
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A novel approach for integrating security policy enforcement with dynamic network virtualization / Basile, Cataldo; Lioy,
Antonio; Pitscheider, Christian; Valenza, Fulvio; Vallini, Marco. - STAMPA. - (2015). (Intervento presentato al convegno
1st IEEE Conference on Network Softwarization (NetSoft-2015) tenutosi a London (UK) nel 13-17 April 2015)
[10.1109/NETSOFT.2015.7116152].

Original

A novel approach for integrating security policy enforcement with dynamic network virtualization

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NETSOFT.2015.7116152

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2592157 since: 2021-01-28T18:13:32Z

IEEE

A novel approach for integrating security policy
enforcement with dynamic network virtualization

Cataldo Basile, Antonio Lioy, Christian Pitscheider, Fulvio Valenza and Marco Vallini
Politecnico di Torino, Dip. Automatica e Informatica, Torino, Italy

(e-mail: {cataldo.basile, antonio.lioy, christian.pitscheider, fulvio.valenza, marco.vallini}@polito.it).

Abstract—Network function virtualization (NFV) is a new
networking paradigm that virtualizes single network functions.
NFV introduces several advantages compared to classical ap-
proaches, such as the dynamic provisioning of functionality
or the implementation of scalable and reliable services (e.g.,
adding a new instance to support demands). NFV also allows the
deployment of security controls, like firewalls or VPN gateways,
as virtualized network functions. However, currently there is not
an automatic way to select the security functions to enable and
to configure the selected ones according to a set of user’s security
requirements. This paper presents a first approach towards the
integration of network and security policy management into the
NFV framework. By adding to the NFV architecture a new
software component, the Policy Manager, we provide NFV with
an easy and effective way for users to specify their security
requirements and a process that hides all the details of the correct
deployment and configuration of security functions. To perform
its tasks, the Policy Manager uses policy refinement techniques.

I. INTRODUCTION

Computer networks continue to grow in size and
importance therefore the reduction of deployment and
(re)configuration times has become critical. Nowadays, com-
puting services are deployed on virtualized infrastructures
but network and security functions still run on dedicated
hardware. Network Functions Virtualization (NFV) tries to
solve this disadvantage by defining a virtualized infrastructure
for network functions. These functions, named Virtual Net-
work Functions (VNF) are implemented as virtual machines,
therefore can be dynamically added and removed on-demand
reducing administration tasks, response times and costs. Recent
works on NFV proposed to allow each tenant to customize
its network infrastructure by inserting custom functions. This
possibility enables the deployment of security functions as well
(such as firewall, logging, proxies, VPN concentrators).

Adopting this NFV-based approach also for managing secu-
rity functions may drastically reduce the deployment time and
costs, but the increase in the overall management complexity
may strongly reduce its impact. Therefore, automating the
support of security functions is fundamental. This paper modi-
fies the NFV architecture addressing the following challenges:
(1) identify security functions to provision, (2) decide where
selected security functions will be deployed, and (3) generate
the necessary configurations to implement a set of user-defined
security policies. At last, these features must be offered to
end-users, with low technical skills, and to expert users that
typically have specific needs (e.g., configuration tuning).

This paper adds to the NFV architecture a new software
component, the Policy Manager. By using a user-oriented

approach to specify security requirements, Policy Manager im-
plements an automatic process for generation and deployment
of related configurations. Although the proposed approach
is suitable for every type of security features, this paper is
focused on functions for filtering traffic (including stateful
packet filtering, traffic inspection, etc.). These features can be
joined to offer an integrated solution, e.g., parental control.

The Policy Manager acts as an intermediary between users
and NFV, offering two interfaces. The user’s interface supports
the definition of the policies and the NFV interface sends
configuration commands to the NFV orchestrator. The Policy
Manager uses policy refinement techniques to select the VNFs
to use and derive their configurations. Policy refinement is the
process “to determine the resources needed to satisfy policy
requirements, to translate high-level policies into operational
policies that may be enforced by the system, to verify that
the set of lower level policies actually meets the requirements
of the high-level policy” [1]. Policy refinement allows the
separation of policy specification and VNF configuration. By
providing a high-level view of the desired behaviour of the sys-
tem, the user is not distracted by specific details of a function
implementation and can focus on the desired outcome. Policy
refinement is well studied in literature for legacy systems to
translate user policies into configuration commands, but, to the
best of our knowledge, it has never been proposed to configure
NFV security functions.

