
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Parallel H.264/AVC Fast Rate-Distortion Optimized Motion Estimation using Graphics Processing Unit and Dedicated
Hardware / Shahid, MUHAMMAD USMAN; Ahmed, Ashfaq; Martina, Maurizio; Masera, Guido; Magli, Enrico. - In: IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY. - ISSN 1051-8215. - STAMPA. -
25:4(2015), pp. 701-715. [10.1109/TCSVT.2014.2351111]

Original

Parallel H.264/AVC Fast Rate-Distortion Optimized Motion Estimation using Graphics Processing Unit
and Dedicated Hardware

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCSVT.2014.2351111

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2592607 since:

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

1

Parallel H.264/AVC Fast Rate-Distortion Optimized
Motion Estimation using Graphics Processing Unit

and Dedicated Hardware
Muhammad Usman Shahid, Ashfaq Ahmed, Maurizio Martina, Guido Masera,

and Enrico Magli

Abstract—Heterogeneous systems on a single chip com-
posed of CPU, Graphical Processing Unit (GPU), and
Field Programmable Gate Array (FPGA) are expected to
emerge in near future. In this context, the System on Chip
(SoC) can be dynamically adapted to employ different
architectures for execution of data-intensive applications.
Motion estimation is one such task that can be accelerated
using FPGA and GPU for high performance H.264/AVC
encoder implementation. In most of works on parallel
implementation of motion estimation, the bit rate cost
of motion vectors is generally ignored. On the contrary,
this paper presents a fast rate-distortion optimized parallel
motion estimation algorithm implemented on GPU using
OpenCL and FPGA/ASIC using VHDL. The predicted
motion vectors are estimated from temporally preceding
motion vectors and used for evaluating the bit rate cost
of the motion vectors simultaneously. The experimental
results show that the proposed scheme achieves significant
speedup on GPU and FPGA, and has comparable rate-
distortion performance with respect to sequential fast
motion estimation algorithm.

Index Terms—H.264/AVC, Parallel Fast Motion Estima-
tion, GPU, OpenCL, FPGA.

I. INTRODUCTION

H.264/AVC [1] is currently the most commonly
utilized video coding format because of its high
coding efficiency compared to its predecessors.
Video coding is achieved by exploiting temporal and
spatial redundancies and Motion Estimation (ME) is
one of the main tools employed for eliminating tem-
poral redundancies. It is the most critical and time
consuming tool in the whole encoder and typically
requires 60-80% of the total computational time
during the encoding process [2]. Block matching
ME algorithms divide a frame into macroblocks and
look for the best possible match in the reference
frame with minimum Rate Distortion (RD) cost.
Practically, the exhaustive full search is too expen-
sive to implement, so fast ME algorithms such as

unsymmetrical multi-hexagon search (UMHexago-
nalS) [2], simplified UMHexagonalS [3], Diamond
search [4] have been proposed to reduce the com-
putation time.

Most fast ME algorithms were proposed in the
context of medium resolution video applications,
such as VGA and 480p. However, new high resolu-
tion applications such as 720p and 1080p recently
stimulated the demand for encoders with signif-
icantly increased speed. The performance can be
increased by either using high performance serial
processors or by parallelizing the ME process and
using parallel accelerators such as Graphics Process-
ing Units (GPUs) or implementing reconfigurable
accelerators on Field Programmable Gate Arrays
(FPGAs).

GPU/FPGA accelerators are commonly available
as add-in boards, but in near future, Systems on
Chip are expected to adopt heterogeneous architec-
tures including CPUs, GPUs and FPGAs on a single
platform [5]. This offers an opportunity to utilize
different architectures for scheduling jobs based on
the available resources at run time. For example, the
FPGA can be used in the case when GPU is already
engaged and vice versa. Since ME is a computation
intensive part of video encoding, different design
trade-offs can be foreseen for different scenarios. In
this context, as an example, a video encoder imple-
mented on such a system could modify adaptively
its throughput, and this capability can be enabled by
switching among alternative architectures, based on
frame resolution. Processing units can be utilized in
an efficient and dynamic way to get better results
in terms of processing speed, resource and energy
management.

GPUs are fixed-architecture parallel processing
devices that offer high memory bandwidth and
concurrent programming cores executing programs

2

in Single Instruction Multiple Data (SIMD) mode.
Availability of high level programming frameworks
such as OpenCL [6] and CUDA [7] have led to
enormous interest in developing general purpose
data-intensive applications using GPUs. FPGAs are
particularly suited for implementing parallel archi-
tectures and can nearly achieve Application Specific
Integrated Circuit (ASIC) performance with lower
fabrication costs. In the video coding context, GPUs
and FPGAs are typically used to implement the
most computationally demanding tasks, particularly
ME.

Generally, parallel ME implementations overlook
the bit rate cost for computing motion vectors
(MV) due to the motion vector prediction (MVp)
technique. The data dependencies intrinsic to the
MVp method restricts macroblock level parallel im-
plementations due to the unavailability of spatially
adjacent MVs. To implement block level paral-
lelism, the bit rate cost of the MVs can not be
estimated accurately, which leads to degradation in
RD performance.

In this work, we present a low complexity fast
ME algorithm exploiting block level parallelism. We
propose a new approach for removing data depen-
dencies in MVp that will enable full parallelism
at block level. To mitigate the data dependency
in the calculation of MVp, the proposed approach
introduces the concept of Coarse MV (MVc), which
are evaluated using MVs from previous frame. MVc
are then used as MVp to compute the bit rate cost
of MVs. This method of MV computation makes
the proposed ME approach highly amenable to par-
allel implementation, as no further data dependency
exists among macroblocks.

In this paper we present a two-fold implemen-
tation of the proposed algorithm on the GPU us-
ing OpenCL and on the FPGA using VHDL. Our
parallel fast ME algorithm exhibits comparable RD
performance with respect to sequential fast ME
algorithms. The GPU implementation outperforms
the state of the art implementations in terms of ex-
ecution time and achieves higher order of speedup.
For FPGA implementation, it is shown that pro-
posed implementation occupies fewer resources in
terms of slices and lookup table achieving high
frequency compared to state of the art solutions. The
proposed design is also synthesized on ASICs and
the results show significant improvement in terms
of gate count and throughput. Finally, we discuss

target application scenario for future heterogeneous
systems.

The remainder of the paper is organized as fol-
lows. Section II provides a brief overview of the
related work. Details of the proposed ME algorithm
and its RD performance are presented in Section
III. The GPU and FPGA/ASIC implementations are
presented in Section IV, and results are discussed in
Section V, which is followed by concluding remarks
in Section VI.

II. RELATED WORK

In literature, several GPU and FPGA implemen-
tations for fast ME exist and an overview of some
of them is provided in this section. Cheung et
al. present a GPU implementation of simplified
UMHexagonalS in [8]. They introduce tiling to
solve the data dependency: the frame is divided
into tiles, where each tile is executed independently
by one GPU thread, and ME is performed sequen-
tially within each tile. The tile size determines
the performance of the implementation. Schwalb et
al. [9] have proposed a macroblock level parallel
implementation of Diamond search by completely
ignoring MVp. They propose to use predictors
generated by Forward Dominant Vector Selection
[10] and to use Split and Merge [11] techniques to
generate predicted MVs for all blocks. Rodriguez
et al. [12] have proposed a parallel ME algorithm
based on Full search to mitigate the effects of
MVp calculation by reusing the corresponding MV
from reference frame to adjust their search area
for the current frame. Also, they use the co-located
temporal MV of each macroblock as MVp in cost
calculation to get a better estimate.

