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Abstract

We give a necessary and sufficient smoothness condition for the scheme
parameterizing the n−dimensional representations of a finitely generated
associative algebra over an algebraically closed field of characteristic zero.
In particular, our result implies that the points M ∈ Repn

A
(k) satisfying

Ext2A(M,M) = 0 are regular. This generalizes well-known results on
finite-dimensional algebras to finitely generated algebras.

1 Introduction

Let A be a finitely generated associative k−algebra with k an algebraically
closed field. Let Vn(A) be the commutative k−algebra representing the functor
from commutative algebras to sets

Ck → Set : B 7→ HomNk
(A,Mn(B))

of the n−dimensional representations of A over B, (see Section 2.2). The
scheme RepnA of the linear representations of dimension n of A is defined to
be SpecVn(A).

In this paper we study the smoothness of the scheme RepnA.
It is well-known that if A is formally smooth then Repn

A is smooth (see [11,
Proposition 19.1.4.] and [16, Proposition 6.3.]). If A is finite-dimensional then it
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is formally smooth if and only if it is hereditary (see Theorem 4.6) and, therefore
RepnA is smooth for all n if and only if A is hereditary (see [2, Proposition 1]).

For infinite-dimensional algebras the picture is more complex, e.g. there
are hereditary algebras which are not formally smooth (see Theorem 4.7). It
is therefore interesting to find other sufficient (or necessary) conditions on A
which ensure RepnA to be smooth.

Let M be an A−module in RepnA(k). It is well-known that the linear space
Ext2A(M,M) contains the obstructions in extending the infinitesimal defor-
mations of M to the formal ones. For this reason an algebra A such that
Ext2A(M,M) = 0, for all M ∈ RepnA(k) and n ≥ 1, will be called finitely unob-
structed .

It has been proved by Geiss and de la Peña (see [8, 9]) that, when A is
finite-dimensional, finitely unobstructed implies that RepnA is smooth.

We underline that any hereditary algebra is finitely unobstructed but the
converse is not true, e.g. the universal enveloping algebra of a finite-dimensional
semisimple Lie algebra is finitely unobstructed but not hereditary if the dimen-
sion of the underlying Lie algebra is greater than one.

The proof given in [8, 9] is based on the analysis of the local geometry of
RepnA, and it specifically relies on the upper semicontinuity of certain dimension
functions arising from the bar resolution of A. As we observe in the last section
of this paper, their approach remains valid if one assumes that A is finitely
presented or bimodule coherent.

We follow here a different path, namely, we study the smoothness problem
via the adjunction

HomCk
(Vn(A), B)

∼=
−→ HomNk

(A,Mn(B)) (1.1)

The adjunction (1.1) allows us to use the Harrison cohomology of Vn(A)
instead of the Hochschild cohomology of A. The Harrison cohomology of a
commutative k−algebra is the symmetric part of its Hochschild cohomology,
and it has been proved by Harrison [14] that an affine ring R is regular if and
only if its second Harrison cohomology vanishes.

This is our main result.

Theorem. Let A be a finitely generated k−algebra, let f : Vn(A) → k be
a k−algebra map and let ρ : A → Mn(k) be the algebra map that corre-
sponds to f through the adjunction above. Then there is a linear embedding
of Harr2(Vn(A), fk) into H2(A, ρMn(k)ρ). As a consequence, M ∈ Repn

A is a
regular point whenever Ext2A(M,M) = 0.

We have thus extended the known results on smoothness to infinite-dimensional
finitely generated algebras.

We remark that the above embedding is not an isomorphism in general. We
give a counterexample by using 2-Calabi Yau algebras (Remark 3.5).

The paper goes as follows.
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In paragraph 2.2 we recall the definition of RepnA as the scheme parameter-
izing the n−dimensional representations of A.

In Section 3 we recall the Harrison cohomology which may be seen as the
commutative version of the Hochschild cohomology. We prove that the reg-
ularity of a point in RepnA = Spec(Vn(A)) is equivalent to the vanishing of
Harr2(Vn(A), fk), for the k−algebra map f : Vn(A) → k associated to the point
(see Theorem 3.3). Then Theorem 3.4 shows that there is a linear embedding of
Harr2(Vn(A), fk) into H2(A, ρMn(k)ρ) and as a consequence, that M ∈ RepnA
is a regular point whenever Ext2A(M,M) = 0.

Then, as said before, by using 2-Calabi Yau algebras, we exhibit an example
which shows that the above embedding is not an isomorphism.

In Section 4 we present a list of examples and applications of the afore-
mentioned results. To this aim, we first recall the notions of formally smooth
and hereditary algebra. We mention the known result on the smoothness of
RepnA when A is formally smooth or hereditary to compare the notions of for-
mally smoothness, hereditary, finitely unobstructed and we stress the difference
between the finite and the infinite-dimensional case.

Afterward, we give the definition of finitely unobstructed algebra and we
prove that if A is finitely unobstructed then RepnA is smooth (see Corollary 4.2).

Then we produce examples of finitely unobstructed algebras (neither heredi-
tary nor formally smooth) whose associate representation scheme is smooth (see
Example 4.12).

In Section 5 we study the relationships between the deformation theory of
M ∈ RepnA(k), in the sense of Gerstenhaber, Geiss and de la Peña , and the
deformation theory of Vn(A) as usually defined in algebraic geometry.

