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Abstract

Deaf-blindness forces people to live in isolation. At present,
there is no existing technological solution enabling two (or
many) deaf-blind people to communicate remotely among
themselves in tactile Sign Language (t-SL). When resorting
to t-SL, deaf-blind people can communicate only with
people physically present in the same place, because they
are required to reciprocally explore their hands to exchange
messages. We present a preliminary version of PARLOMA,
a novel system to enable remote communication between
deaf-blind persons. It is composed of a low-cost depth
sensor as the only input device, paired with a robotic hand
as the output device. Essentially, any user can perform
hand-shapes in front of the depth sensor. The system is able
to recognize a set of hand-shapes that are sent over the web
and reproduced by an anthropomorphic robotic hand.
PARLOMA can work as a "telephone" for deaf-blind
people. Hence, it will dramatically improve the quality of
life of deaf-blind persons. PARLOMA has been presented
and supported by the main Italian deaf-blind association,

Lega del Filo d'Oro. End users are involved in the design
phase.

Keywords Human-Robot Interaction, Hand Gesture
Recognition, Haptic Interface, Assistive Robotics

1. Introduction

Recent technological advances in modern low-cost sensing
technologies have pushed the research on Human-Robot
Interaction (HRI) towards the development of natural and
intuitive interaction techniques. Usually, human beings
interact with machines using a mouse, a keyboard and a
joystick. Unfortunately, these devices inhibit interaction in
applications that require human-robot collaboration [1].
Elderly and disabled people may experience even more
serious issues in using these interaction devices.

In response to this, researchers have investigated interfaces
based on the natural modalities that people already use to
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interact with each other. The proposed interaction interfa‐
ces are intuitive for users, and do not require learning new
modalities of interaction. For instance, hand gestures are a
natural part of human interaction with both machines and
other humans. They are an intuitive and simple way to
transmit information and commands (such as zoom in or
out, drag and drop). Hand Gesture Recognition (HGR) has
gained momentum within the field of HRI, becoming an
important research topic. However marker-less and robust
solutions for the recognition of complex gestures in real-
time are still lacking [2].

The  recent  availability  of  innovative,  low-cost,  off-the-
shelf input devices, such as structured light cameras [3],
have enabled access to a finer-grained set of input data
that can be exploited to enhance HGR algorithms. RGB-
D cameras have fuelled the development of  innovative
solutions.  Moreover,  the  impressive  development  of
General-Purpose  computing  on  Graphics  Processing
Units  (GPGPUs),  paired  with  a  consolidated  modern
programming  framework,  enable  higher  throughput/
performance  on  highly  parallel  problems,  such  as  the
image-processing tasks performed during HGR. Several
approaches have been presented in the literature for HGR
[4] -  [8] with solutions based on different mathematical
models,  input  cameras  (e.g.,  RGB,  depth  cameras  and
multi-cameras  systems)  and  algorithms.  However,  a
quick, robust, natural and intuitive solution has yet to be
found,  as  existing  approaches  very  often  require  an
intensive tuning phase,  the usage of  coloured or  sensi‐
tized  gloves,  or  a  working  framework  which  embeds
more than one imaging sensor.

Human  interaction  widely  uses  hand  gestures,  and  in
special elements of the population gestures also serve to
develop  a  natural  language.  This  is  the  case  for  deaf
communities who have developed Sign Languages (SLs)
to serve their communication needs. SLs are independent‐
ly-developed  natural  languages  and,  despite  having
different modalities,  they exhibit more or less the same
level of complexity as spoken languages [9]. Tactile Sign
Language (t-SL) is the adaptation of any SL made by deaf-
blind signers in order to receive linguistic messages. Deaf-
blind  people  cannot  hear  or  see.  They  cannot  access
information  by  resorting  to  vocal  modalities  or  visual-
based SLs.  Although it  cannot  be  technically  defined a
natural  language,  t-SL  incorporates  many  of  the  fea‐
tures that natural languages have [10]. t-SL messages are
not  perceived by the visual  channel,  as  in standard SL
exchanges, but rather by tactile exploration of the hands
of the person who is signing. This is required when the
communication is addressed to a deaf-blind signer, who
may reply in t-SL if the interlocutor is deaf-blind himself,
or  else in the standard SL if  the interlocutor is  sighted
(i.e.,  deaf-blind signers may produce either SL or t-SL).
In both SL and t-SL interactions, real-time constraints play
an  important  role  as  they  influence  the  naturalness

desired for comprehensive communication. At the same
time,  the  needs  of  the  target  population  are  such  that
HGR  systems  which  use  markers  are  perceived  as
cumbersome and inhibiting natural interaction, and thus
they  are  not  used.  This  population  will  benefit  from
unaided  single  camera-based  HGR  systems,  where  no
marker and no tuning phase is required and calibration
tasks are simplified.  In fact,  any extensive initialization
task represents  a  barrier  for  users  who are  not  at  ease
with  technology,  especially  if  they  experience  severe
disabilities like deaf-blindness.

PARLOMA is developed for people who use t-SL as their
main communication system - in particular, persons
affected by Usher Syndrome type 1 (namely, they are deaf
from birth and progressively lose their sight during
adolescence), deaf individuals who had SL as their first
language before becoming blind, and individuals who are
born deaf-blind. Deaf-blind signers prefer to use t-SL over
other spoken language-based systems, like the Braille
alphabet, because t-SL makes communication more natural
and effective. Despite being more efficient than other
communication systems, t-SL forces pairwise communica‐
tion and requires the two interlocutors to be in the same
location (otherwise tactile exploration cannot happen),
causing severe limitations to communication among deaf-
blind people.

Remote communication systems will dramatically improve
social inclusion and participation in active society for deaf-
blind persons, enabling a level of access to information and
to interaction with the community. Moreover, they will
heavily influence the perception that deaf-blind people
have about society and themselves, allowing new chances
of integration by making possible interpersonal relation‐
ships without the strict necessity of standing in the same
place.

By allowing remote communication in t-SL, PARLOMA
makes peer-to-peer communication accessible. This is done
by integrating haptic and robotic interfaces together with
marker-less hand-tracking algorithms. PARLOMA allows
local reception and reproduction of t-SL. The project poses
the basis for the experience of a "telephone" for deaf-blind
people.