In terms of hardware ME acceleration, few of the
reported architectures have implemented full search
ME [13]–[15], whereas the major contribution is
for fast ME algorithm implementation [16]–[25].
The works in [13], [16]–[20] are implemented on
FPGA-based platforms, while [14], [15], [21]–[25]
are ASIC implementations. In [14], full search
is deployed with some speedup techniques, such
as pixel bit precision reduction, macroblock sub-
sampling, and adaptive search range adjustment. In
[22]–[24], hierarchical search approach is combined
with full search. Typically, two [22], [23] or three
[24] levels are employed. The architecture in [21]
supports Diamond search and Cross search. In [25],

3

Get frame

ME Start

All MB types
tested

More MBs in
Frame

Yes

Yes

More frames

Coarse search

Get MB

Calculate *PMV

Fine Search

*PMV:
Predicted
Motion
Vector

ME End

No

No

Yes

No

MB Level
Operations

Frame Level
Operations

(a) Generic algorithm flow

Temporal Search

Integer Update

Reference &
Current Frames

Coarse MVs

(b) Coarse search

Temporal Search

Integer Update

1/4 Update

Test Zero MV, *PMV

Coarse
MVs

Reference &
Current Frames

MVs

(c) Fine search

Fig. 1. Overall flow diagram representing all the steps of the
proposed motion estimation algorithm are shown in (a). Sequential
steps required for performing Coarse and Fine search are shown in
(b) and (c).

an architecture is presented for adaptive ME using
hierarchical and multipath search techniques. The
architecture in [15] presents a configurable VLSI
architecture for integer ME in H.264. Most of the
reported works show the implementations for a
particular block size, whereas the proposed archi-
tecture is implemented for all block sizes given in
H.264/AVC standard.

III. PROPOSED ALGORITHM

An important part of this work is the design of
an inherently parallel fast ME algorithm with sat-
isfactory RD performance. In order to fully exploit
macroblock level parallelism, and take advantage of
MV correlations to reduce the number of operations,
we have designed a parallel and low complex-
ity hierarchical-recursive block matching algorithm
based on fast ME algorithm [26]. The algorithm
is hierarchical, as it consists of two sequential
steps, namely Coarse search and Fine search. The
Coarse search is performed for each macroblock of
each frame in display order and produces a coarse
predictor and its corresponding MVc. Fine search
further refines the already estimated coarse predictor
and attains the best predictor for each block size
with respect to each reference frame. Figure 1(a)
shows the flow diagram representing the sequence
of steps performed for computing MVs based on the
proposed algorithm. The algorithm exploits tempo-
ral correlations among frames by using MVs from

N-1 N

Time

MV(x-1,y-1;N-1) MV(x,y-1;N-1)

MV(x-1,y;N-1)

MV(x,y;N-1)

MV(x+1,y;N-1)

MV(x,y+1;N-1)

x,y; N

Fig. 2. Temporal search method: for a macroblock located at (x,y)
in frame N, 6 temporal predictors referred by corresponding MVs of
temporally collocated macroblocks in frame N-1 are tested.

previous frames to find best temporal prediction
for the current frame. The algorithm supports full
macroblock level parallelism by eliminating spatial
dependencies amid calculating MVp.

A. Coarse Search

The Coarse search obtains an integer pixel MV
for each macroblock (16×16 block) of the current
image by searching the most similar predictor in the
previous frame. Sum of Absolute Difference (SAD)
is used as the decision criterion for estimating the
best predictor. In order to find this predictor, we
perform two consecutive steps (Fig. 1(b)):

1) We examine six MVs belonging to six
temporally adjacent macroblocks (Temporal
Search).

2) We add to the best of the temporal predictors,
a grid of 12 points called Updates.

1) Temporal Search: The Temporal Search is
based on the idea that motion typically does not
change drastically between two consecutive frames.
So in order to find the best predictor for the current
macroblock, we check if it has the same MV as
the temporally collocated surrounding blocks. For a
generic macroblock located at coordinates (x, y) in
the frame N , we test six temporal predictors in the
frame N−1 and select the one with least SAD value.
The candidate predictors are pointed to by the MVs
MV (x, y;N −1),MV (x+ 1, y;N −1),MV (x, y+
1;N − 1),MV (x− 1, y;N − 1),MV (x, y− 1;N −
1),MV (x, y+ 1;N − 1) as shown in Fig. 2, where
e.g. MV (x, y;N − 1) is MV of macroblock in
frame N − 1, at coordinates (x, y) pointing to the
corresponding predictor macroblock in frame N−1.

2) Updates: After the Temporal Search, a grid
of 12 points referred to as Updates is added to get

4

Large Update

Medium Update

Small Update

Fig. 3. Integer Update grid of 12 points consisting of three different
sets of positions represented by different shapes.

the best integer predictor. The Updates have fixed
relative positions, and there are three different sets
of updates that can be used, as shown in Fig. 3.
One set of Updates (small, medium, large) is applied
for each macroblock depending on the value of the
SAD of the best predictor from the Temporal Search
step. After considering all the grid points, the vector
with smallest SAD becomes the MVc for current
macroblock. The best predictor with respect to the
current macroblock is found by exploring the MV
field set up by the Updates.

B. Fine Search

The coarse predictors and MVc are improved in
order to find the best prediction for each macroblock
during the Fine search, as shown in Fig. 1(c). It
must be noted that while Coarse search is performed
only on 16×16 pixel sized blocks, Fine search is
performed for every possible block size and for
each reference frame. RD optimization combined
with SAD is employed to select the best possible
predictor for the encoding block. The cost for each
candidate predictor is evaluated as,

J = SAD + λ ·R · (MV − MVp) (1)

where J is the cost, λ is the Lagrangian multi-
plier. The term R · (MV − MVp) represents the
bit rate required to encode the difference between
the candidate MV and the MVp. Fine search per-
forms Temporal search (Sec. III-A1) and Updates
(Sec. III-A2) to find the best integer pixel predictor.
Temporal search in this case is triggered by the MVc
computed earlier and tests the temporal predictors

TABLE I
SAD VS. RD OPTIMIZATION COMPARISON (CIF SEQUENCES).

Sequence ∆PSNR (db) ∆BR (%)
Football 0.4599 -7.2654
Flower 0.3421 -4.6125

America 0.8287 -25.6052
Silent 0.5082 -9.7733
Stefan 0.4089 -7.0375

Coastgaurd 0.3015 -6.2135
Foreman 0.4966 -11.1326
Mobile 0.3476 -5.4540

Average 0.50 -9.64

surrounding the coarse predictor. Then, MV field
generated by the Updates is applied to the output
of Temporal search to compute the best integer
predictor for each block size. Zero MV is also tested
before applying a quarter-pixel Update grid to the
best of the integer pixel MV. The predictor with
minimum cost and its corresponding quarter-pixel
MV is selected as the final output of the algorithm
based on (1).

C. Parallel MVp Modification

The proposed ME algorithm exhibits data depen-
dency, specifically the MVp term in (1) represents
a spatial dependency. In the H.264/AVC standard
MVp are computed using MVs of neighbouring
macroblocks, which restricts fully parallel encoding
at block level. We mitigate this problem by exploit-
ing the hierarchical nature of our algorithm. We
compute MVc using SAD as decision criterion first,
and then perform RD optimization by substituting
already available MVc as MVp for the cost func-
tion calculation shown in (1). Using this approach,
we remove any data dependency between adjacent
blocks of the encoding frame and can implement
the proposed algorithm exploiting parallelism at
different levels best suited to different architectures.

