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Sharp control time for viscoelastic bodies∗

L. Pandolfi†

February 25, 2015

Abstract: The evolution in time of a viscoelastic body is described by an
equation with memory, which can be seen as a perturbation of the equations
of elasticity. This observation is a useful tool in the study of control problems.
In this paper, by using moment methods, we compare a viscoelastic system
which fills a surface or a solid region (the string case has already been studied)
with its elastic counterpart (which is a generalized telegrapher’s equation) in
order to prove exact controllability of the viscoelastic body as a consequence
of the assumed controllability of the associated telegrapher’s equation.

Keywords: Controllability and observability, integral equations, linear
systems, partial differential equations, heat equations with memory, vis-
coelasticity.

1 Introduction

We study a control problem for the following equation:

wtt = 2cwt +∇ · (a(x)∇w) + q(x)w +

+

∫ t

0

M(t− s) {∇ · (a(x)∇w(s)) + q(x)w(s)} ds+ F (x, t) . (1.1)

Here w = w(x, t): Ω× [0, T ] 7→ IR where T > 0 and Ω ⊆ IRd, d ≤ 3.

∗This papers fits into the research programme of the GNAMPA-INDAM and has been
written in the framework of the “Groupement de Recherche en Contrôle des EDP entre la
France et l’Italie (CONEDP-CNRS)”.

†Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”, Politecnico di
Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy (luciano.pandolfi@polito.it)
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Eq (1.1) has several interpretations. For every d, w(x, t) represents the
temperature of a thermodynamical system with memory which occupies the
region Ω, see [12]. In linear viscoelasticity and when d = 1 or d = 2, w(x, t)
represents the displacement of the point in position x at time t of a body
which fills the region Ω (see [31]). If d = 3 then a similar interpretation holds
for quite special classes of displacements.

Eq. (1.1) has to be supplemented with the initial condition

w(·, 0) = w0 , wt(·, 0) = w1 .

A control f ∈ L2
loc(0,+∞;L2(Γ)) acts on the boundary of Ω:

w(x, t) = f(x, t) x ∈ Γ ⊆ ∂Ω , w(x, t) = 0 x ∈ ∂Ω \ Γ . (1.2)

We stress the fact that the control f is real valued.
Note that the arguments of w = w(x, t) are not explicitly indicated unless

needed for clarity. We shall write w(x, t) or w(t) or simply w. Furthermore,
w does depend on f but also this dependence is not indicated.

We refer to [14] for the following properties of (1.1) (see also [24, Ap-
pendix]). Let f ∈ L2(GT ) = L2(0, T ;L2(Γ)) and w(·, 0) = ξ ∈ L2(Ω),
wt(·, 0) = η ∈ H−1(Ω). Then, (1.1) admits a unique solution w(·, t) ∈
C(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω)) and the transformation

(ξ, η, f) 7→ (w,wt)

is linear and continuous in the indicated spaces. So, the following definition
of controllability is justified:

Definition 1 System (1.1) is controllable at time T if for every w0, ξ ∈
L2(Ω) and w1, η ∈ H−1(Ω) there exists f ∈ L2(0, T ;L2(Γ)) such that

w(·, T ) = ξ ∈ L2(Ω) , wt(·, T ) = η ∈ H−1(Ω) .

A control f with this property is called a steering control (to the target (ξ, η)).

It is known that controllability of a linear system does not depend on the
initial condition or on the affine term F so that we can assume

w(x, 0) = 0 , wt(x, 0) = 0 , F (x, t) = 0 . (1.3)

Controllability at time T implies controllability at larger times so that:
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Definition 2 The sharp control time for system (1.1) (with control (1.2))
is the infimum of the set of the times at which the system is controllable.

The special case of Eq. (1.1) with M(t) ≡ 0 is the (generalized) telegra-
pher’s equation:{

wtt = 2cwt +∇ · (a(x)∇w) + q(x)w ,
w(x, t) = f(x, t) x ∈ Γ , w(x, t) = 0 x ∈ ∂Ω \ Γ . (1.4)

The paper [32] proves controllability of (1.4) with real controls if Γ is suitably
chosen and identifies a Γ-dependent control time. Our goal is the proof that
when the telegrapher’s equation is controllable at time T then also (1.1) is
controllable and conversely:

Theorem 3 Let Ω ∈ IR3 be a bounded region with C2 boundary and M(t) ∈
H2

loc(0,+∞), q(x) ∈ C(Ω̄), a(x) ∈ C1(Ω̄), with a(x) > a0 > 0 for every
x ∈ Ω̄. Then we have:

1. if the telegrapher’s equation (1.4) is controllable at time T , then Eq. (1.1)
is controllable at any larger time.

2. Eq. (1.1) and (1.4) have the same sharp control time.

Among the different ways in which controllability can be proved, possibly
the oldest one is the reduction of a control problem to a moment problem.
Theorem 3 when d = 1 has been proved via moment methods in [19, 25, 26]
and we prove here that moment methods can be used in general.

As an application of our results, we note that controllability can be used
to identify external signal using boundary observations, see [27].

Notations. Whenever the notatios {Mn} and {Mn(t)} appear they de-
note respectively a bounded sequence of numbers and a sequence of (con-
tinuous) functions which is bounded on a (preassigned) interval [0, T ], not
the same sequences at every occurrence. The special expression of these
sequences has no interest in the proofs.

We introduce the notation (∂/∂ν denotes normal derivative on ∂Ω)

Gt = Γ× (0, t) , γaϕ = a(x)
∂ϕ

∂ν
on ∂Ω (in particular on Γ).
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Organization of the paper The goal of the paper is the proof of
the two statements in Theorem 3. The proof is in two parts, and requires
several preliminaries and ancillary material. Preliminaries are in Section 2:
subsection 2.1 presents a transformation of the variable w which does not
affect controllability but which simplifies the computations; subsection 2.2
presents information on the theory of moments and Riesz sequences while
the properties of the telegrapher’s equation are in subsection 2.3.

In Section 3 we prove item 1 of Theorem 3 while equality of the sharp
control times (i.e. item 2) is proved in Section 4.

Proofs of ancillary results are in the appendix.

1.1 References and known results

The first results on controllability of viscoelastic systems have been obtained
by Leugering (see for example [16, 17]) then followed by several contribution
(see for example [15]). Among them, we consider in particular the results
in [5, 8, 20, 24]. The paper [20] proves Theorem 3 (even for a nonconvolution
kernel. See [28] for an important special case) in the case q(x) = 0 and
a(x) = 1. More important, it explicitly assumes that the control acts on the
whole boundary of Ω, Γ = ∂Ω. Under these conditions the paper [20] proves
controllability, as a consequence of observability of the adjoint system, when
T ≥ T0, where T0 is explicitly identified. Controllability via observability
of the adjoint system is proved in [8], when the control is distributed in a
subregion close to ∂Ω (the proof is based on Carleman estimates).

An extension of D’Alembert formula is used in [5, Sect. 5] to study
controllability to smooth targets of a (one dimensional) thermal system with
memory.

The paper [24] uses an operator approach and represents the solutions
of (1.1) by using cosine operators (this idea is implicit in previous papers,
for example by Leugering). It is proved in [24] that controllability holds for
the equation with memory if the corresponding wave equation is controllable
but the control time is not explicitly identified.