In this paper, we discuss and evaluate a preliminary
version of the system to prove that remote communication
between deaf-blind signers is feasible. PARLOMA is
designed to track a single signer's hand and to reproduce
the performed hand-shape by using one robotic hand. It is
worth noting here that such simplification does not affect
the feasibility of the overall approach. In fact, we developed
a general architecture that enables complete t-SL informa‐
tion transfer.

The full system is implemented on the Robot Operating
System (ROS). ROS [11] is an open source, meta-operating
system for robot software development, providing a
collection of packages, software building tools and an
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architecture for distributed inter-process and inter-ma‐
chine communication. The building blocks of ROS-based
applications are so-called "nodes". A node is a piece of code
which implements a specific functionality. Nodes interact
with each other by subscribing or publishing messages on
specific ROS topics. Another interaction paradigm, which
follows a request/reply model, is based on so-called "ROS
services". The communication between nodes is based on
the TCP network protocol.

We provide qualitative and quantitative analyses proving
the effectiveness of the developed system. We also report
preliminary tests in which selected hand-shapes from
Italian SL (LIS) are recognized and sent remotely through
ROS to a robotic hand that reproduces each of them to LIS
signers. The results show that tactile communication is
potentially highly effective, even when mediated by robotic
interfaces. The main contributions of this paper are
summarized below:

• By integrating computer vision techniques and robotic
technologies, we conceive an assistive system that is able
to transfer t-SL remotely. This is the first step to allow
deaf-blind signers to communicate remotely.

• We design a robust, real-time, marker-less hand gesture
recognition method that is able to track static hand-
shapes robustly.

• We implement a preliminary working version of the
system. Accordingly, we provide extensive qualitative
and quantitative analyses to prove its feasibility, involv‐
ing end-users in the experimental sessions.

This paper is organized as follows: Section 2 provides a
detailed background on the targeted technologies; Section
3 discusses the theoretical approach and practical imple‐
mentation of our solution; in Section 4 we present the
results derived from our experiments and summarize the
pipeline of the deaf-blind remote communication system
we have developed; in Section 5, we discuss the results and
propose future work to improve the system; finally, Section
6 concludes the paper.

2. Background

This paper is based on hand tracking, HGR and anthropo‐
morphic robotic hands. In this section, we briefly summa‐
rize the state-of-the-art on these topics.

2.1 Hand Tracking

Object tracking techniques can be classified into two main
classes: either invasive approaches, based on tools which are
physically linked to the object (sensitized gloves [12] or
markers [13]), or non-invasive approaches. The former are
usually fast and computationally light, but often very
expensive and cumbersome. The latter require more
computational resources, but are generally based on low-
cost technologies, and moreover do not require a physical

link to the object to be tracked. As such, the object is free to
move and not entangled.

Non-invasive approaches can be classified according to
the kind of input data they need (2D, 3D) and the output
that  they  provide  [14].  Obviously,  as  real-world  life  is
embedded in a  3D universe,  the best  performances are
obtained when 3D feature characterization is performed
[15], since 3D information is usually both more informa‐
tive  and  more  robust  [16].  Moreover,  low-cost  acquisi‐
tion  systems,  such  as  RGB-D  cameras,  represent  a
powerful tool for projects that aim at developing cheap
and affordable solutions.

Non-invasive  approaches  are  classified  into  partial
tracking  and full  tracking.  Tracking is  defined as  partial
when it deals with only some insights of the kinematics
of the hand (e.g., fingertip positions, discarding the rest
of the hand), while in full approaches the whole hand is
tracked.  Of  course,  full  tracking  approaches  are  more
useful for HRI applications, but they require much greater
computational  resources  [17].  Full  tracking  approaches
can  be  further  divided into  model-based  and appearance-
based approaches.

Model-based approaches [18] formulate the pose estima‐
tion as an optimization problem that minimizes the
discrepancy between 3D hand hypotheses and the actual
observations [19]. This problem is usually solved using
optimization algorithms. In [8], the authors adopt a 3D
hand model consisting of a set of assembled geometric
primitives, animated by a vector of 27 parameters. A
stochastic optimization method, called "Particle Swarm
Optimization" (PSO) [20], is used to estimate the 27 model
parameters' values that minimize the distance between the
model itself and the input.

Appearance-based approaches employ discriminative
techniques based on feature extraction from input data. At
run-time algorithm extracts features from the input and
tries to map them to a known hand pose. Appearance-
based approaches are often implemented using database-
retrieval [21] or machine learning [22] techniques. Learning
how to map features and hand poses is the most computa‐
tional intensive phase. Since this task is performed offline,
while only fast feature extraction is required at run-time,
appearance-based approaches easily achieve real-time
performances. The accuracy of these algorithms is strongly
related to the kinds of features and to the quality of the
training set (or database), particularly to its variety and
capacity to cover the whole set of poses.

2.2 Gesture Recognition

Currently, HGR is one of the main important research areas
of computer science. Researchers are investigating differ‐
ent approaches by using Machine Learning, Neural
Networks, Fuzzy Systems, Evolutionary Computation or
Probabilistic Reasoning. Surveys on HGR algorithms are
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given in [23, 2, 24]. The last two compare performances of
various systems which have already been applied to
human-machine interaction.

The accuracy of the system presented in [25] is about 90%,
but it strongly depends upon the lighting conditions of the
working environment. The average accuracy of the system
presented in [26] is 80.77%, but this system only discrimi‐
nates among simple gestures (e.g., showing a direction).
[27] presents a system which is 90–95% accurate in recog‐
nizing open fingers while the success rate for closed fingers
drops to 10–20% only. [28] claims around 90.45% accuracy,
through hidden fingers could not be detected using this
approach. The authors in [29] achieved 96% accuracy over
300 tests, but they developed an algorithm which does not
meet the real-time constraint. The system presented in [30]
achieves an accuracy rate of more than 95%, but it only
works on six classes of gestures and it can only recognize
bended fingers, no matters the degree of bending.

A remarkable work is presented in [31]. This paper focuses
on building a robust part-based hand gesture recognition
system using a Kinect sensor. The authors propose a
method to handle the noisy hand shapes obtained from the
depth camera. They propose a novel distance metrics,
namely the Finger-Earth Mover's Distance, to measure the
dissimilarity between hand shapes. Experimental results
demonstrate that such a HGR system is quite accurate (a
93.2% mean accuracy is reported), but it works only on a
10-gesture dataset and it is quite slow (it achieves a 13 fps
operating frequency). In [32], the authors only use RGB
information, thus achieving different results in normal,
brighter and darker conditions. The average accuracy of the
system is in any case higher than 90% on discriminating
hand poses for the 10 one-digit numbers (from 0 to 9). The
operating frequency of the system is not reported.