The High-Level Policies language (HLP) is used to capture
user’s security requirements. HLP is an authorization language
whose policies can be represented with sentences close to
natural language. Examples of HLP policies are “do not down-
load malware”, “do not access blacklisted site”. As evident,
HLP policies are technology, function and implementation
independent.

The Policy Manager refines HLP policies into the concrete
configuration of each VNF. Practically, it identifies the VNFs
to enforce the user security requirements and derives config-
urations. When more VNFs are available for satisfy the same
requirement (e.g., different types of firewall), an optimization
to choose among VNFs will take place. Finally, configuration
are passed by the orchestrator to the correct security VNFs.
As alternative, VNFs are selected by the user. To avoid errors,
the Policy Manager performs non-enforceability analysis to
check compatibility between user’s requirements and selected
VNFs. This analysis informs the user providing indications and
remediation tips.

To make this complex refinement feasible, our approach
divides the process into two steps by passing through an
intermediate format, the medium-level policies (MLP). We

define three policy abstraction layers (HLP, MLP and the
concrete VNF configurations), and two translation modules.
The former translator refines HLP into MLP and the latter
translates MLP into concrete VNF configurations.

The rest of this paper is structured as follows: Section II
presents the most important concepts used in this paper;
Section III gives a general overview of the proposed approach;
Section IV describes the refinement process in detail; Sec-
tion V summarizes the paper.

II. BACKGROUND

This section gives a short introduction of NFV, policy
refinement, and non-enforcability. This introduction may help
the reader for better understanding the proposed architecture.
Furthermore a general overview of the research results in this
areas is presented.

A. Network function virtualization NFV

The new Network Function Virtualization (NFV) concept
decouples software implementation of network functions (e.g.,
router, firewall, NAT) from the compute, storage and network-
ing resources through a virtualization layer. In this context, the
ETSI standards organization is working on the definition of an
architecture and the requirements for the deployment of any
Virtual Network Functions (VNFs). Those VNFs can run on a
range of industry standard server hardware, and can be moved
and instantiated in any locations in the network, without the
need of new equipment installation [2].

Recently a new kind of flexibility is achieved both from the
Network Service Provider (NSP) and end-users sides through
this new technology, as users traffic can be processed by
any NSP-provided VNFs as well by any third-parties VNFs.
Unfortunately, even if a great number of research activities
analysed in depth the deployment of a generic VNFs in the
NSP network [3], [4], at the best of our knowledge, none
seems to address which effects could have the virtualization
of a network security functions, (i.e., firewall, IDS, etc.) and
which aspects must be taken into account.

Other research focuses on function description and how
to correctly integrate third-parties VNFs in the NSP network:
Koslovski et al. [5] proposes a language to describe storage and
computing resources for a given function; wears Spinoso et al.
[6] proposes that a VNF programmer must provide a functional
description in order to correctly integrate and configure such
VNF. However more detailed informations are required to
support third-parties security functions in the provider network.

B. Refinement

Policy refinement has been well studied in literature and
has been proven to be a mature and efficient process. Although
policy refinement can be applied to all kind of policies, this
paper only considers security policies.

Bartal et al. propose a solution named Firmato [7], it was
one of the first solution proposals in this area and supports
only packet filter firewalls. It is based on a entity-relationship
model of the security policy and of the network topology.
Verma et al. [8] used a similar approach, the authors present
a firewall analysis and configuration engine named FACE. It

takes as inputs the network topology and a global security
policy written in a high-level language. Garcia-Alfaro et al. [9]
proposed MIRAGE, a management tool for the analysis and
deployment of configuration policies. It is based on the same
principles as Firmato [7] and FACE [8], but it is also capable
of configuring intrusion detection systems IDS and VPN
routers. MIRAGE can also perform conflict analysis on already
deployed configurations. Basile et al. [10] proposes to use
ontologies for security policy translation. Network filtering
rules are derived from security policies that refer to high-level
concepts such as users and services. To map these high-level
concepts to low-level network concepts such as IP address,
port, protocol, an ontology is used. In [11], Guarnieri et al.
proposed a model-driven security approach for the design and
generation of concrete security configurations for software
architectures. In this approach the system architect models the
architecture of the system by means of UML class diagrams,
and then the security administrator adds security requirements
to the model by means of Security4UML, a UML profile. From
the model enriched with security requirements, the concrete
security configuration is derived in a semi-automated way.