The papers [5, 8, 24] are concerned with the heat equation with memory
so that they study only the controllability of the component w(t), not of the
velocity, but at least the arguments in [24] are easily extended to the pair
(deformation/velocity).

In conclusion, Theorem 3 extends and completes the results in [5, 8, 20, 24]
and furthermore it uses different techniques, which have their independent
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interest: the proof uses moment methods and extends to spaces of higher
dimension the techniques and results developed in [1, 3, 4, 19, 25, 26, 27, 28].

2 Preliminary information

Let A be the operator in L2(Ω),

domA = H2(Ω) ∩H1
0 (Ω) , Aw = ∇ · (a(x)∇w) + q(x)w . (2.1)

This operator is selfadjoint with compact resolvent and has a sequence
{−λ2n} of eigenvalues. Note the sign and the exponent, but this does not
imply that −λ2n is real negative. This property does depend on the sign
of q(x). The order of the eigenvalues is taken so that {|λn|} is increasing
(eigenvalues with equal modulus are taken in any order) and every eigenvalue
is repeated according to its multiplicity (which is finite). It is known (see
see [23, p. 192]) that there exist N , m0 > 0 and m1 > 0 such that if n > N
then λ2n is real and we have:

m0n
2/d < λ2n < m1n

2/d .

We shall use the following consequence:

Lemma 4 If d ≤ 3 then we have
∑

1/λ4n < +∞.

The space L2(Ω) has an orthonormal basis whose elements are eigenvec-
tors of A: Aϕn = −λ2nϕn.

For any k > 0 such that (kI − A) is positive, the sequence{
ϕn

(√
k + λ2n

)−1
}

is an orthonormal basis of
(
dom (kI − A)1/2

)
and so {ϕn

√
k + λ2n} is an

orthonormal basis of
(
dom (kI − A)1/2

)′
. This space is unitary equivalent to

H−1(Ω) since (from [9, Theorem 1-D])
(
dom (kI − A)1/2

)
= H1

0 (Ω) Hence,
every χ ∈ H−1(Ω) has the representation

χ =
∑

χn

(√
k + λ2n

)
ϕn , {χn} ∈ l2 . (2.2)
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2.1 A preliminary transformation

The computations are simplified if we use a transformation first introduced
in [25]. We integrate both the sides of (1.1). Initial conditions and affine
term are zero so that we get

wt(t) = 2cw(t) +

∫ t

0

Ñ(t− s) (∇ · (a(x)∇w(s)) + q(x)w(s)) ds

with

w(0) = 0 , w|Γ(t) = f(t) , w|∂Ω\Γ(t) = 0 , Ñ(t) = 1 +

∫ t

0

M(s) ds .

We introduce

θ(x, t) = e2γtw(x, t) , γ = −M(0)/2 = −Ñ ′(0)/2 .

We see that θ solves the following equation, where α = c+γ, N(t) = e2γtÑ(t):

θt = 2αθ(t) +

∫ t

0

N(t− s) (∇ · (a(x)∇θ(s)) + q(x)θ(s)) ds (2.3)

with conditions

θ(0) = 0 θ|Γ(t) = e2γtf(t) , θ|∂Ω\Γ(t) = 0

(the functions e2γtf(t) will be renamed f(t)). The fact that simplifies the
computation is:

N(0) = 1 , N ′(0) = 0 .

Thanks to the equality wt = e−2γt (θt − 2γθ), controllability of the pair
(w,wt) is equivalent to controllability of the pair (θ, θt). So, from now on we
study the controllability of the pairs (θ, θt) where θ solves Eq. (2.3).

Now we compute the derivative of both the sides of Eq. (2.3). We get

θtt = 2αθt +∇ · (a(x)∇θ) + q(x)θ+

+

∫ t

0

N(t− s) (∇ · (a(x)∇θ(s)) + q(x)θ(s)) ds . (2.4)
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The telegrapher’s equation associated to this system is

wtt = 2αwt +∇ · (a(x)∇w) + q(x)w (2.5)

(of course systems (2.5) and (1.4) have the same controllability properties).
We shall prove controllability of the viscoelastic system written in the

form (2.3) by comparing it with the telegrapher’s equation (2.5). In this
study, the following notation will be of frequent use (α is the coefficient
in (2.3) and (2.5)):

βn =
√
λ2n − α2 . (2.6)

2.2 Riesz sequences and moment methods

The study of controllability of linear systems can often be reduced to the
solution of suitable moment problems. We confine ourselves to consider the
special case which is needed in the proof of Theorem 3. Let H be an infinite
dimensional, separable (real or complex) Hilbert space (inner product is ⟨·, ·⟩
and the norm is | · |). Let {en} be a sequence in H. We define J: H 7→ l2

dom J = {f ∈ H : {⟨f, en⟩} ∈ l2} , Jf = {⟨f, en⟩} .

The moment problem is the study of im J. In particular, we are interested
to understand whether the sequence of the equations

⟨f, en⟩ = cn (2.7)

admits a solution f for every {cn} ∈ l2, and to represent at least one of the
solutions. In the proof of Theorem 3 we only use the case J ∈ L(H, l2). Then
we restrict our interest to this case. It is then easy to compute J∗:

J∗ ({cn}) =
∑

encn (2.8)

It turns out (see [2, Theorem I.2.1]) that J is an isomorphism of cl span{en}
and l2 if and only if {en} is a Riesz sequence, i.e. if and only if {en} is the
image of an orthonormal basis of a Hilbert space K under a linear bounded
and boundedly invertible transformation from K to H.

A Riesz sequence in H which is complete in H is called a Riesz basis.
The following result holds (see [33, Th. 9]):
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Lemma 5 The sequence {en} is a Riesz sequence if and only if there exist
numbers m0 > 0 and m1 > 0 such that

m0

∑
|an|2 ≤

∣∣∣∑ anen

∣∣∣2
H
≤ m1

∑
|an|2 (2.9)

for every finite sequence {an}. If furthermore the sequence {en} is complete,
then it is a Riesz basis.

Every Riesz sequence admits biorthogonal sequences {ψn} i.e. sequences
such that

⟨ψk, en⟩ = δn,k =

{
1 if n = k
0 if n ̸= k .

One (and only one) of these biorthogonal sequences belongs to the closed
space spanned by {en}. This biorthogonal sequence is a Riesz sequence too,
and the solution of the moment problem (2.7) is

f =
∑

cnψn .

Let {en} and {zn} be two sequences in H. We say that they are quadrat-
ically close if ∑

|en − zn|2 < +∞

and we use the following test (see [30, 33]):

Theorem 6 Let {en} be a Riesz sequence in H and let {zn} be quadratically
close to {en}. Then we have

• Paley-Wiener Theorem: there exists N such that {zn}n>N is a Riesz
sequence in H;

• Bari Theorem: the sequence {zn} is a Riesz sequence if, furthermore,
it is ω-independent, i.e. if (here {αn} is a sequence of numbers)∑

αnzn = 0 =⇒ {αn} = 0 .