2.3 Anthropomorphic Haptic Interfaces

Haptic devices elicit human perception through the sense
of touch. Haptics therefore extends the communication
channels for human-machine interaction in addition to the
typical senses of vision and hearing.

Haptics includes wearable devices, such as gloves, and
robotic devices, such as robotic arms and hands. With
respect to robotic hands, despite the significant progress in
recent decades in electronic integrated circuits and in

applied computer science, challenges remain in increasing
dexterity, robustness and efficiency, as well as in matching
cost constraints [33]. Examples of dexterous robotic hands
for humanoid robots are the Awiwi [34] and the Shadow
hand [35].

Robotic hands designed to enable deaf-blind communica‐
tion have already been proposed in the literature. The first
attempt at creating a finger-spelling hand was patented in
1978 by the Southwest Research Institute (SWRI) [36].
Later, the Dexter hand was developed [37]. Dexter im‐
proved over the hand built by SWRI, but was extremely
bulky and required compressed air to drive the pneumatic
actuators. The whole hand had seven pneumatic actuators.
Each finger was actuated by a single pneumatic actuator
with a linear spring to provide some resistance and return.
Both the thumb and the index finger had a second pneu‐
matic actuator to perform complex letters.

The most successful design seems to be RALPH [38]. This
hand was built in 1994 by the Rehabilitation Research and
Development department of Veterans Affairs. RALPH
fixed many of the problems of the Dexter hands, but it was
still not robust or attractive. RALPH was only half a hand,
as it only had fingers but no forearm and no wrist, which
made it hard to read since it is in an unnatural position for
the reader. In addition, it could perform only a limited
subset of signs.

3. The Developed Solution

Our system is composed of a communication pipeline
represented by three operations: (i) gesture acquisition and
recognition (front-end); (ii) gesture conversion and trans‐
mission; and (iii) gesture synthesis (back-end) (as depicted
in Figure 1). The front-end and back-end are represented
by two main sub-blocks, namely the Input Module and the
Reproduction Module, respectively, while remote transmis‐
sion is ensured by the ROS framework. The Input Module is
connected to a depth camera. This module is able to identify
gestures made by the human hand in front of the device.
The Reproduction Module consists of a robotic hand and a
controller which uses the information from the first module
to control the robotic hand.

The ROS framework provides hardware abstraction; hence,
the system is ready to control different robotic interfaces
even in the case where multiple actuators are connected. In

Input Module Reproduction Module

Depth
Camera Driver

Depth
Camera

Handshapes
Classifier

Hand Tracker

Sign Converter Hand Driver Haptic
InterfaceTransmission

Rapsberry Pi

Figure 1. The Pipeline. The Input Module is in charge of performing hand-shape recognition using the depth image of the signer. It is composed of three ROS
nodes and the depth camera itself. The recognized gesture is sent over the network to the Reproduction Module, which is composed of a robotic interface and
two ROS nodes running on a Raspberry Pi.
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addition, since ROS uses a distributed paradigm, remote
communication is achieved in a simple manner. In the
following, the entire pipeline will be explained.

3.1 Input Module

The Input Module is in charge of extrapolating 3D informa‐
tion from the depth map in order to understand the gesture
performed by the user in real-time. It comprises three ROS
nodes, namely the Depth Camera Driver node, the Hand
Tracker node and the Hand-shape Classifier node.

The Depth Camera Driver node exposes the depth image
stream from the depth camera as an ROS topic. In the
proposed implementation, we use the OpenNI ROS driver
for the Asus Xtion sensor [39].

3.1.1 Hand Tracker

The Hand Tracker node is a modified implementation of the
algorithm proposed in [6], where the authors propose a
full-DoF appearance-based hand tracking approach that
uses a Random Forest (RF) classifier [40].

Hand
Segmenter

Depth
Image

Hand
Skeleton

Joints
Positions
Estimator

Hand
Labeller

Figure 2. The Hand Tracker node. This node computes the hand joints'
positions from depth images. It consists of three sequential tasks. The first
one segments the hand (foreground) from the background. The second one
classifies each pixel of the foreground to the hand region that it should
belong to. The last one extrapolates the regions' centroids corresponding to
the joints' positions.

This node extracts the hand skeleton and publishes the 3D
position of each joint of the hand with respect to the camera
reference frame. It accomplishes three main tasks per‐
formed sequentially on each incoming frame, as shown in
Figure 2. In detail, the first task is accomplished by the Hand
Segmenter block, which aims to distinguish the hand from
the background.

Next, the Hand Labeller block executes an appearance-based
approach to recognize different parts of the hand in order
to isolate its joints. The Joints Position Estimator block
approximates the joints' 3D positions, starting from the
input depth measurements and the outcome of the first
block. As in [40], in our approach an RF classifier [41] is
used to label pixels of the depth image according to the
region of the hand they belong to. Successively, each region
is processed to find the position of its centre. At the end of
the clustering process, the algorithm outputs the 3D
position of each joint of the hand.

In our approach, we perform a per-pixel classification,
where each pixel x of the hand is described using the
following feature:

( ) { },= ( , ), < , < ,u vx x u vF I R RF (1)

where I (⋅ ) represents the depth value of the image at a
given point, u,v are two offsets limited to a finite R length,
and the function Fu,v(I ,x) is defined as:

( ) ( ) ( ), , = .
æ ö æ ö

+ - +ç ÷ ç ÷ç ÷ ç ÷
è ø è ø

u v
u vx
x x

F I I x I x
I I

This feature succeeds very quickly in discriminating hand
parts [6]. Hand joints can be estimated by labelled seg‐
mented depth-maps using the Mean Shift (MS) algorithm
[42]. In addition, the MS local mode-finding algorithm (as
in [22]) reduces the risk of outliers, which might have a
significant effect on the computation of the joints. By
implementing MS, we obtain a more reliable and coherent
estimation of the joints set S.

Our labelling algorithm can recognize 22 different parts of
the hand, namely the palm, the wrist and four joints for
each of the fingers.