D. Rate-Distortion Performance Evaluation

The proposed algorithm has been developed
and tested in a commercial-grade software model
compliant with JM 17.2 implementation of the
H.264/AVC encoder. For performance evaluation,
multiple resolution sequences i.e., CIF, VGA, 576p,
720p and 1080p, are encoded using a Group Of
Pictures (GOP) pattern composed of one I frame
followed by eleven P frames and the Quantization

5

TABLE II
RD PERFORMANCE COMPARISON BETWEEN PROPOSED ALGORITHM AND OTHER POPULAR FAST SEARCH ALGORITHMS. FOR EACH

CASE, FULL SEARCH METHOD IS ASSUMED AS THE REFERENCE ALGORITHM IN THE COMPARISONS.

Proposed Scheme UMHexagonal Search SUMHexagonal Search
Sequence ∆PSNR(dB) ∆BR(%) ∆PSNR(dB) ∆BR(%) ∆PSNR(dB) ∆BR (%)
Football -0.1248 2.2407 -0.3215 5.4504 -0.0876 1.4638

Miss-america -0.0228 0.8454 -0.0547 1.9962 -0.0365 1.3467
Silent -0.0701 1.4418 -0.0868 1.7671 -0.0474 0.968
News -0.0417 0.6823 -0.0918 1.5098 -0.0647 1.0674

Harbour -0.0097 0.2288 -0.0661 1.4498 -0.0065 0.1442
Crew -0.0716 1.9791 -0.1972 5.8054 -0.0573 1.6666

Stockholm -0.0228 0.5465 -0.0657 1.6645 -0.043 1.0844
Ballroom -0.0821 1.8821 -0.1073 2.5729 -0.0784 1.9141

Exit -0.0829 3.2022 -0.1163 5.0131 -0.0813 3.5541
Mobcal -0.0063 0.1912 -0.046 1.5213 0.0031 -0.102
Shields -0.0115 0.4123 -0.0505 1.9344 -0.0125 0.495

Ducks take off -0.0053 0.117 -0.0275 0.4892 -0.0091 0.1607
Parkrun -0.0021 0.0453 -0.0255 0.5175 -0.0093 0.1895
Blue-sky -0.0432 0.9641 -0.2917 7.3461 -0.0362 0.8711
Rushhour -0.0271 0.5696 -0.3195 13.3872 -0.086 3.4167
Station2 -0.0275 0.7151 -0.4883 15.7194 -0.0233 0.6809
Terrace -0.0345 1.5089 -0.1773 8.378 -0.0522 2.4013
Tennis -0.0084 1.4963 -0.5426 17.7237 -0.1418 4.3162

Crowd run -0.0729 1.5983 -0.1942 4.3624 -0.0585 1.3006
Average -0.040 1.087 -0.172 5.189 -0.048 1.417

Parameter (QP) is varied among 25, 28, 31, 33, and
35. The search range is set to 32, and the number
of reference frames is set to 1. Video sequences
with different characteristics, like high motion, low
motion, camera zooming, camera panning, and so
on are used to test the algorithm for different
scenarios.

We performed a preliminary experiment using
UMHexagonal search algorithm [2] implemented
in JM 17.2 software model to report the gain in
performance when using RD optimised ME. As
discussed in Section I, most parallel ME imple-
mentations just use SAD as the deciding metric
instead of RD cost for choosing the best MV. Table
I presents the gains achieved with RD optimisation
enabled using average Peak Signal-to-Noise Ratio
(PSNR) degradation and the average increase in
bit rate measured by Bjontegaard Delta PSNR,
denoted as ∆PSNR and Bjontegaard Delta bit rate,
denoted as ∆BR, for different types of sequences
[27]. It is shown that enabling RD optimisation
greatly improved the coding efficiency with average
PSNR improvement of 0.5 dB and significant bit
rate reduction of approximately 10%. This shows
that the proposed algorithm achieves a significant
performance gain with respect to implementations
based only on the SAD.

1) Serial MVp performance: Table II reports the
performance evaluation of standard MVp method

and the results are compared with some some fast
search algorithms. We have used Full search as
the reference algorithm, i.e., the performance is
measured by comparing Full search implementa-
tion with i) our proposed fast search algorithm,
ii) UMHexagonal Search [2] and iii) Simplified
UMHexagonal search [3]. UMHexagonal search
and Simplified UMHexagonal search algorithms are
chosen for comparison because they are popular
fast search algorithms implemented in H.264/AVC
test models and several adaptive hardware as well
as GPU implementations of these algorithms are
reported in literature.

Table II shows that the proposed algorithm
performs remarkably better than UMHexagonal
search algorithm, whereas the rate-distortion per-
formance is comparable with Simplified UMHexag-
onal search. The proposed scheme yields average
∆PSNR decrease of 0.04dB and ∆BR increase of
1.087%, whereas UMHexagonal search produces an
average ∆PSNR decrease of 0.172dB and ∆BR
increase of 5.19%, and Simplified UMHexagonal
search provides an average ∆PSNR decrease of
0.048dB and ∆BR increase of 1.42%. The proposed
algorithm uses previously calculated MVs to esti-
mate motion, so it is understandable that coding
efficiency decreases for sequences with extremely
fast or extremely complex motion. It is observed
that for sequences containing low and medium level

6

TABLE III
RD PERFORMANCE LOSS DUE TO PARALLEL MVP USING

PROPOSED ALGORITHM WITH STANDARD MVP METHOD AS
REFERENCE.

Sequence Proposed MVp method Collocated MB as MVp [12]

∆PSNR(dB) ∆BR(%) ∆PSNR(dB) ∆BR(%)
Football -0.1661 2.8947 -0.3100 5.3117
Mobile -0.2561 4.5184 -0.1963 3.4654
News -0.1577 2.5665 -0.1919 3.1041

Harbour -0.0754 1.7099 -0.1302 2.9293
Crew -0.1937 5.0545 -0.4405 11.1883

Ballroom -0.1037 2.3185 -0.1833 4.0403
Exit -0.1323 4.8015 -0.2606 9.2431

Mobcal -0.0955 2.9203 -0.0768 2.3162
Shields -0.0441 1.4615 -0.0616 2.0269

Old town cross -0.0870 2.7812 -0.1317 4.264
Ducks takeoff -0.0185 0.3572 -0.0051 0.0983

Blue-sky -0.0809 1.7665 -0.1471 3.2259
Riverbed -0.1870 3.3066 -0.2705 4.5369
Rushhour -0.2516 8.8501 -0.5367 18.6217
Station2 -0.019 -0.5245 -0.1815 4.5437
Average -0.092 2.71 -0.20 5.01

of motion complexity, our algorithm performance
is comparable to Full search. For very complex
sequences, we observe a performance degradation
compared to Full search but still the maximum
∆PSNR degradation is just 0.12dB.

2) Parallel MVp performance: Table III presents
RD performance evaluation for two different paral-
lel MVp methods quantified by ∆PSNR and ∆BR
using the proposed algorithm with standard MVp
method as reference. It can be seen that using
our proposed MVp method, the average PSNR loss
incurred is just 0.1 dB with average increase of just
2.7% in bit rate. The reported loss is due to the
usage of MVc as MVp instead of using the standard
method for computing MVp. It is shown that the
proposed parallel ME algorithm consistently outper-
forms [12], which employs MVs of the collocated
macroblocks in previously encoded frame as MVp
to parallelize the ME process, with a performance
loss that is essentially halved.

In [9], a GPU implementation of Diamond search
algorithm with comparable RD performance to
UMHexagonal search algorithm is proposed. More-
over, [8] reports a maximum PSNR loss of 0.4dB
for their parallel ME implementation using Simpli-
fied UMHexagonal search algorithm. Our proposed
low complexity parallel ME algorithm outperforms
UMHexagonal search, and PSNR loss of 0.25dB is
observed in the worst case.