According to [12], a good security policy must be imple-
mentable through system administration procedures (e.g., pub-
lishing of acceptable use guidelines) and enforceable with se-
curity tools or controls, where appropriate, and with sanctions,
where actual prevention is not technically feasible. However in
a real scenario, some policies may be less precisely enforceable
on some systems than others or in worst case, completely non-
enforceable. Unfortunately, in literature, non-enforceability
analysis has received little or no attention and it has not been
investigated in-depth. For example, as suggested by [13], the
access control on traditional UNIX systems is much less gran-
ular when compared with ACLs on modern implementations
and some policies are not fully supported. In particular, two
situations can be detected: high-level constrains require a set
of functions that are not available (non-enforceable) or only
a subset of them is available (partial enforceable). Therefore
the policy should be accompanied by an indication of how to
handle these situations, e.g., warning the user, suggesting a
more relaxed policy, adding a third-party software or install a
different VNF to compensate the absent functionality. Verma et
al. in [8] propose an iterative process (that includes topological
analysis) to identify an unimplementable policy and suggesting
how to make it implementable.

III. APPROACH

The proposed approach modifies the NFV architecture
adding a new component named Policy Manager. The inte-
gration of this component with NFV architecture is sketched
in Fig. 1, where Policy Manager transparently enforces user
security requirements in agreement with the other network
requirements, providing an additional layer between the end-
user and the NFV orchestrator. The Policy Manager performs
the refinement of security requirements expressed with a
high-level policies (HLP) into the concrete configuration of
each VNF. Practically, the Policy Manager first identifies the
security VNFs that can be used to enforce the user security
requirements then derives the needed configurations. These
configurations are later passed by the orchestrator to the correct
security VNFs. By separating the security requirements from
the effective required VNFs and their security configurations

Orchestrator

security VNF1

HW

user
HLP/MLP

policies

generate real
configuration

configure
VNFs

security VNF2 security VNF3

VNF1
VNF2

VNFn

Policy Manager

Fig. 1: Architecture

the end-user does not need to take in consideration the aspects
related to VNFs configuration, focusing on the overall impact
of his policy. To make this refinement feasible, we split the
process into two steps by using a intermediate format, the
medium-level policies (MLP). Therefore, the Policy Manager
adopts three policy abstraction layers (i.e., HLP, MLP and the
concrete VNF configurations) and two translation modules (to
refine HLP into MLP and to translate MLP into concrete VNF
configurations). It is worth noting that our proposal follows the
design principles proposed by Strassner for policy-based net-
work management, where the HLP maps to “Business/System
View”-layer, the MLP maps to the “Administrative View”-layer
and the concrete configurations map to the “Device/Instance
View”-layer [14]. By introducing HLP and MLP in the ar-
chitecture, the refinement process becomes independent from
VNF implementations.

A. Policy abstractions.

Although the full specification of policy abstraction is
out of the scope of this paper, in this section we provide a
brief introduction of HLP and MLP. As introduced before,
the users specify their security requirements with the HLP.
We designed the HLP (starting from our previous works [15],
[16]) as an authorization language that follows the subject-
action-object-attribute paradigm (also referred to as target-
effect-condition) [17]. A security requirement is expressed as
a set of sentences close to natural language, e.g., “do not
download malware”, “do not access gambling sites”, “allow
Internet traffic from 18:30 to 20:00 for Alice”. The elements
of a sentence (subject, object, etc.) are chosen by the user
from a predefined set and implemented in a GUI editor as
different lists, i.e., a list for each element (e.g., action, subject).
This approach is transparent for users (avoiding to learn new
language) and makes it possible to map each element of
a sentence to the related HLP component. It is clear that,
users can customize some elements of a sentence, for example
to define timing constraints, particular URL, etc.. Again, to
simplify the definition of a complex security policy, a template-
based approach is provided. A template contains a set of
HLP that participate to a common goal. For example, the
template “enable parental control” implements simple HLPs
as “do not access blacklisted site”, “log access to websites”

and “permit access to Internet from 20:00 to 22:00”. Elements
as “blacklisted site” contains a predefined set of URLs initially
collected from a list managed by a trusted authority. However,
the user can modify that list adding or removing some URLs.
As a consequence, HLP policies are technology, function and
implementation independent, therefore a HLP can be enforced
with different VNFs of different vendors.

