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Abstract

Iron-based superconductors (SCs) were discovered in 2008 and their speci ¢ features imme-
diately captured the great interest of the scienti ¢ community. The critical temperature of
these compounds was the highest known so far with the exception of cuprates. They show
a layered crystal structure and quasi-2D Fermi surface, made up of multiple disconnected
sheets, and usually with multiple order parameters. Their parent (undoped) compounds
are metals and the proximity to magnetism, clearly visible in the phase diagram of these
materials, seems to be of fundamental importance in order to understand the superconduc-
tivity in Fe-based SCs. Their observed features have led theoretical physicist to propose
an unconventional, spin uctuation-mediated pairing. Many experimental results obtained
so far seem to con rm the theoretical predictions, but the nal validation of this model
still requires additional steps.

The research on Fe-based materials has been recently boosted by the progress in the tech-
niques of Im deposition. Films of very high quality are necessary for applications in
superconducting electronics, i.e. for the fabrication of Josephson junctions, SQUIDs and
so on. However, they can be fruitfully used also to investigate fundamental properties of
these compounds (especially for those materials that cannot be grown easily in the form
of single crystals). For instance, they are the perfect playground for transport, optical
and spectroscopic measurements of various kind; thin Ims o er an additional way to tune
the critical temperature, thanks to strain/stress e ects that can be induced by the sub-
strate; nally, they are necessary to realize some proposed phase-sensitive experiments to
determine the order parameter symmetry s++ or s [1]. Many other experimental mea-
surements and theoretical calculations are crucial in order to clarify some open points for
example the superconducting order parameter and its symmetry, the amplitude and the
number of the energy gaps and their temperature dependence.

This dissertation presents the advanced characterization and the fundamental study of
Fe-based superconductors (122 and 11 families) mainly in the form of epitaxial thin Ims
by means of di erent experimental techniques, namely electrical transport measurements,
point-contact Andreev-re ection spectroscopy (used both for advanced characterization
and fundamental investigation) and other techniques for the morphological and chemi-
cal characterization of the surface (AFM, FESEM, Energy-dispersive X-ray spectroscopy).
This research was developed within the activities of the Eu-Japan project IRON SEA
(establishing the basic science and technology for Iron-based superconducting electronics
applications) funded within the Seventh Framework Programme FP7 under grant number
283141. The epitaxial thin Ims of 122 and 11 superconductors were grown by partners of
the consortium that are world leaders in this eld, and thus they are high-quality state-of-
the-art samples. In particular, the Co-doped Ba-122 Ims were deposited by the group of
prof. B. Holzapfel at IFW Dresden, while the Fe(Te,Se) Ims were grown by the group of
prof. A. Maeda at Tokyo University.

The data collected by means of the aforementioned techniques allowed the systematic char-
acterization and the study of the homogeneity of the superconducting properties and of



the chemical composition at the surface, and also the e ects of aging and degradation
(especially for Ba-122 samples). In the framework of the IRON SEA project, this large
amount of information was required in order to assess the possible use of these Ims for
the development of superconducting electronic devices.
From the point of view of the fundamental properties, the PCARS study of the Co-doped
Ba-122 and Fe(Te,Se) thin Ims allowed gathering information about the phase diagram
of these materials, i.e. the e ect of isovalent and aliovalent doping on the critical tem-
perature (T.) and on the superconducting gaps (i.e. number, amplitude and symmetry)
or, conversely, the determination of the trend of the gaps as a function of doping and
critical temperature. Thanks to a theoretical analysis of the results carried out by Dr.
G. Ummarino within the multi-band Eliashberg theory, the results of PCARS measure-
ments allowed extracting the characteristic energy of the mediating boson, verifying the
spin- uctuation mechanism, determining the evolution of the coupling constants from the
underdoped to the overdoped regime.
The activity of the candidate has been focused on the experimental aspects of the research.
She spent two months (October - December 2012) at IFW Dresden during which she carried
out a part of the PCARS measurements on Co-doped Ba-122 Ims (otherwise carried out
at Politecnico di Torino) and contributed to their characterization (i.e. by DC Resistivity,
RHEED and X-ray Spectroscopy) as discussed in chapter 4. The characterization of these
Ims was completed at Politecnico of Torino by AFM, FESEM and EDX measurements,
performed by F. Laviano and M. Raimondi and later analysed by the candidate. Similarly
for Fe(Te,Se) Ims, widely characterized by the Japanese partner, the research was mainly
focused on PCARS and transport measurements (chapter 5).

The layout of this work is the following:

Chapter 1 gives an introduction on the Fe-based superconductors and shows the inter-
connection between this work and the state of the art of this topic.

Chapter 2 is a brief overview on the theoretical key points concerning the coupling
mechanism in superconductors, with a special attention to the electron-boson coupling in
unconventional Fe-based superconductors. Also the symmetry and the amplitude of the
order parameter (OP) are discussed here. The nal part of the chapter is devoted to point-
contact Andreev-re ection spectroscopy (the main technique used in this study) from the
theoretical point of view.

Chapter 3 presents the experimental techniques used in this study. The general exper-
imental features of resistivity and point-contact Andreev-re ection spectroscopy measure-
ments are discussed here.

Chapter 4 is devoted to the study of di erent Co-doped Ba-122 thin Ims. The ho-
mogeneity of the morphological, structural and superconductive properties was veri ed by
using di erent and complementary technigues. The number and the temperature depen-
dence of the amplitude of the energy gaps are investigated by the candidate by means of



point-contact Andreev-re ection spectroscopy within the BTK model. The PCARS spec-
tra were also analyzed within the Eliashberg theory.

Chapter 5 presents the results of the study of di erent Se-doped Fe(Te; xSex) thin
Ims. The resistivity measurements are here reported and the PCARS measurements were
t by using the BTK model and also analysed within the Eliashberg theory.

Chapter 6 presents the general conclusions and the prospective research in this eld.
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Chapter 1

Introduction

The study of Fe-based superconductors (SCs) is one of the most fruitful elds of present
research in superconductivity. These materials, discovered in 2008 [3], represent the rst
class of superconductors with critical temperature above 50 K after the discovery of the
cuprates, the rst class of high T, SCs, in 1986 [4]. It was completely unexpected to nd
superconductivity in these materials because the presence of iron in their crystal lattice
makes their parent compounds strongly magnetic and, historically, magnetism and super-
conductivity were considered antagonists. Many other interesting features were found in
Fe-based SCs. For example, the high critical elds, the multiband electronic structure,
the unprecedent sensitivity of the superconducting properties to the structural parameters
and the unconventional boson-mediating superconductivity were of great interest for both
fundamental reasons and possible applications in transport or electronics and open new
avenue in research.

Nowadays ve di erent crystallographic structures (see Fig. 1.1) that support supercon-
ductivity have been discovered and they allow de ning the classes of Fe-based materials.
All exhibit a crystal structure of square planar layers of Fe atoms joined by tetrahedrally
coordinated pnictogen (arsenic or phosphorus) or chalchogen (sulfur, selenium or tellurium)
atoms. Between these layers, alkali, alkaline-earth, or rare-earth and oxygen/ uorine block-
ing layers can be also placed. It is universally recognized that the interaction that leads
to the high T, superconductivity originates within the common iron layers.

