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FAST AND ROBUST EM-BASED IRLS ALGORITHM FOR SPARSE SIGNAL RECOVERY
FROM NOISY MEASUREMENTS

C. Ravazzi and E. Magli

Department of Electronics and Telecommunications (DET), Politecnico di Torino, Italy

ABSTRACT

In this paper, we analyze a new class of iterative re-weighted
least squares (IRLS) algorithms and their effectiveness in sig-
nal recovery from incomplete and inaccurate linear measure-
ments. These methods can be interpreted as the constrained
maximum likelihood estimation under a two-state Gaussian
scale mixture assumption on the signal. We show that this
class of algorithms, which performs exact recovery in noise-
less scenarios under suitable assumptions, is robust even in
presence of noise. Moreover these methods outperform clas-
sical IRLS for `τ -minimization with τ ∈ (0, 1] in terms of
accuracy and rate of convergence.

Index Terms— Compressed sensing, constrained maxi-
mum likelihood, Gaussian scale mixtures, `τ -minimization,
sparsity

1. INTRODUCTION

We consider the compressive sensing (CS) problem that con-
cerns the recovery of a sparse or compressible signal (i.e. it
contains many coefficients close or equal to zero, when repre-
sented in some domain) from incomplete and inaccurate mea-
surements [1]. This topic has attracted a lot of attention in
recent years for potential applications in various areas such as
communication theory [2], imaging sciences [3], radar tech-
nology [4], sensor networks [5], and MR angiography [6] and
tomography [7].

The reconstruction problem can be addressed in dif-
ferent ways and the literature proposes a large number of
approaches such as optimization-based methods [8], pur-
suit strategies [9, 10], coding-theoretic tools [11, 12], and
Bayesian methods [13], to mention just a few. In particular,
optimization-based estimation, such as `τ -minimization with
τ ∈ (0, 1], Dantzig selector and the LASSO, require to solve a
convex or non-convex program whose minimizer is known to
approximate the target signal. Under certain conditions, the
provided estimates have been proven to be exact in absence
of noise and robust in the presence of inaccurate observations
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[14]. This means that small perturbations in the observations
should cause small perturbations in the reconstruction.

Because of their simplicity and their theoretical guar-
antees, iteratively re-weighted least square methods (IRLS)
have been proposed in [15] as an appealing strategy for `τ -
minimization problems in sparse recovery with τ ∈ (0, 1].
More precisely, under certain conditions, these methods con-
verge to a minimizer globally linearly fast when τ = 1 and
locally superlinearly fast with rate 2 − τ for τ ∈ (0, 1). Al-
though IRLS algorithms appear very robust and super-linearly
fast with rate close to 2 for τ approaching 0, such guarantees
of rate of convergence are valid only in a neighborhood of
the solution [16]. More precisely, the algorithm seems to
converge properly to the desired solution when τ is not too
small (e.g. τ > 1/2) and tends to fail to reach the region
of guaranteed convergence when τ < 1/2 [8]. Heuristic
methods to avoid local minima are still an open issue.

In this paper, we propose a new class of IRLS algo-
rithms. These new procedures can be interpreted as an Ex-
pectation Maximization (EM) algorithm [17] for constrained
maximum likelihood estimation where a two-state Gaussian
mixture [18] with Bernoulli prior is used as a proxy for the
sparse signal model. These strategies consider the complete
log-likelihood function based on the unknown data and are
methods of estimating the parameters of the mentioned sta-
tistical model. More precisely, in the first step the current
values for the parameters are used to estimate the signal and
to evaluate the posterior distribution of the signal coefficients;
in the second step the mixture parameters are updated based
on their probabilities.

If there is a sparse solution to the inverse problem, then
the reconstruction is exact in absence of noise and the algo-
rithm is quadratically fast in a neighborhood of that solution.
The interested reader can find additional material on the ap-
plication of these algorithms in the noise-free case in [19] and
a discussion on the relation to prior literature.

We prove here that these reconstruction schemes converge
even in presence of noise to a fixed point of the map that rules
their dynamics. Moreover, we show via numerical experi-
ments that the proposed algorithms are robust against noise
and outperform classical IRLS for sparse recovery in terms of
speed of convergence and accuracy.