In particular, by using the adjunction (1.1), we will see that there are no
obstructions to the integrability of the infinitesimal deformations of M if and
only if Harr2(Vn(A), fk) = 0. Motivated by this fact we formulate the following
conjecture.

Conjecture 1.1. The image of the embedding Harr2(Vn(A), fk) →֒ Ext2(M,M)
contains the subspace of Ext2(M,M) of the obstructions to integrate the in-
finitesimal deformations of M.

As a bonus, we further show that the approach to this smoothness prob-
lem developed for A finite-dimensional in [8, 9]) works as well if A is finitely
unobstructed and finitely presented or bimodule coherent.

2 Preliminaries

2.1 Notations

Unless otherwise stated we adopt the following notations:

• k is an algebraically closed field;

• F = k{x1, . . . , xm} is the associative free k−algebra on m letters;
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• A ∼= F/J is a finitely generated associative k−algebra;

• N−, C− and Set denote the categories of −algebras, commutative −algebras
and sets, respectively;

• The term ”A−module” indicates a left A−module. The categories of left
−modules is denoted by -Mod. The full subcategory of modules having
finite dimension over k will be denoted by -Modf ;

• We write HomA(B,C) for the morphisms from an object B to C in a
category A. If A = A-Mod, then we will write HomA(−,−);

• Aop is the opposite algebra of A and Ae := A⊗Aop is the envelope of A.
It is an A−bimodule and a k−algebra. One can identify the category of
the A−bimodules with Ae-Mod and we will do it thoroughly this paper;

• Exti−( , ) denotes the Ext groups on the category -Mod;

• Hi(A,−) is the Hochschild cohomology with coefficients in Ae-Mod.

2.2 The scheme of n−dimensional representations

Denote by Mn(B) the full ring of n × n matrices over B, with B a ring. If
f : B → C is a ring homomorphism we denote by Mn(f) : Mn(B) → Mn(C)
the homomorphism induced on matrices.

Definition 2.1. Let A ∈ Nk, B ∈ Ck. By an n-dimensional representation of
A over B we mean a homomorphism of k−algebras ρ : A → Mn(B).

It is clear that this is equivalent to give an A−module structure on Bn. The
assignment B 7→ HomCk

(A,Mn(B)) defines a covariant functor

Ck −→ Set.

which is represented by a commutative k−algebra Vn(A).

Lemma 2.2. [19, Ch.4, §1] For all A ∈ Nk and ρ : A → Mn(B) a linear rep-
resentation, there exist Vn(A) ∈ Ck and a representation ηA : A → Mn(Vn(A))
such that ρ 7→ Mn(ρ) ◦ ηA gives an isomorphism

HomCk
(Vn(A), B)

∼=
−→ HomNk

(A,Mn(B)) (2.1)

for all B ∈ Ck.

If A = F, one has that Vn(F ) := k[ξlij ], the polynomial ring in variables
{ξlij : i, j = 1, . . . , n, l = 1, . . . ,m} over k. If A = F/J finitely generated
k−algebra, one defines Vn(A) := k[ξlij ]/I where I is the ideal of Vn(F ) generated
by the n× n entries of f(ξ1, ..., ξm), f runs over the elements of J and ξl is the
matrix (ξlij). Therefore Vn(A) is an affine ring (i.e. a finitely generated algebra
with identity) when A is a finitely generated k−algebra.
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Definition 2.3. We write RepnA to denote SpecVn(A). It is considered as a
k−scheme. The map

ηA : A → Mn(Vn(A)), al 7−→ ξAl := (ξlij + I).

is called the universal n-dimensional representation.

Examples 2.4. (i) By construction, if A = F, then RepnF (k) = Mn(k)
m. If

A = F/J, the B−points of RepnA can be described as follows:

RepnA(B) = {(X1, . . . , Xm) ∈ Mn(B)m : f(X1, . . . , Xm) = 0 for all f ∈ J};

(ii) If A = C[x, y], RepnA(C) = {(M1,M2) ∈ M2(C)
2,M1M2 = M2M1} is the

commuting scheme, see [21].

Remark 2.5. Note that RepnA may be quite complicated. It is not reduced in
general and it seems to be hopeless to describe the coordinate ring of its reduced
structure. The scheme Repn

A is also known as the scheme of n-dimensional A-
modules.

3 The main result

We proof our main result using Harrison cohomology. Given a commutative ring
R and an R−module N , we denote by Harr∗(R,N) the Harrison cohomology
group i.e. the group E∗(R,N) introduced in [14]. Harrison cohomology can
be seen as a commutative version of Hochschild cohomology. We here just
recall some basic facts. For further details the reader is referred to [23, section
9.3], where the second commutative Hochschild cohomology group is denoted
by H2

s(R,N) (the subscript ”s” stands for ”symmetric”).

