
30 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs / Lazarescu, MIHAI TEODOR;
Lavagno, Luciano. - In: ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS. - ISSN 1539-9087. -
STAMPA. - 14:1(2015), pp. 1-20. [10.1145/2638556]

Original

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/2638556

Terms of use:

Publisher copyright

© Lazarescu, MIHAI TEODOR; Lavagno, Luciano 2015. This is the author's version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in ACM TRANSACTIONS ON
EMBEDDED COMPUTING SYSTEMS, http://dx.doi.org/10.1145/2638556.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2591970 since: 2020-10-22T11:49:06Z

Association for Computing Machinery (ACM)

13

Interactive Trace-Based Analysis Toolset for Manual Parallelization of
C Programs

MIHAI T. LAZARESCU and LUCIANO LAVAGNO, Politecnico di Torino

Massive amounts of legacy sequential code need to be parallelized to make better use of modern multipro-
cessor architectures. Nevertheless, writing parallel programs is still a difficult task. The automated paral-
lelization methods can be effective both at the statement and loop levels and, recently, at the task level, but
they are still restricted to specific source code constructs or application domains. We present in this article
an innovative toolset that supports developers when performing manual code analysis and parallelization
decisions. It automatically collects and represents the program profile and data dependencies in an interac-
tive graphical format that facilitates the analysis and the discovery of manual parallelization opportunities.
The toolset can be used for arbitrary sequential C programs and parallelization patterns. Also, its program-
scope data dependency tracing at runtime can complement the tools based on static code analysis, and can
also benefit from it at the same time. We also tested the effectiveness of the toolset in terms of time to reach
parallelization decisions and of their quality. We measured a significant improvement for several real-world
representative applications.

Categories and Subject Descriptors: D.1 [Programming Techniques]: Concurrent Programming—Parallel
programming

General Terms: Execution Profiling, Data Dependency Analysis, Program Parallelization

Additional Key Words and Phrases: Legacy C program parallelization, source annotation, execution profil-
ing, data dependency analysis, graph analysis, graph abstraction

ACM Reference Format:
Lazarescu, M.T. and Lavagno, L. 2014. Interactive Trace-Based Analysis Toolset for Manual Parallelization
of C Programs. ACM Trans. Embedd. Comput. Syst. 14, 1, Article 13 (November 2014), 20 pages.
DOI:http://dx.doi.org/10.1145/2638556

1. INTRODUCTION
As processors and systems refocus from the acceleration of the execution of a single-
thread to the increase of the overall throughput by means of multiprocessor architec-
tures, there is an urgent need to parallelize massive amounts of legacy sequential code
[Burger and Goodman 2004; Athanasaki et al. 2008; Hennessy and Patterson 2012].
However, even when parallelism is taken into account from the start of a project, writ-
ing programs for efficient execution on parallel architectures is still considered a chal-
lenging task [Mattson et al. 2004; Hwu et al. 2008; Asanovic et al. 2009].

Automated software parallelization has been extensively explored especially at the
statement, basic block and loop levels, which are appropriate for VLIW and vector pro-
cessors [González and González 1998; Ottoni et al. 2005; Goossens and Parello 2013].
By contrast, the tools for exploring the parallelization opportunities at the task level,
which are best suited for modern multicore processors, are less explored, with some

Author’s addresses: M.T. Lazarescu and L. Lavagno, Electronics and Telecommunications Department, Po-
litecnico di Torino, I-10129 Turin, Italy. Email: mihai.lazarescu@polito.it and luciano.lavagno@polito.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1539-9087/2014/11-ART13 $15.00
DOI:http://dx.doi.org/10.1145/2638556

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:2 M. T. Lazarescu and L. Lavagno

notable exceptions [Kienhuis et al. 2000; Benabderrahmane et al. 2010; Compaan De-
sign BV 2012]. However, most of the latter techniques are so far restricted to specific
types of loops and data access patterns.

The toolset described in this article directly addresses these challenges. It helps the
software developers to profile and parallelize the existing sequential C-language ap-
plications by exploiting top-level parallelism. It synergistically uses and extends past
work [Thies et al. 2007; Mignolet et al. 2009], based on runtime, full-scope data de-
pendency tracing and sophisticated graph visualization techniques. These allow the
code developers to find faster the best manual parallelization opportunities. They can
use the toolset to quickly detect possible parallelization opportunities and to subse-
quently assess their effective suitability for parallelization, complementing the tradi-
tional means, e.g., code inspection.

The approach proposed in this article benefits the search for best parallelization
opportunities regardless of the style of parallel code writing. These can include, but
are not limited to, the intrinsically race-free Kahn Process Network style [Kahn 1974].

Section 2 of the article reviews other approaches and tools for sequential code paral-
lelization. Section 3 presents the toolset flow and the operation of the component tools.
Section 4 presents the results of using the toolset for the analysis and parallelization
of several real-life applications. Section 5 concludes the article.

2. RELATED WORK
Code parallelization is one of the most widely studied topics in compilers for parallel
machines since the 1970s. Most previous work has focused on selection of code seg-
ments within innermost loops (do in FORTRAN, for and while in C) that can be exe-
cuted either fully in parallel due to the lack of dependencies (do-all) or as a software
pipeline [Bacon et al. 1994; Wilson et al. 1994; Allan et al. 1995].

These techniques are efficient for applications in specific problem domains (physics,
fluid dynamics, structural engineering), but quite limited in the general case and can-
not fully exploit architectures developed for gaming and multimedia applications in
the PC world.

For the reasons above, the need for techniques that can assist the developer to man-
ually partition an application beyond the limitations of automated analysis is growing
stronger. For instance, of particular interest is the analysis at top program level, as
opposed to the innermost loop level [Culler et al. 1993; Kathail et al. 2002].

