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I. Introduction 

The evaluation of the nonlinear flutter instability of slender wings represents a critical condition to 

test and validate control algorithm, [1-4] are case in point. On a benchmark 2D aeroelastic model 

several linear and nonlinear active controllers [5,6,7] as well as various adaptive control schemes 

[2,3,7,8]  have been tested. In spite of the recent years’ flourishing literature on aeroelastic adaptive 

controls, there is a noted lack of robustness and sensitivity analysis with respect to structural 

proprieties degradation which might be associated with a structural failure. Structural mode 

frequencies and aeroelastic response, including Limit Cycle Oscillations (LCOs) characteristics, are 

significantly affected by changes in stiffness. This leads to a great interest in evaluating and 

comparing the adaptation capabilities of different control architectures subjected to large plant 

uncertainties and unmodeled dynamics. The contribution of this technical note lies in the derivation 

and implementation of state feedback Model Reference Adaptive Control (MRAC) solutions for a 2D 

aeroelastic nonlinear system and in evaluating the robustness of different control strategies to damage 

leading to the deterioration of the structural stiffness characteristics. The Standard MRAC, a Modified 

MRAC, and the ℒ1 adaptive controller are the three model-reference adaptive control solutions 

analyzed. The standard direct MRAC solution [9] serves as threshold to assess whether or not the 
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more complex algorithms are an effective improvement to it. Both Modified Model Reference [9] and 

ℒ1 [10] adaptive controllers, which embody different modifications to the standard scheme with the 

intent to improve robustness and performance at the same time, are proposed in this work. For 

consistency of the analysis, all the adaptive scheme solutions are derived for the same control 

objective [11-14] and are applied to the same aeroelastic plant, which is a two-DOF structurally 

nonlinear plunging and pitching lifting surface in a quasi-steady aerodynamic flow. The model has 

pitch polynomial type structural nonlinearities and uses a single trailing-edge control surface. The 

proposed aeroelastic model exhibits a supercritical Hopf-bifurcation behavior, that is a stable Limit 

Cycle Oscillations (LCOs) obtained past the flutter speed [15]. Investigation results and pertinent 

comments on the adaptation performance and robustness of the three schemes are presented. 

II. Aeroelastic Model 

The classical wing-flap configuration used as benchmark for flutter suppression active controller 

testing and performance evaluation [11-15] is illustrated in Figure 1. The schematic shows the 2 

Degrees-of-Freedom (DOF) aeroelastic systems with plunging and pitching displacements, with an 

attached trailing edge control surface. The plunging h (positive downward) and pitching α (measured 

from the horizontal at the elastic axis of the airfoil, positive nose up) displacements are restrained by a 

pair of springs attached to the elastic axis (EA) of the airfoil with spring constants, kh and kα(α), 

respectively. Here,  kα(α) denotes a continuous, linear parameterizable nonlinearity, that is, the 

aeroelastic system has a continuous nonlinear (5th-order) restoring moment in the pitch DOF. Such 

continuous nonlinear model for stiffness results from a thin wing or propeller subjected to large 

torsional amplitudes [5]. Similar models [3,11,15,16] have been examined and provide a basis for 

comparison. The aerodynamically unbalanced control surface deflection  β is measured from the axis 

created by the airfoil at the control flap hinge and is positive for flap down. While this flap is 

primarily used to initiate and terminate maneuvers, it is considered here as a means of suppressing 

aeroelastic instabilities. As already indicated earlier, the same plant is used to test the three different 

adaptive control strategies and their ability to respond to structural degradation simulated by suddenly 

reducing stiffness values.  
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The equations of motion for the 2DOF aeroelastic system under consideration are given as [1,15]. 