MLP has been designed to abstract the configurations of
security VNFs. Unfortunately, defining this abstraction is not
trivial because each security control has a specific language. To
this purpose, MLP follows the approach of [18] and organized
by security functions. A security function is a basic feature1

offered by a VNF (e.g., channel protection, filtering, anti-
virus, parental control). Therefore, MLP is composed by a
general model that defines the high-level concepts (policies,
rules, conditions, actions, etc.) and a set of sub-models to
capture the semantics specific concepts as attributes, condition
types, methods (e.g., HTTP GET), etc. For instance, MLP
supports the configuration of a packet filter, or the options
related to the configuration of an anti-virus. Expert users may
have specific needs (e.g., fine tuning) for the configuration
of security features. To satisfy these requirements, users may
directly use statements offered by MLP to write abstract
configurations. After, those are passed as input to the Policy
Manager as depicted in Fig. 1.

B. Translation.

The refinement of HLP policies into MLP policies is a very
complex task. First of all, it requires to identify the security
functions (i.e., capability) needed to enforce the policy. Then,
suitable VNFs to enforce the policy must be selected. However,
several VNFs with the same security function are typically
available. Therefore, the process must choose among them.
Different implementations and combinations of VNFs may
have different side-effects on the overall performance, through-
put, latency and/or bandwidth. For example, a particular VNF
implementation requires more processing resources than the
others, or significantly reduces the network throughput. For
this reason, the Policy Manager adopts a set of optimization
techniques (as presented in Section IV) to choose among
alternatives. When the set of optimal VNFs is identified, the
HLP are mapped into MLP statements. For example, “allow
web traffic” is easily translated into a rule whose action is
allow and the condition selects all the IP traffic towards the
destination port 80. In the same way, other concepts are
expanded with predefined values, like “gambling sites” that can
be determined by a set of URLs (also maintained and obtained
by third parties) or by a set of DNS servers that do not perform
reverse translation of specific URLs (like OpenDNS).

On the other hand, the transformation of MLP policies
into VNF configurations mainly involves a change of syntax,
as MLP has been designed to share the same semantics as
the VNFs. Each VNF implementation typically has a different
configuration language and VNF-specific translation module
is needed. This actually maps MLP policies into a concrete
configuration. For example, the refinement process requires a

1A VNF may implement more than a single security feature, e.g., a firewall
can implement at the same time stateless packet filter and stateful filtering. The
proposed refinement process also support this case. However, for simplicity,
we avoid to explicitly distinguish these cases in this paper.

HLP refinement

abstract VNF
configuration

MLP refinement

VNF selection automatic VNF
selection

VNFs

HLP
policy

early non-
enforceability check

VNF abstract
configurations

VNF configuration
translation

VNF
configurations

policy driven

function driven

ENE: Early non-enforceability
CNE: Complete non-enforceability

manually select VNFs

specify security requirements

CNE report

EN
E

re
po

rt

Fig. 2: Policy-driven and Function-driven VNFs selection

firewall VNF and generates the corresponding MLP. Then, the
translation module transforms the MLP configuration into the
firewall settings.

IV. HLP REFINEMENT

The HLP refinement approach is performed by the Policy
Manager and presented in Fig. 2. The VNFs can be manually
selected by the user, or automatically by using an ad hoc pro-
cess. The former is named function-driven VNFs selection, the
latter policy-driven VNFs selection. As introduced before, dif-
ferent VNFs provide different security functions. Examples of
such functions are “packet filtering”, “deep packet inspection”,
“signature-based malware detection”, “traffic anonymization”,
“traffic encryption” and “transparent proxying”. For instance,
the HLP policy “enable parental control” can be implemented
by using either a single VNF (that contains all the required
security functions) or by using a set of VNFs (e.g., a virtual
packet filter, a VNF for logging traffic/sessions, a virtual web
proxy). This choice may impact on performance, cost and/or
efficiency.

In the function-driven approach (depicted and surrounded
by the dashed line in Fig. 2), the user specifies her/his HLP
policy and selects the set of VNFs she/he wants to use.
Moreover, the user has the opportunity to decide which policy
should be enforced with a particular VNF. Before starting the
generation of MLP, the Policy Manager checks if the required
VNFs support the security functions required to enforce the
user’s policies. In practice, actions, objects and attributes
are statically mapped to a set of security functions that are
required to enforce an HLP. Then, each VNF supports a sub-
set of that functions. Therefore, starting from an HLP it is
possible to identify which security functions are required and
which VNFs satisfy that policy. If the selected VNFs do not
satisfy these requirements, the user is warned and a set of
remediations strategies is proposed. This step is named early
non-enforceability.