Consider an arbitrary B ∈ Nk and a B−bimodule M . Then H2(B,M) is the
quotient of the group of 2−cocycles by the group of 2−coboundaries. Denote
by [ω] the class for a 2−cocycle ω. A Hochschild extension of B by M is a
k−algebra E together with an algebra map p : E → B such that ker(p) is an
ideal of square-zero and an R−bimodule isomorphism of M with ker(p). The
latter condition makes sense as, by the square-zero assumption, ker(p) becomes
a B−bimodule where, for every b ∈ B and x ∈ ker(p), the left action is defined
by b ·x := ex, where e is any element in p−1(b), and similarly on the right. Note
also that, since k is a field (not just a commutative ring as in [23, Chapter 9])
then the exact sequence

0 // M
i // E

p
// B // 0 (3.1)

is k−split i.e. there is a k−linear map σ : B → E such that p ◦ σ = IdB. The
isomorphism between M and ker(p) rereads as i(mb) = i(m)σ(b) and i(bm) =
σ(b)i(m). If there is another Hochschild extension

0 // M
i′ // E′

p′

// B // 0 (3.2)
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we say that the extensions (3.1) and (3.2) are equivalent if there is a k−algebra
map f : E → E′ such that f ◦ i = i′ and p′ ◦ f = p (note that such a map is
necessarily bijective by the short 5-Lemma). A Hochschild extension as in (3.1)
is called trivial whenever there is σ as above which is an algebra map.

Given a 2−cocycle ω : B ⊗ B → M , we can define the k−algebra B ⊕ω M
to be the k−vector space B ⊕M endowed with multiplication and unit

(b,m) · (b′,m′) := (bb′,mb′ + bm′ − ω(b, b′)), 1B⊕ωM = (1B, ω(1B, 1B)).

Then B⊕ωM is a Hochschild extension of B by M with respect to the canonical
projection p : B ⊕ω M → B. Conversely, for any Hochschild extension of B by
M as in (3.1), one sees that the map θ : B ⊗B → E : a⊗ b 7→ σ(ab)− σ(a)σ(b)
is in the kernel of p so that there is a unique map ω : B ⊗ B → M such that
i ◦ ω = θ and ω comes out to be a 2−cocycle. The argument above yields
a bijective correspondence between the elements of H2(B,M) and the set of
equivalence classes of Hochschild extension of B by M (see e.g. [23, Theorem
9.3.1]). As a consequence a Hochschild extension is trivial if and only if the
corresponding 2−cocycle is a 2−coboundary.

Consider now B ∈ Ck and a left B−module M . Regard M as a symmetric
B−bimodule (i.e. mb = bm for every b ∈ B and m ∈ M). The construction
above adapts to the commutative case minding that the commutative Hochschild
extension has E commutative and a commutative 2−cocycles is further required
to be symmetric i.e. ω(b⊗ b′) = ω(b′ ⊗ b) for all b, b′ ∈ B. Then one defines

Harr2(B,M) := {[ω] ∈ H2(B,M) | ω is symmetric}.

We still have a bijection between the elements of Harr2(B,M) and the set
of equivalence classes of commutative Hochschild extensions of B by M (see
e.g. [23, Theorem 9.3.1.1]). As a consequence a commutative Hochschild ex-
tension is trivial if and only if the corresponding commutative 2−cocycle is a
2−coboundary.

The following standard result establishes a link between ExtiA(M,M) and
the Hochschild cohomology of A with coefficients in Endk(M).

Theorem 3.1. [3, Corollary 4.4.] We have

ExtiA(M,M) ∼= Hi(A,Endk(M)).

For every algebra map f : B → A and N ∈ A-Mod, denote by fN the
corresponding left B−module structure on N . A similar notation is used on the
right. In particular, if N ∈ Ae-Mod, the notation fNf means that N is regarded
as a B−module via f .

Proposition 3.2. The following assertions are equivalent for A ∈ Nk and for
every M ∈ Ae-Mod:

1. H2(A,M) = 0;
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2. Let f : A → B be an algebra map and let p : E → B be a Hochschild
extension of B ∈ Nk with kernel N such that fNf = M (here N is
endowed with the canonical B−bimodule structure described above). Then
f has a lifting i.e. there is an algebra map f : A → E such that p ◦ f = f .

A

f
��

f

yy
0 // N

i // E
p

// B
σ

oo // 0

Proof. The proof is the same of [23, Proposition 9.3.3] for our specific M . How-
ever, we recall a different proof of (1) implies (2) that will be needed in the proof
of Theorem 3.4. Let ω : B⊗B → N be the Hochschild 2−cocycle associated to
the Hochschild extension E of B by M . Then ω := ω ◦ (f ⊗f) : A⊗A → fNf =
M is a Hochschild 2−cocycle so that we can consider the Hochschild extension
A⊕ωM of A by M . Since ω is, by assumption, a 2−coboundary, then the latter
extension is trivial i.e. there is an algebra map s : A → A ⊕ω M which is a
right inverse of the canonical projection. Composing s with the algebra map
A⊕ω M → E : (a,m) 7→ σf(a) + i(m) yields the required map f .

Let R be a commutative noetherian ring. Recall that a point p ∈ SpecR is
regular if the localization Rp of R at p is a regular local ring i.e. dimk(m/m2) =
dimRp, where m is the unique maximal ideal of Rp and dimRp is its Krull
dimension. The ring R is said to be regular if the localization at every prime
ideal is a regular local ring.
The following result is a variant of [14, Corollary 20].

Theorem 3.3. Let f : Vn(A) → k be a k−point of RepnA. Then f is a regular
point of Repn

A(k) if and only if Harr2(Vn(A), fk) = 0.

Proof. Set m := ker(f) and R := Vn(A). Note that k is a perfect field, as it
is algebraically closed. Moreover, since A is f.g., then R is an affine ring (as
observed after Lemma 2.2) and hence we can apply [14, Corollary 20] to get
that f is regular if and only if Harr2(R,R/m) = 0. We conclude by observing
that fk = imf ∼= R/ ker f = R/m as left R−modules.