2. RECOVERY FROM NOISY MEASUREMENTS

In a typical CS setting one is concerned with the estimation
of a k-sparse vector x? ∈ Rn, (i.e., the number of its nonzero
components is not larger than k << n/2) starting from few
linear measurements y ∈ Rm obtained through the following
acquisition model

y = Ax? + η,

where A ∈ Rm×n is the sensing matrix, m < n, and η ∈ Rm
is some unknown perturbation bounded by ‖η‖ ≤ δ. Under
certain assumptions on the sensing matrix and for a sufficient
low level of the signal sparsity [14] , robust signal recovery is
achieved by solving

(P0,δ) : min ‖x‖`0 subject to x ∈ F(y, δ),

with F(y, δ) = {x ∈ Rn : ‖Ax− y‖ ≤ δ}. This means that
the solution x̂0,δ of (P0,δ) obeys ‖x̂0,δ − x?‖ ≤ κδ where κ
is a proportionality constant. Solving (P0,δ) is known to be
an NP-hard problem. However, a practical solution is given
by the following convex or non-convex surrogate of (P0,δ)

(Pτ,δ) : min ‖x‖`τ subject to x ∈ F(y, δ),

with τ ∈ (0, 1]. Given sufficient regularity conditions on the
matrix A and assuming that δ is small enough [14], the global
minimizer of (Pτ,δ) is expected to be close to x?.

The minimization in (Pτ,δ) can be carried out by the IRLS
algorithm. More precisely, defining the w-weighted norm of
x ∈ Rn as ‖x‖2w =

∑n
i=1 wix

2
i with w ∈ Rn and wi >

0, and given an initial guess x(0), this algorithm generates a
sequence of estimates for the signal x? as follows:

x(t+1) = argmin
x∈F(y,δ)

‖x‖w(t+1)(τ)

with
w

(t+1)
i = ((ε(t))2 + (x

(t)
i )2)τ/2−1

for i ∈ {1, . . . , n} and a suitable non-increasing sequence
ε(t). At each iteration the IRLS algorithm corresponds to a
constrained weighted least-squares problem and can be effi-
ciently solved using standard convex optimization tools. As
observed in [16], if the output SNR is greater than 1, then,
at each iteration, 0 is not a feasible solution and the solu-
tions lie on the boundary of F(y, δ). IRLS appears very ro-
bust and stable with a linear (if τ = 1) or super-linear (when
τ ∈ (0, 1)) convergence in a neighborhood of the global min-
imizer of (Pτ,δ). In next section we introduce a new class
of IRLS (with a different choice of weights wi) that outper-
form the classical ones in terms the speed of convergence and
accuracy.

3. EM-BASED IRLS

We now describe the basic principles of a new class of IRLS
algorithms.

3.1. Algorithms description

Let us define the non increasing rearrangement of x by
r(x) := (|xi1 |, |xi2 |, . . . , |xin |)>,where |xi` | ≥ |xi`+1

|, ∀` =
1, . . . , n− 1.

Given K = K0, p = K0/n, α
(0) = α0, β

(0) =

β0, π
(0) = π0, ε

0 = 1, where K0 and π(0)
i are an initial

guess of the sparsity level of the signal and of the probability
that i ∈ supp(x?), respectively. The EM-based IRLS gener-
ates a sequence {x(t)}∞t=1 of estimations of x? as follows

w
(t+1)
i = π

(t)
i /α(t) + (1− π(t)

i )/β(t) (1)

x(t+1) = argmin
x∈F(y,δ)

‖x‖2w(t+1) (2)

π
(t+1)
i =

g(x
(t+1)
i , α(t), 1− p)

g(x
(t+1)
i , α(t), 1− p) + g(x

(t+1)
i , β(t), p)

, (3)

with

g(s, σ, q) = exp

(
− s

2

2σ
− log(σ)

2
+ log(q)

)
,

ε(t+1) = min
(
ε(t), r(x(t+1))K+1/n

)

α(t+1) =

∑n
i=1 π

(t+1)
i |x(t+1)

i |2 + |ε(t+1)|2∑n
i=1 π

(t+1)
i

, (4)

β(t+1) =

∑n
i=1(1− π

(t+1)
i )|x(t+1)

i |2 + |ε(t+1)|2∑n
i=1(1− π

(t+1)
i )

. (5)

As in classical IRLS algorithms, (2) requires the solution of
a weighted least squares problem constrained to the closed
quadratic convex set F(y, δ).

