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ABSTRACT 

The evaluation of the potential impact that an innovative material or technology could have on the 

environment, ahead of its adoption, is of fundamental importance during the design phase of a product. 

Life Cycle Assessment (LCA), a powerful environmental management technique, has been widely used since 

the mid-1980s, but two remaining problems with the methodology are its inability to allow a designer (or 

practitioner) to use LCA during the early design phase and the existence of uncertainties and variations in 

the data used in assessment. 

This thesis aims to demonstrate how these issues can be solved using specific case studies as examples. The 

scientific content, the methodologies, and the obtained results reported here are the outcomes of projects 

conducted with the collaboration of two universities: Institut National des Sciences Appliquées de Lyon and 

Massachusetts Institute of Technology.  

This thesis is divided into six main chapters: 

The first chapter is dedicated to an introduction to the LCA methodology, in which it is also possible to find 

a literature review focused on the strengths and weaknesses that may characterize LCA. The second part of 

the chapter details the methods utilized to analyze uncertainty in LCA results, the state of the art for 

streamlined and predictive approaches and, finally, an overview of a multi-criteria analysis method useful 

for materials selection. In particular, the uncertainty analysis associated with LCA results may represent the 

starting point for the development of streamlined LCA approaches and possible methods of forecasting the 

environmental results of novel technologies. On the other hand, the multi-criteria analysis grounded in the 

uncertainty analysis presents a robust method of materials selection in support of Ecodesign. 

In the second chapter, the uncertainty analysis is used to develop a streamlined LCA method founded on 

the probabilistic underspecification approach, proposed to support the building design process. The case 

studies analyzed in this section represent a series of residential building assemblies (exterior walls, interior 

walls, foundations, roofs, floors, windows, doors, exterior finishes) that were used to test the streamlined 

method and obtain distributions of results using a cradle-to-gate approach along five phases of the building 

design process. The bill of materials (BOM) of a building assembly can be specified using different levels of 

information, which can be really generic during the concept design and fully detailed during the executive 

project. The low-fidelity characterization of a BOM and the uncertainty associated with these low levels of 

fidelity are systematically quantified through probabilistic underspecification using a hierarchical 

classification of materials. Quantitative environmental results, processed with uncertainty analysis, were 

obtained using low-fidelity categories for materials and building assemblies, demonstrating that LCA can be 

applied not only when a complete and detailed BOM is available but also when fewer details are known. 
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Finally, decision-making at different stages of the design process is sustained by this approach and is based 

on the use of a comparison indicator. 

The third chapter advances the research aimed at streamlining the LCA of buildings with probabilistic 

underspecification and uncertainty analysis. In particular, it investigates whether LCA can be robustly 

streamlined through an effective and efficient triage of data collection and the consequent selected use of 

specific and resource-intensive information. In this context, tests were conducted with a series of building 

typologies (single-family detached houses and multi-family residential buildings), again analyzed with a 

cradle-to-gate approach. The probabilistic triage approach was tested to clarify how to use probabilistic 

underspecification and reduce the effort involved in specification by identifying the activities that require 

careful characterization. With this approach, by specifying only one part of the bill of materials to the 

highest level of specificity, the results proved to be both reasonably accurate and obtainable with less 

effort. Impacts such as global warming, acidification, eutrophication, and smog creation were assessed, and 

the results indicated that just 40-46% of the BOM components represent 75% of the total impacts of both 

single-family houses and multi-family buildings.  

Where the second and third chapters were devoted to the streamlined analysis of conventional products, 

the fourth chapter addresses the use of uncertainty analysis to forecast the environmental burden of an 

innovative material. Here, a scale-up protocol for an environmental impact assessment is proposed as a 

means to develop a streamlined ex-ante LCA approach. The novel element of this chapter consists of the 

adopted scale-up protocol. It does not rely on primary data collected by monitoring real industrial systems, 

as these data do not yet exist for the product of interest; instead, data measured in a plant at the pilot scale 

are used alongside data simulated from thermo-chemical considerations based on the stoichiometry of the 

considered reaction. The scale-up protocol is described and then applied to the case of polybutylene 

succinate (PBS), a biopolymer that is gaining attention (particularly as a replacement for polyolefins) and is 

obtained from bio-based succinic acid. Monte Carlo simulation was used to process the uncertainty data for 

all of the assessments, and a sensitivity analysis was performed to evaluate and compare the different 

renewable sources and chemical routes available for the production of bio-based succinic acid. The case 

study of PBS highlights how innovative products can be analyzed without the use of primary data, providing 

a way to forecast environmental impacts for novel technologies. The advantages of the adopted scale-up 

methodology consist of the ease of implementation and the possibility of strengthening the Ecodesign 

approach. 

In the fifth chapter, a multi-criteria analysis was used to complete the ex-ante LCA results for PBS. The 

purpose of this analysis was to compare PBS to alternative materials on the basis of more than one 

property and for use in a specific function. This approach led to the definition of a new concept of the 

system boundary of the assessment: from cradle to function. The motivation for this alternative strategy 
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stems from the application of the LCA framework to a material to obtain an ecoprofile: the scope of the 

analysis is generally from cradle to the factory gate, while the unit of mass (or volume) of the material is 

usually taken as the functional unit for the analysis. However, these methodological choices place relevant 

limitations on the effectiveness of the assessment. In this chapter, a multi-criteria materials approach was 

tested using the PBS results to verify and validate the environmental viability of this material’s usage in 

packaging films. The most novel element of this research is the use of the customized ex-ante LCA and the 

uncertainty analysis, the latter of which is used to determine the uncertainty in material indices. The results 

were graphically represented with Ashby plots. When elongation at break and environmental performance 

were considered, PBS displayed a performance that was better than other traditional polyesters and 

comparable to the polyolefins considered; performance in terms of this set of properties is particularly 

beneficial in the case of secondary packaging. In the case of primary packaging, barrier properties acquire 

major relevance; in this regard, PBS presented among the best trade-offs for the simultaneous optimization 

of oxygen permeability, elongation at break and environmental impact. 

Finally, the sixth chapter is devoted to the review of the approaches that were implemented and tested to 

streamline LCA, highlighting the strengths and weaknesses for each analyzed system and discussing future 

methodological developments. In particular, the uncertainty analysis based on the Monte Carlo method 

was used not just to characterize the quality of results but also to develop and implement streamlined 

approaches. Moreover, the uncertainty analysis proved to be useful for forecasting environmental results 

for early-stage systems and innovative materials. 

In this thesis, the uncertainty analysis represents one of the most innovative and relevant points of strength 

from the methodological point of view. Furthermore, the use of uncertainty in environmental results 

allowed the characterization of an innovative material, making possible its use for multi-criteria materials 

selection and Ecodesign considerations. 
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PREFACE AND MOTIVATION 

LCA is a well-known methodology used to evaluate the environmental performance of systems, processes, 

and materials by assessing the environmental impacts associated with all stages of a system’s life (the so-

called cradle-to-grave approach). Once obtained, LCA results can be easily used for a range of purposes 

including business strategy, research and development, process design, education, policy development, 

product declaration and marketing (Cooper and Fava 2006). Of course, Life Cycle Assessment is 

characterized by a series of “unresolved problems,” above all the fact that although LCA can be used as a 

powerful decision-making tool to explore and innovate at the R&D stage, it is generally applied by 

practitioners and designers at the end of the design process because of the complexity in data collection 

and scope definition (Reap et al. 2008; Finnveden et al. 2009). This excludes de facto the possibility of 

obtaining environmental results that can be used to drive decision making during the early concept or 

schematic design phase. 

A streamlined approach able to facilitate the use of LCA at the early stage is crucial for the development of 

life cycle thinking in the design process. 

Therefore, the motivation for this research is driven by the following key points:  

 The need to streamline LCA to enable the use of LCA results during the different phases of the 

design process (for example, the design process of an innovative technology); 

 The need to develop ex-ante LCA to make it possible to estimate LCA results for innovative systems 

(for example, an innovative material) with a certain level of confidence; and 

 The need to include an uncertainty analysis in the results to lend robustness to the overall study 

and reliability to the hypotheses made during the LCA modeling phase. 

 

The third key point is probably the most important element of this research, as LCA results rely on the 

robustness of the mathematical model. In general, the use of the Life Cycle Thinking (LCT) approach is 

particularly helpful for understanding the several issues that occur when a new material or technology is 

under development. However, the inclusion of environmental performance as an additional metric of 

evaluation, when one design has to be chosen from several, may be really complex.  

The first project, in which LCA was used to forecast the environmental burden of an innovative material not 

yet optimized at the industrial scale, was conducted together with the Institut National des Sciences 

Appliquées de Lyon (INSA), in which the Laboratoire des Procédés et Matériaux Polymères was working on 

the definition of a bio-based polymer (polybutylene succinate, PBS) using a pilot plant. In this research 

work, instruments available in the laboratory were utilized for the pilot production (a few kilograms of 
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polymer pellet) of PBS, which will be produced at the industrial scale only in the future. In this case, 

different parameters of the pilot plant were monitored to forecast the environmental burden of PBS once it 

is produced using an optimized technology at the industrial scale. In this project, the concept of ex-ante LCA 

was adopted to forecast the optimized environmental performance based on the pilot-scale performance 

combined with the properties of the material. 

The second work in which LCA was used, the definition of a methodology able to include uncertainty 

analysis and the capacity to use a LCT approach along the different phases of the building design process, 

was conducted in collaboration with the Materials Systems Laboratory (MSL). The context of this project 

was the development of innovative technologies by designers in the residential building sector. A chasm 

between the theory and practice of LCA was highlighted, particularly the fact that LCA is often applied at 

the end of the design process, excluding the possibility of making decisions at the earlier stages using 

environmental results as a metric of evaluation. Additionally, a quantification of uncertainty was often 

missing from the results, depriving the decision-making process of the necessary robustness. In this specific 

work, uncertainty analysis and the Probabilistic Underspecification approach (developed by MSL for a 

previous project on electronic devices) were used to define an innovative LCT approach for designers, 

providing the ability to obtain LCA results with associated uncertainty information in the early concept 

design phase. 

Thanks to the experience gained at the MSL, some of the concepts of the uncertainty analysis were applied 

to the PBS project to refine the results and a strategy for future developments. Thanks to this fundamental 

update, the results are now available as probability distributions and not as single deterministic values. 

The structure of this thesis begins with an introduction focused on the LCA methodology in service of 

materials and technologies, followed by the work performed at MSL (probabilistic underspecification for 

building assemblies and hybrid models obtained from probabilistic triage). The following two chapters are 

dedicated to the research on PBS, beginning with the evaluation of the environmental performance by 

means of LCA indicators using a cradle-to-gate approach, then an evaluation of uncertainty in the context 

of a multi-criteria material selection process (environmental performance and mechanical properties). In 

conclusion, final remarks and a discussion of the different approaches adopted and developed are 

provided. 
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1 INTRODUCTION AND LITERATURE REVIEW 

In 1990, the Society of Environmental Toxicology and Chemistry (SETAC) coined the term Life Cycle 

Assessment to describe an approach that first came into being in the 1960s for a comparative efficiency 

analysis (energy and material consumption) of two or more systems (Baldo 2008). Later, the International 

Organization of Standardization (ISO) developed specific standards for the application of the methodology, 

which was considered one of the most important tools in the 1990s (Baumann and Tillman). These 

standards allow the methodology to be internationally recognized both within and outside of the scientific 

community. Nevertheless, a full-fledged LCA is still considered time-consuming and is characterized by high 

costs, which may represent a constraint for present and future sustainable development. 

In this introduction, the framework of the methodology will be given as well as a description of the main 

issues that arose during its application. Then, an overview of the possible ways to streamline the analysis, 

forecast the results using different systems, and manage the uncertainty is provided. 

1.1 ORIGINS AND USES 

Life Cycle Assessment is a structured, comprehensive and standardized scientific approach, often used 

behind modern environmental policies and business actions related to sustainable development (ILCD 

Handbook - JRC 2010; ISO 14040 2010; ISO 14044 2010). In this context, the scientific community 

recognizes LCA as a relatively new (and developing) environmental management technique that has been 

having a very wide application since the mid-1980s (Rebitzer et al. 2004; Finnveden et al. 2009; Bieda 

2014). This rise is also highlighted by the growing awareness of environmental issues by common people 

and internet users, as it is demonstrated by the exponentially increase of searches related to carbon 

footprint facts and statistics on web search engines (Michel et al. 2011).  

Therefore LCA is broadly applied in practice (Finnveden et al. 2009) and LCA analysts consider LCA as a good 

tool to examine the environmental impacts of products, a quantitative way to estimate the life cycle 

resources and burdens, as well as a way to quantify alternatives in product systems (Cooper and Fava 

2006). It is also considered by practitioners a powerful decision-making tool, especially for the market 

growth of innovative and environmentally responsible products. The market, indeed, has become more 

aware of the value of environmentally conscious materials selection and product development, as is 

evident in the proliferation of consumer-conscious “green” labels on products ranging from groceries to 

consumer electronics (Patanavanich 2011).  
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1.2 LIFE CYCLE ASSESSMENT FRAMEWORK 

The increased awareness of the importance of environmental protection and the possible impacts 

associated with products, both manufactured and consumed, has increased interest in the development of 

methods to better understand and address these impacts. A most suitable technique being developed for 

this purpose is Life Cycle Assessment. According to ISO 14040 (ISO 14040 2010), LCA can assist in: 

 identifying opportunities to improve the environmental performance of products at various points 

in their life cycle, 

 informing decision-makers in industry, governmental or non-governmental organizations (e.g. for 

the purpose of strategic planning, priority setting, product or process design or redesign), 

 selecting of relevant indicators of environmental performance, including measurement techniques,  

 marketing (e.g. implementing an ecolabelling scheme, making an environmental claim, or 

producing an environmental product declaration). 