[Thies et al. 2007] propose a technique similar to the one implemented by our toolset.
This approach is extended by our toolset through techniques based on data compres-
sion and advanced visualization that provide the developer with effective display and
analysis means for the very large amount of data generated by data dependency trac-
ing (e.g., for a large video encoding or decoding application). We consider these tech-
niques of our toolset essential to reduce the time spent by the developer for program
analysis while searching for the best parallelization opportunities.

Mixed approaches, based on both static and dynamic data dependency analysis exist
[Tournavitis et al. 2009; Vandierendonck et al. 2010]. These are semiautomatic, rely-
ing to different extents on developer support to provide hints (e.g., code annotations)
for the selection of the optimal parallel solution. However, the developer is offered lim-
ited means to manually analyze and improve the solutions proposed by the tools or
to manually find better ones. Moreover, these tools directly modify or generate project
source code which is seldom acceptable in a large-scale industrial project due to main-
tainability and debugging concerns.

Several compilation and debugging tools, often based on proprietary extensions of
the C language, have also been proposed by leading industrial players. For example,
Apple introduced the Grand Central technology based on OpenCL, a newly developed

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs 13:3

Fig. 1. Toolset flow: I – automatic C source annotation; II – execution tracer; III – data dependency and ex-
ecution profile interactive visualization; IV – IDE for toolset integration and creation of the parallel project.

programming language. Its potential scope is parallelization of C-like code for exe-
cution on graphics processors. Nvidia proposed the CUDA language, very similar to
OpenCL, which can be used to translate sequential C code into parallel threads that
can be run on Nvidia’s GPUs. Stream is a similar offering from AMD. Intel released
Parallel Studio to facilitate the development or parallelization efforts by iterating code
analysis, execution profiling, race checking and debugging, and performance predic-
tion, but it does not address data dependencies which is a major parallelization in-
hibitor. Also, more generally, the tools that use static (compile-time) code analysis may
miss program-level dependencies that are important to assess parallelization opportu-
nities [Ramalingam 1994; Allen and Kennedy 2002].

Recently announced tools from CriticalBlue and Vector Fabrics tackle the same prob-
lem of legacy sequential code parallelization. The former essentially predicts the ap-
plication performance under different thread decompositions, and the corresponding
inter-thread dependencies. The latter uses data-dependency analysis to explore paral-
lelization options for the bottleneck loops in a program. As in our case, the assessment
of parallelization opportunities depends on the quality of the profiling data and the
tool does not modify directly the project code.

3. TOOLSET DESCRIPTION
The toolset supports the developer efforts to parallelize sequential C programs using
the four-stage flow presented in Figure 1 (source instrumentation, runtime trace col-
lection and compaction, trace data visualization, abstraction and analysis) based on
the following components: (1) a C source annotator, (2) an execution tracer, (3) a trace
data graphical visualizer, and (4) an IDE for project development, toolset integration
and display of the visualizer/source code cross-references.

The first stage automatically rewrites the original C source using a C-to-C compiler
based on the CIL infrastructure [Necula et al. 2002]. It adds calls to the execution
tracer API while preserving the original functionality.

After linking with the tracer library, the instrumented program is run in stage two
with an input data set (provided by the developer) that should maximize the discov-

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:4 M. T. Lazarescu and L. Lavagno

*mptr = (*mptr + *qmatrix/2) / *qmatrix; ⇒

__cil_tmp9 = *qmatrix;
__cil_tmp10 = __cil_tmp9 / 2;
__cil_tmp11 = *mptr;
__cil_tmp12 = __cil_tmp11 + __cil_tmp10;
*mptr = __cil_tmp12 / __cil_tmp9;

Fig. 2. Complex source expressions are rewritten to three-address code (elementary operations).

ered dynamic data dependencies by exercising as many statement-to-statement data
dependencies as possible. Execution data are automatically collected and compacted
at runtime, and made available at the end of the run to the analysis stage.

Stage three allows the developer to effectively abstract the complexity and size of the
trace data and execution statistics. It uses an interactive graphical environment that
exploits cross-references to the source code to simplify and accelerate the discovery
of parallelization opportunities. These can be at any level and for any parallelization
method, such as pairs of code blocks or functions with unidirectional data dependencies
that can be executed as stages of a coarse-grained task pipeline.

Manual program parallelization is performed in stage four, supported by the IDE
advanced features such as the cross-references between the original source code and
the graphical trace data visualizer.

All toolset components are free software projects. The execution tracer library is
written in C, the IDE is based on Code::Blocks1 in C++, the C source annotator lever-
ages the CIL infrastructure [Necula et al. 2002] in OCaml, and the trace data visual-
izer uses the ZGRViewer project [Pietriga 2005] in Java.

3.1. Automatic Code Annotator Tool
A special CIL module automatically instruments the source code for program execution
tracing. CIL builds an internal representation of the C program using a subset of the
C syntax and semantics, to simplify its manipulation. It is structured as a compiler,
with processing modules activated and configured using command-line switches. A
Perl wrapper provides a GCC-compatible interface for easy integration in make-based
projects.

The code annotation module traverses the CIL representation of the sequential pro-
gram and inserts tracer API function calls to collect runtime data of interest. It expects
a code with only three address code statements (see Figure 2) and one exit point per
function. This is obtained by preprocessing the program intermediate representation
using two modules from the CIL library, before the annotation module.

