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Introduction 

Before the presentation of the problem, it is very useful to remember that human body is made up 

of various organ systems such as: musculoskeletal system (bones and muscles), respiratory system 

(lungs), cardiovascular system (heart and blood vessels), gastrointestinal system, integumentary 

system (skin), nervous system (brain, spinal cord and nerves) and urinary system (kidneys, 

bladder). Each system is made up of individual organs that function together to ensure  that the 

total system works. Each organ is built up of tissues such as muscle, nerves, connective tissue, 

bone, epithelial tissue. Each individual tissue is made up of specific types of cells. The cell is the 

smallest building block of the body. The body is made up of billions of cells. The cell contains 

genetic material in its nucleus that determines the function and characteristics of the cell and 

therefore of the all body . The genetic material order the cell when to grow, divide and replicate. 

As cells age, they eventually die and are replaced by other cells that divide to replenish the aging 

cells. It may happen that an alteration occurs in a cell's genetic material or some other alteration 

occurs in the cell and it begins to grow, divide and replicate itself, uncontrollably. The body's 

immune system may detect this and destroy the abnormal cells. If the body does not detect this 

abnormality, then the cell continues to divide and form a tumor.[1] 

1.1. Bone tumor classification 

Tumors can be classified as benign or malignant. Depending upon the type of cell that the tumor is 

derived from, a malignant tumor can be classified as a sarcoma or a carcinoma. Malignant tumors 

can also be considered primary or secondary. In terms of bone tumors, a primary bone tumor 

arises directly from a particular bone. Secondary bone tumors are tumors that involve the bone 

but they originates from a cancer in another part of the body. Primary malignant bone tumors are 

sarcomas. Secondary bone tumors are called metastatic bone tumors or metastatic bone cancers 

and most are carcinomas that have traveled from other primary tumors such as breast cancer, 

lung cancer, prostate cancer, kidney cancer, thyroid cancer and gastrointestinal cancer. For 

instance, breast cancer that spreads to the bone; the breast cancer is the primary cancer and the 

breast cancer that is in the bone is a secondary cancer or a metastatic cancer.[1] 

In table 1.1 , there is a bone tumor classification divided in benign and malignant pathology. 
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Category Benign Malignant 

Osseous 
Osteoma 

Osteoid Osteoma 
Osteoblastoma 

Osteosarcoma 

 
Cartilaginous 

  

Enchondroma 
Osteochondroma 
Chondroblastoma 

Chondromyxofibroma 
 

Chondrosarcoma 

 
Fibrous 

 

Fibrous dysplasia 
Fibrocartilaginous 

Dysplasia Histiocytoma 
Osteofibrous Dysplasia 

Fibroma 
Benign Fibrous 

Desmoplastic Fibroma 

 
Fibrosarcoma 

Malignant Fibrous 
Histiocytoma 

 

 
Small Round 

Blue Cell 
 

Eosinophilic Granuloma 
Infection 

Ewing’s Sarcoma/PNET 
Lymphoma 

Multiple Myeloma 

 
Giant Cell 

 
Giant Cell Tumor   

Table 1.1: Classifications of bone tumors[1] 

Bone tumor generally refers to any abnormal growth from bone or in the bone. It can be a primary 

malignant tumor like an osteosarcoma, Ewing's sarcoma or chondrosarcoma. It can also be a 

metastatic carcinoma such as a breast cancer, lung cancer, prostate cancer, kidney cancer and 

thyroid cancer. It is important to differentiate between the various types of cancers that affect the 

bone because each has its own type of treatment and care. [1] 

Sarcomas and carcinomas are two different types of malignant tumors that can affect bones. They 

are derived from different cells. Sarcomas are derived from mesodermal (mesenchymal cells) and 

carcinomas are derived from epithelial types of cells. Sarcomas and carcinomas grow and spread 

differently.[2] 
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1.1.1. Sarcoma 

Sarcomas grow like "ball-like" masses and tend to push adjacent structures like arteries, nerves, 

veins away. They compress adjacent muscles into a pseudocapsule that contains microscopic 

projections of the tumor referred to as satellite nodules. The local growth of sarcomas like a ball 

enables resection in most instances. Sarcomas tend to arise primarily (directly) from bone.  

Sarcomas rarely spread to lymph nodes. It is derived from a particular type of cell referred to as a 

pluripotential mesenchymal cell. Under normal situations, mesenchymal cells in the body form 

bones, muscles, cartilage, connective tissue, blood vessels, blood cells, and nerves. Pluripotential 

means that cell has the ability to differentiate or grow along different pathways and form these 

various types of tissues. Under cancerous conditions, the mesenchymal cells that form a sarcoma 

can grow along a specific pathway and form tissue that looks like bone, cartilage, muscle, 

connective tissue, blood vessels as presented in table 1.1. Thus, it can have a bone sarcoma 

(malignant tumor of bone made up of mesenchymal cells) that is actually producing bone. The 

name given to this type of tumor is osteosarcoma (osteo means bone; thus osteosarcoma is a 

bone forming sarcoma). A patient can have a malignant bone tumor that produces cartilage. This 

is called a chondrosarcoma (chondro means cartilage). Malignant tumors that arise directly from 

bone are called sarcomas. Sarcoma is greek for "fleshy". The name was given to these types of 

tumors because of their appearance. They have a fleshy appearance when cut open and 

examined. Sarcomas are rare cancers and constitute about 1% of all cancers. [1] 

1.1.2. Carcinoma 

Carcinomas grow in an infiltrative manner and grow through infiltration or invasion of adjacent 

structures. They more easily invade adjacent nerves, blood vessels and muscles. They do not form 

a pseudocapsular layer and therefore it is difficult to determine its exact anatomic extent during 

surgery. This makes it more difficult to remove entirely with surgery. Carcinomas spread to lymph 

nodes, lungs, bones and many other organs depending on the type of carcinoma. Carcinomas 

involve bone secondarily, that is by spreading from another site such as the breast to the bone. A 

patient can have the primary site removed and treated (ie. the breast cancer removed) and years 

later develop a bone tumor/metastasis from the old breast cancer. 

Carcinomas are distinctly different from sarcomas. They are derived from cells that look like 

epithelial cells or glandular cells. These cells do not form bone, muscle, nerve, etc. They do not 
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have this ability. If a carcinoma is growing from a bone, it has usually come from a primary cancer 

in another part of the body. It is always considered cancerous and malignant because it has spread 

from another body part or another cancer. Breast cancer, lung cancer, kidney cancer, prostate 

cancer, thyroid cancer and gastrointestinal cancer are the most common carcinomas that travel or 

metastasize to bone. They can result in extensive destruction of the bone and can cause the bone 

to break/fracture. In some areas such as the pelvis and scapula, they can form large tumors that 

can involve the major nerves and blood vessels to the extremities. This is a serious situation. It can 

lead to uncontrollable pain and loss of the arm or extremity. The tumor in the bone is the same 

type of tumor as the primary carcinoma. For instance, if breast cancer has spread to the bone, the 

tumor in the bone is exactly the same as the breast cancer under the microscope. This is 

considered metastatic breast cancer to the bone. Carcinomas are much common and make up the 

majority of the cancers that occur yearly.[1] 

These large two family of cancer are characterized by similar symptoms:  

 1. Manifestation of pain without any traumatological event that does not decrease with the 

 assumption of an anti-inflammatory drug. Pain in the early stages can be contained but it 

 will gradually increase with time 

 2. Swelling that increases over time and in size  

 3. Presence of pathologic fracture occurred without trauma of the affected bone 

 segment[2]. 

1.2. Primary malignant bone tumors 

Primary malignant bone tumors include: 

• Osteosarcoma 

• Ewing’s sarcoma 

• Chondrosarcoma 

The three main forms of primary bone sarcoma are osteosarcoma and Ewing’s sarcoma, both of 

which primarily affect children and adolescents, and chondrosarcoma  tend to affect middle-aged 

and elderly patients.[2] 
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1.2.1.  Osteosarcoma 

 Conventional osteosarcoma usually arises in the medulla of long bones within the metaphysis, 

and over half are in the distal femur and proximal tibia, at the sites of greatest skeletal growth. 

Proximal humerus and femur and distal radius are also often involved, and no bone is exempt. 

Osteosarcoma spreads between the medullary trabeculae (figure 1.1), and penetrates and 

partially destroys the cortex to extend beneath and elevate the periosteum.  

 

Figure1.1 :Surgical specimen of distal femur containing an osteosarcoma which involve the medullary canal of the 

methaphisis [2] 

Effects of preoperative chemotherapy may modify both the progression and microscopic 

appearances by inducing necrosis and hemorrhage. This is important in assessing the response to 

therapy and informs the choice of postoperative regimen. 

Modern therapy combines preoperative and postoperative chemotherapy with surgery, often 

resection and endoprosthetic replacement or other reconstructions, rather than amputation.[2] 

1.2.2. Edwing’s sarcoma 

In contrast to osteosarcomas, which affect the metaphyseal long bones, Ewing’s sarcomas tend to 

arise in the diaphysis or metaphyseal– diaphyseal portion of long bones, pelvis, ribs and, rarely, in 

the skull, vertebrae, scapula, and short tubular bones of the hands and feet. Ewing’s sarcoma can 

also occur in the soft tissues without bone involvement.[3] 

The presenting features are of pain and swelling. Fever may suggest osteomyelitis, and tissue 

should be sent both for microbiology and pathology in these circumstances. The tumor arises 

within the medulla, both diaphysis and metaphysis, then rapidly penetrates the cortex and 
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periosteum to form a large soft tissue mass. Radiographs show large area of bone destruction and 

there is often a distinctive multilayered ‘onion-skin’ periosteal reaction. On microscopy, Ewing’s 

sarcoma is the prototypic malignant round cell tumor of childhood, consisting of sheets of small 

round cells with uniform nuclei. [2] 

The natural history of Ewing’s sarcoma is of early metastases both to lung and bone and bone 

marrow, with a particularly outcome for patients with large tumors notably in the pelvis 

and with systemic symptoms. Ewing’s sarcoma is best treated by a combination of intensive 

chemotherapy followed by local treatment, often with surgery and radiotherapy. 

1.2.3. Chondrosarcoma 

Unlike osteosarcoma and Ewing’s sarcoma, chondrosarcoma normally affects the middle aged and 

elderly. It usually arises as a primary tumor, but about 10% of cases arise in relation to a pre-

existing benign cartilage tumor. Chondrosarcoma may arise within the medulla as you can see in 

figure 1.2 or from the bone surface (peripheral). Tumor is  seen both in long bones, notably the 

femur and humerus, and in the axial skeleton, commonly the pelvis, shoulder girdle and ribs; 

rarely, chondrosarcoma occurs in the distal skeleton, for example in the tubular bones of the 

hands and feet. Most patients present swelling or pain, the latter is a sinister symptom when 

associated with a cartilage tumor in an adult. 

The typical central chondrosarcoma consists of sheets of cartilage, which often permeate between 

the cancellous trabeculae and tend to erode the bone cortex. A more aggressive tumor may 

penetrate the cortex to form a mass in soft tissue. Peripheral chondrosarcomas have a 

cartilaginous cap, with nodules of proliferating cartilage on the surface thicker than the cap of 1–2 

cm seen in a benign exostosis. In both forms, radiographs often show dystrophic calcification with 

peripheral rings, giving a popcorn pattern. Around 15% of chondrosarcomas metastasize, usually 

to the lungs. Although most chondrosarcomas grow slowly they tend to recur locally unless 

excised widely; this is a particular problem with central tumors, for example those of the spine and 

base of skull, which may cause death in the absence of metastases. As chondrosarcoma responds 

poorly to chemotherapy or radiotherapy, adequate wide surgical excision at the first operation is 

the key to cure. 
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Figure 1.2: Surgical specimen of a chondrosarcoma that has arisen in the medullary cavity and is confined by the 

cortex.[2] 

1.3. Treatment of bone tumor 

The most common techniques for the treatment of primary and metastatic bone tumors are: 

 Chemoterapy 

 Radioterapy 

 Surgical approach  

The use of chemotherapy in a patient with metastatic disease can help to control the disease, and 

the obtained results show a partial regression and temporary symptomatic relief. 

In most cases treated, tumor site and volume, age of patient are fundamental parameter for the 

develop of chemio-radio-surgical planification.   

In the Edwing’s sarcoma the introduction of systemic chemotherapy led to significant 

improvements in the prognosis in comparison with the prior extremely poor outcome with local 

therapy only [3]. In early studies, combinations of vincristine, cyclophosphamide, dactinomycin 

and doxorubicin resulted in survival rates of about 50% [4]. High-dose chemotherapy with 

busulfan/melphalan may yield benefits for patients suffering from metastasised Ewing’s sarcoma 

compared with conventional chemotherapy. 

Radiotherapy is advised only for inoperable lesions. Inoperability is defined by tumors that cannot 

be resected completely and in tumors of critical sites where complete surgery would result in 

unacceptable mutilation or is associated with a high risk of serious complications. A dose of 55 Gy 
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(with a shrinking-field technique after 45 Gy) is described to be a sufficient radiation dose in 

definitive radiotherapy.[4] However, large tumors may require higher radiation doses. 

Surgery is favored if a wide or at least marginal resection is feasible. Intralesional resections should 

be avoided as they are associated with a higher risk of peripheral and distant relapse.  

Surgery, if feasible, is generally preferred because it has resulted in better local control rates than 

definitive radiotherapy in many trials.[4] 

The main objectives of surgical intervention are prevention of fracture, maintenance of limb 

function, and palliative of pain. 

 The most common surgical approach was the using of a fixation device in combination with 

polymethyl methacrylate bone cement. Lesions larger than 3 cm with loss of cortical bone should 

be considered for supplemental fixation with bone cement. This may be accomplished while 

inserting an intramedullary device or cementing around a previously placed device. With plates, it 

is often best to treat the lesion, fill the defect with cement, and place a neutralization plate and 

screws. Screws placed into a bone-and-cement composite are exceptionally stable. Antibiotic-

impregnated cement has not been shown to provide additional benefit compared with regular 

cement. Cement impregnated with chemotherapeutic agents has been investigated, but thus far it 

has shown limited efficacy in terms of limiting local disease progression.[5] 

The medical needs that has been satisfied concern: 

 the inhibition of tumor growth,  

   strengthening of bone structure,  

 control and delate pain form the patient. 

1.4. Bone infection  

One possible complication connected to the bone tumor is infection, which can appear after 

tumor resection. Osteomyelitis  indicates an inflammation  of bone and marrow canal due to the 

infectious microorganism[6]. Staphylococcus aureus is among  the common bacteria  that causes 

this pathology[7].  

In figure 1.3 a osteomyelitis in a young girl, as a consequence of osteosarcoma, is reported. In  

panel B the radiographs show a bone resorption and loosening of the prosthesisthat created 

conditions for the proliferation of bacteria and, consequently, the failure of the implant. The 
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surgeron had to remove the implant and inject antibiotic in the tibia. Due to the fact that the 

patient didn’t response to the therapy, she underwent amputation on the upper knee. 

 

Figure 1.3: Osteomyelitis in a 19-year-old female of the right femur and prosthetic placement. Anteroposterior (A) 

and lateral (B) radiographs show bone resorption and loosening of the megaprosthesis. Biopsy was positive for 

osteomyelitis. Because of persistent infection, the megaprosthesis was removed, antibiotic pearls were inserted in 

the tibia (C). The patient was nonresponsive to antibiotics and subsequently had to undergo an above-the-knee 

amputation (D).[8] 

A problem concerning the use of antibiotics in the treatment of bone infections is the difficulty  of 

obtaining bactericidal levels of antibiotics in the infected tissues without reaching toxic systemic 

levels. The infected zone is filled by blood and serum which promotes bacteria growth and may 

lead to implant failure . Antibiotic should have an effect on bacteria without creating any collateral 

effects to other cells. Moreover, osteomyelitis are a nonspecific diagnosis, so they can present 

different approaches for the care managing. [8] 

                        

Figure 1.4: Complications of megaprostheses: in an 18-year-old female who received a megaprosthesis after 

resection of an osteosarcoma of the right femur. One year after resection, anterolateral (B) radiographs of tibia 

show extensive bone resorption consistent with aseptic loosening.[8] 
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Figure 1.4 reports another case study where the septic loosening caused the failure of the implant 

as a main consequence of bone resorption. [8] 

1.5. Hyperthermia 

The use of Hyperthermia as an adjunct to conventional oncology treatments has increased over 

the past two decades. It’s a non-invasive methods for increase tumor temperature stimulating 

blood flow, restarting the immune system, increasing oxygenation of the tissues. It’s well-

tolerated by practically all patients and it’s a nontoxic treatment. It works in synergy with 

radiotherapy increasing tumor control while minimizing damage to healthy tissue and permit the 

increment of radiation dose and with chemotherapy (cisplatin and related compounds, melphalan, 

cyclophosphamide, nitrogen mustards, anthracyclines, nitrosoureas, bleomycin, mitomycin C, and 

hypoxic cell sensitizers) increasing cellular uptake of drug and DNA damage and inhibition of  

cancer cells repair.[6] 

Hyperthermia provides an increasing temperature between 40-43 °C in the tissues in order to kill  

malignant cells and not health one. Moreover it also sensitize cancer cells to the previous mention 

treatments  (radiotherapy, chemotherapy, gene therapy and immunotherapy).[7] 

The duration of heating and high temperature levels achieved during treatment sessions influence 

a lot the number of death cells. Higher the temperature and longer time that heat is delivered to 

the tumor site, stronger the lethal effect and less the tumoral cells will be able to develop thermo 

tolerance phenomena[8]. Moreover not only these parameter are useful for the control of the 

phenomena but even environmental and vascular conditions are very important. Damage to 

cancerous cells is promoted by lack of oxygen, decreased pH, absence of nutrients and poor 

cooling, which are caused by pathological microvasculature within the tumor.[8] In general, the 

mentioned conditions are not seen in normal tissues which are not seriously affected by thermal 

treatment. As reported in figure 1.5 the biological hyperthermia principle is based by a 

vasodilatation of normal blood vessel that are able to increase the blood flow in order to dissipate 

the overheating. While tumoral cells that composed a solid tumor are unsupplied by this 

mechanism due to the pathological blood vessel structure which caused the final effect of necrotic 

or apoptotic death.  The vasculature disorder of tumoral cells and reduced blood flow favor 

hypoxia and acidosis. In this scenario hyperthermia will play in two different way: if the 

temperature applied is < 42°C the blood flow in the tumor increase in order to favors the action of 
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the chemotherapy while if the temperature is > 43°C the reduction of blood flow and the increase 

of hypoxia and acidosis lead the cancer cells in apoptosis.[7] 

 

Figure 1.5: Mechanism of tumor overheating with hyperthermia technique. In normal tissue the blood vessels 

increase our section when physiologically or artificially heated, consequently there is an increase of blood flow 

through the applied region and a decrease in its temperature. In the tumor site , pathological vessel are not able to 

dilate in fact most of these collapse because the heat is not dissipate by the tumor vessel. [4] 

1.5.1. Hyperthermia methods 

Depending on the location, depth and staging of tumor, there are three main clinical methods to 

generate an increasing temperature in the body: local, regional or whole body hyperthermia, 

which deliver heat to localized, advanced or deep seated and disseminated malignancy. [5] 

Local hyperthermia is applied for superficial tumors and can be achieved by external application 

of microwaves or radio-waves. Interstitial hyperthermia can be applied by inserting an applicator 

into the target volume and generating localized microwaves, radio waves, or ultrasonic waves.  