 

LCA addresses the environmental aspects and potential environmental impacts (e.g. use of resources and 

the environmental consequences of substances release) throughout a product's life cycle from raw material 

acquisition through production, use, end-of-life treatment, recycling and final disposal (i.e. cradle-to-grave). 

For practitioners of LCA, ISO 14044 (ISO 14044 2010) details the requirements for conducting an LCA study; 

as shown in Figure 1.1 there are four main phases: 

 the goal and scope definition phase, 

 the inventory analysis phase, 

 the impact assessment phase,  

 the interpretation phase. 
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Figure 1.1 - LCA structure according to ISO 14040 and ISO 14044 

 

 

 The Goal and Scope Definition, including the system boundary and level of detail, of an LCA 

depends on the subject and the intended use of the study. The depth and the breadth of LCA can 

differ considerably depending on the goal of a particular LCA; 

 the Life Cycle Inventory analysis phase (LCI phase) is the second phase of LCA. It is an inventory of 

input/output data with regard to the system being studied. It involves collection of the data 

necessary to meet the goals of the defined study; 

 the Life Cycle Impact Assessment phase (LCIA) is the third phase of the LCA. The purpose of LCIA is 

to provide additional information to help assess a product system’s LCI results so as to better 

understand their environmental significance; 

 the Life Cycle Interpretation is the final phase of the LCA procedure, in which the results of an LCI or 

an LCIA, or both, are summarized and discussed as a basis for conclusions, recommendations and 

decision-making in accordance with the goal and scope definition. 
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LCA is one of several environmental management techniques (e.g. risk assessment, environmental 

performance evaluation, environmental auditing, and environmental impact assessment) and might not be 

the most appropriate technique to use in all situations. LCA typically does not address the economic or 

social aspects of a product, but the life cycle approach and methodologies described in these International 

Standards can be applied to these other aspects. 

1.2.1 Mathematical approach 

According to the General Guide for Life Cycle Assessment (ILCD Handbook - JRC 2010), LCI or LCA studies 

are often carried out using an iterative process, since during the life cycle inventory phase (and data 

collection) and during the subsequent impact assessment (and interpretation) more information becomes 

available, therefore initial scope settings will typically need to be refined or revised (Figure 1.2). 

 

Figure 1.2 - Iterative nature of LCA (ILCD Handbook - JRC 2010) 

The mathematical approach behind LCA allows to convert several environmental aspects (such as air and 

water emission, waste generation, consumption of energy and materials) into environmental impacts 

quantified and represented by few environmental indicators. In other words a potential impact on the 

natural environment, human health or the depletion of natural resources, caused by the events that occur 

between the technosphere and the ecosphere. The conversion of LCI data into LCIA results is obtained 

thanks to the use of conversion factors (also known as impact factors), available for each environmental 

aspect and for each environmental indicator. As an example, air emissions are considered (environmental 
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aspects), such as carbon dioxide, methane and nitrous oxide (CO2, CH4, N2O), well known to be greenhouse 

gases, it is possible to identify impact factors able to relate their potential environmental burden in terms 

of global warming potential (environmental impact). Global Warming (GW) is measured using CO2 as 

reference substance, so other emissions are related to CO2 using impact factors (25 kg CO2 eq/kg CH4 for 

methane, 298 kg CO2 eq/kg N2O for nitrous oxide). In this way, the potential effect on the environment of 

three different substances is summarized into a single (and simple) environmental indicator expressed as kg 

of CO2 equivalent. In general, for a given environmental indicator, it is possible to describe the following 

equation, which is the basis of the mathematical approach: 

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐼𝑚𝑝𝑎𝑐𝑡 =∑𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑎𝑠𝑝𝑒𝑐𝑡𝑖 ∙ 𝐼𝑚𝑝𝑎𝑐𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝑖

𝑛

𝑖=1

 

   

1.2.2 Environmental indicators 

The Life Cycle Impact Assessment phase helps to aggregate the inventory data in environmental indicators, 

in support of the interpretation phase. According to the General Guide for Life Cycle Assessment (ILCD 

Handbook - JRC 2010), LCIA methods exist at midpoint or endpoint level; both levels have advantages and 

disadvantages (Figure 1.3).  

 

Figure 1.3 - Impact categories (midpoints and endpoints) of a Life Cycle Impact Assessment phase (ILCD 
Handbook - JRC 2010) 
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The following midpoint impact categories proved to be of high relevance during LCA studies and are 

currently broadly used for environmental product declarations. A description is provided hereinafter 

(www.leonardo-energy.org).  

Global Warming (GW). Global Warming Potential is a measure of the effect on solar radiation (both direct 

or reflected) of a particular quantity of a substance over time relative to that of the same quantity of 

carbon dioxide. Therefore GW is an impact category that groups greenhouse gases (GHG) and calculate 

their total impact in terms of kg CO2 equivalent, according to the IPCC (Intergovernmental Panel on Climate 

Change) reference document on Climate Change, in which the Global Warming Potential value for CO2 is 

chosen as equivalence factor. Since Global Warming Potential depends on the time spent in the 

atmosphere by the gas, GW is calculated for the time horizon 100 years. Impact factors for different 

substances are evaluated combining climatic and chemical models able to covers two effects: the direct 

effect a substance has through the absorption of infrared radiation and the indirect chemical effects on 

overall radiation.  

Cumulative Energy Demand (CED). Cumulative Energy Demand (or Gross Energy Requirement) calculates 

the total energy consumption of a specific system. It includes the primary energy demand, in other words 

the quantity of energy directly extracted from the hydrosphere, atmosphere or geosphere (natural gas, 

crude oil, coal, uranium, lignite, hydropower, wind power, solar energy and biomass). It is typically 

measured in MJ, using the Gross Calorific Value as reference for fuels. Indeed, for fossil fuels, biofuels and 

uranium, this would be the amount of resource withdrawn expressed in its energy equivalent (the energy 

content of the raw material identified by the Gross Calorific Value). For renewable resources, hydropower 

as an example, it would be based on the amount of energy that is gained from the change in the potential 

energy of the water (i.e. from the height difference). The energy content of the manufactured products is 

considered as feedstock energy. 

Acidification (AP). The acidification of soils and waters occurs predominantly through the transformation of 

air pollutants into acids. This leads to a decrease in the pH-value of rainwater and fog from 5.6 to 4 and 

below. Sulphur dioxide and nitrogen oxide and their respective acids (H2SO4 und HNO3) produce relevant 

contributions, therefore sulphur dioxide is the reference substance for this environmental indicator 

(acidification potential is given in sulphur dioxide equivalents, kg SO2 equivalent.). The Institute of 

Environmental Sciences (CML) of Leiden University provided the impact factors for the mathematical 

algorithm. When analyzing acidification, it should be considered that although it is a global problem, the 

regional effects of acidification can vary.  

Eutrophication (EP). it is the enrichment of nutrients in a given area, either aquatic or terrestrial. Air 

pollutants, waste water and fertilization in agriculture all contribute to eutrophication. The result in water 

is an accelerated algae growth, which prevents sunlight from reaching the lower depths. This leads to a 
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decrease in photosynthesis and oxygen production, which is also needed for the decomposition of dead 

algae. Both effects cause a decreased oxygen concentration in the water, which can eventually lead to fish 

dying and to anaerobic decomposition (decomposition without the presence of oxygen). Hydrogen sulphide 

and methane are thereby produced and this can lead to the destruction of the eco-system. On 

eutrophicated soils, an increased susceptibility of plants to diseases and pests is often observed, as is a 

degradation of plant stability. If the nutrification level exceeds the amounts of nitrogen necessary for a 

maximum harvest, it can lead to an enrichment of nitrate and this effect can cause, by means of leaching, 

increased nitrate content in groundwater. The eutrophication potential is calculated in phosphate 

equivalents kg PO4 
3– equivalent and impact factors for different substances are provided by the Institute of 

Environmental Sciences (CML) of Leiden University. As with acidification potential, it’s important to 

remember that the effects of eutrophication potential differ regionally. 

Photosmog (or simply Smog) creation (SM). Despite playing a protective role in the stratosphere, at 

ground-level ozone is classified as a damaging trace gas. Photochemical ozone creation in the troposphere, 

also known as photosmog, is a cause of damage for vegetation and materials. Moreover, high 

concentrations of ozone are toxic to humans. Radiation from the sun and the presence of nitrogen oxides 

and hydrocarbons incur chemical reactions that produce aggressive reaction products, one of which is 

ozone (O3). Hydrocarbon emissions occur from incomplete combustion, in conjunction with petrol (storage, 

turnover, refueling etc.) or from solvents. High concentrations of ozone arise when the temperature is high, 

humidity is low, when air is relatively static and when there are high concentrations of hydrocarbons. 

Because carbon monoxide (CO, mostly emitted from vehicles) reduces the accumulated ozone to CO2 and 

oxygen, high concentrations of ozone do not often occur near hydrocarbon emission sources. Higher ozone 

concentrations more commonly arise in areas of clean air, such as forests, where there is less CO. In LCA, 

photochemical ozone creation potential (POCP) or photosmog creation (SM) is referred to ethylene-

equivalents (kg C2H4 equivalent.) and impact factors for different substances are again provided by the 

Institute of Environmental Sciences (CML) of Leiden University. When analyzing, it’s important to 

remember that the actual ozone concentration is strongly influenced by the weather and by the 

characteristics of the local conditions. 

Many of these impact categories are grouped in assessment algorithms. TRACI, for example, is a midpoint 

oriented life cycle impact assessment methodology developed by the U.S. Environmental Protection Agency 

and includes impact categories like global warming, acidification, eutrophication (measured as kg N eq), 

tropospheric ozone (smog) formation (measured as kg O3 eq), human health criteria-related effects 

(respiratory effects) (Bare et al. 2006; Bare et al. 2012; SimaPro 2013).    
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1.2.3 Environmental Product Declarations 

An environmental declaration is defined as quantified environmental data for a product with pre-set 

categories of parameters based on the ISO 14040 series of standards, but not excluding additional 

environmental information (ISO 14025 2006). An environmental declaration is created and registered in the 

framework of a type III environmental declarations program, such as the International EPD® System, which 

is a system of verification and registration of EPD®s based on a library of existing EPD®s and Product 

Category Rules (PCRs), in accordance with ISO 14025 (Environdec). 

An Environmental Product Declaration (EPD) can be classified as an ISO Type III environmental labelling 

system (quantified environmental life cycle product information). Other possible environmental labels can 

be grouped in ISO Type I environmental labels (voluntary, multiple-criteria-based, third party verified labels 

indicating overall environmental desirability of a product) and ISO Type II environmental labels (self-

declared environmental claims). The most important features of a Type III environmental label are the non-

selective procedure (environmental excellence has not to be demonstrated and technically all products or 

services can access the system) and the use of environmental indicators to measure and quantify the 

environmental performance of a system. In Figure 1.4, Figure 1.5 and Figure 1.6 it is possible to appreciate 

the volume of EPDs produced and published on the International EPD® System platform. Charts detail the 

category types (foods and construction products are the main contributors), growth rate from 2008 and 

finally a breakdown of the registered declaration per country, with a leading role for Italy and Sweden. 

 

Figure 1.4 - Number of EPDs registered by category (courtesy of The International EPD® System) 
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Figure 1.5 - Number of EPDs published per year (courtesy of The International EPD® System) 

 

 

 

Figure 1.6 - Published EPDs per country (courtesy of The International EPD® System) 
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1.2.4 Issues in LCA application 

LCA is a relatively new methodology, so characterized by strengths and weaknesses (Finnveden et al. 2009). 

Based on a survey (Cooper and Fava 2006) of LCA practitioners and designers, the use of the methodology 

is considered “limited” and not massively applied to more products and processes because of: 

 Time and resources requirements for the collection of data; 

 complexity of the LCA method; 

 lack of clarity as to the relative benefits compared to the costs of conducting the LCA studies;  

 lack of apparent downstream interest or demand.  

 

The first point highlights how LCA is a resource intensive methodology: the main cost driver is the large 

amount of information needed to identify the overall life cycle of a system, given that a full-fledged LCA 

requires all of the inputs and outputs for all phases of the considered system boundaries. Conducting the 

LCI analysis may imply the collection of complete information even for the simplest commodity and may 

require significant time and resources (Patanavanich 2011). Moreover existing data gaps, either in the data 

collection and in the modeling phase, pose a frequent challenge, motivating the need for robust 

streamlining approaches (Reis 2013). An effective and efficient approach to LCA is of fundamental 

importance for the sustainable development, especially when limited information are available about the 

product’s supply chain and life cycle (Chen and Wai-Kit 2003). 