IV. PARALLEL IMPLEMENTATION

In this section we provide implementation details
of the proposed parallel algorithm for both GPU and
FPGA.

A. GPU Implementation

In this section we provide a detailed account of
parallel implementation of the proposed algorithm
using OpenCL.

1) GPU Architecture: NVIDIA’s recent Fermi
architecture [28] enables high performance paral-
lel computing applications. The exact architecture
of each GPU model is different but, generally, a
Fermi based GPU consists of independent proces-
sors known as compute cores, where sets of cores
are organized to form Streaming Multiprocessors
(SMs). The GPU also contains on-chip global mem-
ory accessible to all computing cores, a small private
memory space accessible to each core individually,
and each SM is equipped with local memory space
shared by all the cores resident on that SM.

OpenCL [6] is an industry standard programming
API for parallel programming of heterogeneous
computing platforms. The GPU is invoked by the
CPU through a special program called kernel, which
is written using a C-like language. Launching a ker-
nel on GPU leads to execution of several concurrent
threads known as work-items that execute the same
kernel code for different parts of the input data.
Work items can be grouped together in independent
blocks known as work-groups which are arranged as
a grid spanning a multi-dimensional index space. A
multi-dimensional execution kernel model for GPU
is shown in Fig. 4(a).

The OpenCL API places the programmer in
control by granting access to three kinds of GPU
memory spaces: global (off-chip), local and private
(on-chip) memory, where each of them is tuned for
a specific purpose. An overview of the memory
types is provided in Fig. 4(b). Global memory
constitutes a major chunk of the memory but is
the slowest one and is accessible to all the mul-
tiprocessors on the device. It provides interface for
data transfer between CPU and GPU and can be
used to communicate data between different work-
groups. Private memory is a limited per work-item
memory location with very fast access. The other
on-chip memory, local memory is a limited (around
64KB) per work-group chunk of memory and is

7

Work-item Work-item

Work-item Work-item

Work-group size Sx

…….

…….

…
…
.

…
…
.

…
…
.

W
o

rk-gro
u

p
 size S

y

NDRange size Gx

N
D

R
an

ge
 s

iz
e

G
y

Work-group

(a) NDRange organiza-
tion

Host Memory CPU

Global Memory

Private
Memory

Private
Memory

Core Core

Local Memory

Private
Memory

Private
Memory

Core Core

Local Memory

Multiprocessors

GPU

Host PCI Bus

Device

(b) Memory model

Fig. 4. Example of a simplified GPU architecture showing thread
organisation and memory model from the perspective of an OpenCL
programmer.

used to communicate data between work-items of
a work-group. Maximum performance on GPU can
be achieved by maximizing the GPU occupancy and
minimising the access conflicts during coalesced
memory transfers.

2) Motion Estimation Implementation: The
OpenCL GPU implementation of fast ME is based
on the highly parallel algorithm described in
Section III, which lends itself to be parallelized
at different levels. We can exploit frame level
parallelism in the case of more than one reference
frame. Inside a frame we can exploit pixel level as
well as block level parallelism. Using pixel level
parallelism leads to a large number of work-items
for high video resolutions and each work-item
will be performing small amount of work. On
the other hand, exploiting block level parallelism
requires fewer work-items but each work-item will
execute multiple instructions and instruction level
parallelism can be exploited in this case. In order to
gain maximum performance, we have implemented
block level parallelism on GPU employing smaller
number of work-items, as suggested in [29]. Our
GPU implementation follows the same hierarchical
pattern shown by the ME algorithm i.e., we divide
our implementation into two modules where one
module implements Coarse search and the other
one Fine search. Coarse search module is well
suited for GPU implementation using block level
parallelism, as calculation of SADs for blocks
to determine MVc and coarse predictors can be
done independently. Fine search module employs
RD optimisation using (1) as the cost function
to calculate MVs for each block type. SAD, λ,

NDRange size Gx

Current Frame Reference Frame

Block
1

Block
N

Block
1

Coarse MVs

Temporal Search

Integer Update

Temporal Search

Integer Update

1/4 Update

N
D

R
an

ge size G
y

Search
Area

1

Coarse MVs

Temporal Search

Integer Update

Temporal Search

Integer Update

1/4 Update

……...

……...

Work-group Work-group Work-group

Work-group Work-group Work-group

Work item

1 N

Search
Area

N

Fig. 5. Organisation of work-items and the path followed by each
work-item to calculate final MV for each block.

and Rmvc are hence readily available and already
calculated MVc are used as MVp in Fine search in
order to compute the bit-rate cost in parallel. Using
this approach, we remove any data dependency
between adjacent blocks of the encoding frame and
can implement the complete proposed algorithm on
the GPU fully exploiting block level concurrency.
A general overview of the program flow is as
follows.

Initially, the CPU transfers the current frame to be
encoded and the reference frame to the GPU. Coarse
and Fine search steps are performed sequentially
but each one is implemented to exploit the GPU
parallelism. To implement Coarse search, two dif-
ferent OpenCL computational kernels are employed
handling Temporal Search and Updates respectively.
Each thread of the GPU processing core is assigned
the computations for one macroblock in the encod-
ing frame to take full advantage of the block level
parallelism possible with the proposed scheme.

In the second step, Fine search is implemented
to refine the MVc. It is composed of three sub-
steps, namely Temporal search, Integer Updates, and
Quarter pixel refinement Updates. As Fine search is
performed for each block type, an OpenCL kernel
is implemented to handle each block type and each
sub-step. For example, one kernel does Temporal
Search for 16×16 sized block, while another kernel
is implemented to perform Temporal Search for
16×8 sized block and so on. For each kernel,
the total number of OpenCL work-items generated
depends on the block size under consideration. For
example, for 16×8 block size, each GPU thread
handles one block, so that the total number of

8

threads are twice the number of total macroblocks in
the frame. For all kernels, the OpenCL work-items
are organized into work-groups, where each work-
group contains 32 work-items. Fig. 5 shows the pro-
gram flow and the organisation of work-items. We
prefer to launch a 2-dimensional NDRange kernel so
that handling work-item functionality is simplified.
The work-group size is hard coded as 32, while the
number of work-groups are computed by analysing
the video resolution and creating enough work-
items to cover the complete frame e.g., for VGA
resolution we launch 38 work-groups. For smaller
block sizes, the total number of work-items and total
number of work-groups are scaled accordingly.

This work-group size is used for maximum GPU
occupancy and was optimised by profiling the GPU
code and using CUDA occupancy calculator [30].
Also, deploying work-groups on GPU enables the
usage of local memory (on-chip memory) to reduce
the data transfer time from GPU global memory.
Each work-group places current block and potential
update region for each block in its local memory
to save memory accesses to global GPU memory.
In the end, MVs for each block type of every
macroblock in the frame are transferred back to the
CPU. In this way, the data transfer between CPU
and GPU is only performed twice for each frame.

Generally, fast ME algorithms exhibit a lot of
branching and termination, which causes perfor-
mance degradation on GPU. The proposed algo-
rithm is window size independent and always per-
forms the same number of steps to avoid early
termination completely. Our implementation keeps
branching to a bare minimum by adding dummy
values to the border of the frames having no impact
on the MV calculations.