A useful observation (implicitly used in the statement of Theorem 6) is
as follows: if {zn} is quadratically close to a Riesz sequence then

∑
αnzn

converges in H if and only if {αn} ∈ l2 (see [10, Ch. 6]).
The concrete case we are interested in, is the case H = L2(0, T ;K) where

K is a second Hilbert space (it will be K = L2(Γ)). In this context, we need
two special results. For completeness, the proofs are given in the Appendix.
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Lemma 7 Let Z′ = Z \ {0} and let {bn}n∈Z′, {kn}n∈Z′ be such that

b−n = −bn , kn = k−n ∈ K , |Imbn| < L . (2.10)

for e suitable number L. If the sequence {eibntkn}n∈Z′ is a Riesz sequence in
L2(0, 2T,K), then the the following sequences are Riesz sequences in L2(0, T ;K):

{kn cos bnt}n>0 , {kn sin bnt}n>0 . (2.11)

Now we consider a Riesz basis {en} in L2(0, T ;K) and a time T0 < T .
Then {en} is complete in L2(0, T0;K) but it is not a Riesz sequence since
every element of L2(0, T0;K) has infinitely many representation as a se-
ries

∑
anen (one such representation for every extension which belongs to

L2(0, T ;K)).
Let J0 be the operator from L2(0, T0;K) to l2 given by

J0f =
{
⟨f, en⟩L2(0,T0;K)

}
.

We prove:

Lemma 8 dim [im J0]⊥ = +∞.

Finally we note that (2.2) can be written as (βn is defined in (2.6)):

χ =
∑

λ2
n=α2

(
χn

√
k + α2

)
ϕn +

∑
λ2
n ̸=α2

(
χn

√
k + λ2n
βn

)
[βnϕn] .

It follows that a Riesz basis of H−1(Ω) is the sequence whose elements are{
ϕn if λ2n = α2

βnϕn if λ2n ̸= α2 .

2.3 The telegrapher’s equation

We consider the telegrapher’s equation (2.5) associated to Eq. (2.4). Con-
trollability at time T is equivalent to surjectivity of the map f 7→ ΛTf =
(w(T ), wt(T )) (from L2(GT ) to L2(Ω) × H−1(Ω)). By computing Λ∗

T we
see that the telegrapher’s equation is controllable at time T iff there exist
m = mT > 0, M =MT > 0 such that

m
(
∥ϕ0∥2H1

0 (Ω) + ∥ϕ1∥2L2(Ω)

)
≤
∫
GT

∥γaϕ∥2 dGT ≤M
(
∥ϕ0∥2H1

0 (Ω) + ∥ϕ1∥2L2(Ω)

)
.

(2.12)
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Here ϕ denotes the solution of the adjoint system

ϕtt = −2αϕt +∇ · (a(x)∇ϕ) + q(x)ϕ ,

ϕ(·, 0) = ϕ0(x) ∈ H1
0 (Ω) , ϕt(·, 0) = ϕ1(x) ∈ L2(Ω) , ϕ|∂Ω = 0 .

(2.13)

The inequalities (2.12) have the following consequence:

Theorem 9 Let T > 0 and let the telegrapher’s equation (2.5) be controllable
at time T . Then we have:

1. For every target (ξ, η) ∈ L2(Ω)×H−1(Ω)) there exists a unique steering
control f = f (ξ,η) ∈ L2(GT ) of minimal norm. This steering control is
a continuous function of (ξ, η).

2. Let ϕ(x) be an eigenvector of A. Then
∫
Γ
|γaϕ|2 dΓ ̸= 0.

3. The sequence {(γaϕn)/λn}λn ̸=0 is almost normalized in L2(Γ), i.e. there
exist m > 0 and M such that

0 < m ≤ ∥(γaϕn)/λn∥L2(Γ) ≤M . (2.14)

Proof. Statement 1 follows since the left inequality in (2.12) is coercivity of
the adjoint of the map f 7→ (w(T ), w′(T )) (see [18, 22]).

We prove statement 2. Let Aϕ = λϕ. If β =
√
λ2 − α2 ̸= 0 then the

function ϕ(x, t) = e−αtϕ(x) sin βt solves (2.13). The left inequality in (2.12)
shows that

mβ2∥ϕ|2L2(Ω) ≤
[∫ T

0

e−2αt sin2 βt dt

] ∫
γ

|γaϕ(x)|2 dΓ .

The result follows since (by definition) the eigenvectors are nonzero.
If β = 0 a similar argument holds, with ϕ(x, t) = e−αtϕ(x).
We prove statement 3 (See [13] for the idea of the proof). Let βn =√
λ2n − α2. It may be βn = 0 in (2.6) only for a finite set of indices. So, in the

proof of the asymptotic estimate (2.14) we can assume βn =
√
λ2n − α2 ̸= 0.

The function ϕ(x, t) = 1
βn
e−αtϕn(x) sin βnt solves Eq. (2.13) with initial

conditions
ϕ(x, 0) = 0 , ϕt(x, 0) = ϕn(x) .
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By using ∥ϕn∥L2(Ω) = 1, inequality (2.12) gives

m ≤

[∫ T

0

(
λn
βn
e−αt sin βnt

)2

dt

]∫
Γ

∣∣∣∣γaϕn

λn

∣∣∣∣2 dΓ < M .

The result follows since limn→+∞ (λn/βn) = 1 and

lim
n→+∞

∫ T

0

e−2αt sin2 βnt dt =

(
1− e−2αT

)
4α

, lim
n→+∞

∫ T

0

sin2 βnt dt =
1

2
T .

2.3.1 Moment method for the telegrapher’s equation

The following computations make sense for smooth controls and are then
extended to square integrable controls by continuity. Let (ϕn are the eigen-
vectors of A)

wn(t) =

∫
Ω

w(x, t)ϕn(x) dx .

Then, wn(t) solves

w′′
n = 2αw′

n − λ2nwn −
∫
Γ

(γaϕn)f(x, t) dΓ .

So, with βn defined in (2.6), we have

wn(t) = −
∫
Gt
eαs
[
γaϕn

βn
sin βns

]
βn ̸= 0 (2.15)

wn(t) = −
∫
Gt
seαs [γaϕn] f(x, t− s) dGt βn = 0 (2.16)

(it may be βn = 0 for a finite number of indices). So, we have

− w(x, t) =
∑

ϕn(x)

∫
Gt

eαs
[
γaϕn

βn
sin βns

]
f(x, t− s) dGt , (2.17)

− wt(x, t) =
∑

βnϕn(x)

∫
Gt

eαs
γaϕn

βn

[
α

βn
sin βns+ cos βns

]
f(x, t− s) dGt .

(2.18)

If βn = 0 then the corresponding term in (2.17) is replaced with (2.16) while
in (2.18) it is replaced with∫

Gt

(1 + αs)eαs (γaϕn) f(x, t− s) dGt . (2.19)
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Equalities (2.17)–(2.18) show that controllability at time T of the telegra-
pher’s equation is equivalent to solvability of the following moment problem∫

GT

eαs
[
γaϕn

βn
sin βns

]
f(x, T − s) dGT = ξn (2.20)∫

GT

eαs
γaϕn

βn

[
α

βn
sin βns+ cos βns

]
f(x, T − s) dGT = ηn (2.21)

where {ξn} and {ηn} belong to l2 and f is real.
We noted that when βn = 0 the corresponding terms in (2.20) and (2.21)

have to be replaced respectively with (2.16) or (2.19). In order to have a
unified formulation, we introduce

J = {n : βn = 0}

(a finite set of indices) and cn = ηn + iξn. Then, {cn} is an arbitrary (com-
plex valued) l2 sequence. The moment problem (2.20)-(2.21) reduces to the
following problem where g(x, s) = eαsf(x, T − s) is real:

⟨g, en⟩ =
∫
GT
en(x, s)g(s) ds = cn , , n > 0

en(x, s) =

{ (
γaϕn

βn

) [
eiβns + α

βn
sin βns

]
, n /∈ J

(1 + αs+ is) (γaϕn) , n ∈ J .