The generic phase diagram of the Fe-based SCs can be produced by manipulating the
chemical or structural properties, by using either chemical doping/substitution or applied
external pressure to drive an antiferromagnetic (AFM), non-superconducting parent com-
pound to a superconducting (SC), non-AFM state which occurs in close proximity to the
long range-ordered antiferromagnetic ground state in these materials [6]. For example in
122 Fe-based SCs, chemical doping, i.e. partial substitution, of Fe dopants elements, for
example Co, Ni [7] or Ru [8], can suppress magnetism [9] on behalf of superconductivity.
On the contrary, in 1111 Fe-based compounds, isoelectronic Ru substitutions of Fe can
also suppress progressively SDW without the induction of superconductivity [10].

In Fig. 1.2 the schematic phase diagram for 122 family of iron-based superconductors is
shown. In this example Ba atoms can be substituted with K atoms (doping with holes), Fe
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Figure 1.1: The ve tetragonal structures of the Fe-based SCs groups adapted from [5].

atoms can be substituted with Co atoms (doping with electrons) or Fe atoms can be substi-
tuted with Ru atoms (or As atoms by P atoms), to suppress magnetism without changing
the carrier concentration. Therefore, the magnetic and electronic structures of these ma-
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Figure 1.2: Schematic phase diagram for the Ba-122 iron-based superconductors adapted from [11].

terials turns out to play a crucial role in determining the shape of the phase diagram and
the charge doping is not the only factor for inducing these compounds to superconductive
phase. Even if many open questions still remain on this point, the proximity to a mag-
netic quantum critical point suggest that magnetic spin uctuation are instrumental for
the electron pairing.

The interplay between magnetism and superconductivity in Fe-based SCs is still under
debate, especially due to the implication of this topic for the pairing mechanism. The
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1 Introduction

electronic structure of their parent compounds suggests that the same magnetic interac-
tions that drive the AFM ordering also produce the pairing state for superconductivity
[12]. First-principles DFT calculations and experimental results agree on the idea that
the dominant contribution to the electronic density of states at Fermi level (Eg) derives
from metallic bonding of the iron d-electron orbitals in the iron pnictogen (or chalcogen)
layers. These form several bands that cross Eg, both electron-like and hole-like, resulting
in multiband system dominated by iron d character. This electronic structure suggests
that the same magnetic interactions that drive the AFM ordering also produce the pairing
state for superconductivity [12].

Theoretical DTF calculations contributed to clarify the shape of the Fermi surface (FS) in
Fe-based SCs. A 2D unit cell with two Fe atoms per cell, and the corresponding reciprocal
lattice cell were used in the calculations of the FS reported in Fig. 1.3. In these cases,
the x and y directions are along the next-nearest-neighbor Fe-Fe bond. Multi-sheet Fermi
surface that are separated into two distinct sets of surfaces appeared. In strictly nonmag-
netic calculations, when the magnetic moment on each Fe is restricted to zero, two or more
hole-like Fermi surfaces near the point [k = (0;0)], and two electron-like surfaces near
the M point [k = ( ; )] are visible [13].

Figure 1.3: (left panel)The Fermi surface of the nonmagnetic BaFe,As, for 10% e-doping (Co doping,
virtual crystal approximation) [12]. (right panel) The Fermi surface of the nonmagnetic BaFe>As; for 10%
h-doping (20% Cs doping, virtual crystal approximation) adapted from [12].

It turned out that the density of states (DOS) for holes and electrons is comparable for
undoped materials in 122 systems and in 1111 systems. Usually, the doping makes dom-
inant the DOS for electrons or for holes. Theoretical predictions are in agreement with
ARPES measurements performed on 1111 [14] and 122 family [15, 16, 17]. These measure-
ments demonstrated the existence of a well-de ned FS that consists of hole and electron
pockets. Therefore, the location and the relative size of the individual FS sheets agree
with the local-density approximation (LDA) expectation, even if the ARPES bandwidth
is reduced from these calculations by a factor of 2  2:5, similar to materials with strong
itinerant magnetic uctuations [18]. Also quantum oscillation measurements on P-doped
1111 compounds agree quite well with structure calculations [19] and con rm the mass
renormalization as ARPES [20]. Quantum oscillation data on antiferromagnetic 122 com-
pounds [21] indicate that a signi cant portion of the Fermi surface disappears due to the

3



1 Introduction

opening of a magnetic gap, even if even the undoped pnictides are well-de ned Fermi lig-
uids. The frequencies of the magneto-oscillations suggest that the ordered magnetic state
has small Fermi surface pockets consistent with the formation of a spin-density wave [12].
A theoretical study underlines the similarity in the electronic states between 11 family
superconductors (FeS, FeSe, and FeTe) and the 122 family [22]. Even if the crystalline
structure of the Fe-chalcogenides is the simplest among the Fe-based superconductors, the
contributions of Fe-3d electrons near the Fermi level and the morphology of the Fermi
surface (shown in 1.4) exhibit similarities to the FeAs-based superconductors [23]. This
similarity between the FS of the Ba 122 compounds and the Fe;+ Te; xSex single crystals
is supported by ARPES measurements [24].

FeS

FeTe

Figure 1.4: LDA Fermi surface of FeS, FeSe, and FeTe from calculations LDA [22]

The general idea is that superconductivity in Fe-based compounds is due to unconventional
(non-phonon-mediated) interband pairing mechanism, due to magnetic spin uctuation.
The fundamental mechanism that causes the high temperature in the Fe-based supercon-
ductivity is a question of primary importance and since the exact nature of the pairing in
not known, many experimental and theoretical e orts have been done in order to determine
the pairing symmetry and still need. Experimental measurements of neutron scattering
[25] and angle resolved-photoemission spectroscopy (ARPES) [26, 27] pointed out a fully
gapped order parameter consistent with s wave symmetry, that was theoretically pre-
dicted to have s wave symmetry but with a sign change between di erent bands in the
complex multiband electronic structure. This so called s superconductivity in which the
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1 Introduction

sign of the order parameter changes between two sets of Fermi surfaces was theoretical
predicted [28, 29]. Experiments probing the order parameter symmetry and amplitude
of the superconducting energy gaps provide important information about the energy and
momentum dependence of Cooper pairing, helping elucidate the pairing mechanism in this
new class of high T, superconductors.

Although the fundamental research is traditionally focused on single crystals for their high
guality and homogeneity, it is a matter of a fact that the research on Fe-based supercon-
ductors has been recently boosted by the progress in the technique of Im deposition. The
synthesis of high quality Ims is the indispensable step towards the fabrication of super-
conducting electronic devices that in most cases have Josephson junctions as their basis
constituting element [30, 31]. Moreover, thin Ims turns out to show many interesting
characteristics also in fundamental research activity. First, they are more suitable than
single crystals for investigation of transport and optical properties, thanks to possibility
to control their shape by lithography and also thank to the strong directionality of the
structures of these systems (i.e. epitaxial orientation of the grains is one of the typical
characteristics of these systems). Second, thin Ims allow exploring the e ects of lattice
deformation by strain/stress (hardly accessible in single crystals) on structural parameters,
surface morphology, transport and fundamental properties [32, 33, 34].

In the last three years, in the framework of two EU-Japan projects within the Seventh
Framework Programme FP7, namely SUPERIRON and IRON SEA, the research on iron-
based superconductors thin Ims was carried out properly in order to establish the basic
properties of Fe-based SCs, to explore the technological perspectives, for Iron-based super-
conducting electronic applications, and also to open up new possibility in this eld. The
research discussed in this PhD dissertation was developed in the framework of the IRON
SEA project, funded within the Seventh Framework Programme FP7 under grant number
283141.