Reap et al. (2008) published results of a survey of unresolved problems in life cycle assessment, according 

to the point of view of practitioners. Multiple problems occur in each phase of the LCA framework, but data 

availability and quality are identified by practitioners as critical problems affecting all four phases. 

Therefore LCA suffers from problems that degrade accuracy and increase uncertainty of assessment results: 

problems encountered during goal and scope definition arise from decisions about inclusion and exclusion; 

the exclusion of economic and social impacts in LCA sets fundamental limits on the comprehensiveness of 

the tool; the choice of alternative scenarios influences decisions in the interpretation phase; inventory 

analysis problems include definitions of allocation procedures, flows, transformations and criteria used to 

identify and eliminate unimportant resource; setting arbitrary time horizons skews results in favor of short- 

or long-term impacts and aggregation is considered the principal problem occurring during the 

interpretation phase (Reap et al. 2008). 

Another recent research was developed by Finnveden et al. with more objectiveness, excluding personal 

problems and issues, focusing on the mathematical framework and highlighting recent developments in 

relation to some of the strengths and weaknesses of the tool (Finnveden et al. 2009). First of all LCA is a 

data intensive methodology, therefore limited data or lack of information can affect the conclusions that 

can be drawn from a specific study; this issue may be solved primarily with better databases and a better 
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experience by the life cycle analyst, but this requires a previous knowledge able to tell us where to focus 

our efforts. Furthermore, LCA aims at providing a comprehensive view of environmental impacts, but not 

all types of impacts are equally well covered; for example, methods for the Impact Assessment of land use, 

including impacts on biodiversity, and resource aspects, including freshwater resources, are problematic 

and need to be improved. LCA involves several methodological choices which are uncertain and may 

potentially influence the results; examples include allocation methods, time limits for the Inventory 

Analysis and questions related to system boundaries. Finally, different types of uncertainties characterize 

the use of the methodology and this represents an important issue; a special type of uncertainty is related 

to lack of knowledge on the actual system to be studied; this is the case, for example, for future systems 

and technologies, since the future is intrinsically uncertain (Finnveden et al. 2009). 

1.3 UNCERTAINTY ANALYSIS IN LCA 

According to the definition provided by the ISO Guide to the Expression of Uncertainty in Measurement, 

uncertainty is a parameter associated with the result of a measurement (for example the standard 

deviation) that characterizes the dispersion of the values that could reasonably be attributed to the 

quantity intended to be measured (ISO 2008). Thus, uncertainty is linked to measured values that cannot 

be exactly repeated in other measurements (due to errors) and are generally represented by probability 

distributions.  

Concerning the LCA methodology, the U.S. Environmental Protection Agency listed three main sources of 

uncertainty and variability. Uncertainty in observed or measured values used in a model is called parameter 

uncertainty; it is almost always considered in LCA studies with data uncertainty regarding process inputs, 

environmental discharges and technology characteristics. Scenario uncertainty relates to, for example, the 

normative choices in constructing scenarios and the inherent variability in scenario characteristics given 

various geographical locations or situations. Models themselves may add uncertainty and there may be 

variability between models because of the structure and mathematical relationships in the models (Lloyd 

and Ries 2008). The same three types of uncertainty were defined by Huijbregts et al. (2003). 

Therefore, even though the LCA methodology has developed and matured, a remaining problem of LCA is 

the existence of uncertainties and variations in data. This represents a limitation for a clear understanding 

and interpretation of LCA results. LCA studies, to be robust and credible, should communicate the reliability 

of their results in terms of uncertainty based on an assessment of the data quality of the information used 

(Weidema 2000; Bieda 2014). This means that a single deterministic LCA result might not be enough for a 

clear understanding and interpretation of the environmental performance of a system. A probabilistic 

distribution of LCA results is, on the other hand, a robust way to represent the uncertainty and variation of 

the data in a data collection and LCI analysis (Sonnemann et al. 2003). Policy makers and decision makers 
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need high credibility form methodologies like LCA, since the outcomes of such studies can significantly 

reflect on the financial stability (de Koning et al. 2009). 

Several studies evaluated the role of different types of uncertainty and from a literature review it emerged 

that all three types of uncertainty can be important, but the most frequently addressed type is the 

parameter uncertainty. Several approaches for conducting LCA under uncertainty have been proposed and 

implemented: stochastic modeling, scenario modeling, fuzzy data sets, interval calculations, analytical 

uncertainty propagation and Bayesian statistics are the most important. Monte Carlo simulation and fuzzy 

set theory have been applied in a limited number of LCA studies, but these approaches are well understood 

and are generally accepted in quantitative decision analysis. However, reliable outcomes cannot be 100% 

guaranteed (Lloyd and Ries 2008). 

1.3.1 Perturbation theory 

Heijungs and Suh (2002) discussed the theory of the computational structure of LCA, with an emphasis on 

uncertainty characterization through the perturbation theory. In their book, the authors note that this 

theory is of particular significance and can be used for a number of interesting subjects in LCA, including the 

propagation of unit processes uncertainties into uncertainties of scaling factors or environmental results.  

In general terms, an LCA model is based on physical quantities q, i.e. parameters, for which a series of 

impact factors F can be identified, such as global warming potential, eutrophication potential, acidification 

potential, etc. The impact assessment can provide deterministic results EI using the following relationship 

(1.1): 

𝐸𝐼 =∑𝑞𝑖 ∙ 𝐹𝑖

𝑛

𝑖=1

 (1.1) 

 

Where n represents the number of physical quantities/elements of the LCA model.  

The perturbation theory studies the influence of perturbations of coefficients of equation on the solutions 

to those equations. If an LCA dataset realized using several parameters is considered (material and energy 

flows, products, emissions and waste), uncertainty is associated with each parameter thanks to the 

description of the probability function and the standard deviation.  

Therefore the single deterministic result in this approach becomes a vector of results that originates the 

perturbed matrix, a function of the original value plus a perturbation term (δ): 

𝐸𝐼′ = 𝐸𝐼 + 𝛿𝐸𝐼 (1.2) 
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Because the parameters of the LCA model are characterized by uncertainty as well, perturbed parameters 

are calculated as follows: 

𝑞′ = 𝑞 + 𝛿𝑞 (1.3) 

 

In detail, the entire simulation is run several times, in order to have a significant number of trials. In the 

end, each parameter of the LCA dataset is characterized by a distribution of results, which are then 

aggregated to the others in order to have the total probabilistic distribution.      

1.3.2 Monte Carlo simulation 

One of the main challenges of LCA is to measure and to quantify uncertainty related to results. To achieve 

this goal many tools use Monte Carlo analysis as a stochastic simulation model. Monte Carlo analysis is a 

numerical way to process uncertainty data and establish an uncertainty range in the calculated results 

(Simapro 2013). This method generates parameter values with random variables drawn from probability 

density functions (LaGrega et al. 2010), typically provided by LCA databases like EcoInvent1. Within these 

databases, information about uncertainty at the LCI level are available and can be processed by means of a 

probability function (e.g., lognormal distribution) and a measure of uncertainty (e.g., standard deviation) 

for each single parameter of an LCA dataset.  

During a Monte Carlo simulation, a computer takes a random variable for each value within the uncertainty 

range specified by the user and recalculates the results. The next calculation (also called iteration) is 

repeated by taking different samples within the uncertainty range. After repeating the procedure for 

instance 1000 iterations, 1000 different answers can be obtained and they form probability density 

function (results distribution) (Simapro 2013). 

Standard distribution types, such as range, triangular, normal and lognormal distribution, can represent 

uncertainty: 

 range distribution (minimum and maximum values are needed); 

 triangular distribution (minimum, maximum and the median value are needed); 

 normal distribution (standard deviation and median value are needed); 

 lognormal distribution (standard deviation and median are needed, Figure 1.7). 

 

Several reasons justify the use of lognormal distribution as predominant probability function in such 

databases; first of all, lognormal distribution is frequently observed in real life populations (Koch 1966), it is 

                                                           
1
 http://www.ecoinvent.ch/  

http://www.ecoinvent.ch/
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representative of many LCA input parameters (Huijbregts et al. 2003) and  the highest amount of 

parameters for real life populations are always positive (Weidema et al. 2013).  

 

 

Figure 1.7 - Lognormal density functions with identical location parameter (μ) and different scale 
parameters (σ). Source: Wikipedia. 

 

In the present thesis, Monte Carlo method was used to process the uncertainty data for all of the 

assessments. This way, for each parameter, there is not just one value representative of the impact, but a 

range of data points (domain of possible inputs) defined by a probability distribution and standard 

deviation. Monte Carlo simulation randomly generates inputs from probability density functions over the 

domain and performs a deterministic computation on generated inputs. 1000 iterations were used to 

guarantee reproducibility in results (Steen 1997). Finally, results are aggregated and represented by means 

of boxplot charts (an example in Figure 1.8). 
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Figure 1.8 - Boxplot chart example. Definition of a probability distribution by means of 5th, 25th, 50th, 75th 
and 95th percentiles. 

 

1.3.3 Pedigree matrix 

Life cycle models are characterized by uncertainty. PRé Consultants, developer of the LCA software package 

SimaPro, distinguishes three main types of uncertainty for models built in its tool: 

 variation in the data; 

 correctness (representativeness) of the model; 

 incompleteness of the model. 

 

Variation in the data consists of the parameter uncertainty described in chapter 1.3 and can be described, 

as stated in section 1.3.2 by a probability distribution (Simapro 2013). In the case of ex-novo datasets, LCA 

practitioners directly define the basic (parameter) uncertainty, through the calculation of the probability 

distribution and the standard deviation for each parameter, provided that sample data of measurements 

are available. Furthermore, additional uncertainties from data quality indicators are typically added; these 

additional uncertainties are based on the pedigree matrix approach proposed by Weidema (Weidema and 

Wesnaes 1996; Weidema 1998). 

EcoInvent uses the pedigree matrix to estimate geometric standard deviations. For each dataset, each data 

point is assessed based on six criteria plus the basic uncertainty factor (which depends on the type of data). 

The 95% confidence interval or the squared geometric standard deviation σ is calculated using equation 

(1.4): 

𝜎2 =∑𝜎𝑖
2

6

𝑖=1

 (1.4) 
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The factors σ1 to σ5 refer to the scores obtainable in reliability (1), completeness (2), temporal correlation 

(3), geographical correlation (4) and further technology (5) of the pedigree matrix (see Appendix A - 

Pedigree matrix). The factor σ6 refers to the basic uncertainty factor (see Appendix A) (Simapro 2013). In 

the present work, the pedigree matrix was used to process uncertainty for each data point.  

1.4 STREAMLINED LCA APPROACHES 

As already stated in the previous chapters, nowadays technological progress is closely connected with 

sustainable development. This means that innovations (for example a new generation of hybrid engines or 

a new electronic device for telecommunication or even innovative techniques to build a house, for 

instance) are now studied and designed with particular attention to environmental performance, in other 

words the future impact on natural ecosystems. This kind of human activity impact assessment is the result 

of the LCT approach and one way to evaluate the environmental sustainability of a system is to use the LCA 

methodology, whose principal aim is to specify the environmental consequences of products and services 

from cradle to grave (ACADEMY 2008; Finnveden et al. 2009; Curran 2013). However, a full-fledged LCA 

study may be complex, expensive and time consuming (Hochschorner 2003; Schulz et al. 2012), therefore 

the practice of streamlining LCA began to be studied and developed using different approaches (Baumann 

and Tillman; Pesonen and Horn 2012). 

Streamlined LCA can be achieved in several ways. From a literature review it is possible to classify them into 

three main groups: (1) methods that limit the scope of the analysis, excluding minor activities or phases 

characterized by negligible environmental burden (Bala et al. 2010; Schulz et al. 2012); (2) methods that use 

qualitative or semi-quantitative information and business planning approaches (Hochschorner 2003), 

(Pesonen and Horn 2012); (3) methods that promote the use of specific impact categories and qualitative 

results to facilitate interpretation (Kloepffer 2008; Finkbeiner et al. 2010).  

A number of life cycle approaches exists: qualitative LCAs, simplified LCAs, life cycle influence matrices, 

LCA-derived proxies, hot spot analysis, combination tools, sustainability matrices, etc. An exhaustive 

literature review on these techniques has been carried out by Pesonen and Horn (2012). The strengths and 

weaknesses of these different approaches are presented in Appendix C - Streamlined LCA approaches. 

Moreover, in their study they recall the three basic levels of LCA (Wenzel 1998): 

 a full-fledged (full-scale) LCA, quantitative and including new data inventory; 

 a screening LCA, quantitative and using readily available data or semiquantitative information; 

 a matrix LCA, qualitative or semiquantitative. 

 

Pesonen and Horn (2012) stated that both screening and matric LCAs are the only levels seen as 

streamlined approaches. In the first approach, quantitative data is used even though there is no need for 
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new inventory calculation, while in the latter, qualitative and semiquantitative information is used. 

However, they observed that it is not the ultimate ambition of streamlined approaches to substitute a full-

scale assessment. Rather, their goal is to show how simplified model, opportunely adapted, can be useful in 

providing measures of environmental impact or a quick overview of a product’s environmental profile.  