Theorem 3.4. Let A be a f.g. k−algebra, let f : Vn(A) → k be a k−algebra map
and let ρ : A → Mn(k) be the algebra map that corresponds to f through (2.1).
Then there is a linear embedding of Harr2(Vn(A), fk) into H2(A, ρMn(k)ρ). As
a consequence, M ∈ RepnA is a regular point whenever Ext2A(M,M) = 0.

Proof. Each M ∈ Repn
A is of the form M ∼= ρ(k

n) for some ρ : A → Mn(k) as in
the statement. By Theorem 3.1, we have Ext2A(M,M) ∼= H2(A,Endk(M)) ∼=
H2(A, ρMn(k)ρ). Thus the last assertion of the statement follows by Theorem
3.3 once proved the embedding of Harr2(Vn(A), fk) into H2(A, ρMn(k)ρ). Let
us construct it explicitly. The idea of the proof of this fact is inspired by
[11, Proposition 19.1.4] where the functor Mn(−) is applied to a commutative

7



extension with nilpotent kernel. Set B := Vn(A) and let ω : B ⊗ B → fk be a
Harrison 2−cocycle. Consider the Hochschild extension associated to ω

0 //
fk

i // Bω

p
// B

σ
oo // 0 (3.3)

where, for brevity, we set Bω := B ⊕ω k. Set S := Mn(k) and apply the exact
functor S ⊗ (−) to (3.3) to obtain the Hochschild extension

0 // S ⊗ fk
S⊗i

// S ⊗Bω

S⊗p
// S ⊗B

S⊗σ
oo // 0 (3.4)

Here S⊗ fk is a bimodule over S⊗B via (s⊗b)(s′⊗ l)(s′′⊗b′′) = ss′s′′⊗blb′′ =
ss′s′′ ⊗ f(b)lf(b′′), for every s, s′, s′′ ∈ S, l ∈ k, b, b′′ ∈ B. Now, let E be either

fk, Bω or B and apply the canonical isomorphism S⊗E → Mn(E) : (kij)⊗e 7→
(kije) to (3.4) to obtain the Hochschild extension

0 // N
in // Mn(Bω)

pn // Mn(B)
σn

oo // 0 (3.5)

where we set pn := Mn(p), σn = Mn(σ), in := Mn(i) and N is Mn(k) regarded
as a bimodule overMn(B) via (bis)(ltj) = (

∑
s bislsj) and (ltj)(bis) = (

∑
j ltjbjs)

for every (bis) ∈ Mn(B) and (ltj) ∈ Mn(k). Thus

(bis)(ltj) = (
∑

s

bislsj) = (
∑

s

f(bis)lsj) = fn((bis)) · (ltj)

where fn := Mn(f) i.e. N = fn(Mn(k)). Let η = ηA : A → Mn(Vn(A)) =
Mn(B) be the universal n−dimensional representation of Definition 2.3. Hence

ηN = η(fn(Mn(k))) = (fn◦η)Mn(k) = ρMn(k), where we used that fn ◦ η =
Mn(f) ◦ η = ρ which holds by definition of ρ. A similar argument applies to
the right so that we get ηNη = ρMn(k)ρ. Let ωn : Mn(B) ⊗ Mn(B) → N be
the Hochschild 2−cocycle associated to the Hochschild extension (3.5). Then
ωn := ωn ◦ (η ⊗ η) is a Hochschild 2−cocycle so that we can consider the
assignment

α : Harr2(Vn(A), fk) → H2(A, ηNη) : [ω] 7→ [ωn].

This is a well-defined map. In fact, if [ω] = 0, then we can choose σ to be an
algebra map from the very beginning and hence σn is an algebra map so that
ωn = 0. Suppose α([ω]) = 0. Then ωn is a 2−coboundary. This condition
guarantees, by the proof of Proposition 3.2, that there is a k−algebra map
λ : A → Mn(Bω) such that pn ◦ λ = ηA. This map corresponds, via (2.1), to an
algebra map λ : B → Bω such that p◦λ = IdB. This means that the Hochschild
extension (3.3) is trivial whence [ω] = 0. Thus α is injective.

Remark 3.5. The map Harr2(Vn(A), fk) →֒ H2(A, ρMn(k)ρ) is not an isomor-
phism in general. Furthermore the condition Ext2A(M,M) = 0 is not necessarily
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satisfied by regular points in RepnA. There is indeed the following counterexam-
ple.
Let A be a 2−Calabi Yau algebra, see [12, Definition 3.2.3] for details. It has
been proven by Bocklandt that such an algebra has simple modules and that
these modules are regular points in RepnA (see [1, Section 7.1]). Therefore, for
a simple M ∈ RepnA(k) one has Harr2(Vn(A), fk) = 0. On the other hand, since
A is 2−Calabi Yau, one has Ext2A(M,M) ∼= Ext0A(M,M) ∼= EndA(M) ∼= k, for
all M ∈ RepnA.

4 Examples and Applications

Next aim is to introduce and investigate the notion of finitely unobstructed
algebra. We will give several examples of such algebras. Moreover we will
analyze the relationship between finitely unobstructed, formally smooth and
hereditary algebras to better understand the influence of the structure of A on
the smoothness of RepnA.