Endo-cavity hyperthermia is done by inserting an energy-inducing applicator in a natural opening 

of a hollow organ. These two techniques are a subtype of local hyperthermia.[5] 

Regional hyperthermia can be achieved with external heading radiofrequency, isolated limb 

hyperthermia, or cavity based hyperthermia. Several techniques have been used to raise 

temperatures in whole body hyperthermia with the aim of increasing tumor response to 

conventional chemotherapy (mainly in patients with metastatic disease). Temperatures of up to 

42°C, maintained for 60–90 min, can be achieved using radiant heaters with long infrared rays. 

Energies used to apply heat include microwaves (in the range of wavelengths from 433 MHz to 

2,45 GHz), radiofrequency (ranging from 100 KHz to 150 MHz), ultrasound, hot water perfusion 
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(tubes, blankets), resistive wire implants. Another way to deliver heat in the tumor site concerns 

the use of magnetic material like ferromagnetic  or  magnetic nanoparticles. After the  in vivo 

implant they can generate heat due to the stimulation with an alternate magnetic field.  

1.5.2. Hyperthermia in bone tumor treatment 

Taking into account the common aim of hyperthermia for the treatment of the tumors, it is 

important to point out that in order to apply the aforementioned techniques two methods are 

possible: the application of external energy using radiofrequency, microwave or ultrasounds with 

designed external devices or the application of an implanted magnetic materials that can provide 

an internal source of treatment. This type of hyper-thermic cancer therapy used magnetic material 

stimulated with the application of an alternate magnetic field. 

Some authors proposed the use of hyperthermia for the treatment of bone tumor with an external 

application of ultrasounds that has the aim to deliver the optimum energy to destroy the tumor 

mass. The system uses a spherically arranged applicators, the specific absorption rate ratio has 

been used to determine the proper heating domain of ultrasound driving frequency and 

therapeutic tumor diameter. The model has to be tailored respect to tumor size, tumor depth, 

ultrasound attenuation in the bone tumor tissue, the absorption energy from the bone and the 

frequency of the transducer. The application of ultrasound energy for hyperthermia is excessively 

reflected and absorbed by bone, this modality permits for the controlled heating of superficial and 

deep lesions. 

To deliver the ultrasound energy into the tumor site and to avoid the potential damage to the 

normal tissue, the specific absorption rate (SAR) in the bone tumor site has to be three times 

higher than that in the surface skin, tumor/marrow, and marrow/bone interfaces. The results will 

be very useful for the developing of a treatment planning for bone tumor with a design of 

ultrasound hyper-thermic applicator [8] .  

Fan et al. reported treatments of bone tumor with microwave induced hyperthermia on humans 

instead of a common surgery that create problem of infection, necrosis and local recurrence. The 

surgical procedure consisted of separating the tumorous segment from surrounding normal 

tissues with a safe margin, cooling the normal tissues (including the vital neurovascular bundle and 

the intra-joint structures) with a water circulation system while heating the tumor simultaneously 

with the microwave antenna array. The device was composed by a microwave generator at 2,4 
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GHz with a power range 0 – 200 W. Thermocouples were inserted in the tumor site and in the 

normal tissue for the monitoring of the temperature in real time. The results confirmed the 

decrease probability of oncological and operative complication and functional saving of limb.[9] 

Also microwave induced hyperthermia [8], laser-induced thermotherapy [10-12], and 

radiofrequency ablation [13] have been recently used especially for spinal and pelvic metastasis, 

but these therapeutic modalities are unsatisfactory for the lesions located in the long tubular bone 

of the limb, because pathological fractures cannot be treated without a surgical reinforcement of 

the bone lesion. 

One more effective technique for the care of bone tumors is magnetic hyperthermia. This method 

uses an external magnetic field that stimulates a per-implanted magnetic material in the 

generation of controlled heat, normally between 41°C and 43°C, into the body’s tissue destroying 

cancer cells [14-15]. The implanted material is able to magnetizing and produces hysteresis loss 

that are transformed into a controlled heat. The heating temperature depends on several factors, 

including materials properties, the magnetic field parameters (intensity, frequency) and bone 

tissue properties. [16]  This technology will be the object of a following chapter.  
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2.1. Poly methyl methacrylate 

Therapy for vertebral fracture, cemented hip prosthesis and other bone-related disorders, like 

bone tumor, have made acrylic bone cement based on poly methyl methacrylate (PMMA) integral 

part of the orthopaedic surgery. The material is named “bone cement” and it is a two component 

system composed by a powder and a liquid mixed together.   

There are two main type of bone cements: polymer-based and calcium phosphate-based. The 

focus will be on the first category of bone cements, in fact they are most common used in clinical 

orthopaedic surgery due to higher mechanical properties than the calcium phosphate bone 

cement in load-bearing application.  

The synthesis of bone cements is based on the polymerization of methyl methacrylate (MMA) 

monomers to poly-methyl methacrylate (PMMA).[1]  

2.1.1. Polymer chemistry 

Polymers are large molecules composed of individual repeating unit (monomer). Polymerization 

can occur by two different mechanisms: 

 With condensation reactions in which a functional group of a monomer reacts with a 

functional group on the growing chain of the polymer and the chain lengthening occurs 

with  a low molecular weight molecule (es. water) release. 

 With addition reactions in which the polymer chain grows by reacting directly with the 

double bond of a monomer and no molecules are released. The chemical mechanism for 

the polymerization of PMMA is shown in figure 2.1. 

 

Figure 2.1: Polymerization of PMMA by an addition reaction. MMA monomer reacts with a radical to generate e second radical 

that can attack the double bond of another MMA monomer. [2] 
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Polymerization begins by the addition mechanism in which a monomer becomes unstable by 

reacting with an initiator, a volatile molecule that is mostly commonly a radical (molecules that 

contain a single unpaired electron). Radical bond with monomers, forming monomer radicals that 

can attack the double bond of the next monomer by the mechanism shown in figure 2.1 

propagating the polymer chain. Since the radicals are unstable, the initiator are often added by as 

an unreactive peroxide in a much stable chemical form. Radical is formed when heat or light excite 

the peroxides molecule. For the application in which high temperature are not well tolerable, like 

bone cement, peroxide is cleaved by adding a chemical activator such as N,N-di-methyl-p-toluidine 

(DMPT) forming a phenyl radical that attacks the double bond of the MMA monomer. [1] 

2.2. Properties of PMMA 

PMMA has a linear chain and is a thermoplastic polymer with an un-crystallized structure whose 

vitreous transition temperature ranges from 110 up to 135°C. At room temperature it is hard, 

rigid, and brittle with little elongation. It is hygroscopic and, under extreme conditions, the water 

absorbed will act as a plasticizer and will modify the properties of the material. 

It has high mechanical strength, high Youngʹs modulus and low elongation at break. It is one of the 

hardest thermoplastics and is also highly scratch resistant. It exhibits good dimensional stability.[2] 

  

Physical properties Value 

Density 1,15-1,19 g/cm3 

Water absorption 0,3-2 % 

Moisture Absorption at Equilibrium 0,3-0,33 % 

Table 2.2: Physical properties of PMMA [2] 

2.3. PMMA bone cements 

As explained before, bone cements polymerize by radical-initiated addition reactions. The 

commercially available bone cements have two separate components: a powder containing pre-

polymerized beads of PMMA and a liquid containing MMA monomer. The benzoyl peroxide (BPO) 

initiator is incorporated into the powder and the chemical activator, DMPT, is incorporated into 

the liquid, so peroxide starts the polymerization mechanism only when the two phases are mixed. 

To prevent spontaneous polymerization during the storage, the easily oxidized molecule 

hydroquinone is also added to the liquid. DMPT splits BPO initiator at room temperature. The 
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growing polymer chains encapsulate the PMMA beads within a solid matrix. Another important 

component that characterized these material is the radiopaque inorganic phase. The most 

common are barium sulphate (BaSO4) or zirconium dioxide (ZrO2). The main reason of their 

addiction is the easier identification of the material status both during the surgical operation and 

in follow-up treatment after the implantation. In figure 2.2 a typical composition of a PMMA bone 

cement is shown. (1) 

 

Figure 2.2: Components of Commercially cements mixture[1] 

2.4. Cement properties 

2.4.1. Chemical properties 

Cement properties depend very much from the properties of the powder and the liquid 

component that react together. The effect of each component influences handling and setting 

time properties, polymerization temperature and mechanical properties.  

2.4.2. Liquid-to-Powder Ratio  

Liquid/powder ratio (LPR) of a bone cement has an important role in the aforementioned 

properties. LPR has to be chosen to keep a good trade off among all of them. 

Some scientific works show that greater LPR produce higher peak temperatures with an increasing 

of setting time. One possible explanation is that, at high LPR, an abundance of monomers react 

exothermically, increasing the peak polymerization temperature. However, the high LPR also 

decreases the relative concentration of initiator which is included in powder mix, so the 

monomers are activated slowly, increasing setting time [1].  
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Pascual et al. report a study on a modified PMMA bone cement with hydroxpropyl methacrylate 

(HPMA) in which a low LPR is used. The ratio causes a higher temperature peak and a shorter 

setting time is obtained while residual monomer content increases slightly.[5] 

2.4.3.  Mixing Methods  

One of the most important issue of PMMA bone cements is the presence of different mixing and 

handling techniques of the components. A first common technique is the manual mixing with 

spatula and bowl. It is a quite common surgery procedure when a patient undergoes to a 

cemented hip prosthesis operation. The surgeon, after the generation of a dough, introduces the 

paste into the hole between implant and bone. After that, in situ hardening appears. Air may 

become traps in the cement mixture, increasing porosity. Air weakens the cement and provides an 

interface for the develop of fractures and cracks. 

For the decreasing of voids, another way for the preparation of bone cement is the mechanical 

mixing technique with “vacuum mixing“, where powder and monomer are placed together in a 

mixing tube and the air is removed under pressure. The tube can placed into an injection gun from 

which cement can be extruded into the bone cavity. Vacuum mixing devices have been shown to 

reduce porosity by more than 44% compared with mixing with a bowl and spatula[1]. Another 

mechanical technique is a centrifugation which is found to remove pores and increase the fracture 

strength.  

All citied techniques produce a mechanical interlock between the bone and the solidified cement 

that maintains the strength but does not promote any chemical bond between the implant and 

the bone.[6] 
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Figure 2.3:A comparison of fatigue strength of hand-mixed and vacuum-mixed bone cement.[6] 

As presented in figure 2.3, fatigue strength is evaluated as a function of mixing method. The trends 

of stresses values for cements produced by vacuum mixing are higher than those produced by 

hand-mixing.  

2.4.4. Handling and setting time properties 

During the synthesis of the material it is possible to distinguish three different times: 

 Dough time, which is the time between starting mixing powder and liquid and the moment 

when the cement is inserted in the bone cavity  

 Working time, which permits the workability of the cement in the bone cavity  

 Setting time, which is the time that elapses for the hardening of the cement. After that 

time any other modification in shape and quantity is possible. (figure 2.4) 
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Figure 2.4: Setting time test: evaluation of the hardening time 

In figure 2.4 a typical hardening curve of a PMMA bone cement is shown, with the identification of 

three different  times. As evidenced in the curve, the slope of the curve shows the setting time.  

The peak of the curve permits the evaluation of the maximum polymerization temperature which 

has to be the lowest as possible in order to minimise necrosis of surrounding bone .  

The workability properties of PMMA bone cements are evaluated with curing parameters and any 

further modification of the chemical composition of PMMA has to be evaluated as a function of 

these parameters.  

An ISO 5833-2008 has standardized the test in order to provide a methods for comparison 

different curing parameters of different cements.  

For each unit of cement, the setting time is measured from beginning of mixing until the 

temperature of the polymerizing mass reaches the setting temperature defined as: 

    

 

maxT = is the highest polymerization temperature measure 

Tamb = is the recorded room temperature 

The standard provides some restrictions that the bone cement has to respect before the in vivo 

application (table 2.2). 
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Mixture 

Dough time Setting time Maximum temperature 

Average                   
 

min 

Maximum 
deviation  

from average 
 

min 

Average 
 

min 

Average 
 

°C 

Maximum 
deviation from 

average 
°C 
 

Dough state 
usage 

≤ 5 1,5 3 to 15 90 ± 5 

Table 2.2: Curing parameter requirements [3] 

Figure 2.4  evidences that the slope of the setting curve does not change at the beginning but at a 

certain point it suddenly increases. For this reason the setting time evaluation is crucial because it 

informs that in a few minutes the cement will be not workability nor injectable into the bone 

defect and the surgeon has to operate before this time limit. 

2.4.5. Radiopaque agents  

Radiopaque compounds interrupt the polymerizing matrix and produce discontinuities in the 

material that can act as fracture initiation sites, diminishing mechanical strength with a not clear 

effect on polymerization temperature and setting time [1]. To guarantee the structural integrity of 

radio-opacified cement, it has been noticed that zirconium is structurally superior to barium. 

Homogeneity of mixed cement is key factor and that a not homogeneous dispersion of barium 

particles leads to fractures formations. New cross-linking agents and preparation methods that 

enhance cement strength have been reported. The incorporation of these additives into the 

cement formulations will minimize any loss of strength or durability due to radio-opacifiers. 

Ginebra et al. reports that the radio-opaque agents, both inorganic and organic, have a significant 

effect on the mechanical properties of the acrylic bone cement. The effect of the inorganic fillers 

depends on their size and morphology. The addition of zirconium dioxide significantly improves 

the tensile strength, the fracture toughness and the fatigue crack propagation resistance. In 

contrast, the addition of barium sulphate produces a decrease of the tensile strength, but does 

not affect the fracture toughness and improves the crack propagation resistance.[7] 

2.4.6. PMMA beads size  

The average diameter and size distribution of PMMA beads play an important role in the cure 

properties of bone cement.  This component has a double function: a structural role as a 
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component of the cement matrix and as a heat sink–dissipating energy released by the exothermic 

polymerization of MMA monomers. Samples containing PMMA particles with larger mean 

diameters and widespread distributions of particle size have lower peak polymerization 

temperatures and longer setting times [1].  

Moreover the concentration of activator and the free radical initiator influence the peak 

temperature, the setting time and the mechanical properties of the cured cement.  

 

Figure 2.5: Relationship between average size of PMMA and the maximum temperature reached during the polymerization 

process of acrylic bone cement formulations[2] 

In figure 2.5 a linear correlation between the average particle size of PMMA and the maximum 

polymerization temperature is reported. Increasing the particle size, the maximum temperature 

statistically decrease . The fact could be explained in a much higher capacity of large beads (50-60 

μm) to dissipate the heat in an effective way respect to smaller particles with a size < 20 μm. 

If the polymerization temperature reaches or is near to the boiling point of MMA monomer, 

around 100°C at standard pressure, the vaporization of MMA molecules could give rise to the 

appearance of voids inside the cured system. This is another interesting reason to lower the 

polymerization temperature.[2] 

2.5. Mechanical properties 

In table 2.3 a comparison between the mechanical properties of the cement and the human bone 

is shown. The compression strength of the PMMA is quite comparable with the same value of the 

cortical femoral bone.[8] 



Poly methyl methacrylate bone cement 

27 

Matteo Bruno 

 

Table 2.3: Comparison between the mechanical properties of human bone and the PMMA bone cement[8] 

Mechanical properties Value 

Hardness, Rockwell M 63-97 

Tensile Strength, Ultimate 47-79 MPa 

Elongation at Break 1-30% 

Tensile Modulus 2,2-3,8 GPa 

Flexural Modulus 3-3,5 GPa 

Table 2.4: Mechanical properties of PMMA [4] 

Compression tests are evaluated referring to ISO 5833 – 2003 specification: the ultimate 

compressive strength (table 2.4) and Young Modulus should be estimated from the stress strain 

curve using a 2% offset role and the slope of the initial straight section of the curve. The 

mechanical results,  are influence by two main factors:  

1. Chemical parameters: quantities of stabilizers, initiators and radiopaocifiers, presence or 

absence of a copolymer, the powder size and distribution and the rate of change of 

viscosity with time. 