From this recent literature review it is clear that a streamlined LCA approach is considered as a tool that 

must be as simple as possible, but this can introduce some criticality in the algorithm. In general, the 

scientific community is not considering the possibility to develop a robust methodology that can be used in 

lieu of a full-scale LCA.      

As there are obviously many sources of uncertainty in measures and in the methodology itself, there has 

arisen a need to systematically incorporate uncertainty into the assessment. Keeping in mind that a 

streamlined LCA approach can increase the uncertainty, it would be appropriate to try to deal with this 

issue in the streamlined methods as well. An approach is required to manage uncertainty with 

transparency, fairness, and competence (Pesonen and Horn 2012). 

1.4.1 Requirements for a comprehensive approach 

A streamlined LCA approach should support the design process and reduce cost and time for LCA 

implementation. Moreover, it should be characterized by a reduction of efforts associated with the bill of 

activities characterization (BOA) as well as the burden in characterizing the LCI associated with these 

activities (Olivetti et al. 2013). Many tools have been proposed (Graedel et al. 1995; Chen and Wai-Kit 2003; 

Hochschorner 2003) but only few authors have explored the relative strengths and weaknesses of these 

approaches (Olivetti et al. 2013), like the system boundary assumptions, cut off criteria and data collection 

procedures through the use of less accurate data or surrogate processes (Hunt et al. 1998). 

However, a comprehensive approach should provide quantitative results, achieved without cutting off any 

part of the system life cycle; moreover, it should be developed with an uncertainty analysis of results, in 

order to be applicable in different phases of the design process. When LCA is used as a decision-making 

tool, uncertainty is a crucial issue (Huijbregts 2001; Geisler et al. 2005; Lloyd and Ries 2008) and the 

deterministic environmental results obtained by an ex-ante analysis (a preventive analysis conducted on 

concept design or lab-scale productions) cannot be compared with the ones obtained by an ex-post study 

(an LCA applied to a fully developed system). An uncertainty analysis of results is strongly recommended to 

support decisions with robustness and reliability in computational models. Even though LCA practitioners 

often fail to properly address the issue of uncertainty quantification in their reports (Ross et al. 2002), 

understanding of the uncertainty contributions of each of the LCA components is crucial and will facilitates 

the improvement of the credibility of LCA (Hung and Ma 2008). 
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1.5 LCA AND SUSTAINABILITY PROTOCOLS FOR BUILDINGS 

The increased awareness of environmental sustainability in the construction sector has resulted in the 

growth of various building assessment frameworks and rating sustainability tools (Schwartz and Raslan 

2013), widely discussed in the “Guide to Building Life Cycle Assessment in Practice” written for The 

American Institute of Architects (AIA) (Bayer et al. 2010). The Building for Environmental and Economic 

Sustainability (Bees®) is an example of building product tool that compares different building products. The 

Athena Institute developed the Athena Impact Estimator for Buildings®, a building LCA tool in which, 

however, the impact of the operational use phase cannot be calculated. The Economic Input Output – LCA 

(EIO-LCA) is an economic input-output LCA-based free tool developed by Carnegie Mellon University, that 

evaluates the embodied phase, in other words the “cradle-to-gate” phases of the building’s life cycle: 

materials extraction and manufacturing, construction, maintenance, repairs and transportation.   

From the building sector perspective, many are the tools that proved to be internationally helpful for the 

evaluation of the environmental impact of buildings. Life cycle simulation tools such as EQUER, the 

Australian LCAid, Eco-Quantum for residential buildings, Envest, Team, as well as other commercial tools 

are typically used by LCA specialists (SimaPro, GaBi, The Boustead Model, Umberto, etc.) (Bayer et al. 

2010). 

Furthermore, numerous countries have developed green building programs aimed at promoting more 

sustainable buildings, such as LEED (Leadership in Energy and Environmental Design), a rating system 

developed by the US Green Building Council (Newsham et al. 2009). The use of these programs aims to 

reduce the environmental burden of a new building, even though this idea drew criticism and opposed 

opinions. Newsham et al. elaborated data about 100 LEED-certified commercial and institutional buildings 

and estimated that LEED buildings used 18–39% less energy per floor area than their conventional 

counterparts. Further, the measured energy performance of LEED buildings had little correlation with 

certification level of the building, or with the number of energy credits achieved by the building at design 

time (Newsham et al. 2009). Scofield directly replied to that research explaining that conclusions hang on a 

particular definition of the mean energy intensity of a collection of buildings. That definition is not related 

to the total energy used by those buildings. Site energy considered by Newsham et al. does not account for 

the energy consumed off-site in generating and delivering electric energy to the building, whose inclusion is 

crucial for understanding greenhouse gas emission associated with building operation (Scofield 2009). 

1.5.1 Building design process 

Even though theoretically LCA can be used in different stages of the design process, actually the application 

is still challenging. Full-fledged LCA studies are typically carried out during the last stage of the design 
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process, because that is the moment in which a complete bill of materials or bill of activities is available for 

a robust inventory.  

AIA identifies three typical stages of the architectural design process to address the problem of the level of 

detail needed by LCA to be applied (Bayer et al. 2010): (1) Pre-Design Stage, in which LCA can define the 

environmental targets of a specific project and simplify decision-making regarding the different options 

available for building features, in order to have basic trade-offs between impacts from the manufacturing 

and operational phases; (2) Schematic Design Stage, which is a more detailed level and choices regarding 

the use of specific building products (for example, assemblies or materials) can be made using LCA; (3) 

Design Development Stage, in which detailed design drawings are produced by architects and engineers for 

envelope and structure, heating and cooling plant, services and installation (Bayer et al. 2010), (AIA 1995).  

Moreover, other reasons relegate the application of the methodology to LCA practitioners and specialists 

only. Researchers of the Massachusetts Institute of Technology conducted a survey asking architects and 

engineers from the construction sector their thought and feedback about LCA. The following critical 

features emerged: the complexity of the computational model, the complexity of  data collection for 

inventory analysis, the need of expensive and sometimes cumbersome tools and the experience and skills 

required to assess the availability and completeness of data in LCA databases. 

Eventually, the use of LCA tools by building design professionals is still uncommon. Even if the inventory 

analysis data have already been collected, tabulated and indexed, the time consuming issue associated with 

the methodology still exists and discourages designers because of the iterative process (Malin 2005).  

1.5.2 Literature review 

Following an exhaustive review of the construction sector literature, it is possible to highlight that there is a 

large production concerning the use of the LCA methodology for the evaluation of the overall 

environmental efficiency of buildings (Ghattas et al. 2013). According to this literature review, even if the 

operational energy consumption generally decreases thanks to improved energy efficiency, the so called 

embodied phase can increase because of the additional materials required for energy efficiency systems 

(Verbeeck and Hens 2010; Cuéllar-Franca and Azapagic 2012). Since the building codes are becoming more 

stringent, environmental awareness is increasing and demand for energy efficient buildings is increasing as 

well. As a result, it is becoming more relevant to consider the embodied phase as part of building codes and 

standards, analyzing possibilities for improvement and providing guidelines for materials selection in the 

Ecodesign of new buildings and rehabilitation of existing buildings (Zabalza Bribián et al. 2011). 

The literature review focused on the LCA technical aspects demonstrating how there is no common 

methodology able to address all of the main building features, like geometry, lifetime and geographic 

location. Several works adopted the overall “standard” (typical for a specific region) building as functional 
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unit, considering different floor areas and different climate regions (Mithraratne and Vale 2004; Hacker et 

al. 2008; Monahan and Powell 2011; Utama et al. 2012; Ihm and Krarti 2012). Other works used various 

segments of the building as functional unit (Blengini 2009; Bolin and Smith 2011; Allacker 2012), others a 

normalization with other parameters, using the unit of mass (1 kg) of materials for the construction 

(Zabalza Bribián et al. 2009) or the single building inhabitant (Heinonen et al. 2012). The building lifetime is 

another key parameter and in several works is included in the range 25-100 years. Longer term life cycle 

includes significant renovation activities (Börjesson and Gustavsson 2000), while shorter lifetimes are 

conceived in order to make results relevant in terms of meeting climate change mitigation goals set for the 

next few decades (Säynäjoki et al. 2012); in a recent work, Aktas et al. calculated the average residential 

building lifetime to be 61 years with a standard deviation of 25 years, based on the 2009 American Housing 

Survey (Aktas and Bilec 2011).  

The system boundary definition may represent another point of discussion; Optis highlighted the lack of 

information for different research works, estimating that 60% of studies did not explicitly state which life 

cycle stages are included and 85% of the same set of studies did not identify the unit processes (e.g. 

materials) included within the boundaries (Optis and Wild 2010). Some of the studies excluded parts of the 

life cycle, for example the end of life, because judged negligible or less important (Gustavsson and Joelsson 

2010; Monahan and Powell 2011). Furthermore, there is limited research on the renovation of existing 

housing with energy efficiency measures. 

Another aspect that was not adequately considered in most publications is the quantification of uncertainty 

in results. The lack of a common LCA framework as well as the uncertainty associated with local primary 

data give a key role to the uncertainty analysis.  

1.6 EX-ANTE LCA APPROACHES 

Although results of conventional LCAs are accurate and acceptable, conceptual design stages are often 

characterized by incomplete information, thus making this method infeasible for use (Yang and Chen 2012). 

Indeed, the fast pace of technological progress and the increasing pressure on natural ecosystems put 

forward the urgent need for the assessment of the human activities impact, especially in the early stage of 

development (Roes and Patel 2011; Shields et al. 2011; Basbagill et al. 2013). In particular, the possibility to 

estimate the potential impact that a new product could have on the environment, ahead of its adoption, is 

of fundamental importance during the design phase (Thackara 2005). Currently, LCA is internationally 

considered the standard in environmental impact assessment and represents a scientific and structured 

methodology (Roes et al. 2009; Finnveden et al. 2009; Curran 2013), but in order to perform such analysis, 

a complete and deep understanding of the overall life cycle of a product system is required. In case of an 

innovative material that has to be analyzed with LCA, this condition can be satisfied once the material itself 
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has been fully developed, produced, optimized and introduced onto the market. On the other hand, as 

already said, adequate information to perform an LCA study is often unavailable at the early design stage 

(Shields et al. 2011). Furthermore, when LCA is used as a supporting tool in decision making, it is argued 

that an expansion of the standardize framework is required by implementing other approaches and 

methodologies (Jeswani et al. 2010). 

As far as early stage impact assessment (ex-ante LCA) of chemical processes is concerned, several methods 

have been proposed (Sugiyama et al. 2008; Bumann et al. 2010; Patel et al. 2012). Since the available 

information is limited at early stage, most of these methods are qualitative and not readily useful for a 

proper selection among alternative options. In particular, when comparing new materials at an early stage 

of development with industrially optimized ones, a production scale issue arises (Curran 2013). In fact, the 

production at lab/pilot scale cannot be directly compared to industrial systems, mainly due to the large 

discrepancy in the yield of the processes involved. Furthermore, those methods are commonly referred to 

bulk chemicals production processes (with a gate-to-gate horizon), but not to polymeric materials 

synthesis, and require detailed data about the reactions involved (Bumann et al. 2010).  

1.7 MULTI-CRITERIA ANALYSIS 

Since the importance of the anthropogenic impact on the environment has reached wide public awareness, 

the demand for sustainable products and services is continuously increasing (Maxwell and van der Vorst 

2003; European Bioplastics 2013). In this context, Environmentally Conscious Design (ECD) and Ecodesign 

principles have gained relevance (Huang et al. 2009; Huang et al. 2010; Toso et al. 2012) and a series of 

tools and good practices for a sustainable approach to design have been developed since the 1990s (Zhang 

et al. 1997). Thackara (2005) estimated that about 80% of the environmental impact of products and 

services is determined at the design stage. Decisions taken in this early phase of a product/service life cycle 

will determine how it will be manufactured and delivered, how it will be used and how it will be disposed.  

In this regard, the materials selection is one of the most crucial choices that a designer has to cope with. 

The selection process of an innovative material, to be used in place of another, is mainly based on the 

intrinsic properties of the material itself such as mechanical characteristics, thermal and electrical 

properties, cost, etc. However, a proper comparison in a change-oriented perspective should take into 

account both these properties and the environmental performance of the material. Nevertheless, since the 

LCA methodology presents some limitations, a need to expand the ISO LCA framework emerged. A more 

useful support to the decision-making process can be reached through the integration and connection with 

other concepts and methods (Jeswani et al. 2010; Curran 2013). 

Multi-criteria analysis (MCA) is a systematic approach that demonstrated significant reliability in dealing 

with complex design issues. MCA is becoming a widely employed methodology in the energy and 
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environmental sectors since the decision-making process has to include and assess a range of technological, 

economic, social, environmental, risk, financial, quality, and reliability considerations. By using MCA tools, a 

decision-maker has the ability to set its own objectives, as well as the significance of each in order to assess 

the effectiveness of different alternatives (Kylili et al. 2014). 