Several source code elements are annotated (such as the function entry and exit,
function arguments and return value, initialization of the static variables, automatic
variable declarations) so that the tracer can keep an accurate program execution trace.
This will be visualized in stage three as a dynamic Data Dependency Graph (DDG)
with a node for each program element at an interactively selectable granularity level
(C statement, C block, function). However, data dependencies are always collected and
stored at the statement level. A graph edge links each element that reads data from
an address with the element that wrote the last data at that address. For example,
the memory location called iptr in Figure 3 determines a dependency edge between
the first and third assignment (assuming that no other statement between the first
and second assignment changes the value of iptr and no other statement between the
second and third assignment changes the i-th element of array ivect) and between the

1Code::Blocks IDE project http://www.codeblocks.org/

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs 13:5

1: iptr = &ivect[i];
partools_write(..., &iptr, 4, ...);
...

2: ivect[i] = 256;
partools_write(..., &ivect[i], 4, ...);
...
partools_read(..., &iptr, 4, ...);
partools_read(..., &(*iptr), 4, ...);

3: ivar = *iptr + 12;
partools_write(..., &ivar, 4, ...);

Fig. 3. Example of annotations for statement data dependency tracking: block 3 depends on both block 1
and 2, but blocks 1 and 2 are independent. Dependencies on constant values are not traced.

int initVideoIn(THeaderInfo * HeaderInfo)
{

int t;
partools startFunction("initVideoIn", ...);
partools arg write(39, "initVideoIn", 1, ..., &HeaderInfo, 4, ...);
partools decl(21, ..., &t, 4, 1, 0, ...);
<function body>
partools arg read(18, "initVideoIn", 0, ..., & retres14, 4, ...);
partools endFunction("initVideoIn", ...);
return retres14;

}

(a)

partools arg read(54, "getc", 1, ..., &fh1, 4, ...);
ch = getc(fh1);
partools arg write(55, "getc", 0, ..., &ch, 4, ...);

(b)

Fig. 4. Example of function annotations. The annotations of function definitions (a) include function begin
and end, formal arguments, local variable declarations and return value. The annotations of function calls
(b) include the function actual arguments and the assignment of the return value.

second and third assignment (due to memory location ivect[i], pointed by iptr). The
first and second assignment can be executed in any order, thus no data dependency is
created between them.

Statement annotations include a unique ID, data address and size, and the source
file name and position. Data write annotations include a rough estimation of execution
complexity obtained by adding the weights of the elementary operations in the state-
ment (Figure 2). Whenever possible, annotations use the names of source variables
instead of the temporary variables automatically created by the C-to-C processor dur-
ing complex expression dismantling.

For function definitions (Figure 4a), the annotations include the entry and the exit
points (partools startFunction(), partools endFunction()), and data dependencies
through the stack (for formal arguments and return value)—the tracer uses a virtual
stack controlled by complementary calls to the API functions partools arg write()
(push) and partools arg read() (pop) in both callee and function call site (Figure 4b)2.

2Functions with a variable number of arguments require a slightly more dynamic handling within the called
function body.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:6 M. T. Lazarescu and L. Lavagno

static int i = -1; ⇒

static int i = -1;
...
void initVideoIn(THeaderInfo *HeaderInfo)
{

...
if (!partools_decl_globals_done)

partools_decl_globals();
...

}
...
static void partools_decl_globals(void)
{

partools_decl(1114, "i", &i, 4, 1, 1, ...);
...
partools_decl_globals_done = 1;

}

Fig. 5. The annotations of static variable declarations are collected in a local function. This function is
executed only once, before any other function in the source file is executed.

img->m_buffer = (uint8_t*)malloc(stride*h);
if (NULL==img->m_buffer)

free(img);
⇒

img = (RT_Image *)malloc(16U);
partools_alloc(653, img, 16U, ...);
partools_write(653, &img, 4, ...);
...
if (__cil_tmp19 == __cil_tmp17) {

free(img);
partools_free(672, img, ...);

Fig. 6. Dynamic memory operations are annotated both as heap operations and as writes to the pointer
referencing the allocated space.

All variable declarations are annotated using calls to partools decl() (Figure 4a
and 5) that associate a memory address to a symbolic name: (1) permanently (static
variables), (2) during a function call (automatic variables), or (3) between the malloc()
and free() calls (heap variables). Function-scope variable declarations (Figure 4a) in-
clude a unique ID, variable name, address, size, number of elements (for index analysis
through pointer aliases for vector types), storage class, and source path and position.

The C syntax does not allow one to annotate global variables where they are de-
clared. Hence their declaration API calls are collected in each source file in a function
(partools decl globals() in Figure 5) that is then called before any function from
that file is executed for the first time.

Dynamic memory operations are annotated to track data dependencies through heap
memory blocks (Figure 6). A call to partools alloc() associates the heap block address
with the pointer name and partools free() removes the association—very much like
other tools such as Purify or Valgrind trace the validity of memory accesses.

Control flow expressions (conditional statements and loops) are currently not an-
notated, since in our experience they are more local and clutter the parallelization
guidance based only on data flow dependencies.

The annotated code can be freely mixed with unannotated code (in source or binary
form) to accelerate the execution and allow the use of languages currently unsupported
by the annotator, such as C++. However, this also limits the analysis scope, since the
runtime data tracing of unannotated parts is not available (e.g., for library functions).
This can be a serious problem for functions that take pointer or non-scalar arguments,
or use global pointers, e.g., string manipulation functions. For a reliable analysis, their

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs 13:7

a = b + c; /* statement ID: 10 */
x = y + z; /* statement ID: 100 */
r = x + a; /* statement ID: 1000 */

Fig. 7. Example of mapping of the runtime data dependencies between statements on the data structures
of the tracing library.

source code or at least a stub illustrating input/output argument data dependencies
must be available and annotated.