The joints' positions are approximated applying the MS
clustering algorithm on the hand sub-parts. This approach
shows promising results: experiments with real-world
depth map images demonstrate that it can properly label
most parts of the hand in real-time without requiring
excessive computational resources.

Note that (1) is not invariant to rotations, while on the other
hand it is invariant to distance and 3D translations (thanks
to the normalization factor I (x)). As such, it is necessary to
build a wide training set containing many instances of the
same gesture captured from different points of view,
according to [43]. For this reason, we have also investigated
ways to effectively and automatically build comprehensive
large training sets. Since manually building a dataset is a
time-consuming and error-prone process, we also devel‐
oped a tool that is able to create a synthetic training set.
Such a system is based on the 3D model of a human hand
shown in Figure 3. Essentially, the tool is able to generate
intermediate hand-shapes from a small set of hand-shapes
defined by the user. Next, all the hand-shapes are used to
build the synthetic training using a model of the depth
camera.

Table 1 summarizes the main learning parameters describ‐
ing the RF used in our implementation. The proposed
values have been experimentally evaluated. Each tree is
trained with 2,000 pixels randomly sampled from each
training image. Offset vectors u and v from (1) are sampled
uniformly within a radius of 30 pixels.
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Parameter Value

R 30 pixel

Threshold 10

Sample pixels per image 2000

Trees in the forest 3

Depth of each tree 18

Table 1. The optimal values that we propose to train the RF classifier

3.1.2 Hand-shape Classifier

The Hand-shape Classifier node is devoted to classify the
current hand-shape according to the gesture that the user
is making. This second classification is not performed
directly on the array of joints' positions, but rather on a
pattern containing the joint-to-joint Euclidean distances for
all pairs of joints of the hand:

( ) { },= = , , , < ,- " Îj j j jk l k l k ld k lP S S (2)

where jk / j describes generic joints of the hand skeleton S,
while k  and l  are generic indexes within S. The proposed
pattern ensures invariance to rotation and translation in
space.

Given P(S), another RF is used to evaluate the probability
for a pose to actually reproduce one of the accepted
gestures (i.e., hand-shapes shown in 3). The gesture is valid
if the posterior probability associated with that hand-shape
is above a pth  threshold and if it is recognized over N
consecutive frames. In our experiments, pth =0.3 and N =5.

Finally, the hand-shape is encapsulated in a network
message that is sent to the reproduction device. Secure and
lossless remote communication are guaranteed by the ROS
(secure socket layer SSL).

3.2 Reproduction Module

The Reproduction Module is in charge of reproducing the
recognized hand-shape by using the haptic interface, so

Figure 2. The Hand Tracker node. This node computes the
hand joints’ positions from depth images. It consists of three
sequential tasks. The first one segments the hand (foreground)
from the background. The second one classifies each pixel of
the foreground to the hand region that it should belong to. The
last one extrapolates the regions’ centroids corresponding to the
joints’ positions.

Next, the Hand Labeller block executes an
appearance-based approach to recognize different
parts of the hand in order to isolate its joints. The Joints
Position Estimator block approximates the joints’ 3D
positions, starting from the input depth measurements
and the outcome of the first block. As in [40], in our
approach an RF classifier [41] is used to label pixels of
the depth image according to the region of the hand they
belong to. Successively, each region is processed to find
the position of its centre. At the end of the clustering
process, the algorithm outputs the 3D position of each
joint of the hand.

In our approach, we perform a per-pixel classification,
where each pixel x of the hand is described using the
following feature:

F (x) = {F
u,v(I, x), kuk < R, kvk < R} , (1)

where I(·) represents the depth value of the image at a
given point, u, v are two offsets limited to a finite R length,
and the function F

u,v(I, x) is defined as:

F
u,v(I, x) = I

✓
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This feature succeeds very quickly in discriminating
hand parts [6]. Hand joints can be estimated by
labelled segmented depth-maps using the Mean Shift (MS)
algorithm [42]. In addition, the MS local mode-finding
algorithm (as in [22]) reduces the risk of outliers, which
might have a significant effect on the computation of the
joints. By implementing MS, we obtain a more reliable and
coherent estimation of the joints set S .

Our labelling algorithm can recognize 22 different parts of
the hand, namely the palm, the wrist and four joints for
each of the fingers.

The joints’ positions are approximated applying the MS
clustering algorithm on the hand sub-parts. This approach
shows promising results: experiments with real-world
depth map images demonstrate that it can properly label
most parts of the hand in real-time without requiring
excessive computational resources.

Note that (1) is not invariant to rotations, while on the
other hand it is invariant to distance and 3D translations

Figure 3. 3D model used to generate the synthetic training set.
Our solution is able to generate intermediate hand-shapes from a
small set of user-defined hand-shapes, in order to obtain a very
large training set.

Table 1. The optimal values that we propose to train the RF
classifier.

Parameter Value

R 30 pixel
Threshold 10

Sample pixels per image 2000
Trees in the forest 3
Depth of each tree 18

(thanks to the normalization factor I (x)). As such, it is
necessary to build a wide training set containing many
instances of the same gesture captured from different
points of view, according to [43]. For this reason, we have
also investigated ways to effectively and automatically
build comprehensive large training sets. Since manually
building a dataset is a time-consuming and error-prone
process, we also developed a tool that is able to create a
synthetic training set. Such a system is based on the 3D
model of a human hand shown in Figure 3. Essentially, the
tool is able to generate intermediate hand-shapes from a
small set of hand-shapes defined by the user. Next, all the
hand-shapes are used to build the synthetic training using
a model of the depth camera.

Table 1 summarizes the main learning parameters
describing the RF used in our implementation. The
proposed values have been experimentally evaluated.
Each tree is trained with 2,000 pixels randomly sampled
from each training image. Offset vectors u and v from (1)
are sampled uniformly within a radius of 30 pixels.