4.1 Finitely unobstructed algebras

Definition 4.1. Let A be a k−algebra. Given n ∈ N, we say that A is n−finitely
unobstructed, if Ext2A(M,M) = 0, for every M ∈ RepnA(k). We say that A is
finitely unobstructed, if it is n−finitely unobstructed for every n ∈ N.

Corollary 4.2. The scheme RepnA is smooth for all n−finitely unobstructed
k−algebra.

Proof. It follows by Theorem 3.4.

We recast here some basic concepts in order to list examples and applications
of the results proven in Section 3.

4.2 Hereditary algebras

Recall that the projective dimension pd(M) of an M ∈ A-Mod is the minimum
length of a projective resolution of M.

Definition 4.3. The global dimension of a ring A, denoted with gd(A), is
the supremum of the set of projective dimensions of all (left) A−modules. If
gd(A) ≤ 1, then A is called hereditary.

It holds that gd(A) ≤ d if and only if Extd+1
A (M,N) = 0, for all M,N ∈

A−mod, see [3, Prop.2.1.]

4.3 Formally smooth algebras

It is the last concept we need to introduce. Formally smooth (or quasi-free)
algebras provide a generalization of the notion of free algebra, since they behave
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like a free algebra with respect to nilpotent extensions. The definition goes back
to J. Cuntz and D. Quillen and it was inspired by the Grothendieck’s definition
of formal smoothness given in the commutative setting, see [13, 19.3.1]. See also
[11, 19] and [16, 4.1.]. For further readings on these topics see [11, 12].

Definition 4.4. (Definition 3.3. [6]). An A ∈ Nk is said to be formally smooth
(or quasi-free), if it satisfies the equivalent conditions:
i) any homomorphism ϕ ∈ HomNk

(A,R/N) where N is a nilpotent (two-sided)
ideal in an algebra R ∈ Nk, can be lifted to a homomorphism ϕ ∈ HomNk

(A,R)
that commutes with the projection R → R/N ;
ii) H2(A,M) = 0 for any M ∈ Ae-Mod;
iii) the kernel Ω1

A of the multiplication A⊗A → A is a projective Ae−module.

Remark 4.5. When A commutative Ω1
A is nothing but the module of the Kähler

differentials (see [11, Section 8]).

If we substitute A ∈ Ck and HomCk
(A,−) in Definition 4.4, we obtain the

classical definition of regularity in the commutative case (see [16, Proposition
4.1.]). On the other hand, if we ask for a commutative algebra A to be formally
smooth in the category Nk we obtain regular algebras of dimension ≤ 1 only
([6, Proposition 5.1.]). Thus, If X = SpecA is an affine smooth scheme, then A
is not formally smooth unless dimX ≤ 1.

4.4 Implications and equivalences

We have the following.

Theorem 4.6. Let A be a finite-dimensional algebra over k. The following
assertions are equivalent:

(1) A is formally smooth;

(2) H2(A,N) = 0 for every N ∈ Ae-Modf ;

(3) A is finitely unobstructed;

(4) RepnA is smooth for every n ∈ N;

(5) A is hereditary.

Proof. (1) ⇒ (2) is trivial. Implication (2) ⇒ (3) follows by Theorem 3.1, while
(3) ⇒ (4) follows by Corollary 4.2. Finally (4) ⇒ (5) is [2, Proposition 1] and
(5) ⇒ (1) follows from [4, Proposition 0.6.].

More generally we have the following result.

Theorem 4.7. Let A be an infinite-dimensional finitely generated algebra over
k. Then there is a chain of implications

(1) ⇒ (2) ⇒ (3) ⇒ (4) but (1) : (2) : (3) : (4)

where:

10



(1) A is formally smooth;

(2) A is hereditary;

(3) A is finitely unobstructed;

(4) RepnA is smooth for every n ∈ N.

Proof. (1) ⇒ (2). This is [6, Proposition 5.1].
(1) : (2). Consider A1 = C[x, δ]/ < xδ − δx = 1 > the first Weyl algebra.

It is an example of a hereditary but not formally smooth algebra, since it can
be proved that H2(A,Ae) 6= 0 (see [22, Proposition 3]). This is due to William
Crawley-Boevey (personal communication).

(2) ⇒ (3). This is trivial.
(2) : (3). Let U := U(g) be the universal enveloping algebra of a semisimple

Lie algebra g. Whitehead’s second lemma (see e.g. [23, Corollary 7.8.12, page
246]) asserts that, in characteristic zero, H2

Lie (g, N) = 0 for every g−module
N of finite-dimension over k. In particular, for every M ∈ A-Modf , we obtain
H2

Lie (g,Endk(M)) = 0. By [23, Exercise 7.3.5, page 226], we have that

H∗
Lie (g,Endk (M)) ∼= Ext∗U (M,M) .

Therefore, Ext2U (M,M) = 0. If g is finite-dimensional, then U is finitely gen-
erated and, thus, U is finitely unobstructed. Now, U has global dimension
dimk (g) , see [23, Exercise 7.7.2, page 241], and we are done.

(3) ⇒ (4). This is Corollary 4.2.
(3) : (4). Remark 3.5 shows that there might exist regular points M in

RepnA with Ext2A(M,M) 6= 0.

Remark 4.8. The implication (1) ⇒ (4) was already known, see [11, Proposition
19.1.4.], [16, Prop.6.3.].

Theorem 4.7 and the argument on U = U(g), contained in the proof thereby,
together imply smoothness of RepnU . This result was known, see e.g. the com-
ment by Le Bruyn in [17].