2. The mixing methods: this is an important parameter for a given formulations. This factor 

influences the number and the size of micro- and macropores.[10] 

Even flexural and shear mechanical properties depends very much from cement formulation, 

mixing method, curing and aging conditions. 

The method used to mix the liquid monomer and the powder has a significant role in determining 

the final quality of bone cement. An inadequately mixed cement usually presents a high degree of 
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porosity . As a consequence, a lot of studies have been conducted on the parameters and variables 

that affect the quality of bone cement prepared by different mixing methods and devices. 

Two important factors have to be taken into account: the depth of penetration of the liquid 

monomer into the powder (l), process that is describable using the Washburn equation, and the 

associated Reynolds number, Re.[11] The study reports in [10] compares variability of the porosity 

of the cured cement and its bending modulus and bending strength when mixed with a new 

automated device, compared to the values obtained when the cement is mixed using a 

commercially-available vacuum cement mixer, that is in current clinical use. 

 

Figure 2.6: Mixing and temperature effect on the porosity of acrylic bone cement 

The porosities report in figure 2.6 indicate that there is a statistical difference between cement 

mixed at 4°C and at 25 °C. The cements cured at 4 °C show an almost 50% decrease in porosity 

compared to those cured at 25 °C. These reduced porosities depend on the decrease of air 

entrapped in the cement at the moment of mixing. The material stored at low temperature has a 

lower viscosity that could influence the decrease of cement porosity.  

The comparison of two cement mixing methods has shown a decreasing porosity of 20% using a 

standard mixer in comparison to an automated mixer. The same trend is observed comparing 

storing procedures at 4°C and 25°C respectively. Velocity and mixing motion of the cement within 

the automated mixer caused more air entrapment than conventional paddle stirring.  

The mechanical tests have shown a statistical difference between two storage temperatures. At 

4°C an increase of bending modulus and strength of 8% and 14% respectively can be observed in 

respect to higher temperatures. As mentioned before the decrease of air entrapment during the 

mixing phase and the lower initial storage temperature have improved the mechanical properties. 

[11] 
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2.6. Biological properties 

PMMA bone cement is classified as an inert material. It is noted that after a certain period from 

the implant of the cement, there is the formation of a fibrous membrane between the bone and 

the cement, with a thickness between 50 m and 3 mm, which allows micro motion occurrence, 

causing pain into the patient and the space for wear particles accumulation. A possible solution to 

overcome this problem at the interface is the use of a bioactive bone cement[19]. 

2.7. Problems 

For orthopedic applications, PMMA is used as a filler and it has to guarantee the transfer of the 

load from the metallic prosthesis to the human bone, avoiding or minimizing stress shielding 

phenomena. The human bone does not become osteoporotic or subjected to restorable events 

due to the implant of the material. The material should substitute or fill a bone without modifying 

its physiology and functionality.  

When a new material is implanted into the body an inflammatory response occurs, with the 

recruitment of macrophages and other repair cells.  The worst situation consists in the toxic 

behavior with the death of surrounding tissue. An inert response create a thin fibrous layer at the 

interface of 1-3 m and no bond between the tissues and the implant. On the contrary, bioactive 

materials are able to stimulate a chemical reaction with living tissues. Hydroxyapatite, bioactive 

glasses and glass-ceramics are typical examples. 

In the previous classification, PMMA bone cement is classified has an inert material. It is well 

known that when it is implanted in vivo the formation of fibrous collagen capsule occurs., This 

represents a human response without any osteointegration process. It has been evidenced that a 

stable bone-implant interface has to be achieved for a long duration of the implant.  

Thermal bone necrosis and weakling of the local blood flow are effects generated during in situ 

curing reactions. Moreover, a chemical necrosis appears with the release of the monomer in the 

human blood stream, even after several years from the implantation. But the main cause of failure 

for a PMMA implant is the septic loosening connected with a problem of infections evoked from 

the cement particles in contact with surroundings tissues.[8] 

Loosening is a multi-factorial process and that originates from several causes. Among them, the 

most important consists in the fatigue failure, that comes from: 
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 pores in the cement  

 stress concentrations at the implant/cement interface  

 debonding at the prosthesis/cement interface  

 bone resorption, causing stresses in the cement[8] 

Huiskes proposes some failure scenario of PMMA bone cement  used for fixation of hip prosthesis 

that can adapt very well to a common cause of failure of this material even when it is used for 

other applications[9] 

The failure scenario includes: 

1. Gradual cracking of bone cement starting from interface debonding, pores in the cement 

or increased stress due to peripheral bone losses. 

2. Generation of wear particles or debris, that develop bone damage with osteolysis at the 

interface. 

3. High micro motion of the implant respect to the bone, that can change the bone ingrowth 

mechanism and, consequently, the strength fixation, which in turn is not high enough to 

sustain weight-bearing load. 

4. Stress shielding, which can be another consequence of failure, due to the high stiffness of 

the implant respect to the bone, that can lead to a degeneration of the fixation. A 

concentration of the load occurs mainly on the PMMA bone cement if a poor 

osteointegration is present. The bone is not loaded due to very different Young modulus 

between bone and PMMA, Being the last higher that the first, and consequently bone 

resorption occurs.[9] 

5. The possible release of cement particles, that can directly interact with the surrounding 

tissues, evoking an inflammatory response and increasing bone destructions. [10] 

Looking for an innovative solution to the aforementioned drawbacks, some studies will be 

presented regarding the synthesis and the characterizations of composite bone cements with high 
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osteointegration properties. The goal is to design a material with a good compromise among 

handling properties, bioactivity and adequate mechanical characteristics. 

2.8. Bioactive PMMA bone cement 

In order to increase the adhesion capability at the interface cement- bone , many research groups 

have proposed a PMMA composite material where polymer is the matrix and a glass or glass 

ceramic particles are the disperse phase.[12 -23] 

W.F. Musa et al. develop a bioactive PMMA-based bone cements for prosthetic fixation with high 

bioactivity, high mechanical properties and good handling properties. Commercial PMMA powders 

different in molecular weights, particle size and shape have been used and loaded with different 

amount of Apatite/Wollastonite (A/W) bioactive glass-ceramic. The compositions of the 

investigated formulations are reported in Table 2.5.[20] The authors perform the evaluation of 

handling properties, mechanical tests and in vivo animal test to verify the bioactive performances 

of the materials.  

 

Table 2.4:Compositions of different PMMA-based bioactive cements [20] 

The loading of dry-silanized Apatite Wollastonite-Glass Ceramic filler to the PMMA cement in 70 

wt% ratio maintained both bending strength and fracture toughness similar to the control. and the 

osteoconductivity of the cement increased from 32.1 ±15.8 % to 55.5 ±10.8% for B-CMW1 

(commercial Simplex cement matrix). The interaction between the bone and the implant is 

positively affected, due to the bioactive glass ceramic dispersed into the PMMA matrix, as 

demonstrated by the in vivo test on six group of rats where the direct contact between the bone 

and the bioactive cement is evaluated . 
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Figure 2.7: SEM microphotographs showing axial sections of rat tibiae 8 weeks after the implantation.(a) bioactive bone cement 

and(b) control cement  with no bioactive phase; 

Figure 2.7 reports a SEM microphotograph showing a section of a rat tibiae with the injection of a 

bioactive bone cement (a) and with a control material (b) after 8 weeks from the implantation. A 

very high level of osteointegration is noticed in figure 2.7a respect to the poor property of the 

PMMA  

Another example of bioactive bone cement was present by Yamamuro et al. [21] where an apatite 

wollastonite glass ceramic was added to a cement based on the bisphenol-a-gycidic methacrylate 

(Bis-GMA) resin. The main advantage in using a different matrix was explained in a decreasing of 

the curing temperature in respect to PMMA.  

The glass ceramic with the composition CaO 44.7, SiO2 34.0, P2O5 16.2, MgO 4.6 and CaF2 0.5 

(weight ratio) was melted in a SiC furnace at 1500°C. The melt was quenched in water then 

pulverized with an alumina ball mill. The average diameter of the glass-ceramic powder particle 

was 5 m. The powder was added to the resin and maximum polymerization temperature and 

mechanical properties were evaluated together with animal experiments.[2121] 

Histological examinations reveal the formation of fibrous tissue between PMMA cement (used as a 

control) and the bone, while the bioactive cement bonds to bone at 3 and 6 months after surgery 

through a CaP-rich layer. This CaP-rich layer, about 30 m thick, is crystallographically confirmed 

to be an apatite layer.[21] 



Poly methyl methacrylate bone cement 

33 

Matteo Bruno 

 

Figure2.8: HAp precipitation at the bone implant interface. The effect is due to the presence of a bioactive phase into the 

polymer. AC is a bioactive bone cement while B is a bone [21] 

After three months new regenerated bone is observed at the bioactive cement surface, and the 

bone between the cement and the femoral endosteum become dense. (figure 2.8) 

Hamizanh et al. [22] reports the realization of a PMMA bone cement modified with the addition of 

a bioactive glass-ceramic phase. The glass-ceramic has been produced by melting techniques and 

controlled crystallization. The synthesized glass-ceramic composition is 55 SiO2, 10 Na2O, and 35 

CaO (wt %) 3 wt % of P2O5 .[22] A comparison between bioactive PMMA bone cement and 

hydroxyapatite bone cement composites is performed.  

The sample with 16 wt % of filler loading broke at a higher strain compare with that at 4 wt %. 

 

 

Figure 2.9: XRD patterns of bioactive glass-ceramic before and after soaking in SBF for 7 days while, GCBC4 is a composite bone 

cement with 4% of glass ceramic, and GCBC8 is bone cement with 8% of glass ceramic after soaking in SBF for 7 days.[22] 
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Figure 2.9 evidences the X-Ray Diffraction pattern of the glass ceramic before and after  bioactivity 

process . A low peaks of apatite is noticed only on glass ceramic after soaking for 7 days in SBF. 

While on the composites GCBC4 and GCBC8 no apatite is detected , but only a wide halo at 2Θ= 

10°-23° which indicate the presence of an amorphous phase.  

The authors affirm that the glass ceramic phase disperse in the polymer is not sufficient to 

produce the precipitation of apatite on the surface of the composite.  

Shinzato et al. [23] propose a bioactive PMMA bone cement containing a glass of different 

particles size in order to study how they influences the mechanical properties and the 

osteoconductivity of the composite. Four different formulations of cement have been prepared, 

containing glass particles with a diameter of 4, 5, 9, 13 m respectively. The glass belongs to the 

system MgO-CaO-SiO2-P2O5-CaF2 and it is mixed in a proportion of 70% with the PMMA. The 

cement is inserted into the medullary canals of rat tibiae and the bone-cement interface is 

examined by scanning electron microscopy (SEM). Affinity index is used to measure the 

osteoconductivity of the material. The index is calculated as the length of bone in direct contact 

with the cement surface without any intervening soft tissue divided by the total length of the 

cement surface, and this value was multiplied by 100 [23]  

 

Table 2.6: Mechanical Properties of Composite bone cements after 1 day soaking in SBF at 37°C [10] 

The mechanical results shown in table 2.6 evidences a decreasing trend in bending strength with 

the increase of particle size, even if the values of four tested formulation remain significantly 

higher than that of the control (PMMA). The Young Modulus does not follow the same trend of 

the bending strength, in fact no variation has been evaluated with the increasing of particle size. 

SEM evaluation for all four types of cement shows a very good interaction with bone at 4 and 8 

weeks. The affinity index decrease at 4 and 8 weeks with the increase of the glass particles.  
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Figure 2.10: (a) bioactive cement with 4 m disperse glass particles and (b) bioactive cement with 13 m disperse glass particles 

in rat tibiae at 4 weeks after implantation. Direct bone formation was observed on two different bioactive glass cement 

formulations without intervening soft tissue layer. C, cement; B, bone. Original magnification at 400x.[23] 

In figure 2.10 a better result is presented, using a bioactive particle phase in the polymer matrix. C 

is the cement and B is the bone; the cement is very well osteointegrated with a continuity 

solution. A very good interconnectivity between the bone and the composite and direct bone 

formatioare evidenced.[23] 

 

Figure 2.11: Scanning electron micrograph of a post-mortem specimen. The image on the left  shows multiple cement fractures 

and adjacent fragmentation to the osteolysis area. P is a cement plug at the tip of the prosthesis; FV is  a fracture through voids 

in the cement; C is bone cement; b is bone; L is focal lysis in the cortical bone. On the right a detail where it is possible to 

distinguish the fracture of the PMMA cement and behind it the fracture and resorption of cortical bone.[24] 

In figure 2.11 a scanning electron micrograph of a post-mortem specimen of a failed cemented hip 

prosthesis is reported. Many fracture of the PMMA bone cement combined with a large zone of 

osteolysis and bone resorption are very clear. This is an example of non-bonding effect between 
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the implant and the tissue[24]. This local cement failure had generated particulate debris and 

endosteal bone lysis adjacent to the local cement fragmentation. 

In conclusion , the addition of a glass ceramic phase to a bone cement has to be take into account 

for improving the performance of the material in the interaction with bone.  
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3.1. Glasses  

A glass is an amorphous material obtained by a progressive stiffening of a liquid that does not 

crystallise during a fast cooling (figure 3.1).  

 

Figure 3.1: Cast of a glass into a mould[1] 

In a crystalline solid material a transition between a liquid to a solid state become in a 

discontinuity way at a precise temperature called solidification temperature.  

In an amorphous material the passage from a liquid to a solid becomes with a progressive and 

continuous increase in viscosity during cooling up to completely stiffness. 

 

Figure 3.2: Mechanism of glass formation Specific volume vs temperature diagram . [2] 

During the cooling of a liquid the elementary structures (atoms and molecules) are able to move 

and get close one to another. At a certain temperature value of the diagram evidenced in figure 

3.2 , named kinetic cross road, two scenarios are possible: an abrupt decreasing of specific volume 

at a constant temperature, T melting for a solid, where the unit structures join themselves in order 
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to form a crystalline solid. The process is completed only when the crystals  have reached a 

maximum possible order.(figure 3.2) 

The second solution regards the formation of a glass, in which there is a transition from an under 

cooled liquid where the atoms and molecules rearrange up to glass state. The movements are 

blocked and the structure of a liquid becomes fixed and is no longer temperature-dependent. The 

passage from a state to another occurred with a progressive increase of viscosity.  

The glass is characterized by a Transition Temperature (Tg) which is an useful indicator of the 

appropriate temperature at which the under-cooled liquid converts to a solid during cooling.  

On the contrary, Tg, indicates when the solid begins to behave as a viscoelastic material during 

heating. As we can see from the diagram in figure 3.2, the structure of a glass is more open than 

the structure of a crystalline solid. An amorphous material is characterized by a continuous 

reduction of volume, occurring during the temperature decrease, and by a change of curve slope 

at a glass transition temperature. 

During the cooling, the glass is characterized by a spatial organization with a short range order and 

an high degree of long range disorder, similar to the liquid from which it originated. 

 

Figure 3.3:Difference between crystalline and amorphous SiO2 [1]  

Figure 3.3 evidences the structure of the amorphous silica respect to the crystalline silica. In the 

first panel the silica tetrahedrons are disposed regularly in a three dimensional lattice network; 

this structure presents a long range order and periodic atomic arrangement, which is typical of a 

crystalline solids; while in the second panel the silica glass is characterized by a long range 

disorder. However a glass can be defined as a material with a short range order composed by silica 

tetrahedron . 
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Zachariasen proposed a glass formation theory according to silica crystals, which form glass 

instead of recrystallizing after melting and cooling, have a network and not a close-packed 

structures. This network is composed by tetrahedral which are connected at all four corners, 

Network is not periodic and symmetrical as in crystals. It extends without a preferential direction 

and in fact glass is considered an isotropic material. Its properties do not depend from a 

preferential direction  

The theory of Zachariasen proposes four rules for the formation of glass. These rules affirm: 

1. Each oxygen atoms is linked to no more than two cations  

2. The oxygen coordination number of the network cations is three or four 

3. Oxygen polyhedral shares only corners and not edge or face  

4. At least 3 corners of each oxygen polyhedron must be shared in order to form a 3-

dimensional network. 

Sufficient network cations must be present to allow a continue  open structure to form a glass.[3] 

Another theory was proposed by Stanworth, he classified the oxides that compose a glass into 

three groups: glass formers, intermediate and modifiers on the basis of the electro-negativity of 

the cations. The only anion is the oxygen and the theory approach is based on the evaluation of a 

cation-anion bond. Cation that form covalent bond with oxygen should act as former and 

produced good glasses. Cations with lower electronegativity form more ionic bonds with oxygen 

so they cannot form glasses by themselves, but they can partially replace cations from the 

previous group. Since the behavior of these ions is transitional between the cations that form a 

glass and other which never form glasses, they are defined as intermediate. Cations, which have 

very low electronegativity and therefore they form highly ionic bond with oxygen, never act as a 

network formers. Since these ions can only modify the network structure created by network 

forming oxides, they are termed modifiers. As it will discuss later, they are very important in the 

bioactive and antibacterial properties of the glass. In table 3.1 there are some example of 

inorganic oxide divided in these three categories.[3]  
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Table 3.1: Classification of inorganic oxides in the structure glass theory[5] 

Bond strength is another criterion for predicting the glass formation. Sun [3] states that strong 

bond prevents reorganization of the melt structure into the crystalline structure during cooling 

and thus promotes glass formation. The bond strength is defined as the energy required to 

dissociate an oxide into its atomic component. The best glass former are characterized by a high 

bond strength. Using this criterion the division into glass former, intermediate and modifiers is 

also applicable.  