After the characterization of epitaxial Co-doped Ba-122 and Fe(Te,Se) thin Ims by means
of experimental techniques, i.e. AFM, FESEM, Energy-dispersive X-ray spectroscopy, DC
resistivity, point-contact Andreev-re ection spectroscopy (PCARS), the fundamental study
of these systems was carried out mainly by means of PCARS measurements. The e ect
of isovalent and aliovalent doping on the critical temperature and on the superconducting
gaps (i.e. number, amplitude and symmetry) was investigated. The experimental PCARS
spectra were also analysed within the multi-band Eliashberg theory in order to verify the
spin- uctuation mechanism and determine the evolution of the coupling constants from
the underdoped to the overdoped regime.



Chapter 2

Unconventional Gap features of
Fe-based Superconductors

The complex doping-dependent Fermi surface (FS), the predicted sensitivity of the order
parameter (OP) to ne structural details and the electron-boson coupling in Fe-based
superconductors (SCs) are introduced in this chapter. These crucial aspects are discussed
maily within the case of Pnictides and Chalcogenides, the two Fe-based families studied
in this work. In this prospective, the main topics of this research, i.e. the study of the
amplitude, the symmetry and the number of the energy gaps as well as the coupling
constant of the Fe-bases SCs thin Ims by the means of point-contact Andreev-re ection
spectroscopy, are stressed in order to underline the unexpected results obtained in this
research.

2.1 BCS theory: key points

The rst microscopic theory of superconductivity was published by Bardeen, Cooper and
Schrieer (BCS) in 1957. One of the main prediction of the BCS theory is the existence of
an energy gap 2 at the Fermi level which is the energy up to the electron states are lled
up in a normal metal. In a BCS superconductor below T, the electron density of states
acquires a small gap 2 separating the occupied and unoccupied states. This gap is xed
at the Fermi energy, and so it does not prevent electrical conduction, unlike a band gap in
a semiconductor or insulator.

In 1960 Gork’ov was able to use the BCS theory to derive the Ginzburg-Landau equations,
and hence give a microscopic explanation of the OP that is one of the key point in the
superconducting state, since it determines how the charge carriers couple to form Cooper
pairs. Gork’ov not only found that the OP is directly related to the wave function for the
Cooper pairs, but that it is also directly proportional to the gap parameter [37]. The
BCS energy gap 2 corresponds to the energy for breaking up a pair into two free electrons.
Therefore, in the BCS [38, 39] the order parameter was identi ed with the pair function .
It was pointed out for the rst time that the superconductivity is a phonon-mediated
phenomenon. Despite this theory is not suitable for all superconductors, especially for

6



2 Unconventional Gap features of Fe-based Superconductors

Fe-based superconductors, nevertheless the electron-phonon interaction theory remains a
fundamental key to understand the idea of the attractive interaction between electrons in
superconductivity.

2.1.1 The electron-phonon interaction

The rst key idea in the BCS theory is that there is an e ective attraction for electrons
near the FS. While bare electrons repel each other strongly with the electrostatic Coulomb
repulsion, this is no more valid for quasiparticles. A quasiparticle is an excitation of a solid
consisting of a moving electron together with a surrounding exchange correlation hole [37].
It turns out that the bare Coulomb interaction between two electrons (e2=r) leads to a
repulsive element (4 e?=r). This interaction is screened by the other electrons and also by
the positive ions in the lattice, i.e. the electrons interacts via their interaction with the
phonons on the crystal lattice.

Reading through the Feynman diagram the meaning of this process, one electron emits a
virtual phonon, it propagates for a while, and it is then absorbed by a second electron.
The net e ect of the process is to transfer momentum ~qg from one electron to the other.
Therefore it implies an e ective interaction between electrons.

This e ective interaction between the electrons due to exchange of phonons turns out to
be of the form:

. . 1
Vere (0 1) = jQerti’ 55— 7 (2.1)
=15

where the virtual phonon has wave vector g and frequency !g. The parameter gers is
related to the matrix element for scattering an electron from state k to k + q and Ip
is the typical phonon frequency, usually the Debye frequency of the phonons. This is an
attractive interaction for phonon frequencies ! which are less than Yp and repulsive for
I > I, In BCS theory, only electrons which lie within kgT of the Fermi energy are
taking into accounts. At the temperatures of interest to superconductivity, the regime
considered is ~'p kg T. Therefore BCS interaction can be approximatively written in
the form

Vere (O 1) = jOerel®  jli<p: (2.2)
The Hamiltonian for the e ective eIegt(rog-(electron interaction is then
Herr = jgefsz C-|:1+q lC:2+q ,Cka; 1Ckz; 2 (2.3)
k;q

The energy of electrons that are involved in the process is restricted within the range ~1p
ofthe FS, j «; rj <~!p. Therefore, interacting electrons lie near the FS, but the Bloch
states far inside or outside it are not involved in this process.

2.1.2 The BCS energy gap and quasiparticle states

Actually this is only the rst step in the BCS theory. Passing through many other key
steps such as the determination of the full BCS state in which every electron at the FS is

7



2 Unconventional Gap features of Fe-based Superconductors

part of a pair and writing down a many-particle wave function in which every electron is
paired [37], the Eq. 2.3 becomes approximately
> >
Hecs = (k F)pCk +  (CpChpy +  C walir) (2.4)
K; k

where the new crucial quantity

- .2 X -
= Jeffl® hc kuCiomi (2.5)
kO
was introduced.
The eigenvalues of 2.4 are the energies
P —
Ex= (k FP+j j& (2.6)

The parameter is the amplitude of the OP. s also called the energy gap in the
superconductor. It is the distance, in energy, between the condensate of Cooper pairs and
the rst single-particle excitation [37].

Determining the expectation value from the solutions to the BCS Hamiltonian, it is possible

oo e —_tanh K (2.7)
= J0erf) ) 2Ex KeT .
Then if the sum is converted into an integral over energy, the BCS gap equation is calculated
1= Z~!Dd 1tanh (2.8)
I E 2kg T '
where E = P +j j2and = jgerrj?g( g ) is the dimensionless electron-phonon cou-

pling parameter.

The BCS gap equation implicitly determines the gap (T) at any temperature T. This is
the central equation of the BCS theory, since it predicts both the transition temperature
T. and the value of the energy gap at zero temperature (0).

From the BCS gap equation, taking the limit ¥ 0 one can obtain the equation for T,

kgTe = 1:13~Ipexp( 1= ) (2.9)

which has almost exactly the same form as the formula for the binding energy in the Cooper
problem. At T =0 also (0) can be determined, obtaining the formula

2 (0) = 3:53kgTe: (2.10)

This value of the gap is obeyed from one-band weak-coupling low T, superconductors like
aluminum [40].

Even if some Fe-based SCs exhibited a small BCS-like gap as in the case of SmFeAsOg.gs5Fo:15
[41], usually in Fe-based SCs the coupling parameter is no longer small. Therefore it is nec-
essary to include the real boson spectrum and the strong electron-boson coupling provided
by Eliashberg theory described in section 2.3.2.

8



2 Unconventional Gap features of Fe-based Superconductors

2.2 Anisotropy of the energy gap

In general, (k) can be expanded in a series of spherical functions, which are often labeled
as atomic orbitals for example (s, p, d) according to the corresponding value of the internal
momentum © of the pairs.

In the previous section,  were shown in the simplest form given by the BCS theory. In
this theory, it depends only on the modulus of the momentum Kk, i.e. the gap parameter
is independent on the k direction in momentum space. Due to the spherical symmetry
adopted, this is called isotropic s wave symmetry.