4.5 Unobstructed Algebras

We now list some examples and results in case A is finitely generated but not
necessarily finite-dimensional.

In the remaining part of the section k can be any field.

Example 4.9. We have seen in the proof of Theorem 4.7 that U(g) is finitely
unobstructed for a semisimple Lie algebra g.

More generally, in [24, Theorem 0.2], there is a characterization of all finite-
dimensional Lie algebras g over a field k of characteristic zero such that their
second cohomology with coefficients in any finite-dimensional module vanishes.
Such a Lie algebra is one of the following: (i) a one-dimensional Lie algebra;
(ii) a semisimple Lie algebra; (iii) the direct sum of a semisimple Lie algebra
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and a one-dimensional Lie algebra. Note that a one-dimensional Lie algebra g

is not semisimple as [g, g] = 0 6= g (cf. [15, Corollary at page 23]). The same
argument as above shows that the universal enveloping algebras of all of these
Lie algebras are finitely unobstructed.

The proof of the following result is analogous to [6, Proposition 5.3(4)].

Proposition 4.10. Let A and S be finitely unobstructed algebras over a field k.
If Ext1A(M,M) = 0 for every M ∈ S-Modf , then S⊗A is finitely unobstructed.

Remark 4.11. Since gd k[x1, . . . , xn] = n, from Theorem 4.7 it follows that the
algebra k[x1, . . . , xn] is not formally smooth for n > 1.
In general, the tensor product of two formally smooth algebras is not formally
smooth. Indeed, in the setting of Proposition 4.10, if both A and S are finitely
generated algebras over k, then, by [3, Proposition 7.4], we have pd(S ⊗ A) =
pd(S)+pd(A), where pd(Λ) denotes the projective dimension of a k−algebra Λ
regarded as a bimodule over itself. Since pd(Λ) ≤ n if and only if Hn+1(A,N) =
0 for every N ∈ Ae-Mod, we get that the algebra S ⊗A is not formally smooth
unless pd(S) + pd(A) ≤ 1 i.e. unless S and A are both formally smooth and at
least one of them is separable.

By using Proposition 4.10, we can give new examples of algebras whose
associated representation scheme is smooth.

Example 4.12. 1) Let A be a finitely unobstructed algebra and let S be a
separable algebra (see [6, above Proposition 3.2]), that is Hi(S,N) = 0 for every
i > 0 and for every S−bimodule N . By Theorem 3.1, we get ExtiS(M,M) = 0
for every i > 0 and for every M ∈ S-Mod. By Proposition 4.10, we get that
S⊗A is finitely unobstructed. As a particular case, when char(k) = 0, we have
that Mn(A) ∼= Mn(k) ⊗ A and the group A−ring A[G] ∼= k[G] ⊗ A, for every
finite group G, are finitely unobstructed as the matrix ringMn(k) and the group
algebra k[G] are separable in characteristic zero (see [6, Example of page 271]).

2) Let A be finitely unobstructed algebra and S a separable algebra, then
RepnA⊗S is smooth. This follows from Proposition 4.10 and example 1).

3) Let g be a semisimple Lie algebra and assume char(k) = 0. As observed
in Example 4.9, U := U(g) is finitely unobstructed. Moreover Whitehead’s first
lemma [23, Corollary 7.8.10] ensures that H1

Lie (g, N) = 0 for every g−module
N of finite dimension over k so that, by the same argument used in Example 4.9
for the second group of cohomology, we obtain Ext1U (M,M) = 0, for every M ∈
U -Modf . Thus, by Proposition 4.10, we get that U ⊗A is finitely unobstructed
if A is.

4) In analogy with [6, Proposition 5.3(5)], we have that the direct sum of
finitely unobstructed algebras is finitely unobstructed too.

Lemma 4.13. Assume that H2(A,N) = 0 for some N ∈ Ae-Mod and let Ω1
A

be as in Definition 4.4. Then Ω1
A is projective with respect to any surjective

morphism of Ae−modules with kernel N .
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Proof. One gets that Ext1Ae(Ω1
A, N) ∼= Ext2Ae(A,N) = H2(A,N) = 0 analo-

gously to [6, Proposition 3.3]. The conclusion follows by applying the long
exact sequence of Ext∗Ae(Ω1

A,−) to the exact sequence formed by any surjective
morphism of Ae−modules and its kernel N .

The proof of the following result is similar to [6, Proposition 5.3(3)].

Proposition 4.14. Let A be a finitely unobstructed algebra over a field k. Then
the tensor algebra TA(P ) is finitely unobstructed for every P ∈ Ae-Mod which
is projective with respect to any surjective morphism in Ae-Mod with kernel
Endk(M) for every M ∈ A-Modf .

Example 4.15. Let A be a finitely unobstructed algebra over a field k. By
Theorem 3.1, Lemma 4.13 and Proposition 4.14, we have that TA(Ω

1
A) is finitely

unobstructed. The latter, by [6, Proposition 2.3], identifies with ΩA, the DG-
algebra of noncommutative differential forms on A.

5 Deformations

The aim of this section is twofold: first, we would like to analyze the relationships
between the results of Section 3 and the theory of deformations of module
structures as developed in [8, 9, 10]; second, we give a different proof of Corollary
4.2 for finitely unobstructed algebras which are finitely presented or module
bicoherent.