B. Hardware Implementation

As discussed in Section III, we have implemented
a two step algorithm, where each step comprises
different search phases, like temporal search, update
search, quarter update search etc. Therefore, the
total number of candidates required to predict one
block type are the following ones. i) For coarse
search, we need to predict 6 blocks for temporal pre-
diction and 12 blocks for integer update prediction.
ii) For fine search, we need to predict 6 blocks for
temporal prediction, 12 blocks for integer update, 1
zero MV, 1 MVp, and 8 quarter update blocks. So

46 candidates (blocks) are required for prediction.
Since the fine search is devoted to refine MVc, it
always has to be performed after the coarse search.
Thus, two main choices for the hardware design can
be explored: i) either to implement two separate
engines for coarse and fine searches or ii) to go
for hardware reuse, i.e. a single prediction engine
for both coarse and fine search in sequential order.
The latter choice is selected for our implementa-
tion, as it is observed indeed that coarse search is
much faster than the fine search. The reason is that
during coarse search the prediction is performed
on macroblocks of fixed-size, whereas in the fine
search the prediction is calculated for all block sizes.
Also the number of candidates during coarse and
fine searches is different, indeed 18 candidates are
tested during the coarse search and 28 candidates
during the fine search. Thus, implementing separate
prediction engines would lead to slow down the fine
search, resulting in a slow prediction process.

The proposed ME architecture relies on a paral-
lel architecture, where the parallelism degree was
selected to get maximum hardware utilization and
maximum possible throughput, in terms of frames
per second. Taking into account 1080p video se-
quences, the throughput of the architecture is de-
fined as the ratio between the number of mac-
roblocks to be predicted (P) and the time employed
to perform the prediction:

TP =
P × Fck

M · (Ncs +Nfs)
(2)

where M is the number of macroblocks in one
frame, equal to 8160 in case of 1080p, Fck is the
target clock frequency, and Ncs and Nfs are number
of clock cycles required in the prediction of one
macroblock by coarse and fine search respectively.
Since there are seven block types (ranging from
16x16 to 4x4) and each block type requires to
test 46 candidate blocks, 46x7=322 blocks have
to be predicted, corresponding to Ncs = 72 and
Nfs = 966 respectively. From (2), with Fck equal
to 175MHz and P equal to 3, the throughput is
about 60 frames/s. Therefore, the proposed hard-
ware architecture is liable to predict 48 4×4 blocks
in parallel, i.e. 3 macroblocks. Given a c× r block,
in the following we will refer to the nth c×r block
of a macroblock as c× r(n). For example, 16×8(2)
means the second half of block type 16×8 in a
macroblock.

9

Reference
Frame

Memory

Current
Frame

Memory

Intermediate
Buffer

Predictor

Old
Buffer

New
Buffer

MV
Memory

Control Unit

Fig. 6. Proposed architecture block scheme.

The top level architecture is shown in Fig. 6,
where the major unit is the Predictor, which cal-
culates the cost to find the best match. There is
a control unit (CU), where the CU starts the pre-
diction, generates addresses, and provides control
signals to the data path and to the memories. Two
memories are used to store the current and the
reference frames, shown in Fig. 6 as Current Frame
Memory and Reference Frame Memory respec-
tively. Similarly, there is a memory to store the
final MVs (MV Memory in Fig. 6). These are the
final MVs of the prediction for one complete frame.
A simple intermediate buffer is deployed between
the reference frame memory and the predictor in
order to ensure that the required blocks could be
accessed in parallel. Two buffers are deployed to
store the MVc, shown in Fig. 6 as Old Buffer and
New Buffer.

1) Control unit: This unit performs two major
tasks: (1) generation of control signals to various
blocks in the data path and the memories; (2)
address generation and the verification if the block
to be used as reference lies within the search win-
dow range or not. The CU adds to them proper
offsets, depending upon if temporal prediction or
update prediction. If the address, after the addition
of offsets, lies outside the search range, the data
from the frame memory are simply copied to the
intermediate buffer for future usage, but no real
prediction is done with these blocks.

2) Frame memories: Reference and Current
memories are designed for 1080p frames. Fig. 7

……………………

4x8=32 4x8=32 4x8=32 4x8=32

3
2

6
4

0

MB_1, 4x4(1) MB_1, 4x4(2) MB_1, 4x4(3) MB_1, 4x4(16)

MB_2, 4x4(1) MB_2, 4x4(2) MB_2, 4x4(3) MB_2, 4x4(16)

MB_8160, 4x4(1) MB_8160, 4x4(2) MB_8160, 4x4(3) MB_8160, 4x4(16)

Fig. 7. Proposed architecture: frame memory organization.

shows the memory organization where 16 parallel
banks are allocated. Each 4×4 block of a mac-
roblock is stored at a same address in a different
bank so that a complete macroblock can be read in
single clock cycle.

3) MV memories: Old and New Buffers in Fig. 6
work in a ping-pong order for every two consecutive
frames, i.e., either of the buffers stores the MVc
for frame N and at the same time the other buffer,
which contains the MVc of the frame N−1, is read
for prediction. The MV Memory contains the final
MVs for each macroblock and the sub-blocks. After
the complete prediction of a frame, the MVs stored
in the MV Memory are transferred back to the CPU.

4) Intermediate Buffer: During the prediction,
multiple 4×4 blocks are needed by the predictor. To
assure the availability of the data, an intermediate
buffer, composed of 48 4×4 memory banks, is
placed between the reference frame memory and the
predictor. Whenever the data has to be read from the
frame memories, it is checked in the intermediate
buffer. 48 4×4 blocks are read from the frame
memory and written to the intermediate buffer at
the same time. The CU passes the block addresses
to the frame memory and also to the intermediate
buffer, and if the data are available in the buffer,
the memory is bypassed. During coarse search, the
prediction is performed at macroblock level. So
during coarse search all the read macroblocks are
stored in the buffer, which ensures that the required
blocks would be available for fine search.

5) Predictor: The predictor is the main unit of
the top level architecture as it is responsible to
calculate SADs and costs, which are later used for
making decisions on all blocks. This unit takes
the reference blocks and the current blocks from
the memories, along with the control signals and
performs the prediction. Fig. 9 shows the top level
architecture of the predictor. The predictor is de-
signed to predict two macroblocks in a ping-pong
order, i.e. during the prediction of one current block,

10

16x16

16x8(1)

16x8(2)

8x16(1)

8x16(2)

8x8(1)

8x8(2)

8x8(3)

8x8(4)

8x4(1),8x4(3)

8x4(5),8x4(7)

4x8(1),4x8(3)

4x8(5),4x8(7)

8x4(2),8x4(4)

8x4(6),8x4(8)

4x8(2),4x8(4)

4x8(6),4x8(8)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4x4(1)

4x4(5)

4x4(9)

4x4(13)

4x4(2)

4x4(6)

4x4(10)

4x4(14)

4x4(3)

4x4(7)

4x4(11)

4x4(15)

4x4(4)

4x4(8)

4x4(12)

4x4(16)

……………

………

………

…………

…………
…………
…………

Fig. 8. SAD adder tree architecture.

the required candidates for the other current block
are read from the reference, and vice-versa. The
predictor contains two memory banks, shown as
MEM BANK1 and MEM BANK2, which hold 48
4×4 blocks of the candidate blocks, also referred to
as the reference data. Either of the memory banks
is in read mode during any 4 clock cycles, while
the other one is in write mode.

Two current macroblock banks, shown as
CMB BANK1 and CMB BANK2, hold the two
current macroblocks to be predicted in the
ping-pong order. The memory permutation block
(MEM PERM) alternatively selects the data to be
used for prediction from one of the memory banks,
containing reference blocks. A current macroblock
permutation block, shown as CMB PERM, alter-
natively selects the data from one of the current
macroblock banks. The current macroblock dis-
patcher block, shown as CMB DISP, gets in the
16 1×4 blocks from current macroblock banks
through CMB PERM unit and outputs 48 1×4
blocks towards the processing unit (PU) which
contains 48 processing elements (PEs), shown in
the right bottom part of Fig. 9. For prediction of
different block types, the PEs need to get data from
different current macroblocks and reference buffers.
For example, in case of 16×16 prediction, the first
PE requires the data from the 4×4(1) block of the
current macroblock, whereas in case of second half
of 16×8, referred to as 16×8(2), it would require
4×4(9) of the current macroblock. So the dispatcher
provides the correct current macroblock portion to
each PE for all types of block predictions. The major
unit for prediction to compute SADs is the PU. As

MEM_PERM CMB_DISP

SAD_ADDER_TREE

+

1 2 3 4 47 48

PE
1

PE
2

PE
3

PE
4

PE
47

PE
48

1

2

3

4

47

48

……………………..