The s-wave gap symmetry is the basis function having * = 0. The gap is isotropic (i.e.
it has the same amplitude at every point of the FS), everywhere positive and real and its
phase is everywhere zero (see Fig. 2.1). In this case it can be represented as a single real
number

()= o (2.11)

v ’;’
240 ————" 300

Figure 2.1: Polar plots for the isotropic s wave order parameter in the angular momentum representation ,
together with the phase as the function of the angle.

If the energy gap changes on the FS, it can be written as follow:
z "Z ke D Py o

_ W ) d 2+ (1?2
(k)— V(k,k) (k) 0 p“_:Wtanh T

dN' (2.12)
where dN?® = dS’=4 3~vL is the in nitesimal element of the density of states associated
with the in nitesimal element of area dS" of the Fermi surface. In Eq. 2.12 the summation
is over all the bands crossing the Fermi level. The dependence of the pairing interaction
V (k; K" on k gives rise di erent values of the energy gap, i.e. to the anisotropy of the
amplitude of the OP.

Therefore within the research eld of high-temperature superconductors, more complex
gap symmetries than the BCS one have been investigated. Phase variations of the OP
can indeed mean that the sign change of (k) and that the symmetry is admitted to be
lower than the crystal one. Regions of opposite sign can be separated by nodal lines. For
example s means no nodal lines, p one nodal lines, d two nodal lines , according to
to the corresponding value of the internal momentum “ of the pairs. Actually not all the
possible terms of the expansion are allowed in a given compound. For example, if pairs
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2 Unconventional Gap features of Fe-based Superconductors

are spin singlets, “ can take only values “ = 0;2;4::: to ensure that the pair wavefunction is
symmetric. The problem of determining the gap symmetries that are allowed or forbidden
in Fe-based compounds is still a hot topic and will be discuss in the following section.
Some other possible symmetries, which are relevant for the present work, are here pre-
sented. The basis functions of the order parameter are described in the 2D form. Since
the pairing is limited to electrons with momentum near kg, the angular variable so that
k = kg(cos ;sin ) can be used in the angular momentum representation [42]. The
qualitative polar plot of the gap amplitude is also shown in some cases.

The anisotropic s-wave gap symmetry, can be expressed as

()= ol )+ cos(2 ) (2.13)

Also in this case the OP is real and positive, the phase is zero but the magnitude diminishes
in the ky  ky directions. In Fig.2.2 the function is shown for the case = 0:3.

a0 anisotropic s-wave
' £=0.3

Figure 2.2: Polar plots for the s anisotropic wave order parameter in the angular momentum represen-
tation .

The d-wave symmetry includes two di erent basis functions each of them with * = 2.
The gap in the d,2 2 symmetry can be represented in the reciprocal k space as:

()= ocos(2 )= ofcos( )*> sin( )?] (2.14)

Thegapisreal anditiszerofor = =4+n =2 (see Fig. 2.3), i.e. along the ky = Ky lines
(nodal lines) and displays four lobes in the directions of the axes. The plot of the gap phase
shows that its sign changes when a nodal line is crossed. The maximum (minimum) gap
value is reached along the ky (ky) axis. The other basis function gives the dyy, symmetry
which is expressed by:

()= osin(2 )=2 g(cos sin ) (2.15)

In this case, the nodal lines coincide with the axes (in practice, this is the previous
symmetry rotated by an angle of =4). The situation in which the degree of the symmetry
of the order parameter is lower than the crystal’s one is usually referred to as unconventional
pairing. For instance this is the case of the high temperature superconductivity in cuprate
superconductors [43].

10



2 Unconventional Gap features of Fe-based Superconductors

Figure 2.3: Polar plots for the d wave order parameter in the angular momentum representation , together
with the phase as the function of the angle.

Symmetry of the OP in Fe-based SCs

The general idea on the symmetry of the OP in Fe-based compounds is the s symmetry
model, which combines s-wave symmetry with a sign change of the OP. In Fig. 2.4 a
schematic representation of the s OP is reported with the OPs discussed in this section.

Figure 2.4: Schematic representation of the superconducting order parameter in di erent cases: a conven-
tional, uniform, s wave symmetry (a); d wave symmetry (b); two-band s wave with the same sign symmetry
(c); s wave symmetry (d) [11].

ARPES measurements on hole-doped 122 systems [15] probed a fully gapped OP consistent
with a fully symmetric s-wave symmetry [28]. Gaps with di erent amplitude on di erent
FS sheets are universally accepted for 122-compounds [27]. Theoretical calculations on
electron-doped systems supported a peculiar FS, consisting of multiple sheets with s

pairing symmetry [28]. Later on also full gaps in both electron and hole bands but with
opposite signs of the order parameters between two were predicted [12]. Three-dimensional
nodal structures were predicted to appear in the largely warped hole Fermi surface having
a strong Z?=XZ=Y Z orbital character [44] on isovalent doping 122 Fe-based superconduc-
tors. The presence of nodes in some 122 system is an open point, despite some experimental
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2 Unconventional Gap features of Fe-based Superconductors

evidence of these theoretical predictions. A nodal symmetry such as d wave has been pro-
posed to explain resistivity and thermal conductivity measurements [45, 46] as well as line
nodes to justify the results of penetration depth, thermal transport and NMR measurents
[47, 48]. Also Raman spectroscopy [49] and directional conductivity [50] seems to support
accidental nodes within general s wave symmetry. Despite many evidence and the few
phase-sensitive experiments performed on Fe-based SCs [51, 52] that seems to con rm the
s pairing symmetry, the de nitive response is still missing.

2.3 Coupling mechanism in multi-band superconductors

If the Fermi surface is composed of di erent sheets, as in Fe-based superconductors, the en-
ergy gap can be di erent on each of them giving rise to the multi-band superconductivity.
Multi-band superconductivity can be also regarded as a speci ¢ case of anisotropic super-
conductivity. The extension of the BCS theory for two or more superconducting bands is
due to Suhl et al. [53] and independently to Moskalenko [54]. Suhl et al. elaborated a
model considering overlapping of s and d bands but their results can be generalized to any
type of bands.

2.3.1 BSC multi-band model

In the two band case the electronic terms of the Hamiltonian can be written as

X . X N
H = 1kC1k Cuk t 0 2kCok Cok F
K

x <

V11CpnC; kiCa; KisCriier V22CokeCa; kiC2; k#Coikcm (2.16)
%

+ o+ + +

Vi2CCr. 1sC2; koCoom +Co o jeC1; wosCy; ko

Kk!

where the bands are labelled 1 and 2 and .k is the kinetic energy for band i. Vjj is the
averaged pairing potential which results from phonon emission and absorption by an i |
process. Di erent bands can have di erent pairing potentials, that are assumed to be con-
stant on each sheet of the FS. The rst and the third terms concern the superconductivity
in band 1 while the second and the fourth in band 2. Without the fth term the two bands
would have a di erent T.. The pairing potential V;, is associated to the interband coupling
and acts in the same way as Vi1 and V»» which are associated to the intraband coupling
between two bands.

From Eqg. 2.16 it is possible to obtain the equations for the two energy gaps, which are
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2 Unconventional Gap features of Fe-based Superconductors

assumed to be constant on each sheet of the FS [55]:

Z ke ® tanh(ph2+ 2=2kgT)

1= 11 1 P= >
0 M 2.17)
Z _ .
ke o tanh(p 2+ 3=2kgT)
+ 1 2 d P=—=
0 + 2
Z _
Ke b tanh(p 2+ 3=2kgT)
2= 2 2 d P——
0 M (2.18)

Z ke ® tanh(pn2+ 2=2kgT)

Hi
2 2
+ 1

+ 21 1
0

assuming that the two bands have the same Debye temperature.