(2.22)

Statement 1 in Theorem 9 is equivalent to the following fact: for every
target (ξ, η) ∈ L2(Ω) × H−1(Ω) there exists a real steering control f , which
depends continuously on (ξ, η).

The index n in (2.22) is positive. It is convenient to reformulate the
problem with n ∈ Z′ = Z \ {0}. We define, for n < 0 and −n /∈ J :

βn = −(β−n) , ϕn = ϕ−n , λn = λ−n . (2.23)

This implies e−n = −en if −n /∈ J and this is the definition of e−n for
−n ∈ J . A real solution f of problem (2.22) (and n > 0) exists and depends
continuously on the complex sequence {cn}n>0 ∈ l2 if and only if the moment
problem

⟨f, en⟩L2(GT ) = cn , n ∈ Z′ (2.24)

admits a complex valued solution f ∈ L2(GT ) which depends continuously
on (ξ, η) (the proof is the same as in the memory case and it is given in the
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Appendix). I.e., controllability of the telegrapher’s equation is equivalent
to the fact that the moment operator of the sequence {en} is bounded and
boundedly invertible. The sequences {en} and {en} have the same basis
properties. So we can state:

Theorem 10 The telegrapher’s equation is controllable in time T if and only
if the sequence {en}n∈Z′ is a Riesz sequence in L2(GT ) (with complex scalars).

It has an interest to note that when {ξn} and {ηn} are arbitrary in l2,
the same holds for the sequence {ηn + iξn − (γ/βn)ξn}, for every number γ.
So, Theorem 10 holds as well if the functions en in (2.22) are replaced by

(
eiβnt +

γ

βn
sin βnt

)
γaϕn

βn
n /∈ J , (1 + (i+ γ)s)γaϕn n ∈ J

where γ is any fixed complex number (possibly γ = 0).

3 Controllability of the viscoelastic systems

In this section we prove item 1 of Theorem 3. Let θ solve (2.4)) and

θn(t) =

∫
Ω

θ(x, t)ϕn(x) dx .

Then we have

θ′n = 2αθn − λ2n

∫ t

0

N(t− s)θn(s) ds−
∫ t

0

N(t− s)

[∫
Γ

(γaϕn)f(x, s) dΓ

]
ds .

For every n we introduce the functions zn(t) which solve

z′n = 2αzn − λ2n

∫ t

0

N(t− s)zn(s) ds , zn(0) = 1 . (3.1)

Hence:

θn(t) = −
∫ t

0

zn(τ)

∫ t−τ

0

N(t− τ − s)

∫
Γ

(γaϕn)f(x, s) dΓ ds dτ =

= −
∫
Gt

{∫ s

0

N(s− τ)zn(τ) dτ

}
(γaϕn)f(x, t− s) dGt (3.2)

θ′n(t) = −
∫
Gt

[
zn(s) +

∫ s

0

N ′(s− τ)zn(τ) dτ

]
(γaϕn)f(x, t− s) dGt . (3.3)
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Thanks to continuous dependence of the solutions on the initial data, and
regularity when the initial data are smooth (see [14] and [24, Appendix])),
the following equalities hold in C([0, T ];L2(Ω)) and C([0, T ];H−1(Ω)):

θ(t) =
+∞∑
n=1

θn(t)ϕn(x) , θt(t) =
+∞∑
n=1

θ′n(t)ϕn(x) .

Let {ξn} ∈ l2 and {ηn} ∈ l2 be the sequence of the coefficients of the ex-
pansions of the targets ξ and η in series of, respectively, {ϕn} and {βnϕn}
(βnϕn replaced with ϕn if βn = 0). We see that controllability at time T is
equivalent to the solvability of the following moment problem:∫

GT

Zn(t)
γaϕn

βn
f(x, T − s) dGT = cn = −(ηn + iξn) , n /∈ J∫

GT

Zn(t)(γaϕn)f(x, T − s) dGT = cn = −(ηn + iξn) , n ∈ J
(3.4)

where, for n > 0,

Zn(t) =


zn(t) +

∫ t

0

N ′(t− s)zn(s) ds+ iβn

∫ t

0

N(t− s)zn(s) ds , n /∈ J ,

zn(t) +

∫ t

0

N ′(t− s)zn(s) ds+ i

∫ t

0

N(t− s)zn(s) ds , n ∈ J

(3.5)
(we recall that if n ∈ J then the element βnϕn of the basis of H−1(Ω) has to
be replaced with ϕn).

It is convenient to reformulate the moment problem with n ∈ Z′. This is
done by using the following definitions:

z−n(t) = zn(t) , ϕ−n(x) = ϕn(x) , β−n = −βn , λ−n = λn , n /∈ J .

Let

Ψn =
γaϕn

βn
n /∈ J , Ψn = γaϕn n ∈ J . (3.6)

Then we have
Z−nΨ−n = −ZnΨn , n /∈ J .

We symmetrize J (respect to 0) and we define Z−nΨ−n when n ∈ J by:

Z−nΨ−n = −ZnΨn = −ZnΨn if n ∈ J .
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So, we can consider the moment problem (3.4) with n ∈ Z′ = Z \ {0}.
It is proved in the Appendix that {ZnΨn}n∈Z′ is a Riesz sequence if and

only if the moment problem (3.4) (with n > 0) admits a real solution f which
is a continuous function of (ηn + iξn) ∈ l2. So, in order to prove the first
statement in Theorem 3, we prove:

Theorem 11 Let the telegrapher’s equation (2.5) be controllable at time T .
Then, the sequence {Zn(t)Ψn}n∈Z′ is a Riesz sequence in L2(GT ).

The proof of Theorem 11 is in two steps: we prove that {Zn(t)Ψn} is quadrat-
ically close to a Riesz sequence and then we prove that it is ω-independent.

3.1 Step 1: closeness to a Riesz sequence

Let

Kn(t) = N ′(t)+iβnN(t) if n /∈ J , Kn(t) = N ′(t)+iN(t) if n ∈ J .

The right hand side of the equality (3.5) is a variation of constants formula,
so that (compare (3.1)) Zn(t) solves

Z ′
n = 2αZn − λ2n

∫ t

0

N(t− s)Zn(s) ds+Kn(t) , Zn(0) = 1 . (3.7)

Hence also

Z ′′
n = 2αZ ′

n − λ2nZn − λ2n

∫ t

0

N ′(t− s)Zn(s) ds+K ′
n(t) ,{

Zn(0) = 1 ,

Z ′
n(0) = 2α+ iβn (n /∈ J ) , Z ′

n(0) = 2α + i (n ∈ J ) .