3.1.2. Hand-shape Classifier

The Hand-shape Classifier node is devoted to classify the
current hand-shape according to the gesture that the user
is making. This second classification is not performed
directly on the array of joints’ positions, but rather on
a pattern containing the joint-to-joint Euclidean distances
for all pairs of joints of the hand:

P(S) =
�

dk,l = kjk � jlk , 8jk, jl 2 S , k < l
 

, (2)

where jk/j describes generic joints of the hand skeleton S ,
while k and l are generic indexes within S . The proposed
pattern ensures invariance to rotation and translation in
space.
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Figure 3. 3D model used to generate the synthetic training set. Our solution
is able to generate intermediate hand-shapes from a small set of user-defined
hand-shapes, in order to obtain a very large training set.

that a t-SL-proficient receiver can understand the transmit‐
ted messages. This module is composed by two main ROS
nodes, namely the Sign Converter node and the Hand
Driver node. In the developed solution, this module runs
on a low-cost computer (the Raspberry Pi). This architec‐
ture allows the system to have different output devices
connected, enabling one-to-many communication among
users.

3.2.1 Sign Converter

The Sign Converter node is in charge of converting recog‐
nized gestures in generic robotic hand poses (i.e., poses are
not generated having in mind a specific robotic hand). This
is achieved through an offline built dictionary that asso‐
ciates the gestures with a corresponding hand skeleton,
called S*. The dictionary is populated using the same tool
developed to populate the training set (see Section 3.1.1).
After conversion, the skeleton S* is finally sent to the Hand
Driver.

Note that S* is a static representation of the hand skeleton
S computed by the Hand Tracker node. With this architec‐
ture, we control the haptic interface with sharp commands,
avoiding the effects of the noise affecting S.

3.2.2 Hand Driver

Finally, the Hand Driver node is devoted to control the
robotic hand with specific commands depending upon the
robotic hand employed. It receives as input the skeleton S*

and performs specific algorithms of inverse kinematics and
collision avoidance. Collision avoidance is of extreme
importance when it is necessary to switch between poses
that are really different, requiring a majority of fingers (or
all of them) to move.

The Hand Driver is also in charge of performing the
hardware abstraction of the robotic interface, and is the
only node in the developed architecture that has to be
changed when different haptic interfaces are used. The ROS
architecture also enables one-to-many communication. In
this case, multiple Hand Driver nodes need to be instanti‐
ated according to the different simultaneously-operated
actuators.

S Y I A O P K L

D C H X B W V F

Figure 4. Hand-shapes from the LIS alphabet used in the experiments
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3.3 Haptic Interface

The Haptic Interface used is a right-handed version of the
CyberHand [44]. It consists of four under-actuated anthro‐
pomorphic fingers and a thumb, and it is actuated by six
DC motors. Five of them, located remotely, control finger
flexion/extension. One motor, housed inside the palm,
drives the thumb abduction/adduction. The hand is
comparable in size to the adult human hand, and the
remote actuators are assembled in an experimental plat‐
form which mimics the shape of the human forearm. The
remote actuators act on their respective fingers using
tendons and a Bowden cable transmission. Active flexion
is achieved as follows: when a tendon is pulled, the
phalanxes flex synchronously, replicating the idle motion
(i.e., free space motion) of a human finger. When a tendon
is released, torsion springs located within the joints extend
the fingers. The hand includes encoders on each motor and
an electronic controller that implements position control by
receiving commands sent over a serial bus.

4. Experimental Results

Experimental setup. On the left, a signer performing hand-
shapes in front of the RGB-D Camera. Information is
elaborated and sent over the net to a robot hand. On the
right, the receiver is able to understand the sign performed
by the robot hand using tactile sensing.

This section presents the results of the various tests that we
performed. Firstly, we test the recognition module (Section
4.1), i.e., the ability of the system to recognize hand-shapes;
secondly, we test the transmission efficiency of the whole
system (Section 4.2) by measuring the loss of information
during the recognition and reproduction phases in a test-
case scenario; finally, an experimental session performed
with a deaf-blind subject is presented (Section 4.3) to assess
the overall usability of the system.

These experiments focus on hand-shapes, i.e., static
configurations of the hand. We chose finger-spelling as the
hand-shapes source. Finger-spelling consists of spelling

complex language words using the manual alphabet. While
the usage of finger-spelling in the SL lexicon may be
limited, it is definitely larger in t-SL. The decision for using
finger-spelling in this preliminary phase is due to: i) the fact
that the robotic hand was originally conceived for pros‐
thetic applications [45], with a constrained number of
actuators following an under-actuation scheme, and
therefore cannot perform the full set of gestures; ii) our
interest in getting feedback on this specific component of
the sign, namely the hand-shape. We use only 16 hand-
shapes (Figure 4), which are the hand-shapes of the LIS
manual alphabet that the robot hand can correctly repro‐
duce. Of course, alternative (even meaningless) hand-
shapes could have been used.

4.1 Input Module Evaluation

The tests evaluate and quantify the system performance in
recognizing hand-shapes (the first step of the pipeline).
Sixteen subjects were recruited (10 men, six women, mean
age 25 years, range ± four years). None of the subjects had
any expertise with LIS. Indeed, the subjects were chosen in
order to check the accuracy of the system even in the case
of potential beginner users of the final product. The
experiment consists in the production of isolated hand-
shapes corresponding to the manual alphabet letters.
Subjects were sat at a table in front of a laptop (a Macbook
PRO, late 2011, mounting an Intel Core i7@2.7GHz CPU,
4GB of RAM, an Intel HD Graphics 3000 512MB GPU) and
a depth camera (Asus Xtion PRO), and had to repeat each
of the hand-shapes appearing on the laptop's monitor (as
shown in Figure 5). Each subject was 50–55 cm away from
the camera lens. For each pose, the system recorded 100
depth maps (at a rate of 30 fps). This part of the experiment
lasted about three minutes per person (six or seven seconds
per hand-shape per person). In total, 40 thousand depth
maps were collected. Each pose was then linked with the
corresponding LIS alphabet letter.

With respect  to  the  40  thousand depth maps acquired,
we  performed  10  leave-one-out  cross-validations  to
investigate  the  accuracy  of  the  Input  Module.  For  each

Asus XTion 
RGB-D Camera

Signer performing
handshapes (F)

Remote 
Communication Receiver Touching

the Hand

Figure 5. Experimental setup. On the left, a signer performing hand-shapes in front of the RGB-D Camera. Information is elaborated
and sent over the net to a robot hand. On the right, the receiver is able to understand the sign performed by the robot hand using tactile
sensing.