……………………..

…
…
…
…
…
…
…
…

..
1

1
6

1
1

6

…
…

…
…

MEM_BANK1

MEM_BANK2

C
M

B
_B

A
N

K
1

C
M

B
_B

A
N

K
2

48 (1x4 blocks)

48 (1x4 blocks)

48 (1x4 blocks) 48 (1x4 blocks)

16 (1x4 blocks)

16 (1x4
blocks)

48 outputs

93 outputs

93 outputs

93 outputs

9 outputs

CMB_PERM

PU

-

-

+

<<16

LUT

x

LUT

lambda

Pred_x

Pred_y

mv_x

mv_y
MV_COST

CNTR

a0 a1 a2 a3b0 b1 b2 b3

+ +

+

+

COMPARE

CMP
1

CMP
2

CMP
3

CMP
4

CMP
5

CMP
6

CMP
7

CMP
8

CMP
9

min_X

REG

mv

mv cost

93 computation
units

|a-b| |a-b| |a-b| |a-b|

PECMP

Fig. 9. Proposed predictor architecture.

discussed before, the hardware architecture supports
to predict 48 4×4 blocks in parallel. The prediction
is carried out through the PU (48 PEs). The PU is
able to process 3 macroblocks in parallel. Each PE
processes one 1×4 block in one clock cycle. So the
PU takes 4 clock cycles to find the SAD of one 4×4
block. The PE takes 4 pixels from the CMB and
4 pixels from the memory bank. It then computes
the SAD for each row of a 4×4 block in one clock
cycle. After 4 clock cycles the SAD of a 4×4 block
is completed and it is then passed to the SAD adder
tree (SAD ADDER TREE), shown in Fig. 8.

The SAD adder tree gets all the 4×4 SADs from
the PU and it simply adds them up in different paral-
lel orders to get SADs of all other larger block types.
The number of valid SADs are 3 · (16× 16)/(r× c)
except for 8×4 and 4×8, where the number of
valid SADs is 12 and r and c are the number of
rows and columns in a block. The SAD adder tree
is reused for different block types, such as first
and second half of 16×8 and 8×16, referred to
as 16×8(1,2), 8×16(1,2). It is worth noting that
block type 16×8(1) can be computed adding the
terms from also the 4×4(1,2,3,4) blocks, while
in case of 8×16(1), 4×4(1,3,5,7) blocks have to
be added. Therefore, some multiplexers are placed
between the adder tree and the input registers, where
the multiplexers alternatively select the inputs for
16×8(1) or 8×16(1).

11

The coarse search uses SAD as a comparison
metric, whereas in fine search MV cost is used for
comparisons. Therefore, the MV cost calculation
units (MV COST) implements (1) and calculates
the MV cost, taking into account the MV of the
current block and the MVp: a small lookup table
(LUT) contains the number of bits to represent the
MV. Overall, the adder tree generates 93 SADs,
given as 3 · (16× 16)/(r× c) for 16×16, 16×8 and
8×16 and 12 SADs for all other sub-block sizes,
where r and c are the number of rows and columns
in a block size.

All the 93 SADs, generated by the
SAD ADDER TREE, are further added to
their corresponding costs. The MV COST units
are used to generate these costs. The compare unit
gets all the 93 SADs (or MV costs) and also the
corresponding MVs and it finds the block with
minimum cost. This unit simply compares all the
incoming costs and then stores the minimum cost
and the corresponding MV. Finally, the compare
unit outputs the MV of the block with minimum
SAD. The MV is then passed to the CU and MV
memories. Finally, the MV is stored in the MV
memories, in case of final steps of coarse or fine
search. On the other hand, MV is stored in the
Old or New buffer if it is used for further address
generations, in case of intermediate steps of coarse
or fine search.

V. RESULTS AND DISCUSSION

The performance evaluation experiments are car-
ried out on typical GPU and FPGA commer-
cial products. For GPU experiments three different
GPUs were used:

• NVIDIA Quadro 6000 @ 1 GHz, composed of
14 streaming processors and 448 cores with 6
GB memory

• NVIDIA Tesla C2075 @ 1.15 GHz, composed
of 14 streaming processors and 448 CUDA
cores with 6 GB memory

• NVIDIA Geforce GTX 260 @ 1.24 GHz, com-
posed of 27 streaming processors and 216 cores
with 900 MB memory

The CPU used was Core 2 Quad E5607 clocked at
2.27GHz frequency. The GPU code was developed
using OpenCL 1.1 API provided by NVIDIA.

The hardware architecture has been described
in VHDL, targeting up to 1080p video sequences.

TABLE IV
TIME REDUCTION VALUES FOR DIFFERENT GPU.

Time Reduction (%)
Resolution GeForce GTX 260 Quadro 6000 Tesla C2075

480p 89.69 94.49 94.42
576p 89.26 95.44 95.49
720p 89.11 96.05 96.32

1080p 87.74 95.35 95.31
Average 88.95 95.33 95.38

Then, it has been implemented with the Xilinx
integrated software environment (ISE 13.2) on a
Virtex-6 Pro xc6vx75t Xilinx FPGA. Since several
architectures for ME available in the literature target
ASIC implementation, the proposed design has been
synthesized with the Synopsys Design Compiler
using the TSMC 90 nm standard cell library as well.

A. GPU Execution Time Performance
In order to measure the performance of the pro-

posed GPU implementation in terms of execution
speedup, we use two metrics, namely, Time Reduc-
tion (TR) and Speedup Factor (SF), given in (3) and
(4) respectively.

TR(%) =
TCPU − TGPU

TCPU

× 100 (3)

SF =
TCPU

TGPU

(4)

where, TCPU and TGPU are the execution time taken
by single-core CPU and multi-core GPU respec-
tively. Note that TCPU and TGPU are dependent on
the total number of frames for each sequence, while
time reduction and frame rate are independent of
that.

Table IV reports the average time reduction
achieved for video sequences with different reso-
lutions. It can be seen that for every resolution, the
average time reduction attained is almost the same.
On Quadro 6000 and Tesla C2075, the performance
gains are almost the same as both GPUs are based
on Fermi architecture and have the same number
of cores but slightly different clock frequencies.
The time reduction on GeForce GTX 260 is lower
than achieved with the two other platforms, as it
is based on the older Tesla architecture and has
fewer cores. It can be seen that our GPU imple-
mentation can scale successfully to handle different
video resolutions and different GPU architectures

12

480p 576p 720p 1080p
0

5

10

15

20

25

30

Video Resolution

S
pe

ed
up

 F
ac

to
r

GeForce GTX 260
Quadro 6000
Tesla C2075

Fig. 10. Speedup factor achieved for different frame resolutions on
three different GPU platforms.

efficiently. The results show that an average 88.95%
time reduction is achieved using older GeForce
GTX 260 GPU card, while on Fermi architecture
based GPU cards (Quadro 6000, Tesla C2075) we
can attain time reduction of 95.3% on average.

The performance of the algorithm in terms of
speedup factor is shown in Fig. 10. The bar chart
represents average speedup factors attainable for
different resolutions on different GPU platforms.
The chart shows that the performance increases
with the increase in number of cores for GPUs
and reaffirms the trend witnessed in Table IV. It
is worthwhile noting that for higher resolutions our
implementation provides a gain of 22 times over
highly optimised CPU implementation for Fermi
based GPUs.