3.2. Execution Tracer
The execution tracer is implemented as a library providing the API functions pre-
sented in Section 3.1. Linked with the annotated program, it collects execution data
into a complex data structure during the program run.

Since the calling context is essential for the subsequent analysis for parallelization,
most collected data are indexed by it (i.e., nodes of the data dependency graph are
uniquified by the calling context). This is inefficient for heavily recursive code, and
requires compressing call chains with multiple occurrences of the same node (called
function ID) to the minimum common subchain3.

Each partools write() call updates the corresponding DDG node data structure
with information that includes its computational weight (an execution time estimate)
and source code position. As mentioned above, a DDG node is uniquely identified by
the statement ID and the call stack. The call also updates the last write DDG node for
the corresponding memory address in the tracer data structure.

The calls to partools read() build the list of read dependencies for the next write
statement. Each dependency between this read and the last previous write is added to
the program data dependencies as a DDG graph edge. Thus, each DDG node (source
code statement) has an edge from each DDG node that produces its input data and an
edge to each DDG node that uses its output data (Figure 7).

Function calls and returns are tracked using calls to partools startFunction() and
partools endFunction() that update both the current call stack and the call tree (Fig-
ure 8). The current call stack is a LIFO, while the full call tree is a tree of hash tables
where each call level (called function) is associated with a hash table that records the
functions it calls.

Data dependencies through the program stack (function arguments and return
value) are tracked using the virtual stack presented in Section 3.1. The data dependen-
cies between the caller actual arguments and the callee formal arguments are recorded
by the tracer in the same way as the data dependencies for statements.

A symbol table records the base address, size, symbolic name, and source file location
for all program variables using an Adelson-Velskii-Landis (AVL) tree indexed by the
address. Automatic variables are pushed in the symbol table by each partools decl()
call and removed at function exit.

At the end of the execution of the annotated program, the tracer saves the data
dependencies, call stacks, and other statistics in a file in XML notation that is used by
the graphic analysis tool.

3Formally, one can generate the minimum Finite State Machine (FSM) which recognizes all the call stack
strings, and then follow a shortest path on that FSM for each call stack leaf.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:8 M. T. Lazarescu and L. Lavagno

Fig. 8. All call stacks during program execution are recorded in nested hash tables and are labelled with
unique IDs. The current call stack is recorded separately as an ordered list.

Fig. 9. Initial (most summarized) view of the program execution trace.

3.3. Graphic Analysis Tool
The huge amount of detail collected during program execution is presented in a very
abstract and summarized form in order to help the developer to focus on the data de-
pendencies that can lead to parallelization opportunities. The IDE and DDG visualizer
are thus very interactive and provide a set of keyboard and mouse actions for efficient
data exploration.

Once the DDG data are loaded, the viewer presents the most summarized represen-
tation of the program execution (Figure 9), where the execution of all statements and
all their data dependencies are folded into the starting function of the program. The
fold name displays the fold type, its execution load, the source file name and line, the
function name, and its unique call stack ID. Node statistics in the rectangular frame
indicate the node type, the fact that it accounts for 100% of program execution, the call
stack up to its function and its source file location.

A “fold” node is a collection (compression) of children nodes such as leaves (elemen-
tary C statements) or function calls, with or without a call tree below them. When a
node is folded, all data dependencies among its children are hidden, and only the de-
pendencies between other leaf nodes or folds and its children are shown. The purpose
is to represent what would be the incoming and outgoing data dependencies if this node
were chosen as the parallelization unit (task, thread, Kahn process).

The developer starts the interactive trace data exploration by unfolding this view to
display its direct callees (Figure 10). Data dependencies are represented as directed
edges from producer to consumer nodes.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs 13:9

Fig. 10. Trace view expansion to first callees for a ray tracer program.

To facilitate and speed up graph comprehension and exploration, the relative execu-
tion frequency for nodes (an estimate of the amount of computation due to the nodes
and their children) and the data dependency frequency for edges (an estimate of the
amount of data communication between the nodes) is encoded in their visual appear-
ance. The user can switch at any time between color or grayscale encoding. A higher
color intensity (or darker shade of gray) and an increased width for edges correspond
to higher execution and data transfer frequencies, as can be seen in Figure 10.

Graph comprehension and exploration can be further facilitated and accelerated by
applying several filters that can reduce graph cluttering and can help the developer to
focus on the analysis on the most important parts for parallelization.

Graph “re-rooting” to a given folding node assumes that the program execution
starts on the selected fold, discarding everything above it in the call stack. For in-
stance, a re-root to the fold raytracer.c:Render().18 in Figure 10 would only discard
about 0.01% of the whole program execution time. Each re-rooting also sets the execu-
tion load of the new root to 100%, since everything outside it is discarded for the pur-
pose of the subsequent analysis. Re-rooting the graph to this node thus discards many
folds with little relevance for parallelization opportunity discovery, but that would end
up cluttering the graph. Figure 11 shows how graph re-rooting can prevent excessive
graph cluttering during exploration for parallelization opportunities.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:10 M. T. Lazarescu and L. Lavagno

(a) (b)

Fig. 11. Sequential unfolding of high-execution folds (a-99.99%, b-99.77%) and applying graph re-rooting.

For the same purpose of helping the developers to focus on the discovery of the most
suitable parallelization opportunities, the toolset allows them to filter out of the view
the nodes whose estimated execution effort is below a configurable threshold. More-
over, graph cluttering can also be reduced by toggling the edge labels and the amount
of information provided by the node labels.