(3.8)

Then we have the following representation formulas:

if n /∈ J then

Zn(t) = eαteiβnt + eαt
α

βn
sin βnt+

+
1

βn

∫ t

0

eα(t−s) sin βn(t− s)

[
K ′

n(s)− λ2n

∫ s

0

N ′(s− r)Zn(r) dr

]
ds ,

if n ∈ J then

Zn(t) = eαt (1 + (α + i)t)+

+

∫ t

0

eα(t−s)(t− s)

[
(N ′′(s) + iN ′(s))− α2

∫ r

0

N ′(r − s)Zn(s) ds

]
dr .
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We introduce
Sn(t) = e−αtZn(t)

and we see that, for n /∈ J ,

Sn(t) = Gn(t)−
λ2n
βn

∫ t

0

sin βn(t− s)

∫ s

0

(
e−α(s−r)N ′(s− r)

)
Sn(r) dr ds

where (in the last integration by parts we use N ′(0) = 0).

Gn(t) = eiβnt +
α

βn
sin βnt+

1

βn

∫ t

0

e−αs [N ′′(s) + iβnN
′(s)] sin βn(t− s) ds =

= eiβnt +
α−N ′(0)

βn
sin βnt+

∫ t

0

N ′(t− s)e−α(t−s)

[
eiβn(t−s) +

α

βn
sin βn(t− s)

]
ds =

= eiβnt +
α

βn
sin βnt+

∫ t

0

N ′(t− s)e−α(t−s)

(
eiβns +

α

βn
sin βns

)
ds . (3.9)

Instead, for n ∈ J we have

Gn(t) = 1 + (α + i)t+

∫ t

0

e−α(t−s)N ′(t− s) [1 + (α+ i)s] ds .

The linear transformation

y 7→ y(t) +

∫ t

0

e−α(t−s)N ′(t− s)y(s) ds

is bounded with bounded inverse. So, Theorem 10 and controllability of the
telegrapher’s equation (2.5) imply that the sequence {Gn(t)Ψn} is Riesz in
L2(GT ).

We shall need asymptotic estimates of Sn(t) which holds for large n. So
we can work with n /∈ J . We introduce the notations

N1(t) = e−αtN ′(t) so that N1(0) = 0, µn =
λ2n
β2
n

so that 1− µn = −α2/β2
n .

An integration by parts gives

Sn(t) = Gn(t)− µn

∫ t

0

N1(t− r)Sn(r) dr +

+µn

∫ t

0

(∫ t−r

0

N ′
1(t− r − s) cos βns ds

)
Sn(r) dr . (3.10)
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Gronwall inequality shows that for every T > 0 there exists M = MT such
that

|Sn(t)| ≤M t ∈ [0, T ] .

We integrate by parts again the last integral in (3.10) and we get

Sn(t) = Gn(t)− µn

∫ t

0

N1(t− r)Sn(r) dr+

+
µn

βn

∫ t

0

(
N ′

1(0) sin βn(t− r) +

∫ t−r

0

N ′′
1 (t− r − s) sin βns ds

)
Sn(r) dr .

(3.11)

We introduce

En(t) = eiβnt +
α

βn
sin βnt (if n /∈ J )

and we rewrite (3.11) as (⋆ denotes the convolution)

(Sn − En) +N1 ⋆ (Sn − En) =
N ′

1(0)

βn

∫ t

0

sin βn(t− r)Sn(r) dr+

+
1

βn

∫ t

0

N ′′
1 (s)

∫ t−s

0

sin βn(t− s− r)Sn(r) dr ds+
1

β2
n

Mn(t) , (3.12)

Mn(t) = −α2

∫ t

0

N1(t− r)Sn(r) dr+

+
α

βn

∫ t

0

[
N ′

1(0) sin βn(t− r) +

∫ t−r

0

N ′′
1 (t− r − s) sin βns ds

]
dr .

Note that here we have explicitly written the expression of the functions
Mn(t) but this expression does not have a real interest: the important fact
is that the sequence {Mn(t)} is bounded on (any) interval [0, T ]. This is
the sole property of interest and, as we said already, in the following we use
{Mn(t)} to denote a sequence of (continuous) functions which is bounded (on
an interval [0, T ]), not the same sequence at every occurrence. We shall not
write down the explicit expression of the functions Mn(t), which has no role
in the proofs.

By using the definition of En(t) we see the existence of a sequence {Mn(t)}
of continuous functions defined for t ≥ 0, bounded on bounded intervals and
such that

Sn(t) = eiβnt +
Mn(t)

βn
. (3.13)
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Now we compute:∫ t

0

Sn(r) sin βn(t− r) dr =

∫ t

0

(
eiβnr +

Mn(r)

βn

)
sin βn(t− r) dr =

= − i

2
teiβnt +

i

2βn
sin βnt+

1

βn

∫ t

0

Mn(r) sin βn(t− r) dr . (3.14)

We observe

i

βn
teiβnt = −

∫ t

0

seiβns ds+
1

β2
n

(
eiβnt − 1

)
= −

∫ t

0

sEn(s) ds+
1

β2
n

Mn(t) .

i.e.

1

βn

∫ t

0

Sn(r) sin βn(t− r) dr = −1

2

it

βn
eiβnt +

1

β2
n

Mn(t) =

=
1

2

∫ t

0

sEn(s) ds+
1

β2
n

Mn(t) .

We replace this expression in (3.12) and we rewrite the equality as

(Sn − En) +N1 ⋆ (Sn − En) =

=
N ′

1(0)

2

∫ t

0

sEn(s) ds+
1

2

∫ t

0

N ′′
1 (s)

∫ t−s

0

rEn(r) dr ds+
1

β2
n

Mn(t) =

=
1

2

∫ t

0

N ′
1(t− r)rEn(r) dr +

1

β2
n

Mn(t)

(as usual, the functions Mn(t) are not the same at every step).
Let L(t) be the resolvent kernel of N1(t) so that L(0) = 0 and L(t) is

twice differentiable. We have

Sn(t) = En(t) +
1

2

∫ t

0

N ′
1(t− s)sEn(s) ds−

− 1

2

∫ t

0

(sEn(s))

[∫ t−s

0

L(t− s− r)N ′
1(r) dr

]
ds+

1

β2
n

Mn(t) .

In conclusion,

ΨnSn(t) = ΨnEn(t) +
1

2

∫ t

0

s

[
N ′

1(t− s)−

−
∫ t−s

0

L(t− s− r)N ′
1(r) dr

]
ΨnEn(s) ds+

1

β2
n

Mn(t) (3.15)
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(note that we can replace ΨnMn(t) with Mn(t) since {Ψn} is bounded in
L2(Γ)). The sequence whose elements are

ΨnEn(t) +
1

2

∫ t

0

s

[
N ′

1(t− s)−
∫ t−s

0

L(t− s− r)N ′
1(r) dr

]
ΨnEn(s) ds

is the image of a Riesz sequence of L2(GT ) under a linear bounded and
boundedly invertible transformation. Hence, it is a Riesz sequence too so
that, by using Theorem 6 and Lemma 4, we get:

Theorem 12 Let the telegrapher’s equation (2.5) be controllable at time T .
Then, {Sn(t)Ψn}n∈Z′ is quadratically close to a Riesz sequence in L2(GT ) and
so there exists N such that {Sn(t)Ψn}|n|>N is a Riesz sequence too.

In the second step we prove that {Sn(t)Ψn}n∈Z′ is ω-independent in L2(GT )
hence it is a Riesz sequence and this completes the proof of the statement 1
in Theorem 3.