4.1. Input Module Evaluation

The tests evaluate and quantify the system performance
in recognizing hand-shapes (the first step of the pipeline).
Sixteen subjects were recruited (10 men, six women, mean
age 25 years, range ± four years). None of the subjects
had any expertise with LIS. Indeed, the subjects were
chosen in order to check the accuracy of the system even
in the case of potential beginner users of the final product.
The experiment consists in the production of isolated
hand-shapes corresponding to the manual alphabet letters.
Subjects were sat at a table in front of a laptop (a Macbook
PRO, late 2011, mounting an Intel Core i7@2.7GHz CPU,
4GB of RAM, an Intel HD Graphics 3000 512MB GPU) and
a depth camera (Asus Xtion PRO), and had to repeat each
of the hand-shapes appearing on the laptop’s monitor.
Each subject was 50–55 cm away from the camera lens.
For each pose, the system recorded 100 depth maps (at
a rate of 30 fps). This part of the experiment lasted
about three minutes per person (six or seven seconds
per hand-shape per person). In total, 40 thousand depth
maps were collected. Each pose was then linked with the
corresponding LIS alphabet letter.

With respect to the 40 thousand depth maps acquired,
we performed 10 leave-one-out cross-validations to
investigate the accuracy of the Input Module. For each
validation, depth maps from 15 subjects were used for
training the RF classifier from the Hand-shape Classifier
node (the training procedure was similar to that in [43]),
while data from one random subject are used for testing
it. The results are summarized in Figure 6, which shows
that the average accuracy of the Input Module system with
respect to the ground truth set is 74%, with a confidence
interval of ±2%.

It should be noticed that noisy data from the sensor are
the main source of errors in the case of the gesture “P”,
which on 75% of occasions was recognized as “A”. “P”
hand-shapes differ from the latter only because the index
is pointing at the camera (instead of being closed near
the palm, see Figure 4); however, very often noise totally
covers the index finger in such a configuration, such that
is impossible for our algorithms to discriminate between

Figure 6. Confusion matrix of the Input Module. On the Y axis, the
ground truth, while on the X axis are the gestures recognized by
the module. Similar hand-shapes are presented in adjacent cells.

these two gestures. Different is the case of the gesture
“K”, which on 39% of occasions was recognized as “P”
and 17% of the times as “L”. These errors are due to
the intrinsic properties of (2), which cannot discriminate
enough different poses in which the relative joint distances
do not vary. In fact, note that “K” seems like a “P” that is
rotated clockwise by 90 degrees, and an “L” in which the
thumb and middle-finger bending are exchanged.

The average accuracy obtained by our system is
comparable with [46], especially considering that we track
the human hand frame by frame. Our algorithms do
not require extra computation to estimate the arm or
even the full body pose. However, other state-of-the-art
approaches perform slightly better (e.g., [47, 48]). This
is typically due to our per-pixel classification (within
the Hand Tracker node), which is not robust enough yet,
and to the depth camera that we use, which produces
very noisy data. In any case, our experiments confirm
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Figure 5. Experimental setup. On the left, a signer performing hand-shapes in front of the RGB-D Camera. Information is elaborated and sent over the net to
a robot hand. On the right, the receiver is able to understand the sign performed by the robot hand using tactile sensing.
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validation,  depth maps from 15 subjects  were used for
training  the  RF  classifier  from  the  Hand-shape  Classifier
node (the training procedure was similar to that in [43]),
while data from one random subject are used for testing
it. The results are summarized in Figure 6, which shows
that the average accuracy of the Input Module system with
respect  to  the  ground  truth  set  is  74%,  with  a  confi‐
dence interval of ±2%.

It should be noticed that noisy data from the sensor are the
main source of errors in the case of the gesture "P", which
on 75% of occasions was recognized as "A". "P" hand-
shapes differ from the latter only because the index is
pointing at the camera (instead of being closed near the
palm, see Figure 4); however, very often noise totally covers
the index finger in such a configuration, such that is
impossible for our algorithms to discriminate between
these two gestures. Different is the case of the gesture "K",
which on 39% of occasions was recognized as "P" and 17%
of the times as "L". These errors are due to the intrinsic
properties of (2), which cannot discriminate enough
different poses in which the relative joint distances do not
vary. In fact, note that "K" seems like a "P" that is rotated
clockwise by 90 degrees, and an "L" in which the thumb and
middle-finger bending are exchanged.
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Figure 6. Confusion matrix of the Input Module. On the Y axis, the ground
truth, while on the X axis are the gestures recognized by the module. Similar
hand-shapes are presented in adjacent cells.

The average accuracy obtained by our system is compara‐
ble with [46], especially considering that we track the
human hand frame by frame. Our algorithms do not
require extra computation to estimate the arm or even the
full body pose. However, other state-of-the-art approaches
perform slightly better (e.g., [47, 48]). This is typically due
to our per-pixel classification (within the Hand Tracker
node), which is not robust enough yet, and to the depth
camera that we use, which produces very noisy data. In any
case, our experiments confirm that the average accuracy
achieved by our approach is sufficient to effectively track
the hand, even with respect to challenging backgrounds,
and to discriminate among valid hand-shapes for SL-based
interactions (even if they are similar).

4.2 Transmission Evaluation

Another test section involved the entire pipeline. Seven
subjects with some expertise in LIS but no previous
knowledge about the project participated in the test (four
men, three women, mean age 30 years, range ± four years)
together with an LIS signer (female, 24 years old). Since the
status of the project is still in its preliminary stages, the test
was not assessed by deaf-blind signers.

Each experiment was performed as hereby described and
depicted in Figure 5. The results along the whole pipeline
are illustrated in Figure 7. A list of 125 hand-shapes (LoS)
to be reproduced (up to 10 repetitions for each hand-shape)
was randomly generated at run-time. The LoS appeared on
a monitor close to the LIS expert signer. She reproduced
with the right hand each hand-shape in front of the depth
camera. Also in this case, signs were made from a distance
of 50–55 cm from the camera lens. To simulate a real-use
case scenario, the LIS expert was placed in unfavourable
lighting conditions, and people were allowed to pass
behind her. Recognized hand-shapes were saved for
successive processing in a dedicated list (SRI).