The early non-enforceability analysis is performed in real-
time to identify only the macroscopic errors that lead the
refinement process to failure. For example, this analysis is
useful when the user specifies a parental control policy but
the selected VNFs does not support this security function.
In this case, the refinement is aborted after the analysis. If
the early enforceability does not detect any lack of functions,

the generation of MLP is automatically performed for each
security control of a VNF(s) (the “abstract VNF configuration
phase” in Fig. 2). During the generation of MLP other cases
of non-enforceability may appear. For example, when a policy
requires to inspect the content of a HTTP protocol field, but the
selected VNF does not support this feature, the policy is not
enforceable. Similarly, when it does not support a particular
option, the policy is partially enforceable. Let us consider a
parental control scenario to protect children access to Internet,
where applications with different features are available. Two
distinct VNFs, VNF1 and VNF2 are available, both capable of
enforcing a parental control policy but with different functions.
VNF1 includes a “application content inspection” function and
a “URL filtering” function. VNF2 supports the functions of
VNF1 and a feature to specify time-based policies for “URL
filtering”. Hence, if a user wants to specify that access to
Facebook web site is permitted only after dinner from 20 pm
to 22 pm VNF1, he is not allowed to enforce that policy.
Therefore, the abstract VNF configuration phase produces a
complete non-enforceability report (CNE report) where all
types of enforceability errors/issues are shown to the user.
The function-driven approach is recommended only for expert
users, as it can lead to several issues, e.g., sub-optimal config-
urations, lack of performance, costs, non-enforceability. Each
VNF specifies the set of available functions (e.g., “application
content inspection”, “URL filtering”), the supported features
(e.g., user’s defined set of URL, time-based policies) and
other tuning options. A unskilled user could select a VNF that
does not completely satisfy the required network throughput
requirements, or in the worst case cannot satisfy the security
policy at all. Therefore a wrong VNF selection leads to a non-
enforceable security policy.

The policy-driven approach (depicted and surrounded by a
continuous line in Fig. 2) selects the required VNF automati-
cally from a catalogue of available VNFs. Each VNF available
in the catalogue is associated to a set of security functions.
Therefore, when high-level policy requirements matched the
related functions, a set of candidate VNFs is selected. The
selection can be straightforward (when only one VNF is
available with a required function) or may be based on various
criteria (such as cost, performance, reliability or reputation)
when multiple VNFs offer a required function. This may
result in a trade-off among different criteria and the user
must specify its preferences. Examples of these criteria are:

adopt open-source VNF; choose applications with low network
latency (e.g., to match QoS requirements); adopt applications
that are reliable to faults or that have a better reputation
(according to an expert review). Since several VNFs may be
identified to enforce the policies a selection criterion (i.e.,
optimization target functions) must be defined. The user may
choose among a set of Policy Manager-provided profiles that
specify a predefined set of target functions (e.g., maximize
performance, minimize costs). In particular, for performance
a set of different categories should be considered: e.g., CPU
usage, RAM, network throughput. Once a profile or a criterion
is selected by the user, the refinement process: formulates a
Mixed integer linear programming (MILP) problem (consider-
ing a specific target functions and related constraints derived
from selected profile), invokes an external solver to perform the
optimization, analyses solver results and identifies the set of
VNFs to adopt. For the sake of simplicity, we avoid to present
full details on how an optimization problem is formulated.

V. CONCLUSIONS

The innovations in NFV made it possible to deploy com-
plex network structures based on virtualized functions with a
reduced cost and time. Although the infrastructure is flexible
enough to accommodate this improvements and to configure
the interconnections between the VNFs, there is no efficient
method to select and configure security functions within a
dynamic virtualized network. This paper proposes a novel
approach to solve this problem by defining an extension,
named Policy Manager, for the existing NFV architecture. The
Policy Manager introduces an additional layer between the user
and the NFV orchestrator. The user defines his security policies
with the High-level Policy language (HLP) and the Policy man-
ager refines them into configurations for the required VNFs.
The required VNFs are selected either manually by the expert
users (function-driven) or automatically by the Policy Manager
(policy-driven) for the end-users. The policy-driven approach
uses a selection criteria defined by the end-user to find the
best possible combination of VNFs. In the function-driven
approach the expert users selects his desired VNFs and also
specifies which VNF enforces which policy. Both approaches
perform an enforceability analysis and warn the user in case
of some policies cannot be enforced. The proposed extension
has mayor advantages over the current architecture. First, it
enables end-users, with low technical skills, to configure the
network and related services. Second, the policy definition
is independent from VNF implementations and therefore one
VNF can be substituted with another without reconfiguring the
whole network.