The EM-based IRLS can be seen as an EM algorithm for a
constrained maximum likelihood estimation. More precisely,
let us assume that x? is a random variable with components
modeled as a two-state GSM

x?i = zi
√
αui + (1− zi)

√
βui i ∈ [n]

where ui are identically and independently distributed (i.i.d.)
zero-mean Gaussians and zi are i.i.d. Bernoulli variables with
probability mass function P(zi = 1) = 1 − p, p = k/n,
α ≈ 0, and β >> 0.

With these assumptions on the signal x?, the proposed
IRLS algorithm can be viewed as an iterative solution for
the constrained minimization of the ε-smoothed negative log-
likelihood function L, defined as follows

L(x, z, α, β, ε) =

n∑
i=1

[
zix

2
i + ε2/n

2α
+
zi
2
log

α

(1− p)2

+
(1− zi)x2i + ε2/n

2β
+

(1− zi)
2

log
β

p2

]
+ c

(6)



for some fixed constant c > 0. The EM-based IRLS strategy
can be summarized as follows: (a) set an initial estimate K
for the sparsity level, p = K/n, a small variance α(0) ≈ 0
(e.g. α(0) = 0.1), the initial distribution on the zero elements
π(0) = 1, and ε(0) = 1; (b) given the observed data y and
pretending for the moment that the current values of the pa-
rameters are correct, estimate the signal x(t) and evaluate the
posterior distribution of the signal coefficients π(t) (accord-
ing to (2), (1), and (3)); (c) given the probabilities, use them
to re-estimate the mixture parameters α(t) and β(t) (as in (4)
and (5)); (d) and iterate until a stopping criterion is satisfied.

We refer the reader to [19] for the technical derivation on
how the constrained ML estimation (6) leads to the updates
(1)-(5).

3.2. An acceleration via thresholding: K-EM based IRLS

Finally, we consider a modification of EM-based IRLS, which
we call K-EM-based IRLS Algorithm. This algorithm is a
thresholded version of EM-based IRLS, taking into account
that we are seeking aK-sparse signal. More precisely, at each
step a weighted least squares problem is solved (see (2)) with
weights given by

w
(t+1)
i = π̂

(t)
i /α(t) + (1− π̂(t)

i )/β(t) (7)

and π̂(t+1)
i = HN−K(π(t+1)), where the thresholding opera-

tor H acts on π keeping its n−K biggest elements and setting
the others to zero, and π(t+1) is updated as in (3).

3.3. Theoretical guarantees

Let us denote the iterations given by (2)-(4) as follows:
θ(t) = (x(t), π(t), α(t), β(t), ε(t)). The following theorem
ensures that, under certain conditions, the sequence {θ(t)}t∈N
of estimates provided by the proposed algorithms converges
to the set of fixed points of the map that rules their dynamics.

Theorem 1 (Convergence). Let F(y, δ) be a non-empty
closed convex subset of Rn. Then the sequence (θ(t))t∈N
converges to a fixed point of the algorithm.

Sketch of the proof. The algorithms have been designed in
such a way that there exists a function V which is nonin-
creasing and convergent along the sequence of iterates:

V (θ(t)) ≥ V (θ(t+1)).

where θ(t) = (x(t), π(t), ε(t), α(t), β(t)). Moreover the fol-
lowing facts can be proved: (a) the sequence (x

(t)
i )t∈N is up-

per bounded; (b) two successive iterations of these algorithms
become closer and closer: limt→∞ ‖x(t+1) − x(t)‖ = 0.

Finally, the convergence is obtained using arguments of
variational calculus. The interested reader can deduce the rig-
orous proof of these facts using similar arguments devised in
Theorem 1 of [19].

4. NUMERICAL EXPERIMENTS

In this section we discuss a series of experiments in order
to assess the performance of the proposed EM-based IRLS
methods in terms of convergence time and accuracy. We also
show that these algorithms yield exact reconstruction in the
noiseless scenario and are robust in presence of noise, in that
small errors on the measurements produce small perturbation
in the reconstruction.

4.1. Experiment Setup

For all experiments the signal x? to be estimated is gener-
ated by choosing k = 45 nonzero components uniformly at
random among n = 1500 elements and drawing the ampli-
tude of each nonzero component from a uniform distribution
U([−10, 10]) in order to introduce a mismatch in the signal
model. The sensing matrix A ∈ Rm×n with m = 250 is sam-
pled with i.i.d. Gaussian entries with zero mean and variance
equal to 1/m. We have initialized the parameters α0 = 0.1,
π(0) = 1 and K = 55.