[
m m𝑥𝑎𝑏

m𝑥𝑎𝑏 Iα
] [ḧ

α̈
] + [

ch 0
0 cα

] [ḣ
α̇

] +  [
kh 0
0 kα(α)

] [
h
α

] = [
−L
M

]                                (1) 

where m is the mass of the airfoil, 𝑥𝑎  the dimensionless distance measured from the elastic axis to the 

center of mass, Iα the mass moment of inertia of airfoil about elastic axis, Ch, Cα the structural 

damping coefficients in plunging and pitching and the lift L and aerodynamic moment M are modeled 

in their quasi-steady form as 

L = ρ𝑈2𝑏𝑐𝑙𝛼  [α +
ḣ

𝑈
+ (

1

2
− 𝑎) 𝑏 (

α̇

𝑈
)] + ρ𝑈2𝑏𝑐𝑙𝛽𝛽 

M =  ρ𝑈2𝑏2𝑐𝑚𝛼  [α +
ḣ

𝑈
+ (

1

2
− 𝑎) 𝑏 (

α̇

𝑈
)] + ρ𝑈2𝑏2𝑐𝑚𝛽𝛽                                (2) 

where U is the free stream velocity, 𝑐𝑙𝛼
  𝑐𝑚𝛽

 𝑐𝑙𝛽
  𝑐𝑚𝛽

 are lift and moment coefficients respectively of 

the airfoil and the control surface; a is the dimensionless distance between the mid-chord and the 

elastic axis and b is the semi-chord of airfoil. Equations (1) can be written into the equivalent state-

space form: 

ż = f(z) + g(z)𝛽,          y = [z2 z4]                                                              (3) 

where z(t) = [z1 z2 z3 z4]T  ≜ [h α ḣ α̇]
T

 is the system states vector, 𝛽(𝑡) ∈ R1 is a flap deflection 

control input, y(t) ∈ R2 denotes the designated output, and f(z) and g(z) ∈ R1 assume the following 

form: 

f(z) = [

z3

z4

−k1z1 − [k2U2 + p(z2)]z2 − c1z3 − c2z4

−k3z1 − [k4U2 + p(z2)]z2 − c2z3 − c4z4

] ;                 g(z) = [

0
0

g3U2

g4U2

],        g4 ≠ 0        (4) 

where p(z2) and q(z2) ∈ R1 are continuous, linear parameterizable nonlinearities in the output 

variable resulting from the nonlinear pitch spring constant kα(α). The set of constant ki and ci ∀i =

1, … 4, as well as  g3 and g4 are defined and reported in [2]; g(z) consists of constants, and 

partitioning f(z) in the constant and variable part, the aeroelastic system to be controlled belongs to a 

class of plant described by 

ẋ(t) = 𝐴f(x, t) + Bu(t)                                                                           (5) 

where A and B are constant, f(x, t) is a nonlinear function, and u(t) is the control signal. 
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For control law design purpose, the unknown component of the state matrix and the nonlinear 

function Eq.(5) can be decomposed from the known part as follow: 

A = A∗ + ΔA;      f(x, t) =  f ∗(x, t) + Δf(x, t);      B = B∗ + ΔB                             (6) 

where the superscript * denotes the nominal values and ΔA, Δf(x, t) and ΔB denote the uncertain 

portions of A, f(x, t) and B, respectively. Hence, the dynamic system equation (5) can be expressed as 

ẋ(t) = A∗f(x, t) + (ΔA + Δf(x, t)) + (B∗ + ΔB)u(t).                                           (7) 

 

Figure 1 2D wing section schematic 

III. Adaptive Control Architectures: Control Objective and Problem formulations 

The control objective is to suppress the aeroelastic oscillatory motion of the system by driving the 

pitch angle α to a constant set point, typically zero degrees, while adaptively compensating for 

uncertainties in all parameters of the model and the nonlinearity. In this particular development, it is 

assumed that the only available states for feedback are xmeas  = [α α̇]. If the pitch regulation is 

achieved, the plunging motion is damped-out [1-4]. Three different model-reference adaptive control 

architectures are introduced and compared to evaluate the effectiveness of modifications from the 

standard MRAC scheme. The aeroelastic system equations are rewritten into amenable form as to fit 

the problem formulation for each control scheme. A detailed description of the various architectures, 

control, and adaptive laws is supplied next to highlight the differences between them. 
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A. Standard MRAC solution 

Equation (7) describes a class of plants that is usually written in the following form amenable to 

model reference control scheme 

ẋ(t) = Amx(t) + Bθ∗T
x(t) + Bu(t)                                                                           (8) 

where x ∈ ℝn is the state vector, assumed to be measurable, u ∈ ℝ is the control input,  θ∗ ∈ ℝn is an 

unknown parameters vector belonging to a known compact convex set Ω ⊂ ℝn,  Am ∈ ℝn×n is 