  Figure 3.4:Glass structure: effect of alkali oxide[1,5] 

In figure 3.4 a typical structure of silica glass is shown, it can distinguish the silica tetrahedron with  

bridging oxygen (BO), which connect one tetrahedral to another and a non-bridging oxygen (NBO) 

which interrupts the silica network. The NBO usually are surrounded by some ions like Na+ or Ca++ 

which modified the network. Sodium and calcium ions do not form glass alone and cause a 

breakdown of the glass network, they can easily diffuse inside the material, their incorporation 

aims at reducing melting and working temperatures. In fact Na2O decrease the melting 

temperature of the glass and CaO increase the chemical durability. [3] 
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3.2. Glass ceramic materials 

When a liquid became solid by a vitrification process the cooling rate is higher than the 

crystallization rate.  

A de-vitrification process is expressed by nucleation and growth of  a crystalline species. It can 

happen if the glass remains for a long time at a certain temperature in which the speed of 

crystallization rate is high. 

The crystallization process requires the presence of a nucleus, on which the crystals will 

subsequently grow to a detectable size.  

The passage from the liquid state to a crystalline phase will not became instantaneously in all the 

mass because should be a cooperative movement of all atoms of the material but for progressive 

growth of nucleus composed by clusters of few hundreds of atoms.  

Both the nucleation crystal and growth processes are thermally activated, in fact they require the 

overcoming of energy barriers by thermal energy.  

A glass-ceramic can be obtained from a base glass by controlled crystallization (figure 3.5): the 

glass, after its synthesis, is subjected to a heat treatment at a temperature T1, at which it is 

maintained for a certain period of time in order to promote the formation of nuclei, which act as 

centres of crystallization. In a next step, these nuclei increase by a heat treatment at a 

temperature T2 (growth) greater than T1.  

 

Figure 3.5: Nucleation and crystallization thermal treatments[1] 

The new crystals produced in this way grow directly in the glass phase and at the same time slowly 

change the composition of the remaining glass.  
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3.3. Bioactive glasses 

Bioactive glasses are a particular category of glass characterized by: 

 A typical composition of SiO2, CaO, Na2O, P2O5 

 A SiO2 content inferior than 60% mol  

 High presence of Na2O and CaO 

 High ratio CaO/P2O5 

 The Na2O-CaO-SiO2 diagram in Figure 3.6 is used for the design of a bioactive glass . This ternary 

diagram is divided in different zones and each zone has different chemical characteristics. 

 

Figure 3.6: The graph shows compositional dependence (in weight percent, %wt) of the ternary compounds for the identification 

of the best bioglass formulation P2O5 is constant at 6 %wt.[4] 

The chemical glass compositions in the middle of the diagram, in region A, can create a chemical 

bond with bone. In fact region A defines the bioactive bone-bonding boundary. Silicate glasses 

inside region B, such as glasses used for window or bottle behave as inert materials and highlight 

formation of a fibrous capsule at the implant–tissue interface, in fact the reactivity of these 

materials is very low due to the presence of a high SiO2 content. Glasses within region C are 

resorbable and disappear within 10–30 days of implantation, because the presence of calcium 

oxide is too low and the durability of the glass is not guarantee. Glasses within region D are not 

technically practical and, therefore, they have not been tested as implants due to the lack of 

network former compound. In the middle of the diagram in zone E there is the composition of 

Bioglass® that Hench discovers in 1970. The composition of Bioglass® is 45% SiO2, 24.5 % CaO, 24.5 
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Na2O, 6% P2O5 (% in wt). The discovery of this material permitted the explanation of the bioactivity 

process that takes place when the glass is put in contact with biological fluids.[4]  

The most important application of these materials is the orthopaedic surgery where there is an 

elevated request of material which can induce a fast osteointegration between the bone and the 

implant.  

3.3.1.  The bioactivity process 

As mentioned before, glasses for biomedical use can be classified into three categories: 

resorbable, bioactive and inert materials. A bioactive material is defined as a material that present 

a specific biological response at the interface with tissue. 

A bioactive glass undergoes to a surface dissolution in a physiological environment, which cause 

the formation of a hydroxycarbonate apatite (HCA) layer on its surface. An elevated solubility of a 

bioactive glass causes an increase of bone tissue growth.[4] 

The bioactivity process is a time dependent surface modification. This can happen in vitro in 

presence of a simulated body fluid (SBF) or in vivo with biological fluids contact. 

The expected result is the completely osteointegration of the material with soft or hard tissues.[6] 

For the glass-ceramics, generally, the process of bioactivity depends only on the amorphous 

phase.  

The glass dissolution causes both the chemical composition and pH solution variations. The 

formation of HCA on bioactive glasses and the release of soluble silica and calcium ions to the 

surrounding tissue are key factors in the rapid bonding of these glasses to tissue. 

The bioactive process can be divided into 11 stages: stages 1–5 are chemical and can occur in vitro, 

stages 6–11 are biological and occur only in vivo: 

1. The modifiers ions, Na+ and Ca++, produced an ion exchange between them and the 

hydrogen ions present in the solution. 

Si-O-Na

H


OH


Si-OH


Na


(aq) OH




 In this step the pH of the solution increases (> 7,4) as a result of the decreasing of H

ions 

in the  solution, since they are substituted by cations. Figure 3.7a  

2.  Due to the ion exchange of the previous step there is the formation of the silanols at the 

material surface. The hydrogen ions combine with the non bridging oxygen due to rupture 

of Si-O bond.  
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   Si-O-Si H2O Si-OH OH-Si 

 For the same reason the release of soluble silica in a Si(OH)4 form happen. 

3. The silanols polycondesate of and create a silica gel: the re-polymerized silanols provide Si-

O-Si with high water content. Figure 3.7c 

SiOH + SiOH  Si-O-Si + H2O  

 This silica layer acts as a preferential nucleation site for the CaP layer [11] 

4. Precipitation of an amorphous phase enriches of Ca++, PO4
3-, CO3

2- on the SiO2-rich 

layer.Figure 3.7d 

5. Crystallisation of the amorphous CaO-P2O5 film by incorporation of OH- and CO3
2- anions 

from solution to form a mixed hydroxyl carbonate apatite (HCA) layer. Figure 3.7e 

 

 

 

Figure 3.7: Chemical bioactivity steps[1] 
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6. Adsorption and desorption of biological growth factors, in the HCA layer (continues 

throughout the process), to activate differentiation of stem cells. 

7. Action of macrophages: they intervene always when a foreign body invades the body. 

8. Attachment of stem cells on the bioactive surface.  

9. Differentiation of stem cells to form bone growing cells, osteoblasts. 

10. Generation of extracellular matrix by the osteoblasts to form bone. 

11. Crystallisation of inorganic calcium phosphate matrix to enclose bone cells in a living 

composite structure.[1-4]  

 

Figure 3.8: Scanning electron microscopy of different step of bioactivity process[1] 

Figure 3.8 shows three steps (a, b and c) and one magnification (d) of the bioactivity process: in 

figure 3.8a the formation of a silica gel on the surface of a glass, with some isolated precipitates, is 

represented. Here an early stage of bioactivity is reported. In figure 3.8b and 8c the amount of 

precipitations increases and covers the whole surface of the glass. A calcium phosphate laver is 

forming. Figure 3.8d shows a magnification, in which it is possible to see the typical morphology of 

hydroxyapatite formed at the end of 5 steps of bioactivity. This behaviour provides an useful proof 

of material osteointegration capacity . 

The bioactivity depends a lot from the chemical composition of the glass and from the kinetics of 

exchange with surround fluids.  
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Figure 3.9: Bioactivity profile from bulk bio glass to bone[1] 

Figure 3.9 shows a theoretical reaction layer between an implant and the bone. The bulk glass 

contains silica, calcium and phosphorus, when the glass is put in contact with biological fluids 

there is the formation of silicon rich layer, which acts as substrate for the precipitation of Ca-P rich 

layer. This last layer, very similar in morphology and composition to the natural HAp, integrates 

itself with bone. With the increasing of the distance from the bioactive substrate the silicon rich 

layer decrease respect to an increase of calcium and phosphorus intensity . 

 

Figure 3.10: shows the SEM images of a cross-section of glass, soaked in simulated body fluid for: (a) 2, (b) 3, (c) 4, and (d) 5 

weeks with its line scan profiles, the reaction layer is characterized by the different gray tones: G-glass, Si-Silicon-rich layer, CaP-

calcium and phosphorous-rich layer. (e) Shows the reaction layer Si and CaP development with time in this type of glass.[11] 
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De Arenas et al. showed a cross section of a bioactive glass at different times where it possible to 

distinguish the bioactivity steps and the trend of the ions, the silica gel and the HAp formation. 

Reaction layers of silica and CaP depend on time soaking of the glass; in fact the trend of the 

calcium and phosphorus increase with increasing of soaking time in SBF(figure 3.10). [11] 

3.3.2. Osteoinductive behaviour of bioactive glasses 

Another important property of bioactive glasses regards their capability to slowly degrade and 

dissolve when they are implanted. Release products stimulate progenitor cells to differentiate into 

a bone cell (osteoblast). The pathway of stimulating genes is associated with osteoblast 

differentiation. This phenomenon is called osteoinduction. The use of bioactive glasses encourages 

the formation of new bone in two different way by osteoconduction, and by osteoinduction. In the 

first the glass establish a chemical bond with the existing bone. The stimulation of new bone on 

and along its surface is confirmed by the bioactivity process . In the second the material is able to 

activate genetic pathways for the production of new bone cells.[7] 

In a research work[8] Hench clarified the genetic activation mechanism in the differentiation of 

bone cells induced by Bioglass®specific ion release .  

In the developing of genetic theory of bone regeneration, he stated that not only the glass but also 

the ionic dissolution products released from 45S5 influence and control the cell cycle of osteogenic 

precursor cells. Cells that were not be able to achieving a fully differentiated phenotype 

characteristic of mature osteocytes died by programmed cell death.  

The transformation of undifferentiated cell population towards mature osteoblasts became fast, in 

few hours, and led to a formation of new mineralized bone in culture, without the addition of 

organic bone growth factors, such as bone morphogenetic proteins (BMP). This a very important 

advantage connect to the material. This work evidences the effective ionic dissolution products 

(Si4+ and Ca++ ions) released at slow rates from 45S5 glass. The ions produced osteostimulation 

when they are present at a particular ratio and at a particular concentration range: of 15–30 ppm 

for Si4+ and 60–90 ppm Ca2+.[8] 
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Figure3.11: Schematic of osteogenic progenitor cell cycle leading to (1) programmed cell death (apoptosis); (2) mitosis and cell 

proliferation; or (3) terminal differentiation and formation of a mineralized osteocyte (mature bone).[8] 

Figure3.11 shows biological and genetic steps in the process of cell differentiation in presence of 

ionic dissolution products. 

3.4. Mechanical properties of bioactive glasses 

The most important advantage of bioactive glasses is a fast rate of surface reaction, which leads to 

rapid tissue bonding. Their main disadvantage is the weakness and low fracture toughness due to 

amorphous glass network. Bending strength of most of the composition studied is in the range of 

40-60 MPa which make them unsuitable for load-bearing applications. Therefore this material can 

be applied as an osteointergation device as a coating, where interfacial strength between metal 

and the coating is the limiting factor, or in low loaded or compressive loaded device or in powders 

form as a bioactive phase in a composite. [9] 
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Figure 3.12: Modulus of elasticity (GPa) for prosthetic materials compared with bone[9] 

In Figure 3.12 is reported the Young modulus of different categories of biomaterial compared with 

bone. It can be seen that  the bioinert implants have the highest elastic modulus, which is very 

different from the bone one. The bioactive implants show more comparable values. The best 

choice is represented by Bioglass® and bio-composite; the last one consists in a matrix based on a 

polymer and bioactive glass particles dispersed in the matrix. These two solutions permit the best 

trade-off between the material and the young modulus similar to the bone [9]. 

3.5. Bioactive and ferrimagnetic glass ceramic 

If a ferro- or ferrimagnetic material is subjected to an alternating magnetic field, a certain amount 

of heat is generated. The heat generated per cycle depends on the hysteresis losses, which varies 

depending on the nature of ferromagnetic material and magnetic field conditions. Magnetic 

particles of glass embedded in a tumour site and placed within an oscillating magnetic field will 

heat up to a temperature dependent on the magnetic properties of the material, the strength and 

the frequency of the magnetic field, and the cooling capacity of the blood flow in the tumour site. 

Among these materials a large category of them produced heat with magnetite nucleated in the 

glass ceramic matrix. [12-18]. The mechanism of heat production depends on the size and the 

state of magnetic material.  

Bioactive and ferrimagnetic glass-ceramics are expected to be useful as thermoseeds for 

hyperthermia treatment of cancer, especially deep-seated cancers such as bone tumours. When 

they are implanted after the tumor removal, they promote the formation of bone like apatite on 
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them, and destroy cancer cells if they are located near bones. After heating, they can also 

reinforce weakened tumours bone by bonding to bone.  

Bioactive and ferrimagnetic glass are obtained by a crystallization process of iron oxide present in 

the glass composition containing Fe2+ and Fe3+ ions. Moreover they possess a good biocompatiblity  

Bretcanu et al. report the preparation and characterization of a bioactive and ferrimagnetic glass-

ceramic belong to the system SiO2–Na2O–CaO–P2O5–FeO–Fe2O3 . It is prepared by melting of 

coprecipitation-derived raw materials. The unique ceramic phase is magnetite included in an 

amorphous matrix. Magnetite crystals precipitate during cooling from melting temperature. This 

glass-ceramic would no longer require any nucleation and growth thermal treatment, since the 

maximal quantity of magnetite crystals is produced during cooling.[12] 

 

Figure 3.13: X-ray diffraction pattern (XRD) of glass ceramic[12] 

The XRD in Figure 3.13 shows the presence of a typical magnetite peaks nucleated in the 

amorphous matrix. Any other crystalline phase is reported. 

 

Figure 3.14: Scanning electron microscopy of magnetite crystals after etching[12] 
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Figure 3.14 reports a SEM image of the morphology and disposition of magnetite crystals after an 

etching of the amorphous matrix. The crystals have a columnar disposition and an octahedral 

shape.  

 

Figure 3.15: Hysteresis loops of the glass in comparison to the pure magnetite[12] 

In Figure 3.15  authors evaluate also the hysteresis loops of the glass ceramic compare with a pure 

magnetite. It can see the value of saturation magnetization is higher for magnetite  The amount of 

ferrite is higher in pure magnetite respect to the glass ceramic[12]. 

 

Figure 3.16: Results of Bioactivity test on the glass surface[12] 

Figure 3.16 reports the results of bioactivity characterization of the magnetic glass. In the figure 

3.16a several CaP precipitates are observed, figure 3.16b shows the typical morphology of HA. 

Ebisawa et al. propose a bioactive and ferrimagnetic material as a thermoseed for the treatment 

of cancer with hyperthermia. Different glass ceramics are prepared by heat treatment of base 

glasses compositions 40(FeO,Fe2O3)-6OCaO-SiO2 (wt%) with various additives at 100:3 weight 
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ratio. After that, they evaluate in vitro bone-like apatite formation in a simulated body fluid and 

the magnetic properties. .[13] 

 

Figure 3.17: hysteresis loop of CSFe+B2O3+P2O5 (CSFe+BP) glass heat treat at 1050 °C [13]  

Figure 3.17 reports the hysteresis loop of CaO-SiO2-Fe2O3-P205-B2O3 glass-ceramic (CSFe+ BP)  heat 

treated at 1050 °C. The saturation magnetization is 32 emu/g and the coercive force is 120 Oe. 

This saturation magnetization is equal to that of the CSFe glass-ceramics heat treated at 950 °C, 

whereas the coercitive force is lower (500 Oe for CSFe).The lower coercive force is attributed to 

the larger size of the magnetite crystallites. 

The results of bioactivity evidences that an addition of Na2O alone or in combination with B2O3 

and P2O5 to the basic composition produces apatite formation on the surface of the heat treated 

glass in the simulated body fluid within 10-30 days (Figure3.18). 

 

Figure3.18: Thin-film X-ray diffraction patterns of glass-ceramic CSFe + B soaked in simulated body fluid for various periods: m, 

magnetite; W, P-wollastonite; g, glassy phase.[13] 
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In another work Bretcanu et al. analyse the generation of magnetite at different melting 

temperature of glass ceramic belong to the system SiO2–Na2O–CaO–P2O5–FeO–Fe2O3. The 

material is produced using commercial reagents, melting and quenching process in the 

temperature range of 1400-1550 °C is performed.  

The magnetic properties result to be strongly influenced by glass-ceramic microstructure, which 

depends on the melting temperature. As results the increasing of melting temperature up to 1550 

°C allows the formation of the highest amount of magnetite, while the amount of hematite 

decreases (Figure 3.19). At 1500°C temperature the only crystalline phase is magnetite in an 

amorphous phase. No hematite is present at this temperature. Hematite is an unwanted phase 

because it does not possess magnetic properties since it is an antiferromagnetic material. [14] 

 

Figure 3.19: XRD patterns of ferrimagnetic glass-ceramic samples (M = magnetite, H = hematite, P = sodium calcium silicate).[14] 
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Figure3.20: Room temperature hysteresis cycles up to 12 kOe of glass-ceramic samples.[14] 

The saturation magnetisation of different tested glass ceramic varies from 18.6 to 31.5 emu/g, 

while the coercive field varies from 35 to 180 Oe.(figure 3.20) SC45-1550 is the sample with the 

high saturation magnetization value. 

 

Table 3.2:calorimetric data of glass ceramic samples[14] 

The highest power loss is obtained for sample SC45- 1500, which presents the highest hysteresis 

area, while the lower value is obtained for sample SC45-1550.(table 3.2)[14]  

A ferrimagnetic glass ceramic is proposed by Saqlain et al. belong to a system xZnO-25Fe2O3 

(40x)SiO2-25CaO-7P2O5-3Na2O, (x=4, 6, 8, 10). It is prepared by melt-quench method.  

Magnetic induction measures is developed at 500 Oe and at 440 KHz , 1 g of sample is put in the 

center of coil with 20 ml of water in plastic container. The alternate magnetic field is switch on for 

2 minutes.  

