The S-matrix Method for High Frequency Capacitance Calibration

Original

Availability:
This version is available at: 11583/2593588 since:

Publisher:
Automatic RF Techniques Group (ARFTG)

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

05 December 2018
The S-matrix Method for High Frequency Capacitance Calibration

Nosherwan Shoaib1,2, Marco Sellone1, Luca Callegaro1, Andrea Ferrero3, Michael Wollensack4 and Luciano Brunetti1

1Electromagnetism Division, Istituto Nazionale di Ricerca Metrologica - INRIM, Strada delle Cacce 91, Turin, 10135, Italy
2Department of Industrial Engineering and Production - DIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
3Department of Electronics and Telecommunications - DET, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
4Bundesamt für Metrologie (METAS), Lindenweg 50, 3084 Wabern, Switzerland

19th Nov. 2013
@ Columbus, Ohio, USA
	nosherwan.shoaib@polito.it
S-MATRIX METHOD

- Measurement of a four terminal pair (Z_{4TP}) air capacitance standard in terms of S-parameters
- The capacitance is measured using a two-port vector network analyzer (VNA)
- The VNA is equipped with BNC connectors
- The two ports of the device not employed are terminated on matched impedances
S-MATRIX METHOD

- The measurement results are combined according to the following equation [1]:

\[
Z_{4TP} = 2Z_0 \left\{ s_{21} s_{34} - s_{31} s_{24} \right\} s_{31} + \left(s_{21} s_{32} - s_{31} s_{44} - s_{31} s_{22} + s_{41} s_{34} \\
- s_{21} s_{32} s_{44} + s_{21} s_{34} s_{42} + s_{31} s_{22} s_{44} - s_{31} s_{42} s_{24} - s_{41} s_{34} s_{22} + s_{41} s_{24} s_{32} \right\}^{-1}
\]

- All measurements are performed with the VNA Tools II program developed by METAS
- The data analysis is performed using the METAS.UncLib library in MATLAB

FLOW CHART

START

VNA Calibration

DUT Measurement

EVALUATION OF CAPACITANCE

FIT OF THE SIGNAL

END

VNA Tools II
Matlab – METAS UncLib
MEASUREMENT SETUP

Vector Network Analyzer: Agilent E5061B

Standard: Agilent 16384A
1000 pF capacitor

Calibration Kit: Maury Microwave
8550 - Coaxial BNC

nosherwan.shoaib@polito.it
RESULTS

VNA Tools II – Display of S-parameters
RESULTS

4 port 1000pF Capacitance Measurement

1000 pF capacitance graph (grey) with uncertainty (MATLAB METAS.UncLib)
RESULTS

Uncertainty budget of capacitance fit [pF] (MATLAB METAS.UncLib) @ 15 MHz

<table>
<thead>
<tr>
<th>Description</th>
<th>Unc Component</th>
<th>Unc Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Stability</td>
<td>0.680900725</td>
<td>0.334</td>
</tr>
<tr>
<td>Calibration Standard</td>
<td>11.732322849</td>
<td>99.168</td>
</tr>
<tr>
<td>Load</td>
<td>10.871621573</td>
<td>85.152</td>
</tr>
<tr>
<td>Open</td>
<td>4.362157415</td>
<td>13.709</td>
</tr>
<tr>
<td>Short</td>
<td>0.653319583</td>
<td>0.308</td>
</tr>
<tr>
<td>Connector Repeatability</td>
<td>0.096568826</td>
<td>0.007</td>
</tr>
<tr>
<td>VNA Drift (correlated)</td>
<td>0.012454945</td>
<td>0.000</td>
</tr>
<tr>
<td>VNA Linearity</td>
<td>0.517897792</td>
<td>0.193</td>
</tr>
<tr>
<td>VNA Noise</td>
<td>0.642808505</td>
<td>0.298</td>
</tr>
</tbody>
</table>
SUMMARY

- With the proposed method it is possible to measure a four terminal pair capacitance with a 2-port VNA

- METAS VNA Tools II assists the measurement process and collects data

- With METAS.UncLib it is possible to evaluate the desired results together with an uncertainty estimation compliant with the GUM

- Reduction of the uncertainty due to the standards (that now use manufacturer specifications) by characterizing the Load standard

- Future work will involve a comparison of the S-matrix method with a different one
THANK YOU!!!