Hurwitz [17] and B ∈ ℝn are known and the pair (Am;  B) is controllable. As proved in [9], the fact 

that the parameter θ∗ appears linearly in Eq. (8) does not mean that the dynamics are linear. For a 

standard MRAC scheme, the control problem lies in choosing u(t) such that all the states x(t) in the 

closed-loop system are uniformly bounded and track the state vector of a desired reference model 

ẋm(t) = Amxm(t) + Bmr(t),           xm(0) = x0                                                        (9) 

both in transient and in steady-state for any bounded reference signal r(t). The standard MRAC 

solution to this problem is based on the states error between the plant and the reference model [9] 

defined as                                       

e(t) = x(t) − xm(t)                                                                           (10) 

from which the unknown parameter vector θ∗(t) is estimated by 

θ̇̂(t) = proj (ΓeT(t)Pbx(t)),   θ̂(0) = θ̂0 ∈ Ω                                                            (11) 

and the associated control law is 

u(t) = −θ̂T(t)x(t) + k0r(t)                                                                    (12) 

where θ̂(t) is the estimate of the unknown parameters θ∗(t). Γ > 0 is the adaptive gain, e is the 

tracking error, and P = PT > 0 is the solution of the Lyapunov equation PAm + Am
T P = −I. The 

projection operator is used to constrain θ̂(t) inside the compact set Ω for all t and is defined in [9,10]. 

For the particular application considered the reference signal r(t) is simply a constant set point, the 

elastic response has to damp-out with time to zero, which reduces the system to a regulation problem. 

The controller design parameters for the reference model are selected as follows: 

Am = [
0 1

−0.3 −1
] ;  Bm = [

0
4

] ; x0 = [
0

0.1
] ;   r(t) = 0                                            (13) 
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while the adaptive law parameters are 

P = 500I; Γ = 10;  B = [
1

0.1
] ; Ω ∈ [−5; 5]; θ̂(0) = [

0
0

] ;                                         (14) 

B. 𝓛𝟏 adaptive controller: State feedback in the presence of matched uncertainties 

The ℒ1 control problem formulation has the same standard MRAC form, since it is defined as a 

tracking problem between the system dynamics (8) and the reference model dynamics (9). However, 

the solution, whose detailed derivation can be found in [10], slightly differs being based on a state 

predictor error  

x̃(t) = x(t) − x̂(t)                                                                            (15) 

 instead of the tracking error as in (10). The state predictor dynamics is given by 

ẋ̂(t) = Amx̂(t) + B(θ̂T(t)x(t) + u(t), x̂(0) = x0,                                  (16) 

where Am is the same Hurwitz matrix in (9), x̂(t) are the predicted states, x(t) are the actual system 

states, u(t) is the control signal and θ̂ is again the unknown parameters estimation computed by the 

adaptive law  

θ̇̂(t) = proj (Γx̃T(t)Pbx(t)),   θ̂(0) = θ̂0 ∈ Ω                                                            (17) 

The associate control law is defined as 

u(t) = C(s)[−θ̂T(t)x(t) + k0r(t)]                                                                              (18) 

where C(s) is a stable strictly proper transfer function, with C(0) = 1. This is a first-order low-pass 

filter, which assumes the form         

C(s) =
1

ks + 1
                                                                                      (19) 

with k > 0  being the design parameter. To guarantee stability and convergence, the condition 

‖Wb(s)(C(s) − 1)‖1θmax < 1 must be respected, where Wb(s) = (sI − Am)−1B and θmax is an 

upper bound for ‖θ̂‖
1
. Γ and P have the same meaning as in (11). However, contrary to the MRAC 

theory [9], the adaptive gain Γ in the ℒ1 adaptive scheme is not subject to any stability constraint, 

because of the decoupling of the adaptive law dynamics from the system dynamics operated by the 

filter, in that particular location of the architecture. This allows the designer to increase Γ to very high 
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values for fastness, without affecting the controller robustness [10]. On these theoretical bases, the 

controller design parameters, have been selected as follows: 

k = 0.015;          Am = [
0 1

−0.3 −1
] ;            B = [

1
0.1

] ;             x0 = [
0

0.1
] ;               (20) 

P = 500I; Γ = 107;  Ω ∈ [−5; 5];  θ̂(0) = [
0
0

] ;                                               (21) 

where the reference model state and control matrices, as well as the convex set of the adaptive 

parameters and P are maintained equal to (13), for consistency of the analysis. Herein, the filter was 

tuned by trial and error and the adaptive gain was set high as suggested in [10]. 