The results indicate an increase of the power loss for X8 and X10 which is in agreement with the 

increase of hysteresis area and magnetic material for the same samples.(figure 3.21)  
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Figure3.21: variation of specific power loss and temperature as a function of iron oxide content.[17] 

 

 

Figure3.22: Variation of room temperature (a) saturation magnetization, (b) coercive field, (c) remanent magnetization, and (d) 

area under the M–H loop of glassceramics as a function of iron oxide content.[17] 

Figure3.22 collects the magnetic parameters obtained from the M–H cycles of samples with 

different iron oxide content. The increase in Mr, Ms and hysteresis area, and the decrease in HC 

with an increase in iron oxide content can be attributed to increase in the amount and size of 

magnetite crystallites in the glass-ceramic samples. The area under the hysteresis loop increases 

with an increase in iron oxide content (figure. 3.22d). The area under the loop is proportional to 

the energy loss and hence the heat generated by a sample subjected to an alternating field. The 

results obtained indicate that samples with higher iron oxide concentration are capable of 

generating more heat for the same applied magnetic field. 
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Figure3.23: (a) SEM micrographs of the surfaces of glass-ceramic sample with x = 15 wt.% soaked in SBF for various days 

(magnification: 1000�) and (b) EDS spectra of x = 15 wt.% soaked in SBF for 30 days.[17] 

Figure3.23 reports the SEM micrographs of glass ceramic with x = 15% of iron oxide after soaking 

in SBF for 1 to 30 days. The images clarify the increasing of calcium and phosphorus precipitation 

on the glass surfaces by increasing immersion days in SBF. EDS analysis evidences the gradual 

formation of HA since at 30 days the Ca/P ratio is quite near to 1.67 which is closed to the value of 

HA. [17] 

Leventouri et al. published a paper on a magnetic properties of a ferrimagnetic glass ceramic 

belong to the system 0,45(CaO,P2O5) (0,52-x)SiO2 xFe2O3 0.03Na2O with different heat treatments. 

Four different types of glass are prepared as a function of iron oxide content.  
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Figure 3.24: SEM images from samples of the series 20G presenting the effect of heat-treatment temperature on the 

microstructure of FBC: (a) as prepared,(b) heat-treated at 600 1C, (c) at 800 1C and (d) at 1100 1C. Bar is 2 mm.[18] 

SEM analysis evidences a strong variation in the microstructure of glass in function of the 

composition and the heat treatment. The dendritic structure of magnetite crystals is well defined 

up to 800 °C and starts to break up at 1100 °C where only a trace of dendritic phase separation is 

seen. (figure 3.24)[18] 

 

Figure 3.25: M–H plots of the samples with 5%, 10%, 15% and 20% molar fraction of Fe2O3 in the reacting oxides. The response 

in applied magnetic field H up to 4 kG is shown.[18] 

The magnetization curved are reported in Figure 3.25 as a function of iron oxide content: by 

increasing the magnetic phase the value of saturation magnetization increases.  

3.6. Structure of magnetite  

Magnetite (Fe3O4) is a combination of two iron oxides FeO and Fe2O3 in 1:1 molar fraction. 

Magnetite is a representative ferrimagnetic material. The atoms of oxygen are packed in a face 
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centered cubic lattice, in which the iron atoms, smaller than oxygen, fill the interstices. (figure 

3.26) 

 

 

Figure 3.26:Crystalline structure of magnetite: The iron in tetrahedral position are in light gray while in octahedral position are in 

dark gray, the other atoms are oxygen [10] 

In such way the oxygen around the metal ions occupying the corners of a tetrahedron or of an 

octahedron. The metal ions surrounded by an oxygen tetrahedron are in an A site and the metal 

ions surrounded by an octahedron are in a B site as it can be observed in figure 3.27. 

 

Figure3.27:Tetrahedral and octahedral cation sites in the crystal structure of magnetite (Fe3O4). In a tetrahedral site A the iron 

ion is surrounded by 4 atoms of oxygens  while in octahedral site the iron ion is surrounded by six oxygen atoms.[10] 

Magnetite has an inverse spinel structure, in which the tetrahedral sites are occupied by trivalent 

iron ions Fe3+ and the octahedral sites are shared by a 50:50 number of divalent Fe2+ and trivalent 

iron ions Fe3+. To maintain charge balance to the four oxygens (O2-), there are two Fe3+and one 

Fe2+. So all the divalent iron ions reside in the octahedral lattice sites, whereas the trivalent iron 

ions are split evenly between octahedral and tetrahedral sites. As it can be seen in figure 3.28, in 

the octahedral coordination, Fe3+and Fe2+ions are coupled ferromagnetically. The electron, whose 

spin is directed in the opposite direction of the others and coloured red, can be exchanged 

between two octahedral coordination. On the other hand, the Fe3+ ions in tetrahedral and 
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octahedral sites are coupled antiferromagnetically implying that the Fe3+ spins cancel out each 

other and thus only unpaired spins of Fe2+in octahedral coordination contribute to the 

magnetization. This magnetic moment configuration explains the ferrimagnetism seen 

in magnetite.(figure 3.28)  

 

Figure 3.28: Schematic depiction of the splitting of the 5d orbitals in octahedral and tetrahedral coordination[10] 

Magnetite is the unique crystalline phase which has magnetic properties among those presented 

in the glass-ceramics previously reported. 

3.7. Doping of glasses with antibacterial effect  

One of the main complication connected with bone diseases regards the problem of infection. The 

problem is quite diffused both when a hip prosthesis is implanted and a tumor is removed. After a 

surgical operation the area around the implant has a lower immune resistance to pathogens 

agents and for this reason it is sufficient a minimal bacterial concentration to give rise to an 

extended infection. If the problem is not considered the bacteria colonization bring to failure of 

the implant.  

Escherichia Coli and Staphylococcus aureus are two examples of bacteria stains that have a high 

adhesion capacity on a biomaterial surface, the adhesion is favoured by the presence of porosity 

and roughness that facilitate the formation of a stable bond between bacteria and the surface. 

The most common bacteria encounter in infections belong to the family of staphylococci, in 

particular they are Staphylococcus aureus (Figure 3.29) and Staphylococcus epidermidis (Figure 

3.30), the second is considered harmless lying naturally in the bacterial micro flora epidermal, 

however, in contact with biomaterials become particularly aggressive. The first can be found 

primarily on the surfaces of metal implants, while the second is typical of polymeric implant. A 

possible solution to avoid surface contamination consists in the treatment of the implanted 

material with antibiotics, but some disadvantage are connected with this prophylaxis as allergic 
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reaction, microbial flora decay and bacterial resistance. The last is the most important 

disadvantage because bacteria can develop a capacity to resist drug and so an antibiotic therapy 

can be completely ineffective as antibacterial treatment.  

 

                     Figure 3.29: Staphylococcus aureus                                            Figure 3.30: Staphylococcus epidermidis 

Many researchers tried to solve this problem studying and developing biomaterials enriched with 

some ions, which posses antibacterial properties, like silver(Ag), copper(Cu) and zinc (Zn), and a 

multiple mechanism of action. One of the most important factor is the correct regulation of 

antibacterial ionic concentration in the body in order to avoid toxic reactions for healthy cells. One 

of the most common antibacterial agent is silver, since it has a broad spectrum antibacterial 

activity and exhibits few toxicological side effect.  

3.8. Effect of silver on bacteria  

As it is explained in Figure 3.31, silver ions interact with bacteria in different ways: the ions can 

penetrate cellular membrane, interact with the DNA and stop proliferation and division of 

bacterial cells.  
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Figure 3.31:Effect of Ag ions with interact with bacteria: Mechanism of action of silver ions on bacteria. (1) The silver interacts 

with enzymes and proteins, cross the cell membrane and get into the cell. (2) interacts with DNA by inhibiting cell division. (3) is 

linked to the cell wall and inhibit the functionality of the membrane. 

3.9. Effect of copper on bacteria  

The antibacterial mechanism of copper has been attributed to the fact that copper ions are 

absorbed by the bacteria. First, the bacterial surface absorbs ions, which causes damage to the cell 

membrane and protein structure or by altering the enzymatic function; later the bacterial cells are 

immobilized due to the presence of ions  and this leads to inhibition of the replication process and 

the subsequent cell death.(figure 3.32)[28]  

 

Figure3.32: Interaction between copper and bacteria: A. The copper diffuses from the surface towards the bacteria and cause 

cellular damage B. The breakage of the cell membrane due to the copper lead to a loss of cytoplasmic contents C. The copper 

ions lead to the generation of reactive species that cause further damage D. The bacterial DNA is degraded and the cells die. [27] 

3.10. Silver ion doping techniques  

Different techniques exist to dope glasses and glass-ceramics, among them the ion-exchange 

technique and the introduction of silver during the melting and quenching process are the most 

used processes. The ion-exchange process occurs when a glass/glass-ceramic has one mobile ions 
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A species that is exposed to a source (usually molten salts bath or aqueous solution) of a second 

diffusion mobile ion B species[3,19-26] (figure 3.33). 

 

Figure 3.33:Ion exchange mechanism  

The most important parameters that govern the ion exchange process are the molar 

concentration of the molten salts, the duration of the treatment and the temperature of the 

solution. The Houndle-Walter research group reported that the interdiffusion of cations in the 

soda lime glass strongly dependent on the concentration of the non bridging  oxygen (NBO). 

Therefore, to improve the ion exchange process and to control precisely the silver distribution in 

the glass, it is necessary to understand the diffusion mechanism of silver and how it is influenced 

by the defects in the ion-exchange glass under heating and cooling. 

At temperatures of < 100°C the growth rate of total silver (oxidized and metallic forms) is low, 

then it grows rapidly until 350 °C and finally slow down. The concentration of oxidized silver 

increases a little before 300 °C and then decrease until 450°C whereas the metallic silver increases 

steadily from room temperature to 450°C. [20]  

It exists an inverse proportionality between the silver concentration in the molten salt and the 

time treatment. In fact an high silver concentration guarantees a low exposure time of the 

material while a low bath concentration implies a long ion-exchanging times. [21] 

The silver surface content is both dependent on the ion-exchanging time and on the bath 

concentration. 

 The melting and quenching technique expects the use of a silver oxide that can be added in the 

glass composition. After that all the oxides that composed glass ceramic are melted and quenched 
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and silver has modified the chemical structure of the material conferring an antibacterial 

properties. Glass/glass ceramic can be potential carriers of antibacterial ions like silver because 

these material can accommodate these ions in their structure. Moreover they can induce 

nucleation in the glass matrix and affect the local arrangement of the particles. [36].  

3.11. Copper ion doping techniques  

Even for doping a glass/glass-ceramic with copper ions different techniques can be followed  . 

Among them, ion exchange in molten salts and melting and quenching techniques are the most 

common ones. Ion exchange occurs when a monovalent alkali ions is typically replaced from ions 

present in a molten salt bath or an aqueous solution. It can be done by bringing glasses in contact 

with molten salt at a temperature below the glass transition temperature In this case univalent 

alkali ions in glass are ion-exchanged by copper ions, even if the oxidation state of copper is 

different respect to silver and it depends from the substrate composition. In fact, copper exchange 

process involves different copper states, Cu+ and Cu+2 or the possible formation of either Cu or 

Cu2O clusters critically depending on both glass and bath composition as well as on the process 

parameters [30]. 

The diffusion profile of copper inside the glass does not follow the common ordinary diffusion 

equation because of the presence of different copper oxidation states that have different 

mobility.[28] Generally, higher-valent cations are difficult to diffuse in and out though glasses 

compared to monovalent cations such as alkali [31]. 

When a monovalent copper salt is employed as an ion exchange medium the Cu+ /R+ prevails and 

Cu2+ ions which are found in glasses ion-exchange in air are formed by the oxidation of Cu+ ions 

depending on glass basicity. [28-35].  

The melting and quenching technique, even for doping with copper, expects the use of a copper 

oxide (CuO or Cu2O) that can be added in the glass or glass ceramic composition. After that, all the 

oxides are melted and quenched and copper has modified the chemical structure of the 

material.[37] 
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3.12. Antibacterial and ferrimagnetic glass-ceramics 

Some researchers developed a glass ceramic with antibacterial properties, by different chemical 

process, in order to permit the release of silver or copper ions and inhibit bacterial growth and 

proliferation.  

Sharma et al. propose a silica glass containing magnetite as mayor crystalline phase with the 

addition of silver by melt quenching tecnique, they propose a structural and magnetic 

investigations. Moreover the authors study the antimicrobial effect of the ferrimagnetic glass 

ceramic. The glass belong to the system 25SiO2–(50-x)CaO–15P2O5–8Fe2O3–2ZnO–x Ag (where x = 

0, 2 and 4 mol%). Two different heat treatment are performed: one with annealing treatment that 

produce a magnetic annealed glass ceramic (MAGC) and the other without annealing that 

produced a magnetic glass ceramic (MGC) For each heat treatment three samples are synthesized 

respect to Ag %mol. The XRD analyses (figure 3.34) evidences the presence of magnetite, 

hematite, calcium silicate and calcium phosphate as crystalline phases but not silver or silver 

compound in every glass formulations are detected.  
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Figure 3.34: XRD patterns of glass-ceramics with different Ag ion concentration (a) MGC, (b) MAGC [36] 

 

Table  3.3: Magnetic parameter estimated by M-H loops of glass-ceramics samples.[36]  

The magnetic characterization are shown in Table  3.3. Silver behaves as a nucleating agent and 

promotes nucleation and crystallization of magnetite crystals in the amorphous glass matrix. The 

fact is confirmed by increasing of saturation magnetization both on samples without annealing 

(MGC4) and with annealing treatments (MAGC0, MAGC2, MAGC4). 
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Table 3.4  Antibacterial test of glass ceramic (MGC) samples against E. Coli[36] 

Ag ions released from the glass matrix may attach to the negatively charged bacterial cell wall and 

damage it, leading to cell death. It has also been hypothesized that oxygen associates with silver 

reacts with the sulfhydryl (S-H) groups on cell wall to form R-S-S-R bonds, subsequently blocking 

cellular respiration and causing cell death. 

The antibacterial activity of Ag containing glass-ceramics is evaluated using E. coli , and the 

observations are shown in Table 3.4 . The glass-ceramic containing 4% Ag shows complete 

inhibition of bacterial growth at a concentration of 10% (w/v). However also the glass-ceramic 

containing 2% Ag shows the similar effect at 20% (w/v).[36] 

Another group of researchers present a study regard the influence of copper oxide (CuO) on a 

magnetic properties of glass ceramic belongs to a system of Fe2O3·CaO·ZnO·SiO2.syntetized with 

melt and quenching technique. They evaluated phase separation, microstructure, amount and 

crystalline size of magnetite after controlled crystallization by gradual addition of CuO to the glass 

composition and with different heat treatments. No antibacterial tests were performed.  

The XRD performed after a melting temperature between 1450°C and 1455°C as a function of 

copper oxide reviled the presence of magnetite as the unique crystalline phase up to 5 mg of CuO 

present in the sample. Increasing the amount of CuO at 10g, 20g and 30g in the glass ceramic 

compared cuprite (Cu2O) and delaffosite (CuFeO2) as further crystalline phases . From reference 

pattern the magnetite peaks in these spectra resulted a little bit shifted.  

Other samples underwent an heat treatment at 800 °C for 2 hours or 8 hours and a new M2 

magnetite phase was detected. Heat treatments favours the crystallization of cuprite (Cu2O) and 

delaffosite (CuFe2O) with the increasing of CuO, reducing the formation of magnetite.  

Analysing the crystallography parameters, the replacement of Fe by Cu results in a decrease of the 

cubic parameter. The a-axis shrinks due to the smaller ionic radius of Cu2+ (0.57 Å) cations, which 

substitute Fe3+ (0.65 Å). 
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The increase of Cu amount , heat treatment applied and substitution of Fe ions by Cu ions imply an 

increase in crystallized magnetite but not in crystalline size .  

 

Table 3.5: Magnetic parameter of some selective samples[37] 

The magnetic characterization are reported in table 3.5. The samples without heat treatment 

show maximum saturation magnetization.[37] Adding CuO > 10 g/100 batch there is a separation 

of large amount of delaffosite (CuFeO2) phase causes decreasing in the amount of Fe ions present 

for magnetite crystallization, so, Ms is decreased in 30 Cu than in 5 Cu (800 °C/8 h) sample. The 

formation of delaffosite reduces the magnetic signal because the iron ions are not in a spinel 

structure.  
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4.1. Composite bone cements 

In this chapter it is presented the state of the art of the ferrimagnetic bone cement for the care of 

bone tumor using magnetic hyperthermia. In these composites cements a magnetic phase is 

embedded in a polymeric matrix in order to develop a cement that can be used as bone filler or 

for the fixation of prosthetic devices.[1-8] 

4.1.1. Magnetic bone cements 

A poly-methyl-methacrylate bone cement loaded with Fe3O4 particles is proposed by Kawashita et 

al. and the evaluation of the composite properties is performed[1]. Magnetite particles have an 

average particle size of 5 µm, while spherical PMMA powder has an average molecular weight of 

270 kDa. PMMA powder/MMA liquid weight ratio is 2/3. Three different cement formulations are 

synthesized with 40 %wt (M-40c),50%wt (M50c),60 %wt (M60c) of magnetite micro particles 

added to a polymer matrix.  