Although it is difficult to draw an execution time
comparison with other reported fast ME GPU imple-
mentations due to different hardware architectures
and programming frameworks used, we try and
present a comparison with the most similar GPU
implementations. Rodriguez et al. [12] employed
NVIDIA GTX 480 with 448 CUDA cores and
peak performance of 1350 GFLOPS to implement
their solution. This GPU is comparable to Tesla
C2075 with 448 CUDA cores and peak performance
of 1030 GFLOPS, one of the GPUs we use to
implement our proposed algorithm. They report on
average a speedup factor of 5 for 720p and 1080p
frame resolutions, when comparing their parallel
GPU implementation with fast ME CPU imple-
mentations of UMHexagonal search and Simplified
UMHexagonal search. Our implementation provides
a speedup of order of magnitude 22 for both 720p
and 1080p on average.

NVIDIA GTS 8800 with 96 streaming cores and

 CIF 480p 576p 720p 1080p
0

0.5

1

1.5

2

2.5

3

3.5

Frame Resolution

F
ra

m
es

/s
 (

lo
g)

25 frames/s

Tesla C2075 GPU
FPGA : 48 4x4 Predictors
FPGA : Single 4x4 Predictor

Fig. 11. Throughput (frames/s), shown on log scale, achieved with
our implementations on Tesla C2075 GPU and FPGA for different
frame resolutions. The straight line depicts 25 frames/s boundary.

peak performance of 345 GFLOPS is used by [8]
to report a speedup of factor of 3.5 at best and 2.8
on average for 720p resolution sequences. We have
also implemented our solution on older architecture
based NVIDIA GTX 260 composed of 216 CUDA
cores and having theoretical peak performance of
714 GFLOPS. We attain a speedup factor of 10.3
at best and 9.9 on average for 720p sequences.
Although our GPU is 2.25 times more powerful,
accordingly scaling the speedup factors indicate that
our implementation achieves an average speedup
factor of more than double with respect to [8].

B. Hardware Results
Similarly, results of the proposed architecture are

compared with other FPGA based architectures pro-
posed in the literature [13], [16]–[20]. In Table V it
is shown that the proposed implementation achieves
smaller area than the other state of the art reported
implementations. The architecture is able to support
up to 1080p resolution video sequences with frame
rate of 60 frames/s, while 5300 frames/s are reached
with QCIF format. These rates are higher than
results reported by most of compared architectures.
Moreover, many implementations supports the ME
for a single or few block sizes, while our imple-
mentation supports all block sizes ranging from
16×16 to 4×4. Stepping down our implementation
to 16×16 block size only, reduces the required clock
cycles from 346 to 70 clock cycles, which leads to
around 1000 frames/s for 1080p video sequences.

Table VI presents the comparison of the proposed
ASIC architecture with other state of the art ASIC
implementations [14], [15], [21]–[25]. The proposed
architecture is able to target high resolution videos

13

TABLE V
FPGA COMPARISONS: THROUGHPUT (TP), FULL SEARCH (FS), FRACTIONAL MOTION ESTIMATION (FME), LOW DENSITY &

ITERATIVE SEARCH(LD&IS), MODIFIED SIMPLIFIED AND UNIFIED MULTI-HEXAGON SEARCH (MSUMH), HARDWARE MODIFIED
DIAMOND SEARCH (HMDS), ADAPTIVE CROSSED QUARTER POLAR PATTERN SEARCH (ACQPPS)

[13] [16] [17] [18] [19] [20] Proposed
FPGA Virtex-E Cyclone-II Startix-4 Virtex-4 Virtex-2 Pro Virtex-2 Pro Virtex-6

Algorithm FS FME LD&IS ACQPPS MSUMH HMDS Proposed
Resolution QCIF 1080p 1080p QCIF QCIF QCIF 1080p / QCIF

Search Range ±16 − ±94 ±16 ±16 ±16 Independent
CLB Slices (K) 14.7 − − 3.9 11.4 7.8 3.2

LUTs (K) 10.0 13.10 18.5 3.2 18.7 10.8 2.8
Block Sizes 16×16 16×16 16×16 16×16-4×4 16×16-4×4 16×16-4×4 16×16-4×4

Freq. (MHz.) 76.1 105.2 254.8 60 145.2 246.5 175
TP (frames/s) N/A 41 180 120 180 461 60 / 5300

TABLE VI
ASICS COMPARISONS: THROUGHPUT (TP), FULL SEARCH (FS), DIAMOND SEARCH (DS), CROSS SEARCH (CS), COARSE FULL

SEARCH (CFS), MULTI-PATH SEARCH (MPS)

[14] [15] [21] [22] [23] [24] [25] Proposed
Tech. (nm) 180 130 180 180 180 180 130 90
Algorithm FS FS DS+CS 2-Step 2-Step 3-Step CFS+MPS 2-Step
Resolution 720p 1080p 720p 1080p 1080p 1080p 1080p 1080p

Search Range (±64,±64) (±65,±65) (±96,±96) (±64,±64) (±96,±64) (±128,±96) (±64,±64) Independent
Gate Count (K) 707 130 238 556 689 260 140 204

Block Sizes 16×16-4×4 16×16-4×4 16×16-8×8 16×16-4×4 16×16-8×8 16×16-8×8 16×16-8×8 16×16-4×4
Freq. (MHz) 108 300 117 155 200 200 200 300

TP (Frames/s) 30 36 30 30 30 30 30 60

because it is able to operate on many small blocks
of 4×4 pixels in parallel, leading to full hardware
resources utilization. On the contrary, many of the
reported architectures support only 16×16 block
prediction, which leads to waste of resources when
small block sizes are used.

The hierarchical search strategy is used in all
the reported and in the proposed implementations,
where all architectures support variable-size blocks.
The proposed architecture is independent of the
search range, which leads to a reduced complexity
in terms of hardware and control logic. It is shown
that the proposed implementation occupies less area
in terms of gate count among most of reported
implementations and offers higher frame rate.

In Fig. 11, a comparison between the proposed
GPU and FPGA implementations is shown in terms
of throughput (frames/s). The y-axis is displayed in
log scale to improve readability. The straight line
represents 25 frames/s throughput. Two different
scenarios for FPGA implementation, with single
4×4 predictor and 48 4×4 predictors are shown.
It is observed that FPGA outperforms the GPU
comprehensively in terms of throughput but at the
design level the cost incurred for developing FPGA
is far more than GPU. Figure 11 also shows that

for attaining 25 frames/s videos, for resolutions
lower than 720p, GPU can handle real time video
encoding while for higher resolutions like 720p and
1080p the 48 predictors FPGA architecture must be
employed. In the context of future heterogeneous
SoC, efficient use of resources can be foreseen by
efficiently adapting the system based on available
resources and constraints.

VI. CONCLUSION

In this paper, we have presented a parallel ME
algorithm that aims at minimizing the effect of data
dependencies due to MVp, on both the performance
and the throughput of a parallel video encoder im-
plementation. The algorithm has been implemented
on GPU, on FPGA, and on ASIC, and performance
has been investigated on these different platforms. It
is observed that for high resolution video sequences,
FPGA/ASIC provides higher frame rate compared
to the GPU. As the future computing market seems
more inclined towards low-power devices, FPGA
could be a more suitable choice compared to GPU
for ME process. On the other hand, GPU implemen-
tation shows a significant time reduction of about
95% with respect to the CPU. On the other side,

14

GPU can work better in high power devices, like
the desktop computers.