In Fig. 2.5 the temperature dependence of the normalized gaps (numerical solutions ob-
tained from Eq. 2.17 and 2.18) is shown: (i) bands completely decoupled (Vij, solid lines):
the critical temperature of the bands depend on the relevant intraband coupling; (ii) weakly
coupled bands (dashed lines). While ; follows the same standard BCS temperature de-
pendence (but with 2 =kgT. > 3:53), , features a high-temperature tail and closes at
the same T, as 1, and (iii) strongly coupled bands (dashed-dotted lines). The small gap
still deviates from a BCS-like behavior but smoothly decreases on heating, to nally close
rather quickly at T;. The gap ratios 2 =kgT. for the two gaps are greater and smaller
than the single-band BCS value of 3:53, respectively.

In other words, considering Eq. 2.16 when Vi, = 0 there are two distinct transition
temperatures, one for each gap. When Vi, V11V the lower transition temperature
disappears as shown in Fig. 2.5. The band with higher T, also called stronger and the
other is called weaker . The interband coupling is the pairing interaction that leads to the
formation of pairs [53].

The critical temperature for a weak-coupling superconductors can be also calculated within
this formula (analytical solution from Eq. 2.17 and 2.18):

ksTe = 1:14ks pexp( 1= eff) (2.19)

where ¢ in the e ective coupling constant and it de ned as the maximum eigenvalue
max Of the matrix i = VjjN; with the density of states N; at the Fermi energy in the
Jth band. The conventional isotropic can be de ned in terms of j; as

X X
= ijNi=N = ij Ni=N (2.20)

ij i
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2 Unconventional Gap features of Fe-based Superconductors

Figure 2.5: Temperature dependence of the gaps 1 and » in a two-band BCS model, calculated in the
cases of: no interband coupling (solid lines); weak interband coupling (dotted lines) and strong interband
coupling (dashed-dotted lines). The intraband coupling constants are arbitrary [2].

The generalization of the Eq. 2.17 and 2.18 for M-bands superconductors is here reported:

a
bY'e Z ks o, tanh( 2+ 2=2kgT)
= i i d g -
ij=1 0 2+

(2.21)

Multi-band superconductivity became really important in 2001 when MgB, was found to
be a two-band superconductor. Indeed it represents a particular case where one leading
band enjoys the strongest pairing interactions, while the interband-pairing interaction,
as well as the intraband pairing in the other band, is weak [56, 57]. However Fe-based
SCs represent another limiting case: the pairing interaction is predominantly interband,
while the intraband pairing in both bands is weak. It was shown by Dolgov O.V. et al.
[58] that the two-band superconductivity is qualitatively incorrectly described by the BCS
formalism even for the weak-coupling limit. In a only interband superconductive system
the weak-coupling limits of the Eliashberg and the BCS theories are not equivalent. It
was found by Ummarino G.A. [59] that a multi-band Eliashberg model with a very small
number of free parameters can account surprisingly well for the phenomenology of Fe-based
superconductors.

2.3.2 Multi-band Eliashberg theory

The interpretation of the data within Eliashberg theory turned out to be really useful when
information on the nature and the energetic scale of the electron-boson coupling function
are not reliable. The proximity between superconducting state and static magnetic order
in the phase diagram of Fe-based SCs suggests the pairing mechanism mediated by spin

uctuations (SFs) [60], also supported by experimental studies of the antiferromagnetic
spin dynamics [61]. In the strong-coupling regime information on the spectrum of the
mediating boson can be obtained from PCARS [62, 63, 64] which allows detecting the
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2 Unconventional Gap features of Fe-based Superconductors

coupling between electrons and FSs. In the Eliashberg theory [49] the order parameter is
a complex function of energy

(E) =Re[ (E)]+ilm[ (E)] (2.22)

where the imaginary part accounts for the nite lifetime of Cooper pairs and retains in-
formation about the electron-boson spectrum (or Eliashberg function) 2F(1). Also the
superconducting DOS N (E) = Re[E=(E? 2)] gives evidence of the electron-boson in-
teraction [65].

The values of the gaps and the critical temperature of Fe-based SCs were already repro-
duced within Eliashberg theory in Ba(Feg.92C0g:08)2AS, single crystals [66], on LiFeAs [67],
on SmFeASOO;gFo;z [68], on LaFEASOO;gFo;l and on Bag-gKg:aFeo Asy [69]. Indeed, even if in
multiband superconductors is not possible to extract the 2F (1) as in single-band super-
conductors [64], it is possible to try to reproduce the observed features in the conductance
curve and its second derivative by choosing di erent electron-boson spectra. Also in this
work PCARS experimental results were analysed within the Eliashberg theory. The rst
assumption of the model is that the electronic structure of Fe-based SCs can be approxi-
mately described by one hole band (indicated in the following as band 1) and two electron
bands (2 and 3) [59, 66]. The gap symmetry is assumed to be s [12] the sign of one gap
for example 1 is opposite to that of the other for example , and 3.

Although many spectroscopic techniques, provides at most two gap amplitudes for pnic-
tides and chalcogenides and does not allow associating them to a particular FS sheet, the
use of (at least) three e ective bands and thus three gaps is necessary for the Eliashberg
model to be able to reproduce the experimental results.

To obtain the gaps and the critical temperature within the s wave three-band Eliashberg
model one has to solve six coupled equations for the gaps (i!,) and the renormalization
functions Z;(i1), where i is a band index (i = 1:::3).

The equations are:

x
NNZi(ith) =1+ T izj(i!n;i!m)NjZ(i!m)"'
m:J
x N M z
+ i + i Nj(iln) (2.23)

i

X
Zi(itpy) i(ity)= T G nitm) (1)
m;j >
(e J¥mDN; (i¥m) + o NN (1) (2.24)
]

where ,']‘ and u are the non magnetic and magnetic impurity scatterlng rates, izj(i Tily) =

i) + 0 (0itn), @ nitm) = N00yitn) (i)
is the HeaV|S|de functlon and lchs a cuto energy
In particular, P"Sf(it,;itn) =2 td GREPRSTO=[(1, 1m)2+ 7.

|
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ii(1c) are the elements of the 3 3 Coulomb pseudopotential matrix.

Y q——— q——
Finally, N; (i'm) = j(i'm)= 13+ 2(i'm)and N{(i1m) :R!m: 12+ 2(ilm).
. . 2 gph;sf .
The electron-boson coupling constants are de ned as E’jh'Sf =2 o+l d ”7(). Their
solution requires a large number of input parameters (18 functions and 9 constants); how-
ever, some of these parameters are correlated, some can be extracted from experiments and
some can be xed by suitable approximations. For example, the coupling constant matrix

ij can be greatly simpli ed. In general, one should consider that each matrix element
has a contribution from phonons and one from antiferromagnetic (AFM) spin uctuations

(SF).ie. ij= D'+ ;T. However, the coupling between the two electron bands is small,
and we thus take 3 = 3 = 0; the total electron-phonon coupling in pnictides is gen-
erally small [70] and phonons mainly provide intraband coupling, so that it was assumed

for Bal22 and Fe(Te,Se) compounds E’jh = 0; spin uctuations mainly provide interband

coupling between the two quasi-nested FS sheets [28], and thus it was assumed f,f =0.