1.7.1 Multi-criteria materials selection 

The multi-criteria materials selection methodology used for the elaborations in chapter 5, is grounded in 

the approach developed by Prof. Ashby (2000). This methodology aims at comparing different materials on 

the basis of more than one property, i.e., considering at the same time mechanical performances, thermal 

properties, optical properties, cost, etc. This method is based on the identification of proper material 

indices, defined combining solid mechanics and materials science. These indices result from considerations 

about the geometry of the component and the stress conditions. Each index combines a defined set of 

properties (e.g. density, Young modulus, tensile strength, environmental impacts, etc.) and is used to 

compare alternative materials for a specific application, targeting the maximization of the required 

performance. To carry out such a comparison, material indices are graphically represented with Ashby plots 

(also known as bubble diagrams). On these diagrams a material property, or a combination of properties, is 

plotted as a function of another: each material is represented by a bubble localized within the area of the 

map (Ashby 2000). The mutual position of the bubbles mirrors how each material performs with respect to 

the others in the specific considered application.  

1.7.2 Material indices and Ashby plots 

In order to identify the most suitable material indices to be considered, an adequate formulation of the 

engineering problem to solve is necessary. In particular, the design process of a component must take into 

account 1) the function that the component has to fulfill and 2) the requirements and constraints to be 

met. Furthermore, a designer usually sets one or more objectives: e.g. minimizing the cost, reducing the 

mass of the component, lowering the environmental impact or a combination of thereof (Ashby 2010). 

The performance of a component can be quantified by means of a performance parameter (𝑃) that is 

mathematically defined by one or more objective functions. An objective function describes the 

performance parameter in terms of the design variables referring to the stress conditions of the 

component (𝐹), its geometry (𝐺) and the properties of the material it is made of (𝑀). 

𝑃 = 𝑓(𝐹, 𝐺,𝑀) (1.5) 

In most cases, the variables 𝐹 and 𝐺 represent respectively the requirements (load conditions) and the 

constraints (shape and dimensions) of the engineering problem. Therefore, the optimization of the 

component performance can be primarily obtained acting on the material. The selection of the best 
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performing material involves the identification of the material index 𝑀𝐼 that characterizes the performance 

parameter 𝑃 and that is maximized or minimized by the selected material. 

In order to get through this procedure more quickly and effectively, particularly in the case of a large 

number of alternatives, it is possible to superimpose the indices over a bubble diagram (Ashby plot) to 

conduct a graphic selection. Figure 1.9 shows the bubble diagram for a selection based on material 

stiffness. Alternative materials are represented by bubbles on the diagram and three material indices are 

superimposed: each index is graphically reported as a straight line with a slope depending on the loading 

condition of the component. Each material is represented by an ellipse whose semiaxes are defined by the 

properties on the diagram axes, here characterized by distributions of values. 

 

 

Figure 1.9 - Ashby plot for a materials selection based on stiffness. Three material indices, corresponding to 
different loading condition of the component, are superimposed as straight lines with a different slope. 

 

In Figure 1.9, each material is characterized by a distribution of values due to microstructure and 

composition variability, diversified supplies, etc. Therefore, the environmental performances of a material 

have to include uncertainty as well.  
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1.8 ECODESIGN 

The Ecodesign approach can be defined as a way to design with particular consideration for the 

environmental and social impacts of a product during its overall life cycle. It can also put in contact the LCT 

application to the design process and this aspect is widely discussed in the literature. 

According to Karlsson and Luttropp (2006), Ecodesign can be summarized as a concept including human 

sustainability priorities together with business interrelations. Its main objective is to reduce environmental 

impacts in the improvement of product development methods. This approach also includes a more open 

ambition to use inspiration from a positive examples of smart products and methods, effective system 

solutions and attractive designs. However, a definition of sustainable product development is not available. 

The two authors pointed out that the tools in Ecodesign are not as important as specification and goal 

setting in early product development phases. Therefore, the way to organize product developments is 

crucial in order to reach higher degrees of sustainability. In this context, the interrelations between 

resources (materials and energy) and functionality of products and services must be enhanced.  

In a following work, Luttropp and Lagerstedt (2006) discussed about the use of Ecodesign. According to 

their research, the most important moment in product development is when demands and specifications 

are decided for the product that is being planned. The specification defines the goal for the product 

development process and it is a very important opportunity for the continuing work and for 

environmentally requirements that have to be addressed in the product development phase. Designers 

have a possible approach for LCT and sustainable product development through Ecodesign. Many tools 

have been developed in order to help designers to reach environmentally sustainable designs, but most 

tools are barely used because of a lack of requirements in specifications for products. The authors stated 

that the lack of market demand for environmentally improved products is a crucial factor: if there is no 

demand for improved environmental performance, then there is no need for Ecodesign tools.  

1.8.1 Design for environment 

Another approach similar to Ecodesign is Design for Environment (DfE). Effectively, both Ecodesign and DfE 

use specific design approaches with the goal to reduce the overall human health and environmental impact 

of a product, process or service, where impacts are considered with a life cycle perspective. However, 

Lindajl et al. (2000) recalled the difficulty in applying these methods, stating that in the beginning of the 

design process knowledge about the product is limited. The information accessible is in general only 

qualitative, while many methods require quantitative data, something available only in the later phases of 

the design process. This hampers the successful application of DfE, Ecodesign and, more in general, life 

cycle studies. Obviously, it is important to get the results as early as possible in the design process before 

the modification cost becomes prohibitive and the freedom of action becomes too limited.  
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With Design for Environment it is also possible to identify a US Environmental Protection Agency (EPA)2 

program created in 1992. The target of this program is to prevent pollution and the associated risks for 

humans and the environment; through Design for Environment it is possible to: 

 label industrial and institutional products with safer product labeling; 

 define best practices for several products or services or systems; 

 identify safer chemicals and life cycle considerations. 

 

1.8.2 Environmental effect analysis (EEA) 

Another alternative to Ecodesign is represented by the Environmental Effect Analysis (EEA). The EEA 

method was primarily developed by the Swedish consulting agency HRM/Ritline AB3 and has been further 

implemented in collaboration with other Swedish enterprises and Universities since 1996. EEA is a 

modification of the quality assurance method Failure Mode and Effect Analysis (FMEA, a potential failure 

risks evaluation model) and it emphasizes environmental effects during normal operations.  

EEA is generally used to identify and assess potential environmental impact risks along the different phases 

of the life cycle of a product, aiming to take corrective and preventive actions to minimize the 

environmental burden. 

1.8.3 Ecodesign directive 

Ecodesign was also used by the European Commission to develop a series of rules and recommendations 

for sustainable development. For instance, the Ecodesign Directive provides with consistent EU-wide rules 

for improving the environmental performance of energy related products (ERPs) through Ecodesign. 

According to the European Commission4, one of the main targets of this directive is to prevent various and 

disparate national legislations on the environmental performance of these products from becoming 

obstacles to the intra-EU trade. This should benefit both businesses and consumers, by enhancing product 

quality and environmental protection and by facilitating free movement of goods across the EU.  

Energy related products (the use of which has an impact on energy consumption) account for a large 

proportion of the energy consumption in the EU and include: 

                                                           
2
 http://www.epa.gov/dfe/  

3
 http://www.hrmengineering.se/en/welcome  

4
 http://ec.europa.eu/enterprise/policies/sustainable-business/ecodesign/  

http://www.epa.gov/dfe/
http://www.hrmengineering.se/en/welcome
http://ec.europa.eu/enterprise/policies/sustainable-business/ecodesign/
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 Energy-using products (EUPs), which use, generate, transfer or measure energy (electricity, gas, 

fossil fuel), such as boilers, computers, televisions, transformers, industrial fans, industrial furnaces 

etc. 

 Other energy related products (ERPs) which do not use energy but have an impact on energy and 

can therefore contribute to saving energy, such as windows, insulation material, shower heads, 

taps etc. The Directive is under the responsibility of Directorate-general Enterprise and Industry 

and Directorate-general Energy. 
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2 PROBABILISTIC UNDERSPECIFICATION 

In the residential building sector, the application of LCA is often considered cumbersome because of the 

complexity of the data collection (generally only available once the design itself is already fully developed 

and the final construction documents are ready) and the selection of “proxy data” from LCA databases 

during the modeling phase (the life cycle inventory analysis consists of a collection of input/output data 

with regard to the system being studied). Therefore, LCA is typically applied by practitioners and designers 

at the end of a design process, excluding de facto the possibility of obtaining environmental results and 

using them to drive decisions during the early concept or schematic design phase. For the construction 

sector in particular, this represents a limitation because the use of LCA once a design is almost fully 

developed is relatively useless, especially if LCA was intended to support decision-making. One possible way 

to streamline LCA use is to work with the probabilistic underspecification approach to create “low-fidelity” 

categories for use during LCI analysis at the early concept design phases and to address the level of 

uncertainty in the results at the same time. 

2.1 RESEARCH QUESTION 

The research question arises from the need to support the overall design process (and not only the final 

design) with a streamlined implementation of LCA. Ideally, LCA can be used to explore and innovate at the 

early design stage, when few parameters are available (i.e., the basic geometry, the location, number of 

stories, etc.) but a broad selection of options for a design is still possible. To answer this research question, 

the probabilistic underspecification approach was implemented for a series of case studies to test possible 

applications at different phases of the design process (from the early design stage to the final construction 

documents), with particular attention to the analysis of uncertainty in the final results. Here, the intended 

final target consists of the development of an algorithm that provides a wide range of life cycle impacts 

(expressed as probabilistic distributions) starting from an initial set of specific parameters of a building 

design. Moreover, the proposed method aims to achieve effectiveness in the results, that is to say that 

results are obtained within a defined interval of confidence. In the same process, efficiency is achieved, as 

the need for data collection is lowered. 

2.2 METHODOLOGY 

To implement a streamlined LCA approach able to support a design process, the work on the probabilistic 

underspecification presented by Olivetti et al. (2013) was considered as starting point. Olivetti e al. 

introduced Probabilistic Underspecification as an option to simplify the characterization (specification) of 

the system under analysis (data collection and LCA modeling), using structured, nested groups of LCA 

dataset. With this approach, a system can be characterized by available information about the 
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characteristics of materials rather than by specific process-based data, then it is fitted into a hierarchical 

data structure, Monte Carlo simulation is used to sample all the possible proxy values that correspond with 

the group identified in the hierarchical data structure (Reis 2013; Olivetti et al. 2013). This approach was 

used as a viable method both for streamlining and decision‐making under uncertainty. Several building 

assemblies have been analyzed and probabilistic underspecification was used to obtain distributions of 

environmental impacts for each building assembly, at different levels of specificity. Elaborations and the 

adopted method are explained hereinafter. 

2.2.1 Scope definition 

The scope of this work consists of a cradle-to-gate LCA applied to residential building assemblies. A building 

assembly is here defined as a structural element of a building and can be both an exterior and an interior 

object. Examples of building assemblies are exterior and interior walls, foundations, openings (windows 

and doors), floors, roofs and finishes.   

The overall algorithm based on this method will consider all the phases of a building life cycle, in particular 

the “operational energy” (this is to say the operational energy consumption for heating, cooling, lighting 

and cooking) and other phases of the “embodied phase” (such as initial construction, maintenance, repairs, 

replacements, demolition, end of life, transportation), with a final purpose to provide trade-offs between 

these two main phases of the building life cycle, using a holistic approach. However, this work is particularly 

focused on the first part of the “embodied phase”, a cradle-to-gate analysis of building assemblies, for two 

reasons. First of all because codes are becoming more stringent and the demand for energy efficient 

buildings is increasing. As a result, it is becoming more relevant to consider the embodied phase as part of 

building codes and standards, raising the need to analyze possibilities for improvement and to provide 

guidelines for material selection, both during the Ecodesign of new buildings and the rehabilitation of 

existing buildings (Zabalza Bribián et al. 2011). Secondly, but not less important, because studies have 

revealed growing significance of embodied energy inherent in buildings and have demonstrated its 

relationship to carbon emissions (Dixit et al. 2012). Previous works have emphasized the significance of 

embodied energy and have acknowledged its relative proportion of total energy, which is growing with the 

emergence of more energy efficient buildings (Frey 2008; Plank 2008). Elaborations related to other stages 

of the building life cycle will be presented within future works of the Concrete Sustainability Hub5. 

2.2.2 Data collection  

In order to implement this approach for the residential construction sector, the attention was focused on 

materials and building assemblies typically adopted in the US residential sector. The first step of the 

                                                           
5
 https://cshub.mit.edu/  

https://cshub.mit.edu/
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procedure consists of a data collection of different LCA datasets of construction materials from relevant 

databases. These datasets provide LCI and LCIA of materials using a cradle-to-gate approach (datasets 

within these databases also known as ecoprofiles). Databases used for this part were EcoInvent6, PE 

International Professional Database7, USLCI8 and Athena Sustainable Materials Institute9. A database of 

materials was initially populated with 580 datasets (then reduced to 530, excluding repetitions, errors and 

outliers) and finally completed using LCIA information, based on the TRACI assessment method with a 

reference unit of 1 kg of mass for each dataset (conversions were made using information available directly 

from the specific database or from RS Means Building Cost Data (RSMeans Engineering Department 2013)), 

and categories defined by the Construction Specifications Institute and Construction Specification Canada10. 