3.2 Step 2: ω-independence

We consider the equality∑
n ̸=0

αnSn(t)Ψn = 0 in L2(GT ) . (3.16)

Theorem 12 implies that {αn} ∈ l2. Our goal is the proof that αn = 0 for
every n. The proof is in three steps:

Step 1 if equality (3.16) holds then αn = γn/β
3
n where {γn} ∈ l2.

Step 2 the property of {αn} in Step 1 is used to prove that αn = 0 for n > N
(N is the number in Theorem 12).

Step 3 we finish the proof by proving that αn = 0 also for n ≤ N .

Now we proceed to realize this program.
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Step 1: decaying properties of {αn} In this step we use the short-
hand notation

H1 = H1([0, T ];L2(Ω)) .

We shall use the following lemma (proved in the Appendix).

Lemma 13 Let a sequence {αn} be such that

Φ(x, t) =
∑
n∈Z′

αne
iβntΨn ∈ H1 = H1(0, T ;L2(Γ)) .

If {eiβntΨn} is Riesz on a shorter interval T − ϵ then, there exists {δn} ∈ l2

such that

αn =
δn
βn

.

We single out from the series (3.16) those terms which correspond to
indices in J (if any). Let

F (t) =
∑
n∈J

αnSn(t)Ψn if J ̸= ∅ , F (t) = 0 otherwise .

This sum is finite and for the indices in this sum we have

Sn(t) = 1 + (α+ i)t+

∫ t

0

(t− r)

{
e−αr (N ′′(r) + iN ′(r))− (3.17)

−α2

∫ r

0

N1(r − s)Sn(s) ds

}
dr . (3.18)

So, Sn(t) does not depend on n when n ∈ J and it is of class H3: F (t) is a
fixed H3 function (possibly zero).

When, in the next equalities, the index of the series is not explicitly
indicated, we intend that it belongs to the set Z′ \ J .
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Using (3.9) and (3.11) we rewrite (3.16) as

−
∑

αne
iβntΨn = F (t) + α

∑ αn

βn
Ψn sin βnt+

+

∫ t

0

N1(t− s)
∑

αn

(
eiβns +

α

βn
sin βns

)
Ψn ds−

−
∫ t

0

N1(t− r)
∑

αnµnSn(r)Ψn dr +

+N ′
1(0)

∑∫ t

0

αnµn

βn
sin βn(t− r)Sn(r)Ψn dr +

+

∫ t

0

N ′′
1 (s)

∑ αnµn

βn

∫ t−s

0

sin βn(t− s− r)Sn(r)Ψn dr ds =

= F (t) + f1 + f2 + f3 + f4 + f5 . (3.19)

We already know that F ∈ H1. We prove fi ∈ H1 for every i.
The fact that {Ψn sin βns} and {ψn cos βns} are Riesz sequences in L2(GT )

(see Lemma 7) implies that f1 and f2 belong to H1.
The series in f3 converges in L2(GT ) and N1(t) is continuously differen-

tiable, so that f3 ∈ H1.
We consider the function f4, i.e. we consider the series∑ αnµn

βn

∫ t

0

sin βn(t− r)Sn(r)Ψn dr . (3.20)

Using (3.13) and d ≤ 3 we see that this series converges in L2(GT ). A formal
termwise differentiation gives:∑

αnµn

∫ t

0

cos βn(t− r)Sn(r)Ψn dr . (3.21)

We replace Sn(r) with its expression (3.13) and we get:∑
αnµn

∫ t

0

cos βn(t− s)En(s)Ψn ds− (A)

−iN ′(0)
∑ αn

βn

∫ t

0

s cos βn(t− s)eiβnsΨn ds+ (B)

+
∑ αn

β2
n

∫ t

0

Mn(s) cos βn(t− s) ds . (C)
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The three series converge: the series (A) and (B) because the integrand are
linear combinations of Ψn cos βnt, Ψn sin βnt and Ψne

iβnt: convergence follows
from Lemma 7. Lemma 4 (i.e. d ≤ 3) shows convergence of the series (C).
So we have f4 ∈ H1 and its convolution with N ′′

1 (i.e. f5) belongs to H
1 too.

In conclusion, using controllability of the telegraph equation in a shorter
time, ∑

αne
iβntΨn ∈ H1 hence αn =

δn
βn

, {δn} ∈ l2 .

We replace this expression of {αn} in (3.19) and we equate the derivatives
of both the sides. We get

− i
∑

δne
iβntΨn = F ′(t) + α

∑ δn
βn

Ψn cos βnt+

+

∫ t

0

N ′
1(t− s)

∑ δn
βn

(
eiβns +

α

βn
sin βns

)
Ψn ds−

−
∫ t

0

N ′
1(t− r)

∑ δnµn

βn
Sn(r)Ψn dr+

+N ′
1(0)

∫ t

0

∑ δnµn

βn
cos βn(t− r)Sn(r)Ψn dr+

+

∫ t

0

N ′′
1 (s)

∫ t−s

0

∑ δnµn

βn
cos βn(t− s− r)Sn(r)Ψn dr ds . (3.22)

Arguments similar to the previous ones show that every series on the right
hand side can be differentiated once more. The term in the second last line
is the one that deserves a bit of attention. Its derivative is the sum of the
two series

N ′
1(0)

∑ δnµn

βn
Sn(t)Ψn ,

−N ′
1(0)

∑
δnµn

∫ t

0

sin βn(t− r)Sn(r)Ψn dr .

The first series converges thanks to the first statement in Theorem 12.
We insert (3.13) in the second series and we get

∑
δnµnΨn

∫ t

0

sin βn(t− r)

{
En(r)− irN ′(0)

1

βn
eiβnr +

1

β2
n

Mn(r)

}
dr .
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Convergence of this series is seen as above. Hence we get

δn =
γ̃n
βn

, αn =
γ̃n
β2
n

, {γ̃n} ∈ l2 .

Now we iterate this process: we replace δn with γ̃n/βn and we equate the
derivatives. We get

γ̃n =
γn
βn

, i.e. αm =
γn
β3
n

, {γn} ∈ l2 . (3.23)

Details of the computations are in the Appendix.
In conclusion, we proved the existence of a sequence {γn} ∈ l2 such that

αn = γn if n ∈ J , αn =
γn
β3
n

, if n /∈ J

where αn are the coefficients in the series (3.16).

Step 2: the sum in (3.16 ) is finite We recall the definition of Sn(t)
in terms of Zn(t) and we rewrite (3.16) as∑

n∈Z′

αnΨnZn(t) =
∑
n∈Z′

γn
β3
n

ΨnZn(t) = 0 (3.24)

The series (3.24) converges uniformly so that:∑
n∈Z′

αnΨn =
∑
n∈Z′

γn
β3
n

Ψn = 0 . (3.25)

Here γn/β
3
n has to be replaced with γn if n ∈ J . We implicitly intend this

substitutions also in the next series.
The first statement in Theorem 12, the form of Kn(t) , d ≤ 3 and β2

n ≍ λ2n
show that the series (3.24) is termwise differentiable. Hence we have:∑

αnΨn

{
−λ2n

∫ t

0

N(t− s)Zn(s) ds+Kn(t)

}
= 0 .