In a different room in the same building (so that remote
communication via the Internet could be simulated), a
Raspberry Pi received the ROS messages, decoding them
and generating the commands needed to control the hand.
The task for the subjects (who were in this other room), was
to visually recognize the hand-shape actually performed by
the robotic hand. Answers were recorded and saved in a
separate list (SRS). The subjects assessed the task individ‐
ually. The hand reproduced each hand-shape for five
seconds. After this period of time, it returned to the rest

The Developed System

Randomly Pro-

duced Signs

LIS Expert

Input Module

Reproduction

Module

Subject

LoS SRI SRS

Recognition Efficiency: 88.14% Reproduction Efficiency: 82.78%

Transmission Efficiency: 73.32%

Figure 7. Sign recognition and reproduction efficiency along the pipeline of the experimental apparatus
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position (with all the fingers opened) before the next sign
was reproduced.

During the experiments, all possible feedback was collected
and stored: the list of hand-shapes to be reproduced and
the list of signs recognized by the Input Module and by the
volunteer, depth maps from the camera, data from the
network, and feedback about the joint positions of the
robotic hand. Network latency during all the experiments
was, on average, below half a second, and was never higher
than one second.

The experiment lasted for approximately 12 minutes per
person. At the end, the experimenters asked the volunteers
for their comments, especially regarding any major
difficulties that they experienced and their opinions on the
usability of the hand for their purposes.

The collected results  (summarized in Figure 7)  demon‐
strate  the  feasibility  of  our  system.  In  total,  875  hand-
shapes were performed by the hand (125 hand-shapes per
seven volunteers).  The average accuracy of  the acquisi‐
tion module was 88.14%; however,  few errors reported
for the Input Module were actually caused by the expert
in LIS performing the wrong hand-shape (e.g., perform‐
ing gesture "A" while the experiment was asking for "I").
No  errors  where  registered  for  the  transmission  and
conversion  systems.  On  82.78%  of  occasions,  the  signs
were correctly recognized by the volunteers and the total
accuracy of the system in transmission was 73.32%.

In  Figure  7,  Recognition  Efficiency  refers  to  the  percent‐
age  of  hand-shapes  correctly  recognized  by  the  Input
Module.  This  comparison was  to  evaluate  the  effective‐
ness of the recognition module. Here, errors were due to
classification  errors,  noisy  data  from the  depth  camera
and finger occlusions occasionally deceiving the recogni‐
tion algorithm.

Reproduction Efficiency refers to the percentage of hand-
shapes correctly recognized by the subjects. Not surpris‐
ingly, we found that most of the time the volunteers simply
confused a hand-shape for a similar one. As a consequence
of the constrained number of degrees of freedom of the
robotic hand in comparison to the human hand, many
subjects reported minor difficulties in discriminating
similar signs when different degrees bending would have
been essential for the signs' discrimination. The most
frequent recognition errors were the following:

• 17 times, the letter "P" was confused with "X". In partic‐
ular, the hand-shapes for "P" and "X" are very similar; in
both cases, all the fingers except for the index finger were
closed. Performing "P" requires bending just the meta‐
carpophalangeal (MCP) joint of the index (the others are
opened), while when performing "X" all the index
finger's joints are bent: however, as a consequence of the
under-actuation scheme, the robot hand cannot move
different joints of the same finger independently.

• 12 times, the letter "O" was confused with "C". The hand-
shapes for the "O" and "C" signs are very similar: both
include all five fingers becoming close to one another;
the only difference between them is that the fingers are
closer to each other while performing "O". The robotic
hand that we used for the experiments could not cover
all of the intermediate positions from "finger open" to
"finger closed", as it has one degree of freedom per
underactuated finger, and so it cannot properly empha‐
size the difference between "C" and "O".

Finally, Transmission Efficiency measures the efficiency of
the whole experimental apparatus. The accuracy of the
entire pipeline from the hand-shape produced by the signer
to the visual recognition by the subjects is significantly high
(χ 2 =215.764, df =1, p <0.001).

4.3 Reproduction Module Evaluation

A deaf-blind signer member of the Lega del Filo d'Oro,
Francesco Ardizzino (male, 64 years old) volunteered to
test the robot hands during the design process. His experi‐
ence was then reported to the association panel and the
PARLOMA project received official approval from the
association.

In order to test the Reproduction Module, we checked
whether a LIS-t deaf-blind signer was able to: i) recognize
isolated hand-shapes produced by an anthropomorphic
robotic hand via tactile exploration (i.e., the natural setting
for t-SL communication); ii) to read-off a finger-spelled
word from a sequence of hand-shapes.

An Italian LIS-t interpreter was present during the entire
phase of testing (two hours and 30 minutes, including some
breaks between stages and major tasks). The interpreter
explained each task to the subject, who gave consent to
participating in the experiment and authorized us to record
the whole section.

Before assessing the accuracy in recognizing hand-shapes
from the robotic hand, we made sure that the signer was
able to assess the same tasks when performed by a human
as a baseline. As such, we asked the interpreter to produce
a few hand-shapes in isolation and then a few finger-
spelled words. All of them were recognized by our subject.

The whole section is structured as a sequence of stages. The
first is concerned with isolated digit and hand-shape
recognition. The hand performs a set of poses (hand-
shapes) commanded by an experimenter using an Acer
Aspire 5810TZ laptop running a custom graphics interface
program. Since, in this case, we are not interested in testing
the entire pipeline, we ensured that the robotic hand
correctly performed the hand-shape. The subject was asked
to explore the robotic hand and then report which sign he
comprehended. Tactile exploration is very quick and,
especially in the first stages, it affected all parts of the hand.
This is somehow different from what normally happens
during human t-SL communication, where the exploration
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is more holistic. We attribute this to the fact that the subject
was experiencing a robotic hand for the first time.

The first  task  was to  recognize  digits  from one to  five
(including some variants,  such as  "1"  made by extend‐
ing the index finger or the thumb). The task was easily
assessed and the digits were recognized appropriately. In
this phase, we noticed that the subject was not actually
counting the  finger  but  only  assessing the  global  hand
shape of the hand, confirming that part-by-part explora‐
tion is related to the novelty of the interaction. The only
problematic  digit  to  recognize  was  "5".  In  total,  the
volunteer  was  asked  to  recognize  eight  digits,  and  he
failed only once (success rate 88%).