2.2.3 Initial assessment 

TRACI version 2.1 was used to assess the environmental impacts of materials and assemblies. Due to a lack 

of information in some LCA tools and databases (Athena Impact Estimator for Buildings 4.5, for example) 

specific impact categories were not considered to test this approach (such as ozone depletion, ecotoxicity, 

human health cancer effects, human health non-cancer effects and fossil fuel depletion). Normalization, 

grouping and weighting were not contemplated. The reference unit used for the assessment of materials is 

the unit of mass (1 kg), while the dimension used for building assemblies is the assembly area (1 m2).    

2.2.4 Taxonomy 

In biology, taxonomy consists of defining groups of biological organisms on the basis of shared 

characteristics. Here, taxonomy is used to classify materials and assemblies on the basis of properties and 

final uses. The classification required by probabilistic underspecification has been structured using (and, 

where necessary, adapting) the MasterFormat® structure defined by the Construction Specifications 

Institute (CSI) (Construction Specifications Institute 2014).  

                                                           
6
 http://www.ecoinvent.ch/ 

7
 http://www.gabi-software.com  

8
 http://www.nrel.gov/lci/  

9
 http://www.athenasmi.org/  

10
 http://www.csinet.org/ 

http://www.ecoinvent.ch/
http://www.gabi-software.com/
http://www.nrel.gov/lci/
http://www.athenasmi.org/
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Figure 2.1 - MasterFormat® structure adapted to classify LCA datasets (M5) in nested groups. Polystyrene, 
extruded (XPS), at plant/RER is the single entry that can be then categorized at different levels of specificity. 

M1

00 00 00 Procurement and Contracting Requirements

01 00 00 General Requirements

02 00 00 Existing Conditions

03 00 00 Concrete

04 00 00 Masonry

05 00 00 Metals

07 00 00 Thermal and Moisture Protection

| M2

|–––––► 07 10 00 Dampproofing and Waterproofing

|–––––► 07 20 00 Thermal Protection

꞉ | M3

꞉ |–––––► 07 21 00 Thermal Insulation

꞉ ꞉ | M4

꞉ ꞉ |–––––► 07 21 13 Board Insulation

꞉ ꞉ ꞉ | M5

꞉ ꞉ ꞉ |–––––► Cork slab, at plant/RER U

꞉ ꞉ ꞉ |–––––► Foam glass, at plant/RER U

꞉ ꞉ ꞉ |–––––► Polystyrene foam slab, 100% recycled, at plant/CH U

꞉ ꞉ ꞉ |–––––► Polystyrene foam slab, at plant/RER U

꞉ ꞉ ꞉ |–––––► Polystyrene, extruded (XPS), at plant/RER U

꞉ ꞉ ꞉ |–––––► Urea formaldehyde foam slab, hard, at plant/CH U

꞉ ꞉ ꞉ |–––––► Polyisocyanurate (PIR high-density foam) PE

꞉ ꞉ ꞉ |–––––► Expanded Polystyrene

꞉ ꞉ ꞉ |–––––► Extruded Polystyrene

꞉ ꞉ ꞉ |–––––► Polyiso Foam Board (unfaced)

꞉ ꞉ ꞉ …

꞉ ꞉ |–––––► 07 21 16 Blanket Insulation

꞉ ꞉ |–––––► 07 21 19 Foamed-In-Place Insulation

꞉ ꞉ |–––––► 07 21 23 Loose-Fill Insulation

꞉ ꞉ |–––––► 07 21 26 Blown Insulation

꞉ ꞉ |–––––► 07 21 29 Sprayed Insulation

꞉ ꞉ |–––––► 07 21 53 Reflective Insulation

꞉ |–––––► 07 22 00 Roof and Deck Insulation

꞉ |–––––► 07 24 00 Exterior Insulation and Finish Systems

|–––––► 07 25 00 Weather Barriers

|–––––► 07 30 00 Steep Slope Roofing

|–––––► 07 40 00 Roofing and Siding Panels

|–––––► 07 50 00 Membrane Roofing

|–––––► 07 60 00 Flashing and Sheet Metal

|–––––► 07 70 00 Roof and Wall Specialties and Accessories

|–––––► 07 80 00 Fire and Smoke Protection

|–––––► 07 90 00 Joint Protection

06 00 00 Wood, Plastics, and Composites

08 00 00 Openings

09 00 00 Finishes

…
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MasterFormat® is a standard for organizing specifications and other written information for building 

projects in the U.S. and Canada. It is organized in different main divisions (e.g., 03 00 00 concrete, 04 00 00 

masonry, 05 00 00 metals, 06 00 00 wood, plastics and composites, 07 00 00 thermal and moisture 

protection, 08 00 00 openings and 09 00 00 finishes) and nested sub-divisions, providing therefore a 

structured hierarchy for materials and assemblies or, more in general, for all the activities of a construction 

site. An additional division was added to this structure, in order to group basic materials (clinker, minerals, 

chemicals, etc.) not directly used in a construction site, but inherent the building sector.  

Therefore, each dataset of the materials database was classified using a main division (very generic 

classification) and other sub-divisions (more specific classification), so as to obtain a hierarchical 

categorization scheme. For example the dataset “Polystyrene, extruded (XPS), at plant/RER U”, available in 

EcoInvent, is classified as “Thermal and moisture protection” (low level of specificity, category with a total 

of 134 datasets), “Thermal insulation” (medium level of specificity, 52 datasets) and “Insulation board” 

(high level of specificity, 19 datasets). Eventually, the individual material datasets and their environmental 

impacts (referred to the unit of mass) were categorized into five hierarchical levels of specificity, from M1 

to M5 with M1 being the first and most general classification (the broad class, like the category “Thermal 

and moisture protection”) and M5 being the most specified (individual entries by LCA databases, such as 

the dataset “Polystyrene, extruded (XPS), at plant/RER U”). Figure 2.1 gives an idea of the hierarchical 

categorization scheme. 

2.2.5 Monte Carlo simulations 

The material database was used to model building assemblies for which bills of materials (BOM) were 

collected: exterior and interior walls, foundations, doors, windows, roofs and floors. For each assembly, 

each material of the BOM has been modeled using a specific LCA dataset (corresponding to M5 level) and 

then a Monte Carlo simulation with 1000 runs was used to obtain a distribution of results for the impact 

categories, using a reference unit of 1 m2 of building assembly. Even though M5 entries contain information 

about specific material impacts, uncertainty is present for a series of reason, since possible perturbation 

sources are due to measurement instruments, reliability, completeness, application, temporal and 

geographic correlation of data (Frischknecht et al. 2004; Olivetti et al. 2013).  

In LCI definition, a log normal distribution was used to define physical quantities (components of the BOM) 

and the standard deviation defined a perturbation term, according to the pedigree matrix described by 

Weidema et al. (Weidema and Wesnaes 1996; Weidema 1998; Weidema 2000). Once obtained this 

reference results characterized by the highest level of specification, from the LCA point of view, the 

Probabilistic Underspecification approach was adopted in order to obtain, for the same building assembly, 

distribution of results at more generic levels of specificity (low-fidelity characterization of the BOM). 
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2.2.6 Probabilistic underspecification based on uncertainty analysis 

The probabilistic underspecification approach aims to be an effective (reasonably accurate) and efficient 

(reduced need to collect data) streamlining approach (Olivetti et al. 2013). It is defined as a way to 

implement the use of surrogate data (data from literature or, more in general, other sources not including 

primary data collection) within LCI analysis and to limit data collection for defining a BOM. The low-fidelity 

characterization of a BOM and the uncertainty associated with these low levels of fidelity are systematically 

quantified through underspecification, using  the hierarchical classification of each material (Olivetti et al. 

2013).  

Olivetti et al. proposed this approach as a way to use more generalized materials (or processes) to specify a 

surrogate LCI, instead of proxy data and also assumed that using an underspecified level rather than 

proximal process may reduce bias introduced by individual’s overconfidence in their knowledge and 

abilities to classify or categorize activities or materials. Furthermore, experts differ in their knowledge and 

there has been little study on which are the most appropriate criteria for choosing proxies (Subramanian et 

al. 2012; Reis 2013). The BOM of a building assembly, which consists of assembly components’ mass and 

materials, can be defined at each level of specificity (from M1 to M5).  

The LCA simulation model used specific LCA datasets at M5 and then underspecified from M4 to M1, by 

means of a random selection of a M5 dataset available in the low-fidelity category list, at M1, M2, M3 and 

M4. A specific dataset out of the list is chosen for each run of the simulation; in this way, decreasing level is 

accompanied by less specificity.  

A computational tool, Oracle Crystal Ball11, was used to run Monte Carlo simulations and to obtain 

distributions of environmental burden, thanks to the generation of impact values for the each component 

(material) of a BOM (and for each impact category). Then, impact values for the assembly are obtained by 

aggregation, using Equation (1.1). Table 2.1 provides an example of Probabilistic Underspecification levels 

(from M5 to M3) for a given building assembly (Insulated Concrete Form wall, ICF). 

The probabilistic underspecification is therefore able to estimate the uncertainty associated with the 

environmental impacts of each assembly, at each level of specificity. As specificity decreases (i.e., moving 

from M5 to M1), data variability rises and uncertainty increases. On the other hand, using low-fidelity 

category allows to have environmental results distributions when a design is not developed enough to draw 

a BOM. Thanks to this approach, comparisons between alternative options or designs become possible and 

choices can be made with a certain confidential level. 

 

                                                           
11

 http://www.oracle.com/technetwork/middleware/crystalball/overview/index.html  

http://www.oracle.com/technetwork/middleware/crystalball/overview/index.html
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Table 2.1 - Bill of materials, LCA datasets (M5) and probabilistic underspecification categories (M3 and M4) 
for ICF wall, with 0,5” (1,27 cm) of exterior stucco, 2” (5,08 cm) of insulation, 4” (10,16 cm) of concrete, 
other 2” (5,08 cm) of insulation and 0,5” (1,27 cm) of gypsum board. 

BOM M3 M4 M5 Mass [kg] 

 Underspecified categories LCA dataset level  

Layer 01 Exterior Stucco Stucco, at plant/CH U 18.29 

Layer 02 Thermal 
insulation 

Board 
insulation/EPS 

Polystyrene foam slab, at plant/RER U 1.52 

Layer 03 Cast in 
place 

Concrete 2400 
kg/m3 

Concrete, normal, at plant/CH U 241.81 

Layer 04 Thermal 
insulation 

Board 
insulation/EPS 

Polystyrene foam slab, at plant/RER U 1.52 

Layer 05 Interior 
board 

Gypsum board Gypsum fibre board, at plant/CH U 14.29 

Layer 06 Connectors Plastic 
connectors 

Polypropylene, granulate, at plant/RER U 0.52 

Layer 07 Reinforcing 
steel 

Rebar steel Reinforcing steel, at plant/RER U 1.11 

Layer 08 Support Joint-compound Joint compound 1.10 

Layer 09 Support Paper Paper tape 0.01 

Layer 10 Rough 
carpentry 

Soft-Dried Wood Sawn timber, softwood, raw, kiln dried, u=20%, 
at plant/RER U 

7.24 

Layer 11 Interior Paint Alkyd paint, white, 60% in H2O, at plant/RER U 0.08 

 

2.3 CASE STUDIES 

Based on the guidelines defined by the American Institute of Architects (Bayer et al. 2010), a survey 

conducted by the Concrete Sustainability Hub (CSHub 2013) and the experience of the research team, the 

building design process has been divided into 5 different phases: (1) Conceptual design, in which designers 

draw the basic geometry of a building and basic parameters (locations, number of stories, etc.) are known; 

(2) Schematic design, in which parameters in the first phase are consolidated and first details are defined 

(type of walls, number and position of openings, foundations, type of roofs, etc.); (3) Design development in 

which designers study the performance of building assemblies (for example the thickness of different layers 

of materials and the consequent thermal resistance); (4) Construction documents, in which details about a 

building and its assemblies are defined (specific kind of insulation, specific kind of glass, exterior finishes, 

etc.) according to the CSI divisions; (5) Final construction documents, in which designers are able to draw a 

complete and detailed BOM and each item can be represented by a proxy LCA dataset in an LCA model.  
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Figure 2.2 - Hierarchical structure for building assemblies. Single assemblies are analyzed using materials at 
M3, M4 and M5 (LCA datasets). Then assemblies are grouped to form L2 categories and L1 macro-

categories. Numbers in brackets refer to the volume of the population. 