Another important feature for the analysis of the parallelization candidates is the
detailed data dependency view of a selected DDG node. The most useful case is when

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs 13:11

Fig. 12. Excerpt of the data dependency view of the full RenderPixel call stack of the ray tracer application.
From top to bottom the layers in the view are: statements producing data dependencies outside the call
stack; the data produced by these; the statements that consume/produce data dependencies within the call
stack; the data produced by these; the statements consuming the data dependencies outside the call stack.

a DDG node is actually a fold of a whole call stack, i.e., a collapsed view of a node in
the call tree (a given function call instance), its statements, and all the statements in
all the functions called by it. For each node in the call tree, the detailed data depen-
dency view represents a summary of the input and output data dependencies of the
node itself and of all its callees. It can thus be used to identify the data it receives
from and sends to other parts of code outside this call stack. This is an essential piece
of information for any parallelization mechanism, language and method and has the
structure shown in Figure 12:

— the top layer shows the statement nodes (grouped by functions, shown as rectangu-
lar boxes), which produce the inbound data dependencies for the call stack under
analysis;

— the next layer shows in parallelogram boxes the data produced by these statements;
— the middle layer shows only the statement nodes of the selected call stack that con-

sume these data or produce data consumed by statements outside the call stack;
— the next layer shows in parallelogram boxes the data produced by these statements;
— the bottom layer shows the statement nodes outside the call stack that consume the

data produced within the call stack under analysis.

The nodes represent C source statements. Figure 13 shows how their colorization
intensity is normalized to the highest execution load in the graph, in order to em-
phasize the execution hotspots. For instance, the node representing the most executed
statement (accounting for 16.62% of the full program execution in the detailed data de-
pendency view shown in Figures 12 and 13) is colorized with full intensity. This eases

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:12 M. T. Lazarescu and L. Lavagno

Fig. 13. The colorization of the data dependency view is enhanced to facilitate the visual identification of
the execution and data dependency host spots.

spotting nodes with lower execution time by proportionally enhancing all colorizations,
as shown in Figure 13.

The detailed dependency data shown in this view are needed for and can substan-
tially speed up the parallelization decisions made by the developers. Moreover, these
dependencies are typically difficult to extract by code inspection or analysis using other
tools, since the producers and consumers connected by them can be located at various
depths in different call stacks, and the dependencies can be over any storage type (dy-
namic, local, global, etc.)

In this regard, it is worth noting that the toolset tracks data dependencies through
variables with any scope or storage class, including those that are dynamically allo-
cated on the heap. For instance, Figure 14a summarizes the data dependencies of the
call stacks originating within the function decode one frame() of the H.264 decoder.
The toolset allows the developer to further explore them at this level using dependency
views like the one shown in Figure 12. However, these dependencies may be difficult
to detect using other tools that do not use our fold-based summarization method. This
is because the actual statements that generate them can be buried well below this
level, in different parts of the code and call stacks, as shown in Figure 14b (in this
case only for one dependency variable, array2D). This figure shows the program call
graph as reported by Callgrind, in which the rectangular boxes denote functions and
the arrows connect callers to callees. The thick horizontal line represents the unfold
level of Figure 14a and the squares attached to the function blocks show the position in
the call graph of the statements that are connected due to the aforementioned array2D
variable dependencies.

To further help the developers to parallelize the program, the toolset can insert into
the source code comments that list the input and output data dependencies and an
OpenMP pragma template that can be used for the parallelization of a fold node of in-
terest. Figure 15 shows the comments holding the input and output data dependencies
and the OpenMP pragma template generated by the tool, upon user request, for the
full RenderPixel call stack of the ray tracer application.

To further simplify program exploration, all the nodes in the toolset views, for both
statements and data, are cross-linked to the source code in the IDE. This allows an
effective graph-driven exploration of the code parts that are considered relevant for
parallelization. Also, all views expanded during graph exploration are stored in a his-
tory list that facilitates the navigation between several parallelization opportunities.

These DDG-specific functions of the viewer complement the standard graph viewing
functions of the underlying ZGRViewer tool (e.g., zoom, pan, magnifier, search).

4. TOOLSET USE
The toolset purpose is to simplify the search for the most promising parallelization
opportunities and the selection of the best parallelization method, e.g., data-parallel or

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs 13:13

(a) (b)

Fig. 14. H.264 decoder data dependencies shown between (a) call stacks are exposed at high levels (e.g., at
the level of function decode one frame()) but are due to (b) statements buried within the call stacks (e.g.,
the square boxes attached to the function blocks show the position in the call graph of the statements that
are connected by data dependencies related to variable array2D).

Fig. 15. The toolset can insert the input and output data dependencies and an OpenMP pragma template
as comments in the source code just above the statement corresponding to a selected node.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:14 M. T. Lazarescu and L. Lavagno

% cumulative self self total
time seconds seconds calls s/call s/call name
16.61 2.79 2.79 788215425 0.00 0.00 Dot
13.78 5.12 2.32 141631877 0.00 0.00 IntersectQuad
8.26 6.50 1.39 281277610 0.00 0.00 intersectObject
8.02 7.86 1.35 139645733 0.00 0.00 IntersectSphere
7.90 9.19 1.33 69361053 0.00 0.00 NormalizeVec3
7.69 10.48 1.29 220258108 0.00 0.00 Cross
6.42 11.56 1.08 268195824 0.00 0.00 Mul1Vec3
6.12 12.59 1.03 350638670 0.00 0.00 Sub2Vec3
4.46 13.34 0.75 45257208 0.00 0.00 IntersectionShadowWithScene
4.22 14.05 0.71 191964084 0.00 0.00 Add2Vec3
3.77 14.69 0.64 330958926 0.00 0.00 UpdateStat
3.36 15.25 0.56 15085736 0.00 0.00 CastShadowRay
...