Currently, our approach has been implemented only for a
limited set of HLP policies, mainly related to filtering require-
ments, and only for a very limited set of VNF (packet filters,
stateful firewalls, L7 filters, basic content inspection). However
the proposed approach can be easily extended, adding new
security feature and/or VNFs. Therefore, as future work, we
will extend the Policy Manager adding other types of security
functions (e.g., VPN, proxy, IPS/IDS) and supporting more
VNFs. Other improvements are expected in the optimization
process used in the policy-driven approach with the support of
more multi-objective target functions.

ACKNOWLEDGMENT

The research described in this paper is part of the SE-
CURED project, co-funded by the European Commission (FP7
grant agreement no. 611458).

REFERENCES

[1] J. Moffett and M. Sloman, “Policy hierarchies for distributed systems
management,” Selected Areas in Communications, IEEE Journal on,
vol. 11, no. 9, pp. 1404–1414, December 1993.

[2] “Network function virtualization - White Paper 2,” The European
Telecommunications Standards Institute, Tech. Rep., October 2013.

[3] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in NSDI 14: 11th USENIX Symposium on Networked Systems Design
and Implementation, Seattle, Washington, April 2014, pp. 459–473.

[4] M. Scholler, M. Stiemerling, A. Ripke, and R. Bless, “Resilient de-
ployment of virtual network functions,” in ICUMT13: 5th International
Congress and Workshops on Ultra Modern Telecommunications and
Control Systems, Brno, Czech Republic, September 2013, pp. 208–214.

[5] G. P. Koslovski, P. V. Primet, and A. S. Charão, “VXDL: virtual
resources and interconnection networks description language,” Networks
for Grid Applications, vol. 2, pp. 138–154, October 2009.

[6] S. Spinoso, M. Leogrande, F. Risso, R. Sisto, and S. Signgh, “Automatic
configuration of opaque network functions in cms,” in NVSDN 2014:
1st International Workshop on Network Virtualization and Software-
Defined Networks for Cloud Data Centres, London, United Kingdom,
December 2014, pp. 750–755.

[7] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” ACM Transactions on Computer Systems, vol. 22,
no. 4, pp. 381–420, November 2004.

[8] P. Verma and A. Prakash, “FACE: A Firewall Analysis and Configura-
tion Engine,” in SAINT05: Symposium on Applications and the Internet,
Trento, Italy, February 2005, pp. 74–81.

[9] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and S. Preda,
“Mirage: A management tool for the analysis and deployment of
network security policies,” Data Privacy Management and Autonomous
Spontaneous Security, vol. 6514, pp. 203–215, 2011.

[10] C. Basile, A. Lioy, S. Scozzi, and M. Vallini, “Ontology-based security
policy translation,” Journal of Information Assurance and Security,
vol. 5, no. 1, pp. 437–445, 2010.

[11] M. A. Neri, M. Guarnieri, E. Magri, S. Mutti, and S. Paraboschi,
“A model-driven approach for securing software architectures.” in
SECRYPT2013: 10th International Conference on Security and Cryp-
tography, Reykjavı́k,Iceland, July 2013, pp. 595–602.

[12] J. Weise and C. R. Martin, “Developing a Security Policy,” SANS
Institute, Tech. Rep., April 2003.

[13] M. Bishop and S. Peisert, “Your Security Policy is What??” University
of California, Tech. Rep., March 2006.

[14] J. Strassner, “DEN-ng: achieving business-driven network manage-
ment,” in NOMS2002 : Network Operations and Management Sym-
posium, Florence, Italy, April 2002, pp. 753 – 7661.

[15] “PoSecCo deliverable D2.2 - it policy meta-model and language,”
February 2013. [Online]. Available: http://www.posecco.eu/fileadmin/
POSECCO/user upload/deliverables/d22.pdf

[16] “PoSecCo deliverable D3.5 - models to refine the it
policy at service level,” September 2012. [Online]. Available:
http://www.posecco.eu/fileadmin/POSECCO/user upload/deliverables/
D3.5 Models to refine the IT policy at service level 01.pdf

[17] S. Godik, A. Anderson, B. Parducci, E. Damiani, P. Samarati, P. Hu-
menn, and S. Vajjhala, “eXtensible Access Control Markup Language
(XACML) Version 3.0,” Organization for the Advancement of Struc-
tured Information Standards, Tech. Rep., January 2013.

[18] “PoSecCo deliverable D3.3 - configuration meta-model,” March
2012. [Online]. Available: http://posecco.eu/fileadmin/POSECCO/user
upload/deliverables/D3.3 Configuration Meta-Model.pdf