L1

Exterior walls (52)

| L2

|–––––► Concrete Masonry Units (18)

|–––––► Insulated Concrete Forms (12)

꞉ | L3

꞉ |–––––► 2" insulation, 4" concrete, 2" insulation

꞉ |–––––► 3" insulation, 4" concrete, 3" insulation

꞉ |–––––► 4" insulation, 4" concrete, 4" insulation

꞉ |–––––► 2" insulation, 6" concrete, 2" insulation

꞉ |–––––► 3" insulation, 6" concrete, 3" insulation

꞉ |–––––► 4" insulation, 6" concrete, 4" insulation

꞉ |–––––► …

|–––––► Precast Concrete walls (5)

|–––––► Structural insulated panels (5)

|–––––► Wood stud walls (12)

Interior walls (4)

| L2

|–––––► Insulated walls (2)

|–––––► Non-insulated walls (2)

Foundations (49)

| L2

|–––––► Concrete Masonry Units (24)

|–––––► Cast in place (8)

|–––––► Insulated Concrete Forms (9)

|–––––► Slab on grade (8)

Doors (7)

| L2

|–––––► Glazed doors (3)

|–––––► Unglazed doors (4)

Windows (48)

| L2

|–––––► Aluminum frame (8)

|–––––► Fiberglass frame (8)

|–––––► PVC frame (8)

|–––––► Wood frame (8)

|–––––► Wood+Aluminum frame (8)

|–––––► Wood+vinyl frame (8)

Roofs and ceilings (96)

| L2

|–––––► Wood joists ceilings (12)

|–––––► Wood joists roofs (36)

|–––––► I-joists ceilings (12)

|–––––► I-joists roofs (36)

Floors (12)

| L2

|–––––► Wood joists floors (4)

|–––––► Wood truss (8)

Exterior finishes (29)

| L2

|–––––► Wall finishes (18)

|–––––► Roof finishes (11)
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The case studies analyzed represent a series of building assemblies (exterior walls, interior walls, 

foundations, roofs, floors, windows, doors, exterior finishes) that can be used to obtain distributions of 

environmental results, using a cradle-to-gate approach, along the five phases of building design process. 

From phase 1 to phase 5 designers increment the level of specificity and decrease the variation of options, 

therefore uncertainty in results decreases. To test the functionality of this approach, almost three hundred 

different building assemblies typically used in the U.S. residential sector were analyzed. BOMs and details 

about residential building assemblies have been collected from the textbook Architectural Graphic 

Standards for Residential Construction (Hall and Giglio 2010) and from the tools Athena Impact Estimator 

for Buildings V4.5 and Building Energy Optimization (BEopt) V2.112. For each assembly, a distribution of 

results is obtained using the highest level of specificity (M5 single entries used for assembly components), 

here referred as L5. Indeed, during the development of the simulations it was decided to refer to M1-5 

classification for materials, while L1-5 are referred here as classification levels for assemblies. 

Subsequently, the first step of underspecification was used (M4 materials category) to obtain the assembly 

level of specificity L4 and finally the second step of underspecification (M3 materials category) to obtain L3. 

Materials categories M2 and M1 were not used because too generic and because uncertainty would be too 

difficult to handle. Therefore, L2 and L1 for building assemblies were obtained using the aggregation of 

result distributions achieved by different building assemblies at L3, as shown in Figure 2.2. 

For instance, the analyzed exterior walls were 52 individuals, in total. They are divided into five main 

typologies (L1 level), commonly used in the residential building sector (Concrete Masonry Units, Insulated 

Concrete Forms, Precast Concrete walls, Structural Insulated Panels, Wood Stud walls). Usually, information 

available by a designer during the Concept design (phase 1 of the design process) is probably just an 

estimation of the assembly area, therefore the corresponding distribution of environmental results for this 

level is L1 in which the variation of all the 52 walls is included. In phase 2, the available information is 

supposed to be incremented, at least by a wall typology definition, so L2 will be used. Assuming to use one 

of these wall typologies, for instance the Insulated concrete forms (ICF), the variation is reduced to 12 walls 

out of 52, as available in Figure 2.2. During the Design development (phase 3) a specific wall is chosen (1 

out of 12 representative of the ICF typology) and therefore L3 is used for that specific wall. In this phase 

further details are decided, for example specific thickness of different layers of the ICF wall. Thus, a 

distribution of results is obtained thanks to the use of materials categories at M3. More details are added 

during phase 4 (for example specific material typologies for different layers) and phase 5 (more detailed 

information about specific materials). Therefore, L4 and L5 are respectively obtained for the same building 

assembly (the same ICF chosen in the third step) using material categories at M4 and M5, reducing 

uncertainty in results to the minimum value for the latter case (single LCA databases). 

                                                           
12

 https://beopt.nrel.gov/  

https://beopt.nrel.gov/
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A summary of this example is detailed hereinafter: 

(1) Conceptual design. Generic wall at L1. General assembly class, comprehensive of the variation of all 

the analyzed walls (using categories of materials at M3). 

(2) Schematic design. Wall typology specification at L2. Assembly typology, comprehensive of the 

variation of a sub-group of analyzed walls (using categories of materials at M3). 

(3) Design development. Generic single wall specification at L3. A single assembly is analyzed. 

Distribution of results obtained using categories of materials at M3. 

(4) Construction documents. Detailed single wall at L4. A single assembly is analyzed. Distribution of 

results obtained using categories of materials at M4. 

(5) Final construction documents. Fully detailed single wall at L5. A single assembly is analyzed. 

Distribution of results obtained using LCA datasets of materials at M5.  

 

Figure 2.2 summarizes the building assemblies considered for this work; due to limit of space, L4 and L5 are 

excluded and L3 is partially provided for ICF walls. Table 2.1 provides the necessary information for a 

specific ICF wall, analyzed using materials categories from M3 to M5 and therefore providing three 

distributions of results for the building assembly (from L3 to L5). 

2.4 EVALUATION METRICS 

2.4.1 Dispersion of results 

The median absolute deviation coefficient of variation (MAD-COV) is a measure of data dispersion similar to 

standard deviation, but more robust to data outliers (Rousseeuw and Croux 2012), has been used as a 

performance metric. The MAD-COV describes the median percent variation of a dataset from the median 

value. In equation (2.1), MAD-COV for a generic environmental indicator and a defined level of specificity 

(Lj, j = 1:5) is obtained using each single environmental result of a Monte Carlo simulation (xi, i = 1:1000) 

and the median value of all the 1000 Monte Carlo simulation results (median(XLj)). 

𝑀𝐴𝐷 − 𝐶𝑂𝑉𝐿𝑗 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖𝐿𝑗 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝐿𝑗)|)

𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝐿𝑗)
 (2.1) 

 

Even though the MAD-COV is considered the principal for this study, other performance metrics exist; 

those considered useful to describe data dispersion and accuracy of results are respectively the coefficient 

of variation (CV for a generic environmental indicator, equation (2.2)) and the median distance (MD for a 

generic environmental indicator, equation (2.3)). 



39 

𝐶𝑉𝐿𝑗 =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑋𝐿𝑗)

𝑚𝑒𝑎𝑛(𝑋𝐿𝑗)
 (2.2) 

  

𝑀𝐷𝐿𝑗 =
|𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝐿𝑗) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝐿5)|

𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝐿5)
 

(2.3) 

 

2.4.2 Comparison Indicator 

The use of probabilistic underspecification introduces uncertainty and variation in results, a characteristic 

that can be measured and controlled. Moreover, results at levels L1-L5 allow decision-making at different 

points of the design process, since LCA results are usually interpreted in a comparative manner 

(Noshadravan et al. 2013). A Comparison Indicator (CI) was used to evaluate the difference between two 

alternative designs; CI is defined as the ratio between environmental impacts of two products (Huijbregts 

et al. 2003). Therefore, the choice driver is not the overall uncertainty in individual assemblies, but the 

uncertainty in the difference between two building assemblies (design A and design B, in equation (2.4)). 

𝐶𝐼𝐿𝑗 =
(𝑋𝐿𝑗−𝑑𝑒𝑠𝑖𝑔𝑛 𝐴)

(𝑋𝐿𝑗−𝑑𝑒𝑠𝑖𝑔𝑛 𝐵)
 (2.4) 

 

The probability that design A has lower environmental burden than design B is computable through 

equation(2.5), in which β is a probability. 

𝛽𝐿𝑗 = 𝑃(𝐶𝐼𝐿𝑗 < 1) (2.5) 

2.5 RESULTS  

The ICF wall described in Table 2.1 has chosen to show an example of result distributions (concerning 

impact such as acidification, eutrophication, global warming, smog creation) at different levels of 

specificity, obtained thanks to Monte Carlo simulations. Figure 2.3 provides the probabilistic distributions 

of global warming (GW), starting from a generic L1 wall and finishing with the specific L5 ICF wall, using 

boxplots. Boxplots are built in this way: the bottom and top of the box are the first and third quartiles (25th 

and 75th percentiles), the band inside the box is the median (second quartile) and the whiskers’ limits 

represent the 5th percentile and the 95th percentile.  As a reminder, for all the simulations the scope of the 

analysis is limited, at the moment, at the first stage of the “embodied phase” (cradle-to-gate approach). 
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Figure 2.3 - Probabilistic distributions of global warming results applied to an exterior wall (ICF). Typical 
results from an LCA study are represented by L5, while from L4 to L1 the probabilistic underspecification 

approach is used. 

Boxplots in Figure 2.3 demonstrate a reduced, but still present, uncertainty at L5, with a median GW of 48.2 

kg CO2 eq/m2 and a standard deviation of 6.7. Using the underspecified categories described in Table 2.1, 

L4 and L3 results are characterized by a similar median GW (respectively 45.2 and 52.1 kg CO2 eq/m2) but a 

wider distribution, with standard deviations of 13.7 and 20.9. L2 and L1 boxplots appear even larger 

because of the variation of different assemblies within the same category (12 ICF walls in L2 and 52 exterior 

walls in L1). Other environmental indicators confirm this trend, as it is possible to appreciate in Figure 2.4, 

Figure 2.5 and Figure 2.6. 

 

Figure 2.4 - Probabilistic distributions of acidification results applied to an exterior wall (ICF). Typical results 
from an LCA study are represented by L5, while from L4 to L1 the probabilistic underspecification approach 

is used. 
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Figure 2.5 - Probabilistic distributions of eutrophication results applied to an exterior wall (ICF). Typical 
results from an LCA study are represented by L5, while from L4 to L1 the probabilistic underspecification 

approach is used. 

 

 

Figure 2.6 - Probabilistic distributions of smog creation results applied to an exterior wall (ICF). Typical 
results from an LCA study are represented by L5, while from L4 to L1 the probabilistic underspecification 

approach is used. 

 

MAD-COV results at different levels and for different environmental indicators are shown in Figure 2.7. 

Whereas MAD-COVL5 is always lower than 10%, recalling again a solid reliability for the highest level of 

specificity, the trend of results from L4 to L1 is generally growing, even though anomalies can be 

highlighted, due to the fact that materials are characterized by different environmental impacts and it is 

possible that environmental indicators for a specific LCA dataset may not be consistent among them. 
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Figure 2.7 - MAD-COV for the environmental impacts at different levels of specificity: From a generic wall 
(L1) to a specific ICF wall (L5). L2 refers to the ICF wall category. 

 

Figure 2.8 and Figure 2.9 provide results for CV and MD metrics obtained using the ICF case study. Where 

for CV values the trend is clear and stable for all the environmental categories, MD results present more 

anomalies due to different materials’ environmental performance. 

 

Figure 2.8 - CV for the environmental impacts at different levels of specificity: From a generic wall (L1) to a 
specific ICF wall (L5). L2 refers to the ICF wall category. 
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Acidification 0.38 0.27 0.25 0.16 0.08

Eutrophication 0.49 0.35 0.32 0.22 0.07
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Smog creation 0.40 0.23 0.20 0.18 0.09
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Figure 2.9 - MD  for the environmental impacts at different levels of specificity: From a generic wall (L1) to a 
specific ICF wall (L5). L2 refers to the ICF wall category. 

 

To show an example of the Comparison Indicator practical utility, the ICF wall described in Table 2.1 (design 

A) was considered, as well as another ICF wall in which Layer 02 and Layer 04 (Polystyrene foam slab, at 

plant/RER U) change from a thickness of 2 inches to 4 inches (8 inches in total), clearly defining a higher 

environmental impact, considering a cradle-to-gate approach. As a matter of fact, at L5 the probability βL5 

that GW for design A is lower than GW for design B was calculated to be 92%, confirming that, given the 

same area of 1 m2 and different amounts of the same material, the best environmental performance is 

obtainable by the lighter assembly (use phase is not considered). On the other hand, at L3 the probability 

βL3 that GW for design A is lower than GW for design B is just 69%, highlighting an increased uncertainty 

due to possible variations in the material selection. In this case, the widest source of variation is due to 

insulation and βL3 provides information that this component should be specified in order to have a higher 

probability, ergo a more robust basis for decision-making. At the same time it is possible, during the design 

development or other phases of the design process, to test different options and obtain a reliable 

estimation of final environmental impacts for a building assembly. This approach may be of particular 

interest for designers since building codes and standards often require to achieve a defined assembly 

thermal resistance, according to a building typology and a geographical area; with this approach, during the 

early design stage, it is possible to select a range of building assemblies that satisfy the same performance 

(thermal resistance, cost, use of recycled materials, use of renewable materials, etc.), compare them by 

means of the CI and therefore strengthen the decision-making process and simultaneously informing 

designers about environmental impacts. These two hypothesis are represented in Figure 2.10. 
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Figure 2.10 - Global warming distributions for design A and design B. On the left hand side distributions 
represent L3, in which material details are not specified (β = 69%). On the right hand side distributions 

represent L5, where BOMs are fully specified (β = 92%). 

 

2.5.1 Building assembly typologies 

The probabilistic underspecification approach has been used with several residential building assemblies, in 

order to test its efficiency and effectiveness. For this purpose a MAD-COV metric has been evaluated for 

each assembly and for each environmental impact category. Average results for 52 exterior walls are 

reported in Figure 2.11 (from L3 to L5), while at L2 and L1 average MAD-COV values were obtained using 

category MAD-COV averages (Figure 2.2, 5 wall categories at L2 and one macro-category of exterior walls at 

L1).   