C. Modified MRAC with normalized adaptive laws and transient performance 

improvement 

It is worthwhile introducing in this investigation another MRAC architecture, which involves signal 

filtering, but in a different location of the control architecture. This is known as modified MRAC for 

performance improvement [9, 18]. The problem formulation is still a model reference-tracking 

problem; however, the controller derivation is based on a parametric expression of (8) and the 

adaptive and control laws work on normalized signals, which increase the robustness of this scheme. 

Equation (8) can be rewritten as 

x(t) = Wb(s)[θ∗Tx(t)] + Wb(s)[u(t)]                                                     (22) 

where Wb(s) = (sI − Am)−1B Based on (Am, B) controllability, a vector c0 ∈ ℝn is defined so that 

Wm(s) ≜ c0
TWb(s) is a strictly proper minimum-phase transfer function. The parametric expression of 

the model is consequently written as 

z(t) = θ∗Tϕ(t)                                                                                (23) 

where z(t) = C0
Tx(t) − Wm(s)[u(t)] and ϕ(t) = Wm(s)[x(t)] are available for measurements. The 

structure and parameters of the unmodeled dynamics are assumed unknown. Performance 

improvement is obtained by enriching the control signal with an auxiliary input ua, which involves 

the above mentioned feedback signal filtering 

u(t) = −θ̂T(t)x(t) + k0r(t) + ua(t)                                                        (24) 

where 
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ua(t) = −Q(s) [ϵms
2 + Wc0

(s)[ Wb(s)[xT(t)]θ̂(t)̇ ]]                                                (25) 

Herein Wc0
(s) = −c0

T(sI − Am)−1, Q(s) = Wm(s)−1/(τs + 1)n∗
, and n∗ is the relative degree of 

Wm(s), while τ > 0 is a design parameter. The associated adaptive law is expressed as 

θ̇̂(t) = proj(P(t)ϵ(t)ϕ(t)),          θ̂(0) = θ̂0 ∈ Ω                                               (26) 

Ṗ(t) = −P(t)
ϕ(t)ϕT(t)

ms
2 P(t),          P(0) = P0                                               (27) 

where ϵ is the estimation error and is defined as ϵ(t) =
(z(t)−θ̂Tϕ(t))

ms
2 . The normalizing signal is 

ms
2(t) = 1 + ϕT(t)ϕ(t), and it is designed to guarantee boundedness of |

ϕ(t)

ms(t)
|, independently 

whether ϕ(t) is bounded or not. It must be noticed that, in this formulation, P is a function of t and 

not a constant matrix. Stability and convergence proof of this robust adaptive law are reported in [9]. 

For consistency, the reference model state matrix, the initial conditions, θ̂ convex set and P(0) are set 

identical to the other control schemes, while the different design parameters are set as follows 

τ = 0.5;          c0 = [
1
1

] ;                                                                   (28) 

It can be noticed that the filter Q(s) has a similar expression to C(s). However, since it appears in a 

different location of the control schemes and operates on different signals, the two behaviors are 

fundamentally different as shown in the results section. 

IV.  Simulation Results 

To verify the control algorithms performance and their robustness and adaptive capabilities, an 

extensive set of simulations is carried out with the 2DOF plunging and pitching aeroelastic model 

with trailing edge control surface, in several conditions within a parameters region of interest. The 

proposed aeroelastic plant, whose parameters are reported in Table 1 [15], shows an LCO behavior at 

the critical wind speed 𝑈flutter = 7 m/s in nominal condition, which drops down to 5 m/s when the 

failure is simulated. The trust region of the quasi-steady aerodynamic model stays within a range of 

angle of attack up to 10 degrees. For this reason, the wind speed increment and the structural failures 

applied to the plant are modulated so that the resulting LCOs motion is bounded inside the valid angle 
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of attack domain. In particular, failure is simulated by a 50% reduction of the stiffness matrix K 

nominal value and the post-flutter velocity is 30% higher the flutter speed, 𝑈post−flutter = 9m/s. The 

plunging/pitching phase-diagrams of the aeroelastic system subject to non-nominal conditions are 

reported in Figure 2, in which the effect on the LCOs features are noticeable. Figures 2 and 3 together 

show how the post-flutter wind speed and the stiffness reduction lead to different dynamic behaviors, 

in terms of frequencies and amplitude in both DOFs, that are worth to be evaluated, and represent a 

valid test for the control scheme adaptability. 