Finally, the electron-boson coupling-constant matrix j; takes the following form [12, 59,
ph sf sf

1 12 13
ij = 8 21 gz 0 (2.25)
sf 0 ph
31 33
where S5t = ST pyand 5 = 5% 43, with § = N;j(0)=N;(0) and N;(0) is the normal

density of states at the Fermi level for the i-th band. Another fundamental ingredient is
the electron-boson spectral function 2F () of the boson responsible for the pairing. The
shape of the electron-phonon spectral function is taken from literature [71] and we assume
. h .
2ZFPN(C )= SFPh( )= ZFP( ) with B'=0:2[72].

As for spin uctuations, we assume their spectrum to have a Lorentzian shape [59, 73, 74,
75]:

GEST()=Ciyj L( + Vi) L( ijs Yij) (2.26)

where L( ij: Yij) = ﬁ and Cj; are normalization constants, necessary to

obtain the proper values of j; while j; and Yj; are the peak energies and half-widths of
the Lorentzian functions, respectively [59].
In all the calculations we set ;; = ' and Yj; = Yijf = 3f=2[76].

Here, Sf is the characteristic energy of the AFM SF, assumed to be equal to the spin-

resonance energy. Its value is determined according to the empirical relation Sf =

4.65kg T (proposed in ref. [5]). Bandstructure calculations provide information about
the factors j; that enter the de nition of jj. Asa rst approximation, these values have
been used here for all Co contents. Moreover, based on the fact that the Coulomb pseu-
dopotential is probably small in these compounds [77] we assume all the elements of the
pseudopotential matrix to be identically zero ( j; = ;; =0); nally, we neglect the e ect
of disorder, owing to the high quality of the Ims.

Finally, only two free parameters remain, i.e. the coupling constants 55 and S%. These
parameters can be tuned in such a way to reproduce the PCARS experimental values (see
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2 Unconventional Gap features of Fe-based Superconductors

section 2.4) of the small gap s and of the critical temperature, which are the best-de ned
experimental data.

Experimental results obtained (by means of PCARS measurements) on Ba(Fe; xCox)2
and on Fe(Te; xSex) thin Ims were analysed by means of the three-band Eliashberg cal-
culations are discussed in Sections 4.3.3 and 5.3.3.

2.4 Andreev re ection

In this section the Andreev re ection is introduced from the theoretical point of view. This
is one of the most relevant phenomenon observed in superconductors and was also a strong
con rmation of both the existence of the existence of the Cooper pairs as well as the BCS
energy gap. The experimental details the point-contact Andreev re ection spectroscopy
(PCARS), the main experimental technique used in this research, will be described in the
follow chapter.

2.4.1 Andreev re ection

If a normal metal (N) is brought in direct ballistic contact (i.e. the size of the contact is
smaller than the mean free path of electrons in the bulk material) with a superconductor
(S), with no potential barrier between them and a voltage V < =e, being the energy
gap in the S side, the whole voltage drop occurs at the interface. An electron coming from
the N side will not be able to propagate through the interface because only Cooper pairs
exist in this energy range in S. But if a hole is re ected and two electrons are transmitted
in S as a Cooper pair (see Fig. 2.6) the total charge and momentum are conserved. This
phenomenon is called Andreev re ection [78] and can be theoretically described by solving
the Bogoliubov-de Gennes equations [79] at an N/S interface.

Figure 2.6: Electrical transport at an barrierless N/S interface at T = 0. Incoming electrons with eV

are re ected as holes and, for each electron, a Cooper pair is transmitted (Andreev re ection). Electrons
approaching the interface with eV are normally transmitted as electron-like quasiparticles adapted
from [2]

Since a doubling of the conductance occurs in correspondence of the energy gap, Andreev
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re ection can be a good tool to determine the value of the energy gap. If the applied voltage
is much greater than the gap (eV ), all the electrons whose energy is lower than the
gap still undergo Andreev re ection giving a constant current contribution, while the all
the electrons whose energy is higher than the gap are transmitted across the interface

giving a voltage-dependent current contribution. The total current for eV is:
| / eve(eV ) + 3ev v + (2.27)
F F Rg eRs .

The second term on the right-hand side of Eq.2.27 is called excess-current and is the
hallmark of the superconducting state even at the energies much higher than the gap. This
result is exact only if the gap rises from zero up to the bulk value over a distance larger than
the superconducting coherence length . If the gap is instead modeled as a sharp barrier at
the interface an additional term equal to =3eRs must be included. The conductance of the
junction turns out to be doubled for eV when Andreev re ection occurs. This suggests
a way to determine the energy gap in the S side by point-contact spectroscopy. This
technique is often referred to as point-contact Andreev-re ection spectroscopy (PCARS).
The details of this experimental technique will be described in the following chapter.

2.4.2 The BTK model

A complete theoretical discussion of the Andreev Re ection (AR) was given in 1982 by
Blonder, Thinkam and Klapwijk [80]. In their model, called the BTK model, the di er-
ential conductance (dl=dV) was calculated at T = 0 (see Fig. 2.7), including the e ect
of a non-ideal interface (oxide layer and mismatch of Fermi velocities between the two
materials) [2].

In the simpli ed 1D-BTK model, the momenta of the electrons coming trough the interface
are considered to be normal to the interface between the normal metal and the supercon-
ductor. In this case, it is supposed to be in the yz plane.The barrier, represented by a
repulsive potential Uy (X) located at the interface, is introduced into the calculations with
the dimensionless parameter Z = Up=~VE.

According to this model, the coming from the normal metal can be involved in four di er-
ent processes. The speci ¢ probability associated to each process (their sum must be 1) is
here reported:

A is the probability of AR. The probability decreases with increasing Z for eV<
and is always small for ev> ;

B probability of normal specular re ection. This probability increases with Z, i.e. on
decreasing the barrier transparency;

C probability of transmission in S as an electron-like quasiparticle (ELQ). The prob-
ability decreases if Z increases but it is always zero for eV< ;

D probability of transmission with FS crossing (i.e. as a hole-like quasiparticle,
HLQ). The probability is small for V> and always zero for eV<
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Therefore the expression of the total current across the junction can be written as:
1
Ins = lo [F(E ev) TF(E)L+AE) B(E)E (2.28)
1

where T(E) is the Fermi distribution function, A(E) and B(E) are the coe cients giving
the probability of Andreev and ordinary re ection respectively, and lp is a constant de-
pendent on the area of the junction, on the density of states and on the Fermi velocity,
and [+ A(E) B(E)] is the transmission probability often called (E).

The rst derivative of the current with respect of the bias voltage dinn=dV provide the
conductance as is shown in Fig. 2.7 where the I-V characteristic of an ideal, barrierless N-S
junction (Z =0) at T = 0, in the hypothesis that there is no AR for eV (blue line)
compared to the I-V characteristic of a N-N junction having the same resistance (black
dotted line). The normalized conductance curve, i.e. divided by the normal conductance
dl=dVnn, of the same junction calculated by using the BTK model is shown in the lower
panel. The normalized conductance G is the outcome of the point-contact AR measure-
ments.

Figure 2.7: The I-V characteristic (upper panel) of an ideal, barrierless N-S junction at T = 0, in the
hypothesis that there is no Andreev re ection for eV (blue line) compared to the I-V characteristic
of a N-N junction having the same resistance (black dotted line) and the normalized conductance curve
(lower panel) of the same junction calculated by using the BTK model adapted from [2].