Fig. 16. gprof output for the ray tracer application.

task-parallel. It does not make any specific assumption on the parallelization method,
syntax or tool, even though it was designed originally for task- or process-level (rather
than loop-level) parallelism.

Parallelizing an existing sequential implementation without any prior knowledge of
the software and guided only by a classical source code profiler is not trivial, as argued
above. For instance, the gprof output for an application may look like Figure 16. It
shows clearly the parts of the program where most of the computation occurs, but it
does not provide any information on how the data flow through the code. More detailed
reports from other tools (e.g., from Intel Parallel Studio) still do not provide the means
to analyze the data dependencies within the whole program.

However, it is well known that the data flows and dependencies are one of the most
important parallelization inhibitors. Thus, the tools should assist the developer to
weigh them efficiently and in detail, both locally and at program level.

To illustrate the benefits of the capabilities of the toolset in this respect, we present
the results of a comparative use test of the toolset. The purpose of the test is to show
how the use of the toolset helps relatively inexperienced personnel to more effectively
parallelize a previously unknown legacy application.

We used students from a second-year course for the electronics engineering mas-
ter (5th year overall). Its purpose is to teach modelling languages, such as SystemC,
Esterel and Kahn Process networks, and the associated synthesis and verification al-
gorithms and tools.

The goal of the course is not specifically to teach how to parallelize software. Hence,
the students were asked to perform the experiment without any previous knowledge
of what writing parallel software means. They had only a generic knowledge that ex-
ploiting parallelism is very important in contemporary embedded systems and had
used the SystemC language to model multiple threads communicating via signals (i.e.,
using the Moore synchronous reactive model). They were also exposed to the concept
of Kahn Process Networks, but had never written code using this computation model.

The test assignment was to analyze and parallelize three real-life use cases: an
MJPEG encoder, a ray tracing algorithm, and a cascade of two FIR filters.

The experiment was carried out using the following main phases:

(1) a 30 minute general presentation of the assignment topic, followed by a request for
interest from the students.
The purpose of this step was to measure their level of interest for software paral-
lelization and how many of them felt confident enough to enrol;

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs 13:15

mjpeg
no toolset

mjpeg
no toolset

mjpeg
toolset

mjpeg
toolset

FIR
no toolset

FIR
toolset

FIR
toolset

raytracer
no toolset

raytracer
toolset

0

0.5

1

1.5

2

2.5

3

3.5

training time parallelization time optimization time speedup

T
im

e
 [d

a
ys

] a
n

d
 s

p
e

e
d

u
p

Fig. 17. Results of the test of toolset use for parallelization.

(2) provide the students with some material on software parallelization to become fa-
miliar with the main issues and techniques used in the field;

(3) give a full three hour lecture presenting software parallelization. The lecture cov-
ered motivations, benefits, limitations, architectural issues, main approaches. The
theoretical presentation was followed by an in-class demo of the toolset operation
using some simple programs.
At the end of the presentation, the interested students were requested to formally
enrol in the assignment. In total 16 students enrolled and were divided into 11
groups of 1–2 students each;

(4) provide one workspace to each group on a virtual machine with four processors. All
students were requested to carefully track the time spent working on each phase
of the project:
— learning how to use the tools;
— identifying the parallelization opportunities;
— performing the parallelization;
— debugging and optimizing the parallel code.
The groups were partitioned in two sets:
(a) one set was required to perform the parallelization using standard code anal-

ysis and development tools, such as gprof and a version of gcc supporting the
OpenMP parallelization pragmas.
We used the results of this set as baseline to assess the effects of using the
toolset;

(b) another set was required to perform the parallelization using the toolset de-
scribed above, in addition to previously mentioned standard tools.
The results of this set were evaluated against the results of the first set sepa-
rately for each parallelization candidate program, to take into account differ-
ences in code structure.

All workspaces included generic software analysis and development tools, the
toolset (only for the second set), the code to parallelize, and user documentation.

The students were requested to spend at most a couple of days on the parallelization.
Only 9 groups out of 11 completed the assignment.

The results of the test are summarized in Figure 17. The X axis lists the test cases
as follows:

(1) “mjpeg” is an MJPEG encoding algorithm with an acyclic data dependency graph
at the top level (see Figure 18a);

(2) “FIR” is a couple of cascaded FIR filters (see Figure 18b);

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:16 M. T. Lazarescu and L. Lavagno

(a) (b)

Fig. 18. Top-level execution profile and acyclic data dependency for (a) the MJPEG encoder and (b) the FIR
filters (at the bottom, data dependency through main() function).

(3) “raytracer” is a ray tracing application with a well known top-level data parallelism
(see Figure 10) and architectural effects that limit the parallelization performance,
as will be discussed later.

The tools used for the parallelization of each test case are listed as follows:

no toolset. Means that the parallelization was performed using the standard de-
velopment and analysis tools;
toolset. Means that the parallelization was performed using also the toolset de-
scribed in this article.

The Y axis shows the time (in days) needed to complete the various phases of the
parallelization assignment, and the speedup obtained on a 4 core Intel architecture.

In more detail, the graph indicates:

— the training time to get acquainted with the tools;
— the time to perform the first parallelization (discover parallelism, analyze the data

dependencies, write the parallel code using OpenMP pragmas, and debug the results
so that the execution was correct);

— the time to further optimize the parallelized code in order to improve the speedup;
— the final speedup with respect to the sequential program.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs 13:17

Based on the results of each test case, we can reach the following conclusions:

(1) “mjpeg” parallelization:
(a) toolset use considerably reduced the parallelization time, but at the cost of

more training time (which is expected given the prototype nature of the toolset);
(b) the final speedup results with and without tools are similar:

— one group that used the toolset and one that did not use it managed to obtain
some speedup,

— one group that used the toolset and one that did not use it did not obtain
any speedup.