5.1 Deformations of modules

Definition 5.1. Let M ∈ RepnA(k) and let µ : A → Endk(M) be the as-
sociated linear representation. For (R,m) a local commutative k−algebra, an

R−deformation of M is an element M̃ ∈ Repn
A(R) whose associate linear repre-

sentation µ̃ : A → EndR(M̃) verifies α◦ µ̃ = µ where α : EndR(M̃) → Endk(M)
is the morphism of k−algebras induceded by the projection R → R/m ∼= k.
When R = k[ǫ] := k[t]/(t2), the ring of dual numbers or R = k[[t]], the ring
of formal power series, then an R−deformation will be called infinitesimal or
formal, respectively.

For the general theory on deformations of finite-dimensional modules see [8]
and [10].

Remark 5.2. It is well-known that the obstructions in extending the infinitesimal
deformations of M to formal deformations are in Ext2A(M,M) (see for example
[8, 3.6. and 3.6.1.]).

The adjunction in Lemma 2.2 gives the dictionary to describe deformations
of A−modules in terms of deformations at points of RepnA.
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5.2 Deformations of schemes

The theory of local and global deformations of algebraic schemes is an ample
and well-established domain of modern algebraic geometry. Sernesi wrote an
excellent treatise on this topic [20], and we address the interested reader to it.

We just recall some facts we need to develop our analysis .
Let X be a scheme over k, let x ∈ X(k) be a k−point of X and let (R,m) be a
local commutative k−algebra.

Definition 5.3. An R−deformation of X at x is an R−point xR of X such that
the restriction Spec k → SpecR maps x to xR. When R = k[ǫ] or R = k[[t]],
then an R−deformation will be called infinitesimal or formal, respectively.

Lemma 5.4. Let R ∈ Ck and let x : R → k be a rational point of X = SpecR.
Then, for all local S ∈ Ck, there is a bijection

{S − deformations of X at x} ∼= HomCk
(Rx, S)

where Rx denotes the localization of R at mx := kerx.

Proof. Let α : R → S be such that x = πS α, where πS : S → S/mS
∼= k is the

canonical projection with mS the maximal ideal of S. Then if a ∈ R − kerx,
it follows that α(a) is invertible in S and, therefore, by universality, there is a
unique morphism αx : Rx → S such that αx j

x
R = α, where jxR : R → Rx is the

canonical map, and hence x = πS αx j
x
R.

On the other hand, given a morphism β : Rx → S one has that x = πS β jxR
thus giving the unique S−deformation β jxR of X at x. It is, indeed, trivial that
kerx ⊂ ker(πS β jxR). If r ∈ ker(πS β jxR) then β(jxR(a)) ∈ mS and, therefore,
jxR(a) ∈ mRx

. Thus a ∈ kerx.

There is the following criteria.

Theorem 5.5. [18, Proposition, pag 151] Let R be a noetherian commutative
local ring with k ⊂ R isomorphic to the residue field of R. Then R is regu-
lar if and only if, for all finite-dimensional local commutative k−algebra S, T
and surjective homomorphism of k−algebras S → T the map HomCk

(R,S) →
HomCk

(R, T ) is surjective.

Corollary 5.6. Let R ∈ Ck and let x : R → k be a rational point of X :=
SpecR. Then R is regular if and only if, for all finite-dimensional local commu-
tative k−algebra S, T a surjective homomorphism of k−algebras S → T induces
a surjection

{S − deformations of X at x} → {T − deformations of X at x}

5.3 Smoothness of Repn

A

Combining the adjunction of Lemma 2.2 with Corollary 5.6 and Theorem 3.4
we have the following criteria.
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Theorem 5.7. Let A ∈ Nk be finitely generated. Let M ∈ RepnA(k) and let
f : Vn(A) → k be the associated point. Then the following are equivalent:

(1) M is a regular point;

(2) for all finite-dimensional local commutative k−algebras S, T a surjective
homomorphism of k−algebras S → T induces a surjection;

{S − deformations of M} → {T − deformations of M}

(3) Harr2(A, fk) = 0.

5.4 On the work of Geiss and de la Peña

The following result is well-known.

Lemma 5.8. [8, 4.4.3.] Let X be a scheme over k and let x ∈ X(k). Suppose
that there exists an open neighbourhood U of x such that for all y ∈ U the
following conditions hold:

1. For each y′ ∈ TU,y there exists a map η : Spec k[[t]] → U such that
η ◦ p∗t,ǫ = y′, where pt,ǫ : k[[t]] → k[ǫ] is the canonical projection;

2. dimTyU = dim TxU.

Then x is a regular point of X.

Geiss and de la Peña proved that, if A is finite-dimensional, then M ∈
RepnA(k) is regular if Ext

2
A(M,M) = 0. Their proof is based on Lemma 5.8.

The assumption that Ext2A(M,M) = 0 ensures that the first hypothesis
of Lemma 5.8 is satisfied, since the obstructions to integrate the infinitesimal
deformation are in Ext2A(M,M).

The second step is to control the dimension of the tangent space at a point
of RepnA. We write M ∈ RepnA(k) and TMRepnA to stress the dependence on M.
In this case the tangent space admits a nice description in terms of derivations.
Recall that if N ∈ Ae-Mod, then a derivation d : A → N is a linear map such
that d(ab) = ad(b) + d(a)b for all a, b ∈ A. We denote by Der(A,N) the vector
space of all derivations A → N.