Kashiwaya S. et al. [81] developed an approach to AR in which the normalized conductance
G = (dl)ns=(dl=dV )nyn at T =0 can be written as a function of (E) where:
s
——— P
E E2 2 E E2 2
E) = = 2.29
E)= P (2.29)
In order to understand better the BTK model, which will be used in the 2D generalization
to analyse the measurements discussed in the follow chapters, the BTK conductance g

T T
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at T = 0 is here reported. By using, , previous de ned, and the transparency y of the
barrier in the BTK approximation of current injection totally perpendicular to the N/S
interface identi ed as:

1
it is possible to calculate the BTK conductance at T =0
1+ nj (B)j2+ i (E)?%?
E)= n N BT+ (n D (B)F°, 2.31)

1+(n 1D (BE)P

The normalized conductance curves of an N/S interface at T = 0 calculated within the
BTK model as a function of the barrier parameter Z, from pure Andreev regime (Z = 0) to
pure tunneling (Z = 10) regimes is shown in Fig. 2.8. In between these two possibilities,
when Z > 0 the model predicts that two peaks appear at jeV j with their amplitude
increasing on increasing Z and the zero-bias conductance peak (ZBP) is depressed.

Figure 2.8: E ect of barrier parameter Z, from pure Andreev (Z = 0) to pure tunneling (Z = 10) regimes
a normalized conductance curves of an N/S interface at T = 0 calculated within the BTK model adapted
from [2].

Despite the strong simpli cations, the BTK model turned to be a really powerful tool
for experimental data analysis because it can reproduce by changing the Z parameter
the di erent possible experimental situations. In the next section the extension of the
formalism used in this work will be discussed.

The case of a real junction, i.e. presence of potential barrier at the interface or mismatch
in the Fermi velocities in the two materials, the phenomenological parameter Zgs¢ was
introduced in the BTK model [82] the e ective barrier parameter de ned as:

.
(1 ry

Z = Z2+ 2.32
of ar (2.32)

where r = vs=vy is the Fermi velocity ratio, vs and vy are the Fermi velocities in the
superconductor and in the normal metal. The normal-state resistance at high voltage is

given by Ry = Rs(1 + ngf) where Rs is the Sharvin resistance [82], i.e. the resistance

20



2 Unconventional Gap features of Fe-based Superconductors

of the contact when the mean free path of the superconductor is smaller then the contact
size (see 3.2.1). Increasing Zqff, @ pure tunnel regime is achieved, i.e. the I-V curve has
more and more a tunnel-like appearance.

Actually in most cases the BTK model predicts much sharper gap features than those
observed in the low-temperature conductance curves. This means that the AR structures
in the experimental spectra are not only depressed in amplitude but also spread in energy.
This e ect is due to both the reduction of the quasiparticle lifetime [83] and the inelastic
scattering centers at the N=S interface [84]. In order to take this e ect into account, a
broadening parameter [84, 85] in the form of imaginary part of the energy (E ® E+1 )
was introduced which modify (E) [83, 84].

The 2D-BTK model

The generalization of the 1D-BTK model allows describing the more realistic situation in
which the charge carriers approach the interface from any direction. The AR theory set
the two conditions that the total charge and the component of the k vector parallel to the
interface are conserved in all processes.

In the left panel of Fig. 2.9 the schematic view of a ballistic AR contact shows the re ected
hole coming back in N with k opposite to that of the incident electron. It traces back its
trajectory until the rst scattering event in N occurs. In the S side a Cooper pair propagates
essentially in the same direction as the incident electron.

Figure 2.9: Sketch of AR phenomenon (left panel) and a polar plot of the normalized transparency of an
NS junction (right panel) as a function of the angle of injection of the current for di erent values of the Z
adapted from [2].

Therefore considering the angle § between the direction of the direction of the incident
electron and the normal to the interface and the conservation of the transverse momenta,
the transparency pn can be written as:

cos( n)?

o ) + 22 (2.33)

N(N) =
In the right panel of Fig. 2.9 the normalized transparency n( n)= n(0) is shown for dif-
ferent value of the parameter Z. For Z = 0 is described the case in which the quasiparticles
are transmitted with the same probability in the half space =2 N =2, while when
Z decreases is described the situation in which the transmission becomes progressively
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weaker and more directional around the perpendicular to the interface.
By introducing the expression (2.33) in the Eq. (2.31), and integrating over the whole
half-plane, the normalized conductance at T = 0 of the so called 2D-BTK model [81]
is obtained. Therefore the normalized conductance for a system with isotropic gap and
spherical FS, i.e. rotational symmetry, can be written as

+=_22 (E; n)cos nd N

D
ﬂ+:2
-, (n)cos nd N

Gop(E) = (2.34)

The temperature dependence of the G,p can be calculated by a convolution with the Fermi
function [2, 81].

2.4.3 The 3D-BTK model

The 2D-BTK model can properly describe the isotropic superconductors or the layered
ones, like cuprates, provided that the current is injected along the ab plane but it can not
express the c-axis conductance in layered superconductors, or more generally, the conduc-
tance in multiband superconductors with complex shapes of the FS sheets. Therefore, the
generalization on the 2D-BTK model known as 3D-BTK model was proposed [36, 68].
In this model the general expression of the normalized conductance of a point-contact NS
junction at T = 0 is given by:

) Pihl:i)k;n(E) ikin S,
hG(E)lmn = 1 b Vik;ni (2.35)
il ik;n Vi FSi

where i is the band index, the brackets indicate the average over the i th FS sheet, the
subscript n refers to the direction of current injection and Vvjk.n = Vijk N is the projection
of the Fermi velocity in the i th band (that is thus perpendicular to the ith FS sheet)
along the direction of the unit vector n parallel to the injected current.

The normal-state barrier transparency is de ned as

4Vik:nVN;:n

= 2.36
(Vik:n + VNin)? +4Z2v3 (2.36)

ik;n

where v.n = VN N and vy is the Fermi velocity in the normal material supposed constant
in magnitude (spherical FS). The quantity k.n(E) is the superconducting-state relative
barrier transparency expressed by the following equation:

+ ikn] +E)i2+ (Cikn D +(E) 2

ikn(E) = !

i1+ Cikn 1) +(E) (E)exp(i”g)j? (2.37)
where q
(E +i ) (E + i )2 J ikj2
= i oud (2.38)
ik
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and ..
ik7) ik
ik”) ikl
is the phase di erence seen by the holelike quasiparticles (HLQ) with respect to the elec-
tronlike ones (ELQ), being .1 and ;, the di erent (in phase and/or in magnitude)
k-dependent order parameters of the i th band felt by the ELQ and by the HLQ, respec-
tively. The complete knowledge of the k-dependence of the FS sheets (i.e. their geometry
in the reciprocal space) and of the order parameters (i.e. their symmetry), under some
simplifying conditions, can give all the ingredients required to calculate the normalized
conductance. Indeed the points at the Fermi energy can be supposed to be close to the
top or the bottom of parabolic-like bands (where the e ective mass approximation holds).
Then the Fermi velocity at any k point can be uniquely expressed as a function of the
constant e ective mass and of the FS shape and dimensions [36, 68].
In case of spherical FS and isotropic order parameters, when the barrier at the NS interface
has a negligible transparency (i.e. Z ¥ 1 that corresponds to a tunnel junction), Eq. 2.35
reduces to a weighted average of the relative superconducting state transparencies of the
bands (E) where the weights can be expressed as hNikvizk.nipsi, Nik being the normal
density of states (DOS) of the i th band at the Fermi enefgy and at the wave vector k
in the superconductor. When instead the barrier at the NS interface is completely trans-
parent (i.e. Z = 0), the total normalized conductance is again a weighted average ;(E)
but the weights can be now expressed as hN;kVik:nies; [68, 86]. Since the normal DOS is
always proportional to the reciprocal of the Fermi velocity, it turns out that the previous
average on the FS returns the area of the projection of the ith FS sheet on a plane perpen-
dicular to n. The implications of this result is that, in the case of ballistic point contacts
on normal metals (NN! junctions with Z = 0) the conductance is not expected to contain
any information on an energy-dependent DOS.