We can distribute the series on the sum and we get∫ t

0

N(t− s)
∑
n∈Z′

γnλ
2
n

β3
n

Zn(s)Ψn ds =
∑
n∈Z′

γn
β3
n

Kn(t)Ψn . (3.26)
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Using (3.25) and Kn(t) = N ′(t) + iβnN(t) we get∑ γn
β3
n

Kn(t)Ψn = iN(t)
∑ γn

β2
n

Ψn

and so ∫ t

0

N(t− s)
∑
n∈Z′

γnλ
2
n

β3
n

Zn(s)Ψn ds = iN(t)
∑
n∈Z′

γn
β2
n

Ψn .

The property N(0) ̸= 0 implies a further property of {αn}:∑
n∈Z′

γn
β2
n

Ψn =
∑
n∈Z′

βnαnΨn = 0 (3.27)

and so the right hand side of (3.26) vanishes.
The property N(0) ̸= 0 used in (3.26) gives:∑

n∈Z′

αnλ
2
nZn(t)Ψn =

∑
n∈Z′

γnλ
2
n

β3
n

Zn(t)Ψn = 0 . (3.28)

We recall equality (3.24):
∑

n∈Z′ αnZn(t)Ψn = 0 . We introduce the finite
(possibly empty) set of indices

O = {n : λn = 0} .

Note that if n ∈ O then Zn(t) = Ẑ(t), the same for every n. We rewrite (3.28)
and (3.24) as (the sum on the right side is zero if O = ∅ ):∑

n/∈O

αnZn(t)Ψn = −
∑
n∈O

αnZn(t)Ψn ,
∑
n/∈O

αnλ
2
nZn(t)Ψn = 0 . (3.29)

Let k1 /∈ O be an index (of minimal absolute value) for which αk1 ̸= 0.
By combining the equalities in (3.29) we get∑

n/∈O

(
αn −

αnλ
2
n

λ2k1

)
Zn(t)Ψn = −

∑
n∈O

αnZn(t)Ψn .

Note that the right hand side is the same as in the first equality of (3.29).
Let

α(1)
n =

(
1− λ2n

λ2k1

)
αn
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and note that{
α(1)
n

}
∈ l2 ;

{
α
(1)
k1

= 0 if λk = λk1
if λk ̸= λk1 then α

(1)
k = 0 ⇐⇒ αk = 0.

So,


∑
n∈O

αnZn(t)Ψn ∈ X1 = cl span {Zn(t)Ψn , n /∈ O , λn ̸= λk1}∑
n/∈O

λn ̸=λk1

α
(1)
n Zn(t)Ψn = −

∑
n∈O αnZn(t)Ψn .

(3.30)

Thanks to
{
α
(1)
n

}
∈ l2, we can start a bootstrap argument and repeat this

procedure: we find that
{
λ3nα

(1)
n

}
∈ l2. We fix a second element k2 (of

minimal absolute value) such that α
(1)
k2

̸= 0 and, as above, we get


∑
n∈O

αnZn(t)Ψn ∈ X2 = cl span {Zn(t)Ψn , n /∈ O , λn /∈ {λk1 , λk2}}∑
n/∈O

λn /∈{λk1
, λk2

}
α
(2)
n Zn(t)Ψn =

∑
n∈O αnZn(t)Ψn .

(3.31)

The new sequence
{
α
(2)
n

}
∈ l2 has the property that{

α
(2)
k = 0 if λk ∈ {λk1 , λk2}

if λn /∈ {λk1 , λk2} then α
(2)
n = 0 ⇐⇒ αn = 0.

The argument can be repeated and we find∑
n∈O

αnZn(t)Ψn ∈ XR = cl span
{
Zn(t)Ψn , n /∈ O , λn /∈ {λk1 , λk2 , . . . λkR}

}
for every R, i.e.

Lemma 14 We have:∑
n∈O

αnZn(t)Ψn ∈
∩
R

XR = {0}

and, after at most 2N iteration of the process, we find∑
|n|>N

α(N)
n Zn(t)Ψn = 0 .
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If N is large enough, as specified in Theorem 12, we see that

α(N)
n = 0 when |n| > N

and the original equality (3.24) involves a finite sum. We rewrite it as∑
|n|≤K

n/∈O

αnZn(t)Ψn = 0 . (3.32)

Step 3: we have αn = 0 for every n We use the following lemma:

Lemma 15 The sequence {Zn(t)Ψn(x)}n/∈O is linearly independent.

The proof is similar to the proof of the corresponding result in [3, 29] and is
omitted. This lemma and (3.32) imply αn = 0 if n /∈ O.

In conclusion, Equality (3.24) is in fact

0 =
∑
n∈O

αnZn(t)Ψn = Z̃(t)
∑
n∈O

αnΨn , Z̃(t) ̸= 0 so that
∑
n∈O

αnΨn = 0 .

Finally we prove:

Lemma 16 If n ∈ O then αn = 0.

Proof. We introduce

Φ(x) =
∑
n∈O

αnΦn(x)

which is an eigenfunction of the operator A whose eigenvalue is 0

AΦ(x) = 0 .

Note that if λn = 0 then βn = iα does not depend on n and so

Ψn =


γaΦn

βn
=
γaΦn

iα
if α ̸= 0

γaΦn if α = 0 .

So, in both the cases, we get

AΦ = 0 , γaΦ = 0 .

By using statement 2 in Theorem 9, we see that

Φ(x) =
∑

αnΦn(x) = 0 .

The condition αn = 0 follows, since {Φn} is an orthonormal sequence.
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4 Sharp control time

The results proved up to now show that the sharp control time of the vis-
coelastic system is not larger than that of the telegrapher’s equation. Con-
versely controllability of (1.1) implies controllability of the telegrapher’s equa-
tion (2.5). In fact, if Eq. (1.1) is controllable at time T then the moment
problem (3.4) is solvable (with continuity) and then the sequence {Zn(t)Ψn}
is a Riesz sequence in L2(0, T ;L2(Γ)). The first statement of Theorem 12
implies the existence of a number N such that for |n| > N the sequence
whose elements are described in Theorem 10 is Riesz in L2(0, T0;L

2(Γ)).
This implies that the moment problem (2.20)-(2.21) for the telegrapher’s

equation is solvable for {(ξn, ηn)} ∈ L, where L has finite codimension,
see [10, p. 323] i.e., the reachable set at time T0 for the telegrapher’s equation
has finite codimension. We use Lemma 8 in order to prove that this is not
true if the telegrapher’s equation is not controllable.

Let T > T0 be any time at which the telegrapher’s equation (2.5) is
controllable.

Let us denote en the elements of the sequence described in Theorem 10.
By adding elements of (cl span {en})⊥, we complete the sequence {en} to a
Riesz basis of L2(0, T ;L2(Γ)). We denote kn the added elements.

We consider the operator J0: L2(0, T0;L
2(Γ)) 7→ l2 given by

J0f =
{
⟨f, en⟩L2(0,T0;L2(Γ))

}
∪
{
⟨f, kn⟩L2(0,T0;L2(Γ))

}
.

Lemma 8 shows that the codimension of its image is not finite and so we
have also

dimL⊥ = dim
{
⟨f, en⟩L2(0,T0;L2(Γ))

}⊥
= +∞ .

So, the index N cannot exists and the viscoelastic system is not controllable
at time T0 if the telegrapher’s equation is not controllable.