(c) the parallelization time using the toolset was always shorter than without.
(d) investing more time to learn the toolset appears to pay off by reducing the

parallelization time later.
(2) “FIR” parallelization:

(a) the group using the toolset was the only one obtaining any speedup;
(b) learning how to use the toolset in this case took a long time.

(3) “raytracer” parallelization:
(a) toolset use reduced the parallelization time, at the cost of more training time;
(b) the parallelization with the toolset had a slightly better speedup than that

without the toolset;
(c) however, neither group obtained a functionally correct parallelization (as dis-

cussed below).

The parallelized ray tracer code was not functionally correct for both groups who
worked on it, i.e., both groups missed some of the data dependencies due to the in-
completeness of their code analysis. This, up to a point, is unavoidable because of the
“optimistic”, trace-based, manual parallelization approach used. However, after the
experiment we extended the toolset with the capability to insert as comment in the
source code the list of dependencies for the selected statement and an OpenMP pragma
template that can be used to run it in parallel as presented in Section 3.3. Moreover,
verification methodologies can be used to identify and debug parallelization errors, as
discussed below.

Both groups missed the best parallelization opportunities for the ray tracer and thus
achieved less speedup than an experienced programmer would. In fact, an experienced
programmer would have added all data dependencies indicated by the toolset to the
parallelization solution selected by the student group. So, if the students had used the
new version of the tool (with automated OpenMP pragma template insertion) most
likely they would have obtained a correct parallelization. The code section selected for
parallelization by the group using the toolset is suboptimal, since program execution
traverses it many times leading to a high runtime overhead. In fact, after editing the
code to use the correct set of dependencies, the speedup with respect to sequential
execution reduced to 1.06.

The solution proposed by the group that was not using the toolset included three
parallel sections, one of which being the optimal solution. Thus, an experienced pro-
grammer would have removed all but the best one, achieving a speedup with respect
to sequential execution of 1.67.

Higher speedups, above 2× on four cores, can be obtained by properly handling the
well known false sharing effects of the ray tracing algorithm [Yang et al. 2006] and by
using a suitable scheduling of the parallel tasks to improve the utilization of the avail-
able CPUs. As shown in Figure 19, the load is unevenly distributed over the algorithm
iterations leading to significant underutilization of the computing resources unless the
tasks are scheduled dynamically or statically with a very fine grain. Neither of these
could be achieved by the students within the short time allotted by the experiment.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:18 M. T. Lazarescu and L. Lavagno

Fig. 19. Time per iteration for ray tracer application parallelized using OpenMP static scheduling.

5. CONCLUSION AND FUTURE WORK
The toolset presented in this article supports the developer analysis and decisions in
the very difficult task of sequential C program parallelization.

We illustrated using the results of a test we conducted with MS students how the
toolset can help even inexperienced programmers to discover potential parallelism.
We found that the interactive graphical profile and program-wide data dependency
analysis tools effectively support the execution trace exploration and the search for
any type of parallel code rewriting opportunities, including Kahn Process Networks,
POSIX threads, OpenMP pragmas, and so on.

The application cases also show how the toolset can be used to discover multiple
parallelization opportunities, leaving the developer the freedom of choice of which one
is best for the target architecture.

It is also worth noting that the toolset can complement existing automatic paral-
lelization tools such as [Compaan Design BV 2012], which can greatly benefit from the
toolset-driven program-wide data dependency analysis.

In fact, the user of an automatic parallelization tool would need to perform an ed-
ucated guess to determine which parts of the code to rewrite in order to satisfy the
restrictions imposed by the automated tool (e.g., perfectly nested loops and affine ar-
ray accesses). The toolset presented in this article can provide useful information on:

— where the compute-intensive procedures are;
— if there are any data dependencies besides those through procedure arguments;
— whether the procedure inputs and outputs are truly unaliased;
— whether the procedure inputs are truly read-only and outputs are truly write-only.

Moreover, the use of the toolset on different types of code and by users with various
skill levels also exposed some limitations that we intend to address in future work:

(1) merge the profile data from several runs to improve the coverage and accuracy;
(2) import execution profile data from external tools, such as gprof;
(3) use a binary-based code instrumentation method to avoid changing the source code,

since this can have undesired side-effects like reduced (and different) compiler op-
timizations and the inability to analyze binary-only code;

(4) more extensive experimentation, using other real life applications;
(5) better support for the designer in the analysis of the trace data, based also on the

lessons learned from the student test;

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

Interactive Trace-Based Analysis Toolset for Manual Parallelization of C Programs 13:19

(6) improved support for semi-automated parallelization directive insertion and par-
allel code rewriting.

These changes have the purpose to extend the current toolset accuracy and applicabil-
ity to other problems that can also benefit from it.

ACKNOWLEDGMENTS

This work was supported by the European Commission in the context of the FP7 HEAP and PHARAON
projects. The ray tracing application presented in this article was kindly provided by ST Microelectronics
within the HEAP project, while the FIR application was kindly provided by Thales in the context of the
PHARAON project.

REFERENCES
ALLAN, V. H., JONES, R. B., LEE, R. M., AND ALLAN, S. J. 1995. Software pipelining. ACM Comput.

Surv. 27, 3, 367–432.
ALLEN, R. AND KENNEDY, K. 2002. Optimizing compilers for modern architectures. Morgan Kaufmann San

Francisco.
ASANOVIC, K., BODIK, R., DEMMEL, J., KEAVENY, T., KEUTZER, K., KUBIATOWICZ, J., MORGAN, N.,

PATTERSON, D., SEN, K., WAWRZYNEK, J., WESSEL, D., AND YELICK, K. 2009. A View of the Parallel
Computing Landscape. Communications of the ACM 52, 10, 56–67.