ACKNOWLEDGMENT

The authors would like to thank Dr. Daniele
Alfonso from STMicroelectronics for providing
valuable support for our work, as well as their
H.264/AVC software implementation.

REFERENCES

[1] JVT, “H.264 : Advanced video coding for generic audiovisual
services,” ITU-T Recommendation H.264 and ISO/IEC 14496-
10 (MPEG4-AVC), March 2010.

[2] Z. Chen, P. Zhou and Y. He, “Fast integer and fractional pel
motion estimation for JVT,” JVT-F017, Tsinghua University,
China, December 2002.

[3] X. Yi, J. Zhang, N. Ling and W. Shang, “Improved and sim-
plified fast motion estimation for JM,” JVT-P021, JVT Meeting
, Poznan, Poland, July 2005.

[4] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast
block-matching motion estimation,” Image Processing, IEEE
Transactions on, vol. 9, no. 2, pp. 287–290, 2000.

[5] P. Meng, M. Jacobsen, and R. Kastner, “FPGA-GPU-CPU
heterogenous architecture for real-time cardiac physiological
optical mapping,” in Field-Programmable Technology (FPT),
2012 International Conference on, pp. 37–42, 2012.

[6] Kronos Group Inc., “OpenCL-The open standard for parallel
programming of heterogeneous systems.” http:www.khronos.
org/opencl/, 2013. [Online; accessed 19-July-2013].

[7] Nvidia Corporation, “CUDA-Compute Unified Device Archi-
tecture for parallel computing platforms .” http://www.nvidia.
com/object/cuda home new.html, 2013. [Online; accessed 31-
October-2013].

[8] N.-M. Cheung, X. Fan, O. Au, and M.-C. Kung, “Video coding
on multicore graphics processors,” Signal Processing Magazine,
IEEE, vol. 27, no. 2, pp. 79–89, 2010.

[9] M. Schwalb, R. Ewerth, and B. Freisleben, “Fast motion
estimation on graphics hardware for H.264 video encoding,”
Multimedia, IEEE Transactions on, vol. 11, no. 1, pp. 1–10,
2009.

[10] M.-J. Chen, Y.-Y. Chiang, H.-J. Li, and M.-C. Chi, “Effi-
cient multi-frame motion estimation algorithms for MPEG-4
AVC/JVT/H.264,” in Circuits and Systems, 2004. ISCAS ’04.
Proceedings of the 2004 International Symposium on, vol. 3,
pp. III–737–40 Vol.3, 2004.

[11] Z. Zhou, M.-T. Sun, and Y.-F. Hsu, “Fast variable block-size
motion estimation algorithm based on merge and slit procedures
for H.264/MPEG-4 AVC,” in Circuits and Systems, 2004.
ISCAS ’04. Proceedings of the 2004 International Symposium
on, vol. 3, pp. III–725–8 Vol.3, 2004.

[12] R. Rodriguez-Sanchez, J. Martinez, G. Fernandez-Escribano,
J. Claver, and J. Sanchez, “A fast GPU-based motion estimation
algorithm for H.264/AVC,” Advances in Multimedia Modeling,
vol. 7131, pp. 551–562, 2012.

[13] N. Roma, T. Dias, and L. Sousa, “Customisable core-based
architectures for real-time motion estimation on FPGAs,” Field
Progammable Logic and Applications, vol. 2778, pp. 745–754,
sep 2003.

[14] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-Y. Chen,
T.-W. Chen, and L.-G. Chen, “Analysis and architecture design
of an HDTV720p 30 frames/s H.264/AVC encoder,” Circuits
and Systems for Video Technology, IEEE Transactions on,
vol. 16, no. 6, pp. 673–688, 2006.

[15] N. Yu, W. Jia, M. Gu, D. Wang, G. Xi, and Y. Zheng, “A high-
performance configurable VLSI architecture for integer motion
estimation in H.264,” in Integrated Circuits (ISIC), 2011 13th
International Symposium on, pp. 55–58, 2011.

[16] E. Castillo, C. Cardenas, and M. Jara, “An efficient hardware
architecture of the H.264/AVC Half and Quarter-Pixel Motion
Estimation for real-time High-Definition Video streams,” in Cir-
cuits and Systems (LASCAS), 2012 IEEE Third Latin American
Symposium on, pp. 1–4, 2012.

[17] G. Sanchez, M. Porto, and L. Agostini, “A fast hardware-
friendly motion estimation algorithm and its VLSI design
for real time ultra high definition applications,” in Circuits
and Systems (LASCAS), 2013 IEEE Fourth Latin American
Symposium on, pp. 1–4, 2013.

[18] Y. Qiu and W. Badawy, “A prototyping virtual socket system-
on-platform architecture with a novel ACQPPS motion estima-
tor for H.264 video encoding applications,” EURASIP Journal
on Embedded Systems, pp. 4:1–4:1, jan 2009.

[19] O. Ndili and T. Ogunfunmi., “FPSoC-based architecture for
a fast motion estimation algorithm in H.264/AVC,” EURASIP
Journal on Embedded Systems, vol. 2009, pp. 1–16, 2009.

[20] O. Ndili and T. Ogunfunmi, “Algorithm and architecture co-
design of hardware-oriented, modified diamond search for
fast motion estimation in H.264/AVC,” Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 21, no. 9,
pp. 1214–1227, 2011.

[21] L. Zhang and W. Gao, “Reusable architecture and complexity-
controllable algorithm for the integer/fractional motion estima-
tion of H.264,” Consumer Electronics, IEEE Transactions on,
vol. 53, no. 2, pp. 749–756, 2007.

[22] S. Warrington, S. Sudharsanan, and W.-Y. Chan, “Architec-
ture for multiple reference frame variable block size motion
estimation,” Circuits and Systems, 2007. ISCAS 2007. IEEE
International Symposium on, pp. 2894–2897, 2007.

[23] Z. Liu, Y. Song, M. Shao, S. Li, L. Li, S. Ishiwata, M. Nak-
agawa, S. Goto, and T. Ikenaga, “HDTV1080p H.264/AVC
encoder chip design and performance analysis,” Solid-State
Circuits, IEEE Journal of, vol. 44, no. 2, pp. 594–608, 2009.

[24] H. Yin, H. Jia, H. Qi, X. Ji, X. Xie, and W. Gao, “A
hardware-efficient multi-resolution block matching algorithm
and its VLSI architecture for high definition MPEG-like video
encoders,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 20, no. 9, pp. 1242–1254, 2010.

[25] G. Pastuszak and M. Jakubowski, “Hardware implementation of
adaptive motion estimation and compensation for H.264/AVC,”
in Picture Coding Symposium (PCS), 2012, pp. 369–372, 2012.

[26] F. Rovati, D. Pau, E. Piccinelli, L. Pezzoni, and J.-M. Bard, “An
innovative, high quality and search window independent motion
estimation algorithm and architecture for MPEG-2 encoding,”
Consumer Electronics, IEEE Transactions on, vol. 46, no. 3,
pp. 697–705, 2000.

[27] G. Bjontegaard, “Calculation of average PSNR differences
between RD- curves,” in JVT Meeting, Tech. Rep. VCEG-M33,
April 2001.

[28] Nvidia Corporation, “The Nvidia Fermi Compute Architecture
whitepaper.” http://www.nvidia.com/content/PDF/fermi white
papers/, 2012. [Online; accessed 19-July-2013.].

[29] V. Volkov, “Better performance at lower occupancy,” in GPU
Technology Conference 2010 (GTC 2010), 2010.

[30] Nvidia Corporation, “CUDA Occupancy Calculator.”
http://developer.download.nvidia.com/compute/cuda/CUDA
Occupancy calculator.xls.