Table 1 2D Aeroelastic Plant Parameters 

𝑎, 𝑏 −0.4, 0.135 (𝑚) 𝑐𝑙𝛼
, 𝑐𝑚𝛼

 6.28, (0.5 + 𝑎)𝑐𝑙𝛼
 

kα(α), kh ∑ 𝜏𝑖𝛼𝑖−1

5

𝑖=1

, 2844.4 (𝑁 ∙ 𝑚−1) 𝑐𝑙𝛽
, 𝑐𝑚𝛽

 3.358, −0.635 

ρ 1.225 (𝐾𝑔 ∙ 𝑚3) m 12.387 𝑘𝑔 

𝜏𝑖 [2.8  − 62.3   3709.7  − 24,195.6  48,756.9]𝑇 Iα 0.065 (𝑘𝑔 ∙ 𝑚2) 

cα, ch 
0.036 (𝑁 ∙ 𝑠), 

27.43 (𝑁 ∙ 𝑚−1 ∙ 𝑠−1) 
𝑥𝛼 [0.0873 − (𝑏 + 𝑎𝑏)]/𝑏 

 

Testing and verification of the adaptive control schemes is carried out by perturbing the aeroelastic 

system with an initial pitch angle α(0) = 0.1 [rad] and monitoring the controller as well as the 

plunging and pitching responses evaluated in the simulation environment. The wind speed range of 

interest is 𝑈 = 7 to 9 (m/s) while the plunging and pitching stiffness range of interest are K = Knom  

to Knom/2. A selection of the most meaningful results is reported in this note, despite the extensive 

number of simulations performed. In particular, the aeroelastic response for the cases reported in 

Table 2, are presented in the following representative figures. Each case is characterized by the closed 

loop wind speed 𝑈CL, the plant stiffness matrix value K, the controller activation time 𝑡𝑂𝑁 and the 

open-loop flutter speed of the actual configuration 𝑈flutterOL
. It is noted that, for the combined post-

flutter and reduced stiffness condition, the system is controlled only at 0 sec to avoid unreasonable 

values of the pitch angle. The numerical integration in all the simulations is performed using a fourth-

order Runge-Kutta with a sampling time ts = 0.001 sec . 



  

Figure 2 Aeroelastic System Phase Diagrams 

 

Figure 3 Aeroelastic System LCOs frequency spectra at different conditions 
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Table 2 Simulations Cases 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

𝑼𝐂𝐋 7 𝑚/𝑠 7 𝑚/𝑠 7 𝑚/𝑠 7 𝑚/𝑠 9 𝑚/𝑠 9 𝑚/𝑠 9 𝑚/𝑠 

𝐊 𝐾𝑛𝑜𝑚 𝐾𝑛𝑜𝑚 
𝐾𝑛𝑜𝑚

2
 

𝐾𝑛𝑜𝑚

2
 𝐾𝑛𝑜𝑚 𝐾𝑛𝑜𝑚 

𝐾𝑛𝑜𝑚

2
 

𝒕𝑶𝑵 0 𝑠𝑒𝑐 10 𝑠𝑒𝑐 0 𝑠𝑒𝑐 10 𝑠𝑒𝑐 0 𝑠𝑒𝑐 10 𝑠𝑒𝑐 0 𝑠𝑒𝑐 

𝑼𝐟𝐥𝐮𝐭𝐭𝐞𝐫𝐎𝐋
 7 𝑚/𝑠 7 𝑚/𝑠 5 𝑚/𝑠 5 𝑚/𝑠 7 𝑚/𝑠 7 𝑚/𝑠 5 𝑚/𝑠 

 

Firstly, Figures 5 through 10 show that the problem is well posed since all the adaptive schemes are 

able to control the system, independently from the activation time of the controller (LCOs induced or 

not). The robustness and adaptive capability of each individual control scheme is hereafter discussed. 