The second task involved the recognition of hand-shapes
corresponding to the letters of the manual alphabet. All the
letters were presented randomly. Only the letters "G", "J",
"Z" and "R" were excluded, the first three because they
require dynamic gestures, and the last one because it
involves the crossing of the index and middle fingers (an
option not available to the hand). When needed, the hand
was manually oriented, such as in the case of the letters "M",
"N" or "Q". The subject recognized most of the hand-shapes
very quickly. The most problematic hand-shapes were "Q",
which was often mistaken for "P"; "E" and "O" were often
mistaken for "A". Following each letter, the LIS interpreter
would tell the user whether his answer corresponded to the
real hand-shape. In total, the subject was asked to recognize
19 digits, and he failed twice (success rate 89%).

The second stage concerned finger-spelled words. For this
task, we asked the subject to recognize sequences of hand-
shapes corresponding to the letters of the manual alphabet,
and retained them until he could read-off an Italian word.
We were interested not only in "simple" words, made of
letters that are easily recognized (e.g., C-A-N-I = "dogs", S-
L-I-T-T-A = "sledge"), but especially in more complex
words containing problematic letters not easily recognized
in the previous step (e.g., A-C-Q-U-A = "water", A-I-U-O-
L-E = "flowerbeds"). As soon as the subject was able to read-
off the Italian word, he was asked to produce the
corresponding LIS sign. No errors were registered in this
final experiment, showing that the integration with context
improves a correct hand-shape recognition.

5. Discussion

This section is devoted to a brief discussion of the experi‐
mental results reported in the previous section and
presents planned future work devoted to improving the
entire system.

We implemented a Hand-shape Classifier node (see Section
3.1.2), which is needed because the first RF returns a very
noisy estimation of the hand joints' positions. Clearly, this
prevents the input module from directly controlling the
robotic hand by using the estimated joints positions. One
source of noise is the input camera itself. Asus Xtion is a

low-cost device, developed for tracking the whole human
body from afar and not specifically for tracking small
objects like human hands at short-range. PARLOMA
shows that it is also possible to achieve satisfactory
performances from such a low-cost device.

Particular effort will be devoted to improving the perform‐
ances of the tracking algorithm (Section 3.1.1). In addition,
as Section 4.1 points out, improvements are still required
in the Hand-shape Classifier node to extend our classification
pattern so as to also consider the absolute orientation of the
hand-shapes for the classification task (Equation 2). This is
necessary for discriminating between poses that have the
same joints' configuration but different orientations in
space.

Moreover, our project requires the development of a haptic
interface specifically targeted for t-SL communication. The
hand used in the proposed implementation is an anthro‐
pomorphic hand specifically designed for prosthetics
(especially for grasping). We plan to develop a low-cost
robotic hand specifically targeted to mimic the human
hand's high level of dexterity. This hand will come with
more degrees of freedom and faster motors, and will be 3D-
printed for faster prototyping purposes. A higher hand
dexterity will improve PARLOMA performances, as it will
help receivers to better recognize letters. Further develop‐
ments will take feedback collected during the experiments
proposed in this paper strongly into account (see Section
4.2 and Section 4.3). This new, low-cost robot hand will then
be used as a starting point for developing a complete
anthropomorphic robot able to completely mimic the
dexterity of the human body, which is needed to emulate
t-SL communication in its entire complexity. A complete
robot will be able to fully satisfy the requirements needed
by our main target, i.e., a complete and full transmission of
messages coded in t-SL. We aim to develop a genuinely
low-cost haptic interface to make our system affordable for
subsidized healthcare programmes.

Finally, we are reconsidering the global architecture of the
proposed system. To date, there is a strong asymmetry in
PARLOMA, as a low-cost and simple credit card-sized
computer is used to control the output device, while a
costly one with a fast and powerful GPU is required to run
the complex algorithms behind the input module. For this
reason, we are interested in developing a novel architecture
based on the Cloud Robotics paradigm [49], where the most
complex algorithms run on a remote server and the input/
output intelligence is devoted solely to acquiring images,
controlling the haptic interface and guaranteeing remote
communication.

6. Conclusion

In this paper we present PARLOMA, a system that allows
non-invasive remote control of a robotic hand by means of
gesture recognition techniques, using a single low-cost
depth camera as only input. This system is able to recognize
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human hand poses in real time and to send them over the
Internet through the ROS framework. Poses are received by
a remote computer that can control a robotic hand, that
mimics human hand poses. The system is at its early stage
of development. Yet, it already enables Deaf-blind people
to remotely communicate resorting on the LIS manual
alphabet. To the best of our knowledge, this is the first
system offering this capability. Moreover, PARLOMA is
developed in strong collaboration with Deaf-blind associ‐
ations and is thought to be intuitive to use and effective. A
focus group composed of non-disabled persons proficient
in t-LS and a Deaf-blind signer have been actively involved
during all the design tasks. Through all the paper we
demonstrate the feasibility of PARLOMA, together with
open issues that will be addressed by our future work.

Although PARLOMA currently works with static hand‐
shapes only, the system is expected to send real t-SL
messages (including the dynamic component). Moreover,
it intrinsically support one-to-many communication
among Deaf-blind people.

Our experimental results show that the system works
correctly. Section 4.1 discusses the performances of the
input system (accuracy 88.14%) while Section 4.2 evaluates
the whole pipeline (accuracy 73.32%).

PARLOMA has the potential to completely capture and
transmit any t-SL based message. t-SL messages are coded
through handshapes and their evolution in time and space.
The developed acquisition system is already able to capture
entirely the first information and is fast enough to guaran‐
tee an appropriate sampling time to let the robotic hand
mimicking time evolution. In this way, we are able to
capture both verbal information (signs) but also non verbal
aspects, such as inflections and tones of communication. In
addition, the very low quantity of information extrapolated
from the input device is enough compact to be sent over the
net using the standard technology without introducing
delays in communication.

We are investigating alternative applications for the
technology developed and presented in this paper. For
instance, the proposed architecture can be used to control
different robotic devices, such as an hand exoskeleton, that
can guide users in post-stroke rehabilitation to replicate
correctly movements that a physiotherapist is performing
in front of a camera. The effectiveness of tele-rehabilitation
is well demonstrated in literature.

In conclusion, PARLOMA is the first step through a
complete remote communication system for Deaf-blind
people, and this paper shows that the present architecture
has the potential to evolve quickly in a fully working
system able to work as a telephone for t-SL communication.
In fact, as the telephone is able to capture, remotely send
and reproduce (without interoperation) the mean of the
vocal languages, that are sounds, our system has the
potential to do the same with the mean of the t-SL infor‐
mation, i.e., hands and arms movements in space and time.
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