The previous negative result proves the second statement in Theorem 3
and it has a clear relation with the following fact, that the speed of propa-
gation of waves in a viscoelastic body is equal to the speed of propagation in
the corresponding (memoryless) elastic body, see [6, 7].

5 Appendix: proofs

Ancillary proofs are collected here.
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Proofs from Section 2.2
In order to prove Lemma 7 we first note that the transformation∑
αne

ibntkn 7→
∑

αne
−ibnT eibnτkn : L2(−T, T ;K) 7→ L2(0, 2T ;K)

is bounded and boundedly invertible since {|Imbn|} is bounded. Hence, the
assumption is that (2.9) holds for the sequence {eibntkn}n∈Z′ in L2(−T, T ;K).
We use Euler formulas and we see that (2.9) holds for the cosine sequences (2.11)
in L2(0, T ;K) (the sine sequence is treated analogously). In fact:∣∣∣∣∣
∣∣∣∣∣∑
n>0

ankn cos bnt

∣∣∣∣∣
∣∣∣∣∣
2

L2(0,T ;K)

=
1

4

∣∣∣∣∣
∣∣∣∣∣∑
n>0

ankne
ibnt +

∑
n>0

ankne
−ibnt

∣∣∣∣∣
∣∣∣∣∣
2

L2(0,T ;K)

=

=
1

8

∣∣∣∣∣
∣∣∣∣∣∑
n∈Z′

ankne
ibnt

∣∣∣∣∣
∣∣∣∣∣
2

L2(−T,T ;K)

.

In the last equality we put an = a−n and we used −bn = bn, k−n = kn.
Inequalities (2.9) hold by assumption for the right side and so they hold

also for the left side.
This proof has been adapted from [11], where it is proved that the opposite

implication is false.
Now we prove Lemma 8. We know that

(im J0)⊥ = ker J∗0 =
{
{cn} ∈ l2 :

∑
cnen = 0 in L2(0, T0;K)

}
.

Every sequence {cn} ∈ l2 such that
∑
cnen = 0 in L2(0, T0;K) while

∑
cnen ̸=

0 in L2(T0, T ;K) belongs to ker J∗0, and conversely. So, dim ker J∗0 = +∞.

Real and complex solutions of to moment problems
We use (·, ·) to denote the integral of a product in L2(GT ) (so that (f, g)

is linear in both the entries) and we use l2(N) and l2(Z′) to denote the space
of the complex valued l2 sequences, with indices in N or in Z′.

Let en = {ζn+ iζ̂n} be a sequence in L2(GT ) such that en = −e−n so that

ζ−n = −ζn , ζ̂−n = ζ̂n .

We consider the problems

(en, f) = cn , {cn} = {ηn + iξn} ∈ l2(N) (5.1)

(en, g) = dn = rn + isn , {dn} ∈ l2(Z′) . (5.2)
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We prove that if the problem (5.1) has a real valued solution f ∈ L2(GT )
which depends continuously on {cn} ∈ L2(N) then moment problem (5.2)
has a complex valued solution g ∈ L2(GT ), which depends continuously
on {dn} ∈ l2(Z′), and conversely. Let g = h + ik. We separate real and
imaginary parts and we see that moment problem (5.2) can be reformulated
as

(ξn, h)− (ζ̂n, k) = rn , (ζn, k) + (ζ̂n, h) = sn ,

(ζn, h) + (ζ̂n, k) = −r−n , (ζn, k)− (ζ̂n, h) = −s−n .

This is equivalent to the pair of problems (both with arbitrary complex valued
l2 sequences on the right hand side)

(ζn + iζ̂n, h) =
1

2
{[rn − r−n] + i[sn + s−n]} n ∈ N , h real valued.

(ζn + iζ̂n, k) =
1

2
{[sn − s−n]− i[rn + r−n]} n ∈ N , k real valued.

So, the solution of (5.2) is the same as the solution of two copies of prob-
lem (5.1). This ends the proof.

The proof of Lemma 13
We first note that Theorem 12 implies {αn} ∈ l2 and that in order to

prove the formula for {αn} it is sufficient that we prove that it holds for |n|
sufficiently large. So, we consider the new function

C(x, t) =
∑
|n|≥N

αne
iβntΨn ∈ W 1,2(0, T+h̃;L2(Γ)) (5.3)

where N is the number specified in Theorem 12. It is known that Ct(x, t) ∈
L2(0, T ;L2(Γ)) is the limit of the incremental quotient:

Ct(x, t) = lim
h→0

C(x, t+ h)− C(x, t)

h
= lim

h→0

∑
|n|>N

αn
eiβnh − 1

h
eiβntΨn .

Thanks to the choice of N , there exists m0 > 0 such that

m0

∑
|n|>N

∣∣∣∣αnβn
eiβnh − 1

βnh

∣∣∣∣2 ≤ ∥∥∥∥C(x, t+ h)− C(x, t)

h

∥∥∥∥2
L2(0,T ;L2(Γ))

≤

≤ 2∥C ′∥2L2(0,T ;L2(Γ)) .
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The last equality holds for h “small”, |h| < h0. We consider 0 < h < h0.
Let s be real. There exists s0 > 0 such that:∣∣∣∣eis − 1

s

∣∣∣∣2 = (cos s− 1

s

)2

+

(
sin s

s

)2

>
1

2
for 0 < s < s0.

Then we have, for every h ∈ (0, h0),

1

2

∑
|n|>N

βn<s0/h

|αnβn|2 ≤
∑
|n|>N

∣∣∣∣αnβn
eiβnh − 1

βnh

∣∣∣∣2 ≤ 2

m0

∥C ′∥2L2(0,T ;L2(Γ)) .

The limit for h→ 0+ gives the result.

End of the proof of formula (3.23)
We insert δn = γ̃n/βn in (3.22) and we equate the derivatives of both the

sides. The right hand side is the sum of F ′′(t)Ψn which can be differentiated,
and of the following functions S1-S5 where

S1 = −α
∑ γ̃n

βn
Ψn sin βnt , S2 = N ′

1(0)
∑ γ̃n

β2
n

Ψn

(
eiβnt +

α

βn
sin βnt

)
,

S3 =

∫ t

0

N ′′
1 (t− s)

∑ γ̃n
β2
n

Ψn

(
eiβns +

α

βn
sin βns

)
ds .

These functions can be differentiated since {Ψn sin βnt} and {Ψn cos βnt} are
Riesz sequences in L2(GT ).

The remaining functions are

S4 = −N ′
1(0)

∑∫ t

0

γ̃nµn

βn
sin βn(t− r)ΨnSn(r) dr ,

S5 = −
∫ t

0

N ′′
1 (s)

[∑∫ t−s

0

γ̃nµn

βn
sin βn(t− s− r)ΨnSn(r) dr

]
ds .

The series in S4 is L2(GT ) convergent. Termwise differentiation gives

d

dt

∫ t

0

∑ γ̃nµn

βn
sin βn(t− r)Sn(r) dr =

∫ t

0

∑
γ̃nµn cos βn(t− r)Sn(r) dr .
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This series is L2(GT )-convergent and so the series in S4 belongs to H1 (com-
pare with the series (3.21)). This implies differentiability of S5.

Acknowledgment: The author thanks the referees for their useful sugges-
tions, which improved the readability of the paper.
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