4.2. Reconstruction from Noise-free Measurements

In Fig. 1, the convergence rate of classical IRLS for dif-
ferent choices of τ = 1, 0.7, 0.5 and EM-based methods
are compared. In particular, the mean square error (MSE)
E(t) =

∥∥x(t+1) − x?
∥∥2 /n is depicted as a function of the it-

erations. For classical IRLS, the case with τ = 1 shows linear
convergence and for the smaller values of it (e.g., τ = 0.7),
the error decay initially follows a linear, transient regime.
However, once the iterates get sufficiently close to the sparse
solution vector, the convergence speeds up dramatically re-
sulting in super-linear convergence. For smaller values of
τ (e.g., τ = 0.5), we often do not observe convergence to
the desired solution. In fact, if τ ≤ 0.5, then the algorithm
tends to fail to reach the region of guaranteed convergence.
The proposed EM-based IRLS and k-EM-IRLS are faster
than classical IRLS methods: the transient linear regime lasts
less and the local region of super-linear convergence is larger
than classical IRLS methods based on `τ -minimization with
τ < 0.5. In [19] we compare the performance of GSM-IRLS
with classical IRLS methods, Basis Pursuit (BP, [20]), Itera-
tive support detection (Threshold-ISD, [21]) and Orthogonal
Matching Pursuit (OMP, [22]), in terms of the empirical re-
covery success rate as a function of the sparsity level and
number of measurements.

4.3. Reconstruction from Noisy Measurements

As a second example, we have considered the noisy scenario
where the vector η is an additive white Gaussian noise with
standard deviation σ = 0.01. We assume the standard devia-
tion of the noise is known in advance and, as E[‖η‖2] = mσ2,
we set δ =

√
mσ. As expected from Theorem 1, Figure 2
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Fig. 1. Noise-free scenario: A typical evolution of MSE
as a function of the iterations for classical IRLS algorithms
(with τ = 1, 0.7, 0.2) and IRLS based on EM algorithm. The
nonzero components of the signal x? are drawn from a uni-
form distribution U([−10, 10]).

shows that all the tested algorithms converge to a fixed point
of the algorithm in few iterations. For smaller τ = 0.5, we
often do not observe convergence to the desired solution. In
fact, since the `τ -norm is not a convex function, the algorithm
easily gets trapped in local minima. It is worthwhile noting
that the estimations obtained by the proposed EM-based IRLS
are significantly more accurate in terms of the mean square er-
ror compared to those obtained with the classical IRLS meth-
ods.

4.4. Robustness

In Figure 3 we show that the proposed methods are robust
against noise. More precisely, the mean square error, aver-
aged over 50 runs and obtained after 50 iterations, is depicted
as a function of Signal-to-Noise ratio (SNR). It should be
noted that only few iterations are required to reach a satis-
factory degree of accuracy. In all curves we can clearly iden-
tify the log-linear dependence of the MSE as a function of
the SNR and, consequently, of the parameter δ. Moreover
the MSE of the proposed algorithms are smaller than those
obtained via classical IRLS algorithms with τ = 1, 0.7 and
τ = 0.5. As already observed, the MSE of classical IRLS
with τ = 0.5 is very high compared to the other methods.
Moreover, it does not decrease as the SNR increases and the
algorithm turns out to be not robust against noise. This is due
to the fact that the algorithm gets trapped into local minima
and is unable to reach the global minima of (Pτ,δ).

5. CONCLUSIONS

This paper has proposed and explored a new class of IRLS
algorithms for sparse recovery. These iterative procedures,
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Fig. 2. Noisy scenario: A typical evolution of MSE as a
function of the iterations for classical IRLS algorithms (with
τ = 1, 0.7, 0.2) and IRLS based on EM algorithm. The
nonzero components of the signal x? are drawn from a uni-
form distribution U([−10, 10]) and the vector η is an additive
white noise with standard deviation σ = 0.01.
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Fig. 3. Mean square error after 40 iterations as a function of
the SNR for classical IRLS (with τ = 1, τ = 0.7 and τ = 0.5)
and the proposed EM-based algorithms.

obtained by modeling the signal as a two-state gaussian scale
mixture and performing constrained log-likelihood maxi-
mization, are very powerful for signal recovery from both
noise-free and inaccurate measurements. The main theoret-
ical contribution includes the proof of convergence of the
algorithm to a fixed point of the algorithm. Numerical results
confirm that the proposed algorithms outperform classical
IRLS schemes in terms of convergence rate and are robust
against noise.
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