Despite the relevant variations in the aeroelastic system dynamic (LCOs frequency and amplitude) 

due to the imposed conditions, the convergence time of each control scheme does not deteriorate 

noticeably during the tests. Standard MRAC, as expected, shows slow adaptation rate and 

subsequently poor performance in time response, about 10 sec, when activated at time zero, see Figs. 

4(b), 6(b), 8(b), and 10(b). On the other hand, the MRAC scheme exhibits a faster behavior, about 1 

sec, when activated at time 10 sec, with fully established LCOs, see Figs. 4(c), 6(c), and 8(c). This is 

due to the presence, in this last condition, of a higher 𝛼̇ that enriches the feedback signal, reducing the 

convergence time. A quite similar response is observed for the  ℒ1 control scheme, as illustrated in 

Figs. 4(d-e), 6(d-e), 8(d-e), and 10(d). The only perceivable difference, from the standard MRAC 

response, is the introduction of high frequency oscillations in the control signal, as reported in Fig. 

5(d-e), 5(d-e), 9(d-e), and 10(e). These oscillations derive from the adaptive law computation 

algorithm, as shown in Fig. 11(b), whose differential equation is made too stiff by the extremely high 

value of the adaptive gain Γ and propagate, mildly damped by the filter and the system dynamic, in 

the observed state. The effect is reduced for LCO induced conditions, when activation time is after 10 

sec, always for the presence of a higher 𝛼̇ which help the adaptation law to a faster convergence. 

Subplots (f-g) of Figures 4 through10 report the system response and the control command time-



histories when the plant is controlled by the Modified MRAC scheme. It shows a fast, about 1.5 sec, 

and robust response that does not depend on the activation time. Smooth convergence of the adaptive 

parameters is verified through the entire simulation test campaign, Fig. 11 (c) is an example. A 

drawback of the Modified MRAC scheme is that it has the highest overshoot among the all three 

control methods, so that command saturation is often reached Fig 5(f-g), 7(f-g), 9(f), and 10(g). This 

is caused by the adjunct control signal 𝑢𝑎 of Eq. (22), whose primary function is to enrich the signal 

for faster response and reduced tracking error. To conclude, the standard MRAC and the ℒ1 control 

have shown reduced robustness with respect to the Modified MRAC scheme, presenting a different 

response either faster or slower as function of the activation time, that is the controlled state value at 

the controller activation. This is also due, in addition to the already mentioned beneficial effect of the 

state derivative feedback, to the dependency of the unknown parameters estimation law from the state 

error e(t) (MRAC) or x̃(t) (ℒ1). The closer the actual states are to the reference model or the state 

estimator states, the faster is the response. This effect can be appreciated in all the control schemes 

response, being reference model control architectures by definition, but it is strongly reduced in the 

Modified MRAC scheme by the presence of the enriched signal 𝑢𝑎.  

 

Figure 4 Nominal Flutter Condition Responses: 𝑼𝒇𝒍𝒖𝒕𝒕𝒆𝒓 , 𝑲𝒏𝒐𝒎 (Case 1, 2); (a) Uncontrolled System; (b) Standard 

MRAC (ON at 0 sec); (c) Standard MRAC (ON at 10 sec); (d) L1 (ON at 0 sec); (e) L1 (ON at 10 sec); (f) Modified 

MRAC (ON at 0 sec); (g) Modified MRAC (ON at 10 sec) 
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Figure 5 Nominal Flutter Condition, Control Command Time Histories: 𝑼𝒇𝒍𝒖𝒕𝒕𝒆𝒓 , 𝑲𝒏𝒐𝒎 (Case 1, 2); (b) Standard MRAC 

(ON at 0 sec); (c) Standard MRAC (ON at 10 sec); (d) L1 (ON at 0 sec); (e) L1 (ON at 10 sec); (f) Modified MRAC (ON 

at 0 sec); (g) Modified MRAC (ON at 10 sec) 

 

Figure 6 Stiffness Reduction Condition Responses: 𝑼𝒇𝒍𝒖𝒕𝒕𝒆𝒓 , 𝑲𝒓𝒆𝒅𝒖𝒄𝒆𝒅 (Case 3, 4); (a) Uncontrolled System; (b) Standard 

MRAC (ON at 0 sec); (c) Standard MRAC (ON at 10 sec); (d) L1 (ON at 0 sec); (e) L1 (ON at 10 sec); (f) Modified 