Proposition 5.9. [11, 12.4.] For all M ∈ RepnA(k), it holds

TMRepnA
∼= Der(A,Endk(M))

Let now N = Endk(M) with M ∈ RepnA(k). It is easy to check (see [11,
5.4.]) that we have the following long exact sequence

0 → Ext0A(M,M) → N → DerM (A,N) → Ext1A(M,M) → 0

and therefore

dimk TMRepnA = n2 − dimk(Ext
0
A(M,M)) + dimk(Ext

1
A(M,M)). (5.1)
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Thus, one can control the dimension of the tangent space if one can control
the dimension of the first two Ext’s. But, Theorem 3.1, implies that this is
equivalent to control the dimension of Hi(A,N) ∼= ExtiA(M,M).
IfA is finite-dimensional, then the bar resolution ofA is made of finite-dimensional
linear spaces which are free Ae−modules. In this case the differentials di are
regular map between affine spaces and, by using a subdeterminantal argument,
it is easy to see that the functions zi : RepnA → R : M 7→ dimk(ker d

i) are upper
semicontinuos for all i. Furthermore the rank-nullity theorem is valid, and, by
using it backward with respect to the indexes i, one finds, under the assumption
Ext2(M,M) = 0 that 0 = z2(M ′) + z1(M ′)− n2 dimk(A) in an open neighbor-
hood of M in Repn

A. From this it follows, by upper semicontinuity, that both
z1 and z2 are constant in that neighborhood of M. It is then again easy to see
that dimk TMRepnA = z1(M) and, by Lemma 5.8, it follows that M is regular.

We show now that this approach remains valid for a quite broad class of
algebras.

Definition 5.10. ([12, 3.5.1]) An algebra A ∈ Nk is called bimodule coherent
if the kernel of any homomorphism between finitely generated free A−bimodule
is a finitely generated A−bimodule.

Consider the kernel Ω1
A of the multiplication A⊗A → A, viewed as a map

of Ae−modules: if A is generated as a k−algebra by m elements, then Ω1
A is

generated, as Ae−module, by m elements. Therefore there exists a surjective
homomorphism

ω : F0 ։ Ω1
A (5.2)

with F0
∼= (Ae)m. Analogously, we can consider the kernel K of (5.2) and

construct a surjective homomorphism

F1 ։ K →֒ F0

If A is bimodule coherent, then, continuing in this way, we obtain a free resolu-
tion of A made by finitely generated A−bimodules

. . . −→ F1 −→ F0 −→ A⊗A −→ A −→ 0 . (5.3)

By applying HomAe(−, N) to (5.3) we get a cochain complex

0 −→ HomAe(A,N) −→ HomAe(Ae, N)
d0

M−→

d0

M−→ HomAe(F0, N)
d1

M−→ HomAe(F1, N)
d2

M−→ . . .

(5.4)

By Theorem 3.1 the cohomology groups of the sequence (5.4) are the Ext groups.
By hypothesis Ext2A(M,M) = 0 whence

z1(M) + z2(M) = dimHomAe(F0, N) = mn2. (5.5)

In this case everything works in the same way as A it was finite-dimensional and
we can carry over verbatim the proof given in [8, 9] to deduce that Ext2A(M,M) =
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0 implies that M is regular since z1 = dimk TMRepnA is locally constant.

Suppose now that A finitely presented i.e. A ∼= F/J with J finitely generated
(see 2.1). We can repeat the same steps as above to obtain the resolution (5.3),
but now, we only know F0 and F1 to be surely finitely generated. Indeed F0

as before and the free module F1 is finitely generated because, if A is finitely
presented, then also Ω1

A is finitely presented as A−bimodule by [6, Cor.2.11].
For i = 0, 1 set fi := rankFi. One has Vi := HomAe(Fi, N) ∼= Mn(k)

fi , so
these spaces are finite-dimensional over k and their dimensions do not depend
on M. Consider the sets

Ci := {(M,Ai, . . . , Afi) : diM (A1, . . . , Afi) = 0Vi
} ⊂ RepnA(k)× Vi−1.

They are closed in RepnA × Vi−1. The set

CiM := {(Ai, . . . , Afi) ∈ Vi−1 : (M,Ai, . . . , Afi) ∈ Ci}

is a cone in Vi−1. Thus, for i = 1, 2, the functions zi, defined before, are upper
semicontinuous (this argument is similar to [5, Lemma 4.3.]). Then the result
on smoothness follows as for finite-dimensional algebras.
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Torino, 10123, ITALIA
e-mail: federica.galluzzi@unito.it

Francesco Vaccarino
Dipartimento di Scienze Matematiche, Politecnico di Torino, C.so Duca degli
Abruzzi n.24, Torino, 10129, ITALIA
e-mail: francesco.vaccarino@polito.it
and
ISI Foundation, Via Alassio 11/c, 10126 Torino - Italy
e-mail: vaccarino@isi.it

19


	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 The scheme of n-dimensional representations

	3 The main result
	4 Examples and Applications
	4.1 Finitely unobstructed algebras
	4.2 Hereditary algebras
	4.3 Formally smooth algebras
	4.4 Implications and equivalences
	4.5 Unobstructed Algebras

	5 Deformations
	5.1 Deformations of modules
	5.2 Deformations of schemes
	5.3 Smoothness of RepAn
	5.4 On the work of Geiss and de la Peña