ATHANASAKI, E., ANASTOPOULOS, N., KOURTIS, K., AND KOZIRIS, N. 2008. Exploring the performance
limits of simultaneous multithreading for memory intensive applications. The Journal of Supercomput-
ing 44, 1, 64–97.

BACON, D. F., GRAHAM, S. L., AND SHARP, O. J. 1994. Compiler transformations for high-performance
computing. ACM Comput. Surv. 26, 4, 345–420.

BENABDERRAHMANE, M.-W., POUCHET, L.-N., COHEN, A., AND BASTOUL, C. 2010. The Polyhedral Model
Is More Widely Applicable Than You Think. In Compiler Construction, R. Gupta, Ed. Lecture Notes in
Computer Science Series, vol. 6011. Springer Berlin Heidelberg, 283–303.

BURGER, D. AND GOODMAN, J. 2004. Billion-transistor architectures: there and back again. Computer 37, 3,
22–28.

COMPAAN DESIGN BV. 2012. See http://www.compaandesign.com/.
CULLER, D., DUSSEAU, A., GOLDSTEIN, S., KRISHNAMURTHY, A., LUMETTA, S., VON EICKEN, T., AND

YELICK, K. 1993. Parallel programming in Split-C. In Supercomputing ’93. Proceedings. 262–273.
GONZÁLEZ, J. AND GONZÁLEZ, A. 1998. The Potential of Data Value Speculation to Boost ILP. In Pro-

ceedings of the 12th International Conference on Supercomputing. ICS ’98. ACM, New York, NY, USA,
21–28.

GOOSSENS, B. AND PARELLO, D. 2013. Limits of Instruction-Level Parallelism Capture. Procedia Computer
Science 18, 0, 1664–1673. International Conference on Computational Science.

HENNESSY, J. L. AND PATTERSON, D. A. 2012. Computer architecture: a quantitative approach. Elsevier.
HWU, W.-M., KEUTZER, K., AND MATTSON, T. 2008. The concurrency challenge. Design Test of Computers,

IEEE 25, 4, 312–320.
KAHN, G. 1974. The semantics of a simple language for parallel programming. In Information processing,

J. L. Rosenfeld, Ed. North Holland, Amsterdam, Stockholm, Sweden, 471–475.
KATHAIL, V., ADITYA, S., SCHREIBER, R., RAMAKRISHNA RAU, B., CRONQUIST, D., AND SIVARAMAN, M.

2002. Pico: automatically designing custom computers. Computer 35, 9, 39–47.
KIENHUIS, B., RIJPKEMA, E., AND DEPRETTERE, E. F. 2000. Compaan: deriving process networks from

matlab for embedded signal processing architectures. In Proceedings of the Eighth International Work-
shop on Hardware/Software Codesign. 13–17.

MATTSON, T., SANDERS, B., AND MASSINGILL, B. 2004. Patterns for Parallel Programming. Software Pat-
terns Series. Pearson Education.

MIGNOLET, J.-Y., BAERT, R., ASHBY, T. J., AVASARE, P., JANG, H.-O., AND SON, J. C. 2009. Mpa: Paral-
lelizing an application onto a multicore platform made easy. IEEE Micro 29, 3, 31–39.

NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND WEIMER, W. 2002. CIL: Intermediate language and tools
for analysis and transformation of C programs. In Int’l Conference on Compiler Construction. 213–228.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

13:20 M. T. Lazarescu and L. Lavagno

OTTONI, G., RANGAN, R., STOLER, A., AND AUGUST, D. 2005. Automatic thread extraction with decoupled
software pipelining. In Proceedings of 38th Annual IEEE/ACM International Symposium on Microar-
chitecture. MICRO. IEEE.

PIETRIGA, E. 2005. A toolkit for addressing HCI issues in visual language environments. IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC) 00, 145–152.

RAMALINGAM, G. 1994. The Undecidability of Aliasing. ACM Transactions on Programming Languages and
Systems 16, 5, 1467–1471.

THIES, W., CHANDRASEKHAR, V., AND AMARASINGHE, S. 2007. A practical approach to exploiting coarse-
grained pipeline parallelism in C programs. In Microarchitecture, 2007. MICRO 2007. 40th Annual
IEEE/ACM International Symposium on. 356–369.

TOURNAVITIS, G., WANG, Z., FRANKE, B., AND O’BOYLE, M. F. 2009. Towards a Holistic Approach to Auto-
parallelization: Integrating Profile-driven Parallelism Detection and Machine-learning Based Mapping.
SIGPLAN Not. 44, 6, 177–187.

VANDIERENDONCK, H., RUL, S., AND DE BOSSCHERE, K. 2010. The Paralax Infrastructure: Automatic
Parallelization with a Helping Hand. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques. PACT ’10. ACM, New York, NY, USA, 389–400.

WILSON, R. P., FRENCH, R. S., WILSON, C. S., AMARASINGHE, S. P., ANDERSON, J. M., TJIANG, S. W. K.,
LIAO, S.-W., TSENG, C.-W., HALL, M. W., LAM, M. S., AND HENNESSY, J. L. 1994. Suif: an infrastruc-
ture for research on parallelizing and optimizing compilers. SIGPLAN Not. 29, 12, 31–37.

YANG, C., CHEN, Y., FU, X., LIM, C.-C., AND JU, R. 2006. A comparison of parallelization and performance
optimizations for two ray-tracing applications. Proceedings of HPC&S 6, 321–330.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 1, Article 13, Publication date: November 2014.