MRAC (ON at 0 sec); (g) Modified MRAC (ON at 10 sec) 
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Figure 7 Stiffness Reduction Condition, Control Command Time Histories: 𝑼𝒇𝒍𝒖𝒕𝒕𝒆𝒓 , 𝑲𝒓𝒆𝒅𝒖𝒄𝒆𝒅 (Case 3, 4); (b) Standard 

MRAC (ON at 0 sec); (c) Standard MRAC (ON at 10 sec); (d) L1 (ON at 0 sec); (e) L1 (ON at 10 sec); (f) Modified 

MRAC (ON at 0 sec); (g) Modified MRAC (ON at 10 sec) 

 

Figure 8  Post-Flutter Speed Condition Responses: 𝑼𝒑𝒐𝒔𝒕−𝒇𝒍𝒖𝒕𝒕𝒆𝒓 , 𝑲𝒏𝒐𝒎 (Case 5, 6); (a) Uncontrolled System; (b) 

Standard MRAC (ON at 0 sec); (c) Standard MRAC (ON at 10 sec); (d) L1 (ON at 0 sec); (e) L1 (ON at 10 sec); (f) 

Modified MRAC (ON at 0 sec); (g) Modified MRAC (ON at 10 sec) 
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Figure 9 Post-Flutter Speed Condition, Control Command Time Histories: 𝑼𝒑𝒐𝒔𝒕−𝒇𝒍𝒖𝒕𝒕𝒆𝒓 , 𝑲𝒏𝒐𝒎 (Case 5, 6); (b) Standard 

MRAC (ON at 0 sec); (c) Standard MRAC (ON at 10 sec); (d) L1 (ON at 0 sec); (e) L1 (ON at 10 sec); (f) Modified 

MRAC (ON at 0 sec); (g) Modified MRAC (ON at 10 sec) 

 

Figure 10 Combined Condition Responses and Control Command Time Histories: 𝑼𝒑𝒐𝒔𝒕−𝒇𝒍𝒖𝒕𝒕𝒆𝒓 , 𝑲𝒓𝒆𝒅𝒖𝒄𝒆𝒅, controller ON 

at 0 sec (Case 7); (a) Uncontrolled System; (b) Standard MRAC (𝜶); (c) Standard MRAC (u); (d) L1 (𝜶); (e) L1 (u); (f) 

Modified MRAC (𝜶); (g) Modified MRAC (u) 
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Figure 11 Adaptive Parameters example during simulation (case 7) 

V. Conclusions 

In this technical note, a comparative analysis of three different model reference adaptive control 

schemes is carried out with the aim of evaluating their performance in suppressing aeroelastic 

instabilities in the presence of model uncertainties with the deterioration of structural stiffness 

characteristics. A 2D nonlinear aeroelastic plant is used for the controller testing purpose. For 

consistency, all the controllers have the same input-output architecture and all the design parameters 

are set to be identical. The effectiveness and robustness of all the adaptive schemes has been tested 

controlling the plant in nominal flutter condition first, and then by simulating a failure causing an 

instantaneous plunging/pitching stiffness reduction at a wind speed about 1.3 times the flutter 

velocity. Flutter and post-flutter suppression capabilities are investigated with the use of the three 

adaptive schemes. The extensive simulation campaign proved that only the Modified Model 

Reference Adaptive Control (Modified MRAC) is an effective improvement of the standard scheme in 

terms of both robustness and adaptation rate. However, as a drawback, it presents the highest 

overshoot among the all three control methods, so that command saturation is a concern and is likely 

to be reached. Unexpectedly, the ℒ1 control scheme did not represent an effective improvement to the 
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standard scheme. For the application at hand, it has the same level of robustness of the comparative 

standard scheme, coupled with a not beneficial oscillatory behavior of the adaptive law solver, which 

reflects the oscillations to the control signal. Moreover, contrary to the standard scheme, which does 

not require any tuning operation, the  ℒ1 filter needed to be tuned by trial and error, which negatively 

affects the adaptation capabilities of the architecture. In addition, the proposed work serves as 

validation of the general effectiveness of model reference algorithms in handling system uncertainties 

and unmodeled dynamics. Preserving control capabilities in spite of significant structural failures is a 

valuable result that is worth to further investigation. 
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