chosen because of the availability of actual data.

In this section we focus on the quantitative assessment of extreme precipitation events. To do
this, it is necessary to kWa data on daily temporal scalenlike the evaluation of onlyhe
behaviorof extreme events, for which owceuld also refer to mhe series with monthly temporal

scale In this regard, we will make use of only the CRU database due to limited spatial coverage
of actual data from Pakistan. The traditional hydrologicellyses are based for example on
historical daily rainfall values measured on a single station. It is then possible to adapt a

probability distribution of extreme values and thus build a curve that shows the entity of the
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event as a function of the problilyi of non-exceedance. Most often, instead of the probability of
nonexceedance, the smlled return period that represents the average number of years that one
must wait for an eventis used The return time is usually preferred because the prolyabilit
interpretation is more intuitive. THERU precipitation data are available butly at a monthly

scale. Therefore, for its temporal downscaling we must look for other infornatrdsutable to

the daily scale whiclis alreadycontained in the databa#iat reports the number of rainy days

per month.

4.3.1 Distributions of extreme va lues
One can derive the distribution of the extreme values of a certain efiggt)(from the

probability distribution of a single evenid) through the followingxpression

~

Oy @ = Q-1 0o(®) (4.1)
where the term is the average number of events per year.

Initially we assume that the depth of raiif) (follows a probability distribution of a single
parameter, in particular an exponential law of thetyp

el

o' Q= =00 (4.2)
-

wherel prepresents the intensity of the average annual precipitation. The Probability density

function turns out to be:

Q
0o™Q=1 Qio (4.3)

The distribution of the maximum, which is obtained by replacing thetifum (5.3) in (5.1), can
be traced back to the known distribution of Gumbel

-
0'® =Q-¢ (4.4)
which is a function of daily rainfall depthic¥) expressed by two parameters. One can easily

notice that in the equations from.24to (44) the nuber of parameters of a distribution increase
from one to two. To estimate this additional parameter we will make reference to the number of

rainy days.
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The expression just obtainedn be extrapolated fa®,

In 0 (4.5)

In(1 %) . (4.6)

now by repeating the same procedure, but considering a function that describes the rainfall depth
as pareto distribution of two parameters (instead of the exponentiaimfla parameter). This

distribution can be written as
0o Q=1 1 o= (4.7)

whereQis the shape parameter. The mean and variartte ¢fareto can be expressed as:

¢ _ 130
=15 (4.8)
2 - | &
” - (1+-.-gz(1+2~.~g (49)

now the distribution bextreme values is obtained with the distribution of three parameters; the
depth of daily rainfall can then be expressed as the function of return period with the expression

in the form

Q=L 1 L 4.10
A=l % (4.10)

4.3.2 Application of the distributi ons
In order to apply the newly derived distributions we must dewaidetherto use the Gumbel

distribution (4.6, or the Pareto (4.1 However, for both distributions the parameter of number

of rainy days per month is very important to make some caagides. The database containing

the number of rainy daydNWD) was built by considering a minimum threshold of rain depth
equal to 0.1 mm. But since extremgents are intense in natutbjs threshold is extremely low

to be representative. It is, for shieason, considered necessary to increase the threshold to have

more meaningful representation on number of wet days.
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The selection of an appropriate threshold value to extract the exceedance series for every station
of work space constitutes as the ma#tical parameter selection in PD series modeling because

the level of threshold defines the size of tekested data. A low threshoisl generally preferred

over a high one for its ability to bracket maximum amount of rainfall data. Too low threshold
value should howeer be avoided as distributianodel would not corly fit on the selected
data.To set an appropriate threshold one of the advised procedure in literature is the mean excess
plot, complemented by plotting the aage mean excess overcartainthreshold against the

value of the threshold itself. Mean excess plots were constituted by using different threshold
values to ealuate the fit of the selectetistributionmodel to the data as shown in figure.4tl

can ke noticed that graph ingure 4.1follows astraightline and thebest line regression model,

allows the selection of threshoédjual to 10mm. The threshold values are counter elodmk

fitting the same distribution model (GEV) on the actual daily datanown stations

Figure 4.1.Mean excess plot for the selection of threshold.
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