4= iln (2.39)

2.4.4 The two-band BTK model

In the previous section, the standard one-band BTK model has been discussed. The
multi-band structure of the Fe-based SCs calculated by DFT calculation and con rmed by
experimental results [5] required the generalization to at least the two-band BTK model.
Unfortunately a multi-band model (with more then two bands) would have too many free
parameters and the t procedure would become di cult in order to obtain reasonable re-
sults, in reasonable time. Moreover it is not trivial to measure more than two gaps by
means of PCARS. Actually there were evidence of two gaps in PCARS measurements on
these compounds in this work, as it will be shown in the following chapters. Therefore
the two-band BTK model were used systematically in order to obtain the number and the
values of the amplitude of energy gaps.

Brinkman et al. [87] proposed a theoretical model in order to explain multi-band super-
conductivity in tunneling from a normal metal (N) into MgB, in an extended BTK model
within the the Eliashberg theory, taking into accounts strong coupling e ects. They cal-
culated the conductance curve for various transparency, considering the current injection
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in the a b plane, in the ¢ axis direction and under arbitrary angle.

They grouped the four FS sheets in MgB, according to Liu et al. [88], describing an e ec-
tive two-band model that is here adapted to Fe-based SCs systems.

Therefore in the two-band BTK model the normalized conductance G of the NS ballistic
junction is a weighed sum of the conductance curves G' and G" for each band:

@i=dV)ns _ (1)2G (V) + (1,)2G (V)

C WEV)w T (D2 (1)

(2.40)

In this model, the dimensionless conductance GOO(V) and GO(V) can be provided by the
BTK model with the calculated values of the plasma frequencies !E) and !Ef [87].
The Eqg. 2.40 can be written as:

00 0

c=1"6"+@1 16 (2.41)

where 1” = !E)zz(!?fz + !E)Z) is the weight of the band-2 with respect to the total conduc-
tance and depends on the direction of the current injection.
G’ and G” are expressed as in the standard BTK model and thus depend on the relevant
amplitude of the two gaps ( " and 00), on the e ective barrier parameter (Z0 and ZOO)
and o the broadening parameter ( "and 00). Z' and 2" depend on the potential barrier
at the interface as well as the on the Fermi-velocity mismatch between two banks of the
junction. Since vg is di erent in the two bands, it is reasonable that Z' = 27", Seven
tting parameter must be determined taking into accounts that 1" " and Z" must be
independent of the temperature of temperature and magnetic eld. Furthermore, " and
" should be lower than " and " respectively [89].
The uncertainty on "and " can be de ned, for a given curve, as the maximum range of
the gap values that allow a good t of the curve, when the other parameters are changed
too.
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Chapter 3

Experimental techniques

This chapter is devoted to introduce the experimental details of the resistivity measure-
ments and point-contact Andreev-re ection spectroscopy (PCARS). The superconducting
properties in terms of critical temperature and energy gaps were systematically measured
by using these complementary techniques in view of the possible use of epitaxial thin Ims
for superconducting electronic application. In particular the results of local and non-local
techniques were compared in order to check the homogeneity of the superconducting prop-
erties (critical temperature and gap amplitudes).

3.1 Resistivity measurements

The measurement of the electrical resistivity (and resistance) remains one of the standard
way to measure the critical temperature of the superconductors on a millimeter scale. In
this section the di erent techniques used in order to characterise the critical temperature
of the samples analysed in this work are described.

3.1.1 The conventional technique

Conventional four-probe method allows measuring the resistivity of a certain bar shape
material. Fig.3.1 shows the two current contacts on the short edge of the sample and two
voltage contacts on the surface of the sample. The four terminal con guration ensures
that the measured voltage does not include the voltage drop due to the current contacts.
Indeed it eliminates lead resistance by forcing a current through the sample with one pair
of leads while measuring the voltage drop with a second pair of leads [90].

The resistivity is given by the formula:

Ve Vp S
=< B 3.1
oo (3.1)

where “¢p is the distance between points C and D, and S is the cross-section of the sample
in the direction of the current ow.
The average of the voltage values obtained by inversion of the current ow removes the

25



3 Experimental techniques

Figure 3.1: Conventional four-probe con guration for the measurements of the resistivity.
Current is injected through contact A and drained from contact B. The voltage drop is measured between
contact C and D.

possible contribution of thermoelectric e ects. Indeed the so called Delta method consists
of measuring the voltage drop across the material with the current in one direction, then
reversing the polarity of the current source and taking a second voltage measurement.
Three voltage measurements are used to calculate each resistance value. In cases where
hysteresis, non-linearity, or asymmetry is apparent, the current can be varied from one
value to another of the same polarity. This will provide the average resistance between
these two currents [90].

The strong limit to this technique is the mandatory request that the current density is
equal on each point of the sample cross-section and that the equipotential surfaces must
be planes parallel to the current electrode. Therefore this technique could be used only to
measure on single crystals, that are usually considered the more homogeneous systems in
term of electrical, transport and chemical properties.

3.1.2 The collinear technique

Another four-probe mode for resistance measurements involves bringing four equally spaced
probes into contacts with the material under study. The probe array is usually place in
the central part of the surface of the samples as shown in Fig 3.2. In the left panel the
schematic our-point collinear probe resistivity method is reported while in the right panel
an example of the measurements performed on Bal22 thin Im is reported (AD current
source - BC voltage). The AB*CD con guration were considered in order to check if
after 4 days (putting keeping the sample in dry atmosphere) the transition curve shows
signs of change aging e ects (as it will be discussed in Section 4.2).

The two outer probes source current (injected) while the two inner probe measure the
resulting voltage drop across the sample. The resistivity can be calculated by using the
formula [90]:

\Y

where is the resistivity ( cm); V is the measured voltage (Volt); | is the source current
(Ampere); t is the sample thickness (cm); k is the correction factor based on the ratio of
the probe spacing to wafer diameter on the ratio of wafer thickness to probe spacing.
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Figure 3.2: Schematic four-point collinear probe resistivity method (left panel) and four-point collinear
probe resistivity measure on 8% Co-doped Bal22 thin Im (right panel).

3.1.3 The Van der Pauw technique

An e ective and widely used four-probe mode of determining the resistivity of materials
in the form of thin Ims is the van der Pauw (vdP) technique introduced by Leo J. van
der Pauw in 1958 [91, 92]. This technique was developed in order to measure the speci ¢
resistivity and the Hall e ect of at sample of arbitrary shape. The speci c resistivity can
be measured without knowing the current pattern by using this technique if the sample
satis es the following four requirements:

The contacts are on the edge of the sample (on the corner for thin Ims in this work).
The contacts are su ciently small.

The sample is homogenous in thickness.

the sample does not have isolated holes.

Under this conditions, the resistance of the material is de ned from the following equation
of general validity:

exp Ragicod + exp Recapd  _ 1 (3.3)

where
V V
Rag:.co = L_'c (3.4)
1AB

and is the resistance, d is the thickness of the sample, iag is the current entered the
sample at the contact A and left it at the contact B, as shown in Fig.3.3.

Unfortunately, some of these requirements usually collide with experimental limits. The
e ects of those conditions missing were calculated in the case of di erent shap