 

Figure 4.1: Changes in the temperature of the cement samples during the setting reaction.[1] 

The reduction of maximum polymerization temperature occurred with an increased of magnetic 

microparticles (figure 4.1). 

https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CCEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPoly(methyl_methacrylate)&ei=NcQUVIXhI4S_ywO_w4CIAg&usg=AFQjCNEI5g2xM7VNTz16b1RPQN6BzeVNWg&sig2=MEX9AGG8Dzy62Wa2ysmHXQ&bvm=bv.75097201,d.bGQ
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Figure4.2:SEM analysis of cross- sectional areas of the cement samples.[1] 

The SEM analysis evidences no chemical interaction between PMMA and magnetic microparticles 

that are dispersed uniformly in the polymer .(figure 4.2) 

 

Figure 4.3: Magnetization curves of Fe3O4 powder and sample M-50c and M-40c under magnetic fields of 10 kOe 

Figure 4.3 reports saturation magnetization curves of Fe3O4 powder and samples M-40c and M-50c 

in magnetic fields of 10 kOe, It can be seen in figure 4.3 that the Fe3O4 powder is ferromagnetic, 

with a saturation magnetization value of Ms = 83 emu g-1 and a coercive force of Hc = 141 Oe. This 

value of Ms is close to that of bulk magnetite Ms = 89– 95 emu g-1. Figure 4.3 also shows that 

sample M-40c have an Ms of 35 emu g-1 and an Hc of 139 Oe, while sample M-50c has an Ms of 46 

emu g-1 and an Hc of 143 Oe 
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Figure4.4: Calorimetric curve of different samples at different alternating magnetic field of 120 and 300 Oe at 100 kHz[1] 

The surface temperature of the control sample (PMMAc) remains constant in a magnetic field of 

300 Oe, whereas the surface temperature of samples M-40c and M-50c increases over 70 °C 

within a very fast time with the same magnetic field. While using a magnetic field of 120 Oe, the 

surface temperature of samples M-40c and M-50c reached around 40 and 48 °C within a period of 

about 8 min (figure 4.4). These last temperatures are in agreement with the hyperthermic 

treatment . 

Li et al. propose [2] a PMMA bone cement loaded with different size of Fe3O4 nanoparticles (300, 

35, 11 nm). They assess mechanical strength, biocompatibility and heating capability. The heat 

generation strongly depends on the dimension of the magnetic nanoparticles and from applied 

magnetic field and frequency.  

 

Figure4.5: Compression strength without and with magnetite nanoparticles.[2] 
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The inclusions of magnetic nanoparticles into the PMMA matrix by 30% wt do not decrease 

compression strength (figure 4.5). 

 

 

Figure4.6: The total DNA concentration of Rat-1 fibroblast cells adhered on cement discs. Data are shown as the mean 6 SD 

(n ¼ 5). p > 0.05 indicates no significant increases in the DNA concentration measured until day 7 of the culture for both 

types of cement discs.[2] 

From a biological point of view, the DNA analysis evidences no inhibition effect on cell 

proliferation connected with magnetite nanoparticles.(figure 4.6)[2] 

Tang et al report the synthesis of Fe3O4 nanoparticles by chemical co-precipitation method. After 

that the nanoparticles are embedded into PMMA matrix and four type of cement are prepared 

(table 4.1) [3]. 

 

Table 4.1: Composition of PMMA based cements containg Fe3O4 powders  
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Figure 4.7: Surface temperature change of PMMAc, PF-10 (A), PF-20 (B) in the AMF of 100 Gs, 125 Gs,150 Gs at a frequency of 

500 kHz[3] 

The in vitro heat generation is shown in figure 4.7. In the first graph is reported the sample with 

the lowest amount of magnetite nanoparticles at three different applied magnetic field. The best 

result is obtained at 100 Gs after 600 s where the sample reaches the necessary superficial 

temperature for cells apoptosis (43°C-45°C) In figure 4.7b is reported the heating capability of PF-

20 sample. It can be noticed how the temperatures reached at three applied magnetic field are 

too high respect to the hyperthemic treatment.[3] 

A clinical study on a treatment of bone metastasis  is developed and reported by Matsumine et 

al.[4] They divide the patients in three groups: patients who undergo to hyperthermia treatment 

with a magnetic material (HT group). Two control group: one who undergo to palliative operation 

(OP group) without postoperative radiotherapy and another who undergo an operation in 

combination with postoperative radiotherapy (OP+RT group). 

The HT group is divided into two sub-categories: eight patients with a very critical tumor situation, 

are treated with an intramedullary nail reinforcement without any stripping of metastatic lesion. 

Eight patients, who are expected to have a better clinical situation, after lesion removing, followed 

a prosthetic substitution or reinforcement with a metal intramedullary nail or plate (n = 7). 

Calcium phosphate cement (CPC) containing Fe3O4 powders is implanted into the cavity.[4] 

An alternating electromagnetic field generator is developed with 1.5 MHz in fixed frequency. The 

intensity of the magnetic field is modulated in order to obtain a temperature of around 43°C at the 

interface bone-implant. Hyperthermic treatment is performed postoperatively on days 

8,10,12,15,17, 19,22,24,26,and 29. The exposure time is 15 min per day. 
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Table4.2: Radiographic outcomes[4] 

About 50% of patient treated with hyperthermia improved their quality of life.(table 4.2)  

 

Figure4.8: 63-year-old patient with metastatic lung cancer to the humerus (arrow). (b) After curettage of the lesion followed 

by reinforcement with intramedullary  wire, CPC containing Fe3O4 was implanted into the cavity. (c) At 6 months after 

undergoing hyperthermia, massive new bone formation has become visible (triangle) [8] 

Figure 4.8 reports a solution in the treatment of bone metastasis: the patient presented cancer 

formation in the homerus (see fig 4.8a). The surgical operation provides the implant of a metallic 

reinforcement with the addition of CPC with magnetite (see fig 4.8b). The heat is monitored at 

surface of a cortical bone using a thermometer.[4] After 6 mouth of hyperthermia treatment a 

new massive bone formation is seen in the radiograph(figure 4.8c).  

4.1.2. Magnetic and bioactive bone cements 

Takegami et al. propose a bone cement containing silica particles and magnetite powder 

embedded in a bis-GMA based resin composed of bis-a-glycidylmethacrylate and triethylene-glycol 

dimeth-acrylate.(figure 4.9). The average particle size of the magnetic powders is 13 µm and for 

silica glass powder is 3 µm[5] 
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Figure 4.9: Ferromagnetic bone cement. Filler: magnetite powder and silica glass powder. Resin: bis-a-glycidymethacrylate and 

triethylene glycol dimethacrylate[5] 

As previously mentioned, one of the most important properties of this type of magnetic material is 

the ability to generate heat under stimulating of an alternate magnetic field. The energy 

generated from hysteresis cycle is transformed into heat with a consequently increasing of 

temperature of the surrounding tissues.[5] 

The heat generation of ferrimagnetic bone cement is evaluated as a function of the amount of 

magnetite, volume of the cement and intensity of magnetic field.  

 

Figure 4.10: (A) The position of sensors in the rabbit tibiae. (B) Time/temperature curve. a, the surface on the cement; b–d, the 

interface between bone and muscle; e, medullary canal[5] 

Figure 4.10 shows the results of distribution of heat into the bone. The cement is injected in a 

rabbit tibiae and five temperature probes are located in different areas of the bone. The sensors 

are at the surface of the cement (a), at the interface between bone and muscles (b-d) and in the 

medullary canal (e). The results evidence a correlation between the position of the sensor an the 
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temperatures measures. For e sensor which is the farthest from the heat source the temperature 

profile remain flat at 37°C.[5]  

 

Figure 4.11:  (A) Relationship between temperature and content of magnetite with a magnetic field of 80 Oe) . (B) Relationship 

between temperature and volume. Volume is shown as the height of the block (base of block, 20x20 mm; content of magnetite, 

40%; magnetic field, 100 Oe) . (C) Relationship between temperature and intensity of magnetic field (block, 20x 20 x 5 mm; 

content of magnetite, 40%) .[5] 

Figure 4.11 shows the temperature increase as a function of content of magnetite, volume of the 

cement and intensity of the magnetic field.  

For the control of the hyperthermia treatment exists an inverse correlation with time and 

temperature, if high temperature, about 50°C, are obtained the heating will maintained for few 

minutes .If temperature reaches 43°C it can heat even for 1 hour in order to avoid local 

recurrence. [5] 

Other authors realize an electromagnetic field generator at a fixed frequency of 1,5 MHz[6]. They 

synthesize a bone cement loaded with a glass ceramic that is partially substituted by magnetite 

Fe3O4 powder.  

 

Figure 4.12: Three different behaviour of a bone tumor: left panel show a bone tumor untreated, in the middle a bone tumor 

with an injection of magnetic material an on the right panel a double effect of a magnetic material with the stimulation of an 

electromagnetic field.[6] 
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They introduce tumor cells into a tibia of rabbits and evaluate the status of bone by X-ray 

radiographies in three different situations: without cement implant, with magnetic cement and 

with cement + hyperthermia treatment. In the first situation the tumor proliferates and massive 

bone destruction is observed. Instead when magnetic material and an electromagnetic field are 

applied for 50 minutes the bone tumor is sensibly reduced as it can be observed in figure 4.12. The 

cement is composed by 60% wt. of magnetite.[6] 

Portela et al. proposed a ferrimagnetic silicate cement (FC) with high amount of iron oxide, with 

the following oxides chemical composition (%wt) : 10 SiO2, 2 Al2O3, 52 Fe2O3, 0.6 MgO, 33 CaO, 

(SO3+K2O) R. The maximum powder/water combination ratio (3:2) is used. Paste flows and the 

product is able to be injected.[7]  

 

Figure 4.13:Ferrimagnetic cement immersed in normal SBF. A Precipitates covering the initial surface . b The precipitation of Ca 

and Mg phospjate compound is detected. All the initial cement peaks of Si and Fe decreased and a high peak of P can be 

observed[7] 

Figure 4.13 reports the results of bioactivity test, as it can be noticed a large layer of apatite 

precipitates on cement surface after the immersion in SBF for 4 days. In the EDS spectrum the Ca 

and P peaks are higher than silica and iron, demonstrating the precipitation of precipitates rich in 

Ca and P.[7] 
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They test the injectability of the cement evaluated as the ratio between volume of paste ejected 

from a syringe respect to a total volume of paste before ejection. After a determination of a 

suitable powder liquid ratio an injectability value is found during 5 min after mixing.[7]  

Kusaka et al. propose a cement composed by a a resin (bis-a-glycidymethacrylate) and magnetite 

and silica powders as filler phase. They introduce a tumoral mass into a hole create into a tibia of a 

rabbit. After seven days they open the wound, tumor is removed and the defect is filled with 

cement. Nine rabbits are exposed to a magnetic field for 50 min with an hyperthermic treatment 

(HT group) and 9 animals are not exposed to the magnetic field (non-HT group). After the animals 

sacrifice the maximum circumference of the skinned leg is measured to record tumor growth.[8] 

 

Figure 4.14: Maximum circumference of the skinned leg as a function of time after inoculation of VX2 tumor in hyperthermic 

therapy (HT) group (black circles) and non-HT group (gray circles). A significant difference is shown between groups (P < 0.05)[8] 

In figure 4.14 back dots are values of leg diameter subject to an hyperthermic treatment while the 

gray dots represented the non HT group as a function of time.[8] Size of leg do not change with 

time for treated rabbit and remain between 6-8 cm while measure of non-treated legs increase 

over 8 cm. The maximum diameter is 16 cm. [8] The hyperthermic treatment stabilized the tumor 

and do not induce its proliferation  

The object of the present research activity regards an experimental study on a new magnetic and 

bioactive bone cement .  
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The European Society for Hyperthermic Oncology (ESHO) officially recognizes  the hyperthermia 

treatment in oncology as “the therapy which uses the generation of a higher temperature at a 

tumor-involved region of the body”. This approach uses a variety of temperature ranges (from 39 

– 40 °C up to 80 – 90 °C) and, accordingly, a great number of techniques to induce those 

temperatures under well-controlled conditions. 

During the past, physicians have tried to utilize artificial temperature elevations for the treatment 

of various diseases, included tumor diseases, but due to the complexity of interactions, the 

attempts were often too unspecific to be really successful. 

Today it is widely recognized that a large number of intracellular processes exist with a specific 

temperature-dependent behaviour. 

For example, there is evidence of: 

 Enhancement of anti-tumor effects of various drugs and radiation (typically in the range 

40-43°C)  

 Induction of immunological processes (39 – 41 °C, fever range) 

  Induction of gene expression and protein synthesis (40 – 42 °C) 

 Influencing the tumor microenvironment in a way that makes the tumor better accessible 

for some therapies. 

The most beneficial contribution of hyperthermia for oncological treatments is based on the 

enhancement of the effectiveness of other treatments (radiotherapy, chemotherapy, radio 

chemotherapy, gene therapy, immune therapy etc) without additional toxicity.  

Taking into account the state of the art regarding the problem of bone tumours, the materials 

developed for their care and the techniques for their application, in the following chapters the 

new approach developed during my PhD research activity will be presented. 

The research is intended to study and develop an innovative multifunctional composite material 

useful for the treatment of the primary and secondary bone tumours, by means of non-invasive 

hyperthermia, and for the prevention of the associated complications, such as osteoporosis, 

osteomyelitis and inflammation. 

The principal aim of the research was to develop a composite bone cement which possess at the 

same time biocompatibility, bioactivity, ferromagnetic properties and suitable mechanical 

properties. A further aim, developed in the last part of the experimental work, was the 

modification of one constituent of the bone cement with antibacterial ions.    
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The developed material is a composite PMMA-based bone cement. The polymeric matrix is a 

commercial cement produced and distributed by Haeraus Medical (Germany). The added phase is 

a glass ceramic powder developed and realized in the laboratory of the Department of Applied 

Science and technology (DISAT) at Politecnico di Torino. The glass ceramic belongs to a system 

Na2O–CaO–SiO2–P2O5–FeO–Fe2O3. 

The proposed material possess several innovative characteristics compared to previously 

developed formulations, both in academia and industry, and have strong potential for the 

treatment of the primary and secondary bone tumours. It can be used as fillers for bone cavities, 

even of complex shaped, promises faster restoration of functionality, reduces the frequency of 

infection and provides an opportunity to apply hyper-thermal therapy, without additional surgical 

operation, in order to kill the tumor cells, which were not surgically removed or those formed 

during an eventual relapse 

The innovation concerns the development of the glass ceramic to be added to the polymeric 

matrix, which can contribute to the resolution of three important problems connected with bone 

tumor: poor mechanical and biological interaction between bone and implant, poor efficiency of 

radio- and chemotherapy as well as other hyperthermia treatments of bone tumor (ultrasound or 

microwave) and  bacteria colonisations.  The osteointegration of the implant is imparted by the 

glass-ceramic composition. Ferrimagnetic properties confer the ability of generate heat under an 

alternate magnetic field in order to kill tumor cells that can appear after implantation. 

Antibacterial properties conferred by the chemical modification of the glass-ceramic with silver 

and copper ions are aimed to  avoid or reduce osteomyelitis, which are often associated to bone 

tumours surgery.  The peculiarity and the surplus value of the proposed material, respect to the 

actual commercial and experimental formulations, is to simultaneously perform several functions 

by the addition of a single dispersed phase to the polymeric matrix. 
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5.1. Design of the Research  

The research was designed to be developed in sequential steps in order to obtain progressive 

confirmation of the feasibility of the main aim.  

First step 

In the first step synthesis and characterization of the bioactive and ferromagnetic glass ceramic 

(identified in the following with the abbreviation SC45) were performed: 

  Optimization of melting parameter in order to obtain a high degree of crystallized 

magnetite into the glass-ceramic 

 Morphological and compositional analysis with Scanning Electron Microscopy (SEM) and 

energy dispersion spectroscopy (EDS) 

 Study of the crystalline phase with X-ray diffraction pattern (XRD) 

 Estimation of % wt. of formed magnetite with different methods based on : 

o  Calorimetric measurements  

o  XRD analysis with an internal standard calibration curve 

o  Quasi static electro-magnetic tests with hysteresis loops 

 Elemental mapping of chemical atomic compound  

Second step 

In the second step the synthesis and characterization of the composite bone cements was 

performed, by adding different %wt ( 10%,15%, 20%) of bioactive and ferrimagnetic glass-ceramic 

to a commercial PMMA matrix (identified in the following with the abbreviation P10-P15-P20) by: 

 Morphological and Compositional evaluations with SEM and EDS 

 Mechanical tests: 

o Uniaxial Compression test according ISO 5822-2002 standard 

o Four point bending test according ISO 5822-2002 standard 

 Analysis of surface fractures after bending tests 

 Setting time evaluation according ISO 5822-2002 standard 

 Calorimetric measurement for the quantification of heat generation 

  Analysis of the glass-ceramic and porosity distribution  with Micro Computed Tomography 

(MicroCT)  
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 Hysteresis cycles on both the SC45 and the composites with high and low external 

magnetic field  

 Impedance measurements for the evaluation of dielectric and magnetic permittivity 

Third step 

In the third step an in vitro characterization of the composites was performed by: 

 Bioactivity tests after soaking in SBF for one month  

 Iron leaching tests  

 Cytocompatibility tests 

Fourth step 

In the fourth step the effect of heating on both health and tumoral cells up to 40- 43 °C by an 

external alternating magnetic field was evaluated. 

Fifth step 

In order to add antibacterial properties to the material, the SC45 glass-ceramic was doped with 

silver and copper ions with two different methods: 

 Melting and Quenching: 

o 3% wt of Ag2O was added in the glass composition, identified as SC45 3Ag 

o 5% wt of CuO was added in the glass composition, identified as SC45 5Cu 

With the follow characterizations: 

o XRD analysis 

o SEM and EDS analysis  

o Calorimetric measures 

o Hysteresis cycles at low and high external magnetic field  

o Antibacterial tests with inhibition halo  

 Molten salts ion exchange 

The synthesis considered three different molar concentrations of silver and copper used for 

doping SC45: 

o Na/Ag = 2000 [mol/mol], identified as SC45 Ag2000 

o Na/Ag = 200   [mol/mol], identified as SC45 Ag200 

o Na/Ag = 20     [mol/mol], identified as SC45 Ag20 

o Na/Cu= 2000  [mol/mol], identified as SC45 Cu2000 
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o Na/Cu= 200    [mol/mol], identified as SC45 Cu200 

o Na/Cu= 20      [mol/mol], identified as SC45 Cu20 

 

With the follows characterizations: 

o XRD analysis 

o SEM and EDS analysis  

o Calorimetric measures 

o Antibacterial tests with inhibition halo  
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5.1.1. Production of the glass-ceramic (SC 45) 

The chemical composition of SC 45 is reported in table 5.1. It contains SiO2, CaO, Na2O and P2O5 in 

the same ratio as the bioactive glass 45S5 (Bioglass®) [1], with the addition of two different types 

of iron oxides. The amounts of two iron oxides were chosen to obtain the formation of a high 

amount of magnetite (ideally the theoretical value of 45 wt%). This value was optimized by 

previous studies as a good trade-off between heat capacity generation and bioactivity of the 

material [2-4]. Magnetite is a ceramic phase that confers a ferrimagnetic behaviour to a glass. The 

chemical composition of the glass ceramic is reported in table 5.1. 

 

Table 5.1: Glass ceramic composition (%wt) 

For the synthesis of the glass-ceramic high purity raw materials were used: Na2CO3 (Sigma-Aldrich) 

with a purity ≥99,5%, CaCO3 (Sigma-Aldrich) with a purity ≥99, SiO2 (Sigma-Aldrich) with a purity 

≥99%, Ca3(PO4)2 (Fluka) with a purity ≥96%, FeSO4*7H2O (Sigma-Aldrich) with a purity ≥99% and 

Fe2O3 (Sigma-Aldrich) with a purity ≥99%. Each component was weighted and, before melting, the 

powder reagents were mixed in a flask on a mixing roller for 15 minutes. 

As reported in Bretcanu et al.,[2] the reactants were melted in a platinum crucible at 1550°C inside 

a high temperature furnace (Nabertherm - Carbolite 1800) for 25 min, using a heating rate of 

10°C/min. The melt was cooled at room temperature in air and poured into a brass mold, 

obtaining partially crystallized (glass-ceramic) bulk samples. As reported in [2], the value of 

melting point permitted a high conversion of iron oxide in magnetite. The obtained bulk samples 

were polished with SiC abrasive paper P320 and P600 in order to remove the thin oxide layer that 

often formed on their surface.  

The bulk was milled and sieved to reach a grain size below 20 m. The milling process was 

performed with a Planetary Ball Mill (Vibratory Micro Mill PULVERISETTE 0 Fritsch) in a Zirconia jar 

and the milling conditions were optimized in order to minimize the production of particles of grain 

size < 5 m (checked by SEM analysis). Specific Particle size was chosen because previous studies 

demonstrated that a particle size <5 m is characterized by high agglomeration phenomena and, 
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on the contrary, too many larger particles can cause a decrease in the mechanical properties of 

the final sample.  

 

Figure 5.1: Synthesis steps for the glass ceramic production with melting and quenching technique : Reagents in a platinum 

crucible(a), pouring on plate (b), milling (c1) and sieving up with 20 micron mesh sieve (c2), ferrimagnetic glass ceramic powder < 

20 μm (d). 

Figure 5.1 shows a summary of all the SC45 glass ceramic production steps. 

5.1.2. Production of the composite (P10, P15, P20) 

The composite cements were synthesized using a commercial Poly methyl methacrylate (PMMA)-

based cement with medium viscosity (Palamed®, produced by Heraeus Kulzer S.r.l.) containing 

zirconium dioxide (ZrO2) as radio-opaque phase. The Palamed® cement is commercialized in a kit 

with one packet of a solid phase containing poly-(methylacrylate, methylmethacrylate), ZrO2, 

benzoylperoxide, colorant E141 and one ampoule of liquid containing methyl methacrylate, N,N-

dimethyl-p-toluidine, hydroquinone, colorant E141. 

The commercial cement was prepared by manually mixing the polymer powder component with 

the liquid monomer component. A ductile dough was formed, which cured within a few minutes. 

The ratio of PMMA powder/ MMA liquid used was 2 g/ml as specified in the product technical 

data sheet. 

Composite bone cements were produced adding different wt% of glass-ceramic (10, 15, 20 wt%) 

using a solid phase (PMMA+ SC 45)/liquid phase (MMA) ratio of 2 g/ml and these were identified 

as P10, P15 and P20, while the commercial formulation was named control. 

The mixed powders were put in an orbital shaker for at least one hour, in order to obtain a good 

level of homogenization. Subsequently, they were mixed with the liquid monomer for 30 s to start 
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the polymerization reaction. The dough was put into a polished aluminum mold (100x100x5mm 

with 25 holes of 10mm in diameter) and after hardening the samples were extruded. 

 

Figure 5.2: Synthesis steps of magnetic bone cement production: manual mixing with PMMA/MMA + SC45 < 20 μm in different 

% wt proportion (10-15-20) (e-f). After setting and extrusion from mould , different samples are prepared for different test: 

compression test (h), bioactivity and calorimetric tests (g), four point bending test (i). 

As for the glass ceramic, figure 5.2 shows the composite bone cement synthesis process and all 

different size and dimension of the prepared samples. 

It was chosen to start with three different synthesis of composite bone cement in order to 

evaluate which formulation could be the best trade-off among all the next characterizations. 

5.1.3. Glass ceramic characterizations  

The complete structural, morphological-compositional and in vitro characterization of the glass-

ceramic was performed in previous works.[2,6] Here the attention was focused on the 

identification of the real magnetite percentage in the glass-ceramic, as already done on similar 

materials obtained by co-precipitation derived precursors.[7] 

In order to identify the real wt% of magnetite inside the residual amorphous glass matrix three 

different methods were used: X-ray diffraction (XRD), calorimetric tests and saturation 

magnetization of the hysteresis cycle. 
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5.1.4. X-ray diffraction 

The first method consists in the realization of a calibration curve calculated as an interpolation of 

the single points using fluorite (CaF2) as an internal standard. The single points were obtained by 

performing the XRD analyses of samples containing 0%, 25%, 50%, 75%, 100% of pure magnetite 

with 20% wt of CaF2, mixed in an amorphous phase (powders) of Bioglass® 45S5, simulating the 

composition of the magnetic glass-ceramic synthetized in this work (the values are the mean of 

three measurements). The obtained diffraction data patterns of the mixtures were fitted and the 

intensity ratio between the (311) magnetite diffraction line and (111) fluorite line was determined 

and plotted against the weight fraction of magnetite. The ratio increases with the increasing % wt 

of pure magnetite powder with respect to a constant % wt of CaF2. The same amount of CaF2 was 

added to the SC 45 sample and XRD analysis was performed. The value is a mean of three 

measurements. 

The crystalline phase in the glass-ceramic was analysed by Philips X’Pert diffractometer with CuKa 

radiation, using a step of 0,02 (2) with a scan step time of 1 s. The diffraction lines were identified 

using the ‘‘X’Pert High Score’’ program, with the PCPDFWIN database (2002 JCPDS- International 

Centre for Diffraction Data). The profile fitting of the diffraction pattern was performed by using 

the same software in order to determine the crystalline phase. 

5.1.5. Calorimetric test 

The second method was based on a calibration curve obtained by calorimetric measurements. 

The single points were obtained performing heating cycle of samples containing 0%, 25%, 50%, 

75%, 100% of pure magnetite mixed in an amorphous phase (powders) of bioactive glass 45S5, 

simulating the magnetic glass-ceramic composite. The cycle was performed with an induction 

furnace, Egma 6, product by FELMI S.r.l at 48mT (1 kW) for a constant time of 3 min and 

registering the initial and final temperature before and after the heating with a digital 

thermocouple (Datalogger Tersid). All the measurements were performed in 10 ml of distilled 

water. 
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5.1.6. Saturation magnetization 

The third method was based on the evaluation of the hysteresis loops of the glass ceramic and the 

pure magnetite. Then the %wt of magnetite crystalized into the amorphous glass network was 

calculated as the ratio between the saturation magnetization value of SC45 with respect to a 

values of pure magnetite with the following formula:  

100*
45

%
43OMsFe

MsSC
Magnetite  (5.1.1) 

Where 

Ms SC45 = Saturation magnetization at 800 kA/m of the SC45 

Ms Fe3O4 = Saturation magnetization at 800 kA/m of the pure magnetite  

The particles of magnetite (Sigma-Aldrich) have a dimension < 5 m. 

Hysteresis cycles were measured up to 800 kA/m by means of a DC magnetometer/ AC 

susceptometer (Lakeshore 7225) equipped with a Cryogen-Free Magnet at room temperature in 

quasi static condition. At 800 kA/m the hysteresis cycles both of SC45 and of the pure magnetite 

were already closed and so it was possible to determine the saturation magnetization values. 

5.1.7. Composite bone cement characterizations 

5.1.8. Morphological and compositional characterization 

 A morphological and compositional analysis was developed on composite bone cements (P10, P15 

and P20) by SEM-EDS techniques in order to investigate the glass ceramic dispersion in the PMMA 

matrix. The analyses were performed both on the surface and on the section of the samples.  

5.1.9. Calorimetric tests 

In order to estimate the heating ability of the composite bone cements, they were subjected to 

calorimetric measurements using an alternate magnetic field and detecting the increase in 

temperature of a volume of water containing the samples. The test was developed using a 

magnetic induction furnace Egma 6 (Felmi S.r.l) generating a magnetic field intensity in the range 

0– 118 mT at fixed working frequency of 220 kHz. For each cement formulation (P10, P15, P20) 

two composite samples were put inside a glass test tube with a diameter of 10 mm and a height of 

160 mm. 
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The samples were immersed in 10 ml of distilled water and the initial temperature T in was 

measured with a thermocouple. Then, the tube containing the samples was positioned in the 

middle of the coils of the inductor. A magnetic induction of 48mT was applied and the final 

temperature Tfin was measured after 2, 4, 6, 8, 10 and 12 min. After each measurement the 

samples were cooled in air at room temperature (figure 5.3). 

The same test was repeated three times for each cement formulation to minimize the data 

scattering.  

 

Figure 5.3: Calorimetric set-up for heating measures 

The measured temperature as a function of the field application is used to calculate the specific 

power generated by magnetic hysteresis loss by applying the heat diffusion equation[8]: 

 

                   

where 

 The first term of the equation concerns the heating term of overall system. 

 The second term is the power generated by the sample due to magnetic hysteresis 

 The third term is the thermal dissipation toward the external environment. 

The solution of this equation, assuming an isothermal behaviour of the system (the same 

temperature of the components subject to heating) and the temperature of beginning transitional 

(Tin) equal to the room temperature (Tr), is:  

(5.1.2) 
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                                                   (5.1.3) 

that solved as a function of W becomes: 

                                                         (5.1.4)    

 
where: 

W= thermal generated power [Watt], the specific power [W/ g] is obtained by dividing W by the  

weight of the sample under examination. 

T = T - Tr : increase of water temperature in the period of field supply [°C] 

t = exposure time to magnetic field supply [s] 

M = mass of all physical component of the system [kg] 

Cp = specific heat [J/(kg °C)] 

M*Cp = MC = thermal capability of the system, intended as the sum of the thermal capacity of the 

components subject to heat [J/°C] calculated as: 

MC = m water* cp water + m sample* cp sample + m glass tube test*cp glass tube test (5.1.5) 

where  

mi is the mass of the i-component  

cpi is the specific heat of related material, for the composite cement was assumed the specific heat 

of PMMA. 

KS = global transmittance calculated as: 

K = transmittance surface towards the ambient [W/(m2 °C)] 

S = exchange surface of the heat towards the ambient [m2] 

The data T and t are subjected to experimental survey, MC and S are calculated on the basis of 

the physical properties of the materials and the geometry of the system. K was estimated on the 

basis of data available in the literature [8] and considered not dependent on the surface 

temperature because of its reduced range variation. 

S = the outer surface of the tube (limited to the free surface of the water) = 0,005 [m2] 

K = transmittance of a vertical tube in still air at a mean temperature of 40 ° C = 13 [W/m2 ° C] 
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Having defined the constant terms, MC and KS, it is possible to construct a temperature versus 

time curve whose comparison with experimental measurements allows the evaluation of the 

better fitting function that represents the thermal phenomenon. 

5.1.9.1. Experimental model with thermal insulator  

In order to better quantify the temperature increase of a precise volume of water and specific 

power losses, a similar set up was optimized by the addition of a dark thermal insulator around 

the test tube in order to reduce the heat dispersion toward the environment and for a better 

quantification of all heat generated from three different sample formulations (P10, P15, P20) .  

 

Figure 5.4: Calorimetric set up with a foam polyethylene as a  thermal insulator 

The system is composed of three samples, 26 ml of distillate water, the glass test tube with a 

diameter of 10 mm and an height of 160mm, a foam polyethylene thermal insulator (λ = 0,038 

W/(m*K)) (see figure 5.4). The test was performed using two magnetic induction furnaces Egma 6 

(Felmi S.r.l) generating a power up to 6 kW (39 mT) with a fixed working frequency of 220 kHz and 

Egma 30 (Felmi S.r.l) with a power generation up to 18 kW (132 kA/m) with a fixed frequency of 

200 kHz . The measure of temperature was performed by a digital thermocouple (Datalogger 

Tersid S.p.A). The initial temperature (Tin) and  final temperature (Tfin) was recorded at t = 0 min, t 

= 5 min, t = 10 min switching off the magnetic field for 1 minute between one time and another. 
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The proposed experimental model is based on the quantification of the energy storage in the 

different heated elements (sample, water, test tube) during the time of field application and on 

the theoretical evaluation of dispersions towards the environment. 

The irradiation contribution was neglected because the thermal insulator temperature is close to 

the environment one.  

Each component had the ability to store a specific amount of heat that has been quantified with 

the formula:  

Est= ∑(mi*cpi)*T (2) [8] (5.1.6) 

Est depends on the heat capacity (cpi), the mass of the element (mi) and the delta of temperatures 

between the initial and final heating period. 

The dispersion term is quantified as the heat dispersion per conduction per unit heating time: 

Ed = U*t* (Tmax - Tamb) (3) [8] (5.1.7) 

U transmittance coefficient between the test tube and the thermal insulator (J/(s*°C)) 

t heating time (s) 

Tmax medium heating temperature of the water (°C) 

Tamb room temperature (°C) 

The total amount of heat (energy stored + dispersion) is divided by the maximum heating time (10 

min) and by the sample mass in order to obtain a specific power loss. The measurements were 

performed in duplicate. 

5.1.10. Magnetic hysteresis measurements  

Magnetic properties are investigated with a DC magnetometer/ AC susceptometer (Lakeshore 

7225) equipped with a Cryogen-Free Magnet Frumagnet at room temperature in quasi static 

condition.  

In particular hysteresis cycle measurements were performed both on the SC45 and on the P10, 

P15, P20 composite cements samples into two different magnetic field ranges: up to 800 kA/m 

(high field) to study the magnetic characteristics of the materials and up to 34 kA/m (low field) in 

order to work  in a magnetic field range that can be used in clinical laboratories [5]. This test 

allowed the evaluation of the energy generation in one hysteresis cycle 
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5.1.11. Impedance measurements  

These types of electromagnetic measurements had the aim of evaluation of the response of the 

material to an electro-magnetic stimulation.  

The impedance is a physical vector which represents the opposition force to a passage of an 

alternate electric current in a bipol . It can be expressed as a ratio between the phasor of the 

voltage and the phasor of current. It is indicated with Z and it is measured in ohm [Ω]. 

The impedance is described by a complex number, real part represents dissipative phenomenon 

which correspond to an electric resistance R while the imaginary part indicates reactance X, 

associated to energy storage phenomena: 

jXR
I

V
Z      (5.1.8) 

For a purely inductive or capacitive circuit, the impedance is thus reduced to pure inductive or 

capacitive reactance. The reactance of a capacitor and an inductor in series is the algebraic sum of 

their reactance. [10] 

LC XXX      (5.1.9) 

5.1.11.1.  Dielectric permittivity measurement 

For this measurement the polymer-based material and the composites were considered to be 

dielectrics between two metal copper armatures. They were excited by a radiofrequency signal, 

which avoids the magnetic field and only the effect of electric field contribution was evaluated.  

Impedance meter resonator (HP 4192A LF Impedence Analyzer, Figure 5.5) permitted to pick up 

the modulus and the phase of the impedance to the current with respect to the voltage in the 

range of frequency 1 kHz to 10 MHz.  
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Figure 5.5: Impedance Analyzer 

The samples used for this measurement had a disk cylindrical shape with 300 m as a thickness 

and a diameter of 68 mm. Each sample was then placed into the position of maximum electric 

field in contact with two cylindrical copper plates in order to create a capacitor.  

It was possible to measure the capacity of a dielectric with the effect of the frequency. This 

parameter characterizes the capacitor since it depends only on the geometry of the component 

and the characteristics of the dielectric interposed between the two armatures. 

The measure of reactance Xc in presence of purely capacitive impedance was performed:  

CX
C



1
  with ω = 2 π f (5.1.10) 

Taking into account that the capacity of a plane capacitor with parallel faces is: 

d

A
C r 0  (5.1.11) 

It was possible to calculate the dielectric permittivity r  knowing all other parameter.  

5.1.11.2. Magnetic permittivity measurements  

This measurement involved the creation of a cylinder, with a d= 6 mm and height 8.5 mm, around 

which a copper coil with 100 windings was wrapped. In this case there is only the response of the 

magnetic field in the material which is expressed by the evaluation of the inductance L. 

With the impedance meter the modulus and phase of the current with respect to the voltage were 

measured and the imaginary component of the impedance Z was calculated. 


LX

L   with ω = 2π f    (5.1.13) 
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It gained magnetic permittivity µ, knowing all the other parameters.  

l

AN
L

2
       (5.1.14) 

Where : 

N number of coils 

A section of magnetic nucleus 

l length of the nucleus around the coils 

µ magnetic permittivity [10] 

The goal of this test was the evaluation of the dielectric and magnetic permittivity in order to 

investigate if and how the magnetic glass ceramic influenced the polymer responses.  

5.1.12. Mechanical tests 

Mechanical characterization permitted to test the load-bearing ability of the composite material. 

For the polymeric bone cement both compression and four point bending tests were performed. 

In table 5.2 the values of compressive strength, the limits of bending strength and elastic modulus 

that the material must respect are reported.  

 

Table 5.2: Inferior limit of applicability of bone cement in compression and bending [9] 

The compression and the bending tests were performed with a growing static stress applied up to 

the sample failure. In the compression test the sample was subjected to deformation under 

uniaxial compression stress at a constant speed measuring the load (variable independent) 

necessary to provide a given compression (variable dependent). 

Composites bone cements (P10, P15 and P20) and commercial composition were subjected to 

mechanical compression and bending test in accordance with ISO 5833 [11]. For both tests five 

specimens were prepared with dimensions required by the standards: cylindrical samples with, 

6x12 mm, for the compression test and rectangular specimens, 75x10x3,3 mm, for the bending 

test. Before testing, the planarity of each sample surface was checked. Then, they were tested for 

the evaluation of the maximum compression strength. Compression strength was detected using a 
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Sintech 10/D (MTS) machine in figure 5.6, with a constant cross-head speed of 20 mm/min and a 

load cell of ±5 kN. The samples were prepared 24 hours before the test and they were stored at 

room temperature. 

 

Figure 5.6 : Compression machine  

 

Figure 5.7: ideal compression test, following the application of a force the hight of the sample change from lo from l with a 

deformation of the specimen. 
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Figure 5.8 Theoretical load-displacement diagram for a cement 

For each cylinder the offset load (point 2 in figure 5.8) was recorded and the value of the 

compressive strength was expressed in Megapascals (MPa) by dividing this force by the original 

cross-section area, in square millimetres, of the cylindrical sample. The average compressive 

strength of the five cylinders was calculated. 

Bending strength and modulus were evaluated using a test machine H25KS with a load cell of ± 

5kN produced by Tinius Olsen Ltd. In four points bending test the moving crosshead pushed two 

wedges arranged symmetrically to the centre line of the specimen. During the test the 

displacement of the crosshead and the applied load were measured [12]. 

Figure 5.9 reports a diagram of the flexural momentum during the test, demonstrating that the 

bending moment remains constant between the two supports. 

 

Figure 5.9: Distribution of bending moment in a  4 point flexural test  

 

The bending strength and bending modulus were evaluated respectively according the formula: 
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 (5.1.21) 

Where 

F= force at break in Newton 

a = distance between the inner and outer loading points (20 mm) 

b = average measured width of specimen, in millimeters 

h = average measured thickness of specimen, in millimeters; 

 

(5.1.15) 

Where 

F = force at break, in newton; 

a = distance between the inner and outer loading points (20 mm ) 

f = difference between the deflections under the loads of 15 N and 50 N , in millimeters; 

b = average measured width of specimen, in millimeters 

h = average measured thickness of specimen, in millimeters; 

l = distance between the outer loading points ( 60 mm);[11] 

The fracture surfaces of samples after bending test were analyzed by SEM; three samples for each 

cement composition were observed: sample broken at σ maximum, σ medium and σ minimum. 

5.1.13. Setting time tests 

The setting time was investigated in accordance with ISO 5833-2002. All three composite cement 

formulations were evaluated. 
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Figure 5.10: Typical setting time curve of polymeric bone cement[11]  

 

Figure 5.11: Experimental set up for setting time test in according with ISO 5822- 2008. 

The powder and the liquid monomer were mixed together in a bowl. After the liquid wetted all the 

powder the paste was put in a teflon mould, in conformity to the standard specification (see figure 

5.11b), it was covered and a temperature probe was insert and put in contact with the cement 

during the polymerization reaction in order to collect time/temperate data. The used temperate 

probe was a digital thermocouple datalogger by Tersid.  
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5.1.14. Micro Computed Tomography (MicroCT) 

Micro computed tomography (micro-CT) is a non-destructive technique that can produce 3D sets 

of images. Micro-CT analyses were performed with a SkyScan1174®, using a 50 kV–800 mA x-ray 

source and a camera pixel size of 13,42 mm. The exposure time was 5,2 s per projection. The 

images were recorded on a 1024x1304 CCD detector, with the pixel size set to 6,5 mm. A 330 mm 

Al filter was used. The 3D structure was reconstructed by means of the Nrecon® software and for 

the 3D visualization of the reconstructed sample, the CTVox® software was used. For each sample 

a volume of interest was built; and a single voxel of reconstructed image had a size of 6,5x6,5x6,5 

μm. The micro-CT analysis was carried out to evaluate the porosity of the composite cements and 

the dispersion of the glass ceramic in the polymeric matrix.  

5.1.15. Composite bone cement: in vitro tests 

5.1.15.1. Bioactivity tests 

In order to evaluate the composite bioactivity, in vitro test by soaking samples in Simulated Body 

Fluid (SBF, Kokubo Protocol [17]) was performed. The bioactivity of glasses is based on their ability 

to induce the in vitro formation of a semi crystalline hydroxyapatite (HAp) rich layer through a 

sequence of ion exchange steps. This behavior is considered as an indication of their in vivo 

bioactivity (i.e. their bonding ability to living tissues). 

The SC45 is a glass-ceramic that presents bioactive activity [3] but with a slow kinetic. 

Nevertheless, after one month of soaking in a simulated body fluid (SBF)(see the chemical 

composition in figure 5.12) a thin silica gel layer can observed on its surface together with some 

precipitates of a phase rich in calcium and phosphorous [4]. This glass-ceramic was already tested 

in a previous work for its biocompatibility showing a high degree of cytocompatibility [4].  
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Figure 5.12: SBF composition in comparison of human plasma[17] 

Each composite cement (P10, P15, P20) was soaked in 25 ml of SBF and maintained at 37°C for 

four weeks. Every three days the solution was refreshed and the value of the pH was measured. 

At the end of the treatment, samples were gently washed in distilled water, dried at room 

temperature and characterized by morphological and compositional analyses by Scanning Electron 

Microscopy (SEM– FEI, QUANTA INSPECT 200) and Energy Dispersion Spectrometry (EDS - EDAX PV 

9900). 

5.1.15.2. Leaching test 

Composites bone cements were subjected to leaching test in order to assess if any iron release 

could occur, causing a potential risk of iron overloading in the fluids in future in vivo applications. 

The leaching of other ions, involved in the bioactivity mechanism, was not the object of the 

present work. The cement formulation containing the highest SC 45 amount (P20) was selected for 

the test in order to evaluate the maximum value of potential leaching. The samples were dipped in 

30 ml of SBF, at 37°C, up to one month.   

At determined time steps (3h, 1, 3, 7, 14 and 33 days) an aliquot of the solution was picked out 

and analyzed, after mineralization with nitric acid (for trace analyses, 69% w/w) and dilution with 
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milliQ water, by Graphite Furnace Atomic Absorption Spectrometer (GF-AAS 4100 ZL, Perkin 

Elmer, autosampler AS/71, Zeeman Effect background correction). The calibration curve was 

performed diluting a mother solution of iron in nitric acid (1g/L) in milliQ water (final 

concentrations: 5, 10, 25, 50 g/l). Accuracy was determined analysing the NIST standard SRM 

1643e - Trace Elements in Water. 

The test was performed in triplicate and commercial cements containing 20%wt of Bioglass® 

(without Fe in any form) was selected as control samples. 

5.1.15.3.  Cytocompatibility tests 

Tests were performed at University of Piemonte Orientale "A.Avogadro" with the collaboration of 

Prof.ssa Lia Rimondini and Dr. Andrea Cochis. 

5.1.15.4.  Cells cultivation 

Human osteosarcoma cells (ATCC CRL-1427, Mg63) were cultivated in Dulbecco’s Modification 

Minimal Essential Medium (DMEM, Sigma) supplemented with 10% fetal bovine serum (FBS, 

Sigma) and 1% antibiotics (penicillin – streptomycin) at 37°C, 5% CO2. Cells were cultivated until 

80-90% confluent, detached with a trypsin-EDTA solution and used for experiments. Mg63 cells 

were used as representative for osteoblasts cells since the composite cements are intended for 

osteointegration. This cell line is commonly used to investigate the cytocompatibility of 

biomaterials for bone substitutions for preliminary in vitro studies. 

5.1.15.5. Indirect  Cytocompatibility test 

For the indirect test, serum free DMEM was incubated without cells for 1 week at 37°C, 5% CO2 in 

direct contact with controls, Palamed®, test samples (P10, P15 and P20). Afterwards, eluates were 

collected, supplemented with 10% FBS and used to cultivate Mg63. Cells were seeded in a defined 

number (1x104 / well) into 24 wells plates (Cell Star, PBI International) and cultivated for 24, 48 

and 72 hours at 37°C, 5% CO2. Afterwards, cells viability was evaluated by the (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay (MTT, Sigma). Briefly, 50 

l of MTT solution (3mg/ml in phosphate buffered saline (PBS), ph 7.4) were added to each sample 

and incubated 4 hours in the dark; afterwards, formazan crystals were solved with 100l of 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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dimethyl sulphoxyde (DMSO, Sigma) and 50 l were collected and centrifuged to remove 

eventually debris. Surnatant optical density (o.d.) was evaluated at 570nm with a 

spectrophotometer (Spectra Count, Packard Bell). Polystyrene samples o.d. were used as control 

and considered as 100% cells viability while coated samples viability was calculated as follow: 

(sample o.d. / control o.d.) *100 . Experiments were performed in triplicate for controls and test 

samples. Furthermore, cells morphology was visually investigated after 24, 48 and 72 hours of 

cultivation by light microscope (Leica AF 6500, Leica Microsystems). 

5.1.15.6. Direct Contact Cytocompatibility evaluation 

For the direct contact assay, cells were seeded in a defined number (1x104 / sample) directly onto 

the surfaces of each samples and cultivated in DMEM 10% FBS at 37°C, 5% CO2. Cells viability was 

evaluated after 24, 48 and 72 hours with the MTT assay as described in the indirect assay section. 

Experiments were performed in triplicate. 

5.1.15.7. Morphological Evaluation  

The morphology of cells attached to the samples surfaces was investigated also by FESEM 

microscopy (FESEM - SUPRATM 40, Zeiss) equipped with Energy Dispersive Spectroscopy (EDS). 

Briefly, samples were removed from the media, gently washed with PBS, fixed with 2.5% 

glutharaldehyde for 2 h in 1 mol L21 sodium cacodylate buffer, washed with the latter, dehydrated 

with 70%, 80%, 90%, and 100% ethanol (10 min each), and finally treated with CO2 at top critical 

point. Specimens were fixed on aluminum stubs using a conductive silver paste, covered with a 

chromium layer, and visualized at various magnifications. 

5.1.16. Statistical analysis of data 

Statistical analyses were performed using Statistical Package for Social Sciences (SPSS v20.0, IBM 

Co. Armonk, New York, US). The assumptions of homogeneity of variances and normal distribution 

of errors were checked for all the variables considered: afterwards, ANOVA one-way and post-hoc 

Sheffe’s test were used. The significance level was set at 5%. 
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5.1.17. Hyperthermia on tumor cells  test 

On the basis of data incoming from previous test, a simplified simulation of an hyperthermia 

application on a culture of tumor cell was performed. 

5.1.17.1.  Culture Cells Preparation  

The test was performed as a comparison between P10 and control PMMA . Two different types of 

cells have been used: 

1. HFOB: fetal human osteoblast cells, non tumoral, non-tumorigenic. 

2. Mg63: human osteoblast from osteosarcoma, tumoral and tumorigenic  

Cells were cultivated in Dulbecco’s Modified Eagle Medium (Mg63, DMEM, Sigma) or Ham’s F12 

mixture 0,05 mg/ml G418 salt (HFOB, Sigma) supplemented with 10% fetal bovine serum (FBS, 

heat-inactivated, Sigma) and 1% antibiotics (penicillin- streptomycin, Sigma). Cells were cultivated 

until 80-90 % confluence , detached with trypsin-EDTA solution (0,05% in PBS, Sigma) and used for 

experiments.  

5.1.17.2. Cytocompatibility evaluation  

Round 0,5 cm diameter 8mm thickness P10 and Palamed specimens were sterilized by 70% 

ethanol immersion overnight prior to use with cells. Afterwards, specimens were placed into the 

wells of a 24 multi-well plate (CellStar, PBI International , Milan , Italy) and cells (Mg63 and HFOB ) 

were seeded in a defined number (2x105 cells/ sample, 1 ml/sample) directly onto specimens 

surfaces; plate was incubated 48 hours at 37°C , 5% CO2 in a humid atmosphere. Then, cells 

viability was evaluated by the colorimetric metabolic assay (3-(4,5-dimethylthiazol-2-yl)-

2,5diphenyltetrazolium bromide, (MTT, Sigma). Briefly, 100 µl of MTT solution (3 MG/ML IN pbs) 

were spotted into each well; plates were incubated for 4 hours in the dark in a 37°C incubator. 

Afterwards, medium was removed and formazan crystals formed on the specimens surface were 

solved with 100 µl of DMSO. Finally, 50 µl were collected from each well, centrifuged in order to 

remove eventually debris (12000 rpm, 1 minute) and the optical density was evaluated by a 

spectrometer (Spectra Count , Packard Bell, Chicago, USA) at a 570 nm wavelength. 

Experiments were performed in triplicate and results were expressed as means and standard 

deviations.  
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5.1.17.3. Hyperthermic treatment  

Specimens prepared as a previously described in the cytocompatibility assay (2x105 cells/ sample, 

48 hours cultivation) were treated with a magnetic inductor (Egma 6 produced by FELMI S.r.l.) . 

The machine was set with a magnetic field of 22,5 mT with a fixed working frequency of 220 kHz. 

Specimens (Palamed and P10) were treated for 5-10-15-20-30 minutes under alternate magnetic 

field. For each time, three samples with tumoral (Mg63) cells and three with non tumoral 

(Hfob)cells were tested with the magnetic field generator. Then, cells viability was evaluated by 

MTT test as previously described. Non- treated samples were considered as control and their 

optical density (o.d.) considered as 100% ; tested samples o.d. was expressed as cells viability 

percentage as a function of controls. Experiments were performed in triplicate and results 

presented as means and standard deviations. 

5.1.17.4.  Cells morphology evaluation  

After each assay (cytocompatibility and hyperthermic evaluations), cells morphology was visually 

checked by scanning electron microscopy (FESEM). Briefly , samples seeded with cells were fixed 

20 minutes at room temperature with 2.5 % glutharaldehyde (Sigma , in PBS); then samples were 

gently washed with PBS and dehydratated with alcohol scale (70-90-100%, 10 minutes each). 

Finally samples were treated with hexamethyldisilazane (Sigma, 2 minutes), covered with a thin 

layer of chromium for 1 minute, put on a dedicated SEM stubs and observed with the instrument 

at various magnifications. 

5.1.17.5. Hyperthermic treatment apoptosis induction   

After hyperthermic treatment application, cells apoptotic induction was evaluated by Annexin-5 

staining (Fitch-conjugated Annexin-5 , ImmunoTools, Germany). Cells on specimens treated 

surface were fixed with formaldehyde (3,7% in PBS) 20 minutes at room temperature. Then 

samples were gently washed with PBS and Annexin-F was added (1:200 in a 5% goat serum 1% 

bovine albumin in a PBS solution ) at room temperature. Afterwards, cells were carefully washed 

three times (5 minutes each) with PBS and permeabilized 5 minutes with Triton (0,25% in PBS). 

The DAPI ( 1:250 in PBS, Sigma) was used to counter staining cells nuclei. Samples were observed 
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under a fluorescent microscope (Leica) and the Annexin-5 positive cells counted. Results were 

expressed as % of Annexin-5 positive cells towards the cells total number. 

Experiment were performed in triplicate and expressed as mean and standard deviations.  

5.1.17.6. Heating up to a target temperature 

The effectiveness of hyperthermia treatment is closely related to the temperature that can be 

reached in the tumor tissue closed to bone cement insert (i.e = thermal power generator ) and to 

maintain it for the whole required time of treatment (40-43 °C ). 

In order to characterize the treatment efficacy, the Cumulative Equivalent Minutes at 43°C (CEM43) 

was calculated, using the equation derived by Stephen and Dewey [20] as a clinical means to 

estimate the actual thermal dose: 

CEM43 = Σ R(43-T)
Δt 

where:  

R=0.5 for T>43°C  

R=0.25 for 39°C<T<43°C  

R=0 for T<39°C 

In the foreseen applications in human body it will be difficult to control the local temperature in 

the treated volume because infrared-camera measures are applicable only on visible surfaces and 

metallic thermocouples are affected by the variable magnetic field. 

For these reasons, it was necessary to perform a thermal study aimed to define the parameters of 

treatment. The Element Finite method allowed a good simulation of power generation. The heat 

was transferred by conduction and convection and it was applied to the section test used to 

simulate a hyperthermia treatment on tumoral cells 

Using a geometry produced with Comsol Multiphysics ® (Comsol Inc.) it was outlined the 

experimental model which consists of a cement bone cylindrical sample ( diameter 10 mm , height 

5 mm ) placed at the centre of a large sample holder (inner diameter 30 mm , height 10 mm, 

thickness 3 mm ) filled by water up to 1 mm above the sample surface . 

In this geometry a sufficiently fine mesh was created automatically by the software, taking into 

account different materials and heat transfer condition (figure 5.13 ). 