The general trend represented in Figure 2.7 (underspecification relative to a single exterior wall) is 

generally confirmed by average MAD-COV values of the exterior walls category, even though, as already 

stated, anomalies can be identified (for Eutrophication average MAD-COVL2 < average MAD-COVL3 and for 

Smog creation average MAD-COVL3 < average MAD-COVL4). Average MAD-COV values have been calculated 

also for other building assembly categories and results validate the previous affirmation. From Figure 2.12 

to Figure 2.18, average MAD-COV values related to a series of assembly categories are shown for 

acidification, eutrophication, global warming and smog creation, highlighting the wider data dispersion at 

L1 and L2.  
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Figure 2.11 - Average MAD-COV for exterior walls obtained from the analysis of 52 walls (from L3 to L5), 5 
wall typologies (L2) and one macro-category (L1, generic wall). 

 

 

Figure 2.12 - Average MAD-COV for interior walls obtained from the analysis of 4 walls (from L3 to L5), 2 
wall typologies (L2) and one macro-category (L1, generic wall). 
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Figure 2.13 - Average MAD-COV for foundations obtained from the analysis of 49 foundations (from L3 to 
L5), 4 typologies (L2) and one macro-category (L1, generic foundations). 

 

 

Figure 2.14 - Average MAD-COV for doors obtained from the analysis of 7 doors (from L3 to L5), 2 typologies 
(L2) and one macro-category (L1, generic door). 
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Figure 2.15 - Average MAD-COV for windows obtained from the analysis of 48 windows (from L3 to L5), 6 
frame typologies (L2) and one macro-category (L1, generic windows). 

 

 

Figure 2.16 - Average MAD-COV for roofs and ceilings obtained from the analysis of 96 assemblies (from L3 
to L5), 4 typologies (L2) and one macro-category (L1, generic roof). 
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Figure 2.17 - Average MAD-COV for floors obtained from the analysis of 12 assemblies (from L3 to L5), 2 
typologies (L2) and one macro-category (L1, generic floor). 

 

 

Figure 2.18 - Average MAD-COV for exterior finishes obtained from the analysis of 29 finishes (from L3 to 
L5), 2 typologies (L2) and one macro-category (L1, generic exterior finish). 
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2.5.2 Alternative taxonomy  

In order to test the efficiency of the classification structure adopted in this work, M3 and M4 levels for 

material taxonomy were redefined using price ($/kg) and conductivity (W/m∙K) as classifiers. In this way, an 

alternative taxonomy for construction materials was created and part of the simulations were re-

processed. Through data visualization, clusters of materials were formed using the two classifiers, as 

reported in Table 2.2.  

Table 2.2 - Classifiers and clusters of materials used to define an alternative taxonomy. 

Price ($/kg)  Conductivity (W/m∙K) 

< 1  < 0.05 

1 – 2  0.05 – 0.1 

2 – 3  0.1 – 0.2 

3 – 5  0.2 – 0.4 

> 5  0.4 – 1.0 

  1.0 – 3.0 

  > 3.0 

 

 

 

Figure 2.19 - MAD-COV values for an ICF wall (from L3 to L5) analyzed with two possible material 
taxonomies: Base taxonomy grounded on the CSI specifications and Alternative taxonomy grounded on 

price (M3) and conductivity (M4) as classifiers. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L3 L4 L5

MAD-COV Values 

Acidification Eutrophication Global Warming Smog

Base taxonomy 

Alternative taxonomy 



50 

Simulation results provided different performance metrics and distributions of results. An example of MAD-

COV metrics for an ICF wall (the reference wall described in Table 2.1) is represented in Figure 2.19, where 

the same metrics for the base taxonomy are available for comparison. 

2.6 DISCUSSION 

The series of tests conducted for this work revealed probabilistic underspecification to be an interesting 

approach for a streamlined LCA methodology tailored to the building sector. Quantitative results for the 

relevant environmental categories, processed with uncertainty analysis, can be obtained using low-fidelity 

categories for materials and building assemblies, demonstrating that LCA can be applied not only when a 

complete and detailed bill of materials is available but also when fewer details are known. Therefore, 

decision-making based on this approach at different phases of the design process can be sustained by use 

of the Comparison Indicator.  

In general terms, the approach proved to be efficient because extensive data collection for inventory 

analysis was not necessary. Further developments that put into practice the use of hybrid models are 

advisable to test the approach’s effectiveness, as designers and architects can probably provide 

information on building parameters at different levels of detail (see Chapter 3 Probabilistic Triage). It is also 

desirable that the database of environmental impacts of building assemblies (and categories) be tested by 

experts (designers and architects) to evaluate the real reduction of cost and time for LCA implementation. 

Further work could also investigate the use of a different and possibly more efficient way to structure the 

taxonomy for materials and for assemblies. Figure 2.12 to Figure 2.18 show how data dispersion at L1 and 

L2 is wider for some assembly categories but under 30% for others (foundations, interior walls and 

windows), indicating that a more structured approach can be used to develop materials or assembly 

taxonomy. 

Lee applied the probabilistic underspecification method to a case study and highlighted that poor data 

structures reduced accuracy in streamlining (Lee 2013), while Reis found that data mining techniques 

support probabilistic underspecification and streamlined LCA, providing indications on how to develop a 

material taxonomy able to reduce the error rates on environmental results (Reis 2013).  

The data collection phase included a series of classifiers for each material: price, conductivity, density, etc. 

These classifiers were used to structure an alternative material classification, but this did not bring about an 

improvement in results. Figure 2.19 shows an example of the higher data dispersion obtained using the 

Alternative taxonomy. Whereas the average MAD-COV value at L3 is about 25% for the Base taxonomy, it 

becomes 69% with the Alternative one. At L4 the gap is reduced, but still significant: an average of 19% for 

the Base taxonomy, 51% for the Alternative taxonomy. Additional research here could be useful, although a 

structure based on the CSI divisions is probably more efficient for experts in the field.  
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Ultimately, this work will be part of a larger algorithm under development at the Concrete Sustainability 

Hub, in which the other parts of the building’s life cycle will be included to identify trade-offs among the 

estimated impacts of the operational use phase, the embodied phase and the end of life. The operational 

use phase in particular is recognized as a key contributor to the total impact of residential buildings and will 

be assessed in conjunction with models able to estimate the inventory for a building based on known 

parameters or attributes described in the early design phases.  

2.7 RESEARCH SPONSORS AND PARTNERS 

The Portland Cement Association and the Ready Mix Concrete Research & Education Foundation provided 

an excellent support to the research at the Concrete Sustainability Hub (CSHub), as well as the Compagnia 

di San Paolo that financed the MITOR project sponsorship. 
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3 PROBABILISTIC TRIAGE 

As stated in the previous chapter, LCA is often considered cumbersome in the residential building sector, 

primarily because of the complexity of the data collection required. One way to speed up this process is to 

apply a probabilistic triage to a specific building typology to identify which specific parameters of influence 

of the building to direct more effort towards in the specification of proxy data in the LCA model. 

In the present work, another method to streamline LCA for buildings is proposed based on the probabilistic 

underspecification approach. With this approach, a system can be characterized according to the available 

information about its characteristics rather than by specific process-based data (Reis 2013; Olivetti et al. 

2013). This approach quantifies environmental results processed with uncertainty analysis, demonstrating 

that LCA can be applied not only when complete and detailed system specifications are available but also 

when decisions have to be made in a situation of data exiguity. In particular, a probabilistic triage was 

developed for different residential building typologies to effectively triage data collection, i.e., to 

understand which specific parameters of influence of the building to direct more effort towards in the 

specification during the LCI phase. 

3.1 RESEARCH QUESTION 

The building sector is considered to be the area with the most potential to deliver long-term and cost-

effective greenhouse gas reductions, so the need to minimize the environmental impact in this context is 

urgent. Recent studies have emphasized that the operational use phase is not the only phase responsible 

for air emissions and pollution, as the embodied phase represents a significant proportion of total energy 

and is growing with the emergence of more energy-efficient buildings. Therefore, a methodology such as 

LCA becomes crucial for sustainable development in the building sector. However, the complexity of data 

collection and scope definition limits LCA applications. Even if the inventory analysis data have already 

been collected, tabulated, and indexed, the methodology is still time-consuming, which discourages 

designers. The main question that this section addresses is whether applying the probabilistic triage 

approach may provide the ability to understand which components contribute the most to total 

environmental impacts and therefore how to prioritize data collection and specification. 

3.2 METHODOLOGY 

This study investigates whether LCA of buildings can be robustly streamlined with an effective and efficient 

data collection triage and a consequent selected use of surrogate data. Surrogate data consists of less 

accurate data which could streamline the analysis. However, during the LCI phase, it could also lead to a 

potential high uncertainty in final results, if not managed adequately. Olivetti et al. published a work in 
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which the bill of activities or the bill of materials associated with the life cycle of a system can be prioritized 

through probabilistic triage (Olivetti et al. 2013). 

Based on this method, the work presented here uses the probabilistic underspecification approach to 

identify a “high-priority” subset of activities called Set of Interest (SOI) and a “low-priority” dataset that can 

be characterized with low-fidelity categories. For a given system, the SOI is identified with a statistical 

simulation and represents the target for a higher resolution. The methodology is described in detail below. 

3.2.1 Adapting probabilistic underspecification   

The typical procedure for LCA studies conducted with a commercial software is to associate each activity 

(materials use, energy consumption, emissions, etc.) of the BOA to a specific LCA dataset available in a 

database. On the other hand, with probabilistic underspecification an LCI can be generalized using low-

fidelity categories instead of proxy data or specific LCA datasets for each activity. The probabilistic 

underspecification approach consists of using structured (and nested) groups of LCA datasets during the LCI 

phase, in order to obtain distributions of environmental impacts for each system, at different levels of 

specificity. Several LCA databases (EcoInvent, USLCI, Athena Sustainable Materials Institute, PE 

International) were explored and available LCA datasets were organized using a hierarchical categorization 

scheme.  

The classification scheme was again developed using the MasterFormat® structure defined by the 

Construction Specifications Institute (CSI) (Construction Specifications Institute 2014). MasterFormat® lists 

different main divisions and nested sub-divisions, providing a structured hierarchy for the activities 

connected to the construction of a building. For this part of the work, each LCA dataset related to 

construction materials was classified and organized into four hierarchical levels of specificity, instead of 

five. Level 1 (M1) refers to the less specified category, while Level 4 (M4) identifies the most detailed 

category, including single LCA datasets available in LCA databases. This decision was taken in order to 

simplify the classification structure developed in the previous chapter. Moreover, experiments were 

conducted using the extremes of the classification (M1 and M4). 

3.2.2 Probabilistic triage 

Through probabilistic triage an SOI can be identified using a statistical ranking system based on the 

probability that the life cycle activity contributes to some threshold of the total impact of the product. The 

SOI is defined as the smallest subset of activities whose impact represents a fraction, T, of the total 

environmental impact, EI, of the system evaluated at a particular level of specificity (Olivetti et al. 2013). 

Afterwards, a life cycle analyst can refine the data collection for prioritized targets only, in which 

components are specified with more detail. This represents a way to streamline the study and therefore to 
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obtain streamlined LCA results. Formally, the SOI for a specific level of detail (M1-M4) is defined as the 

minimum subset of activities that satisfies equation (3.1): 

 

𝑆𝑂𝐼 ⊆∑| 𝑃 {
𝐸𝐼𝑆𝑂𝐼
𝐸𝐼𝑇𝑂𝑇

≥ 𝑇} ≥ 𝐶 (3.1) 

 

In Equation (3.1) P identifies a probability density function and C an interval of confidence. EISOI is the 

environmental impact due only to the activities of the SOI and EITOT is the total environmental impact of the 

system. The values of T and C can vary and generally depend on the target of the research. For this work, T 

was initially set as 75% and C as 90%. 

3.2.3 System boundary for case studies 

A cradle-to-gate system boundary was applied to the case studies to test this work. In other words the 

materials used for the initial construction of a series of buildings were used, while other activities 

(operational use phase, maintenance and replacement, end of life) will be considered in future works. This 

decision was made in order to limit the scope of the analysis for tests and to facilitate the results 

interpretation phase. This decision reflected recent work which showed the growing significance of 

embodied energy inherent in buildings and have demonstrated its relationship to carbon emissions (Dixit et 

al. 2012). Recent studies have also further emphasized the significance of embodied phase and have 

acknowledged its relative proportion of total energy, which is growing with the emergence of more energy 

efficient buildings (Frey 2008; Plank 2008). 

3.2.4 Assessment method 

The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) version 

2.1, adopted in the previous chapter, was used to calculate the potential environmental impacts, including 

impact categories such as global warming (CO2 equivalent), acidification (SO2 equivalent), eutrophication (N 

equivalent) and tropospheric ozone (smog) formation (O3 equivalent). 

3.2.5 Evaluation metrics 

The median absolute deviation coefficient of variation (MAD-COV) was used as the performance index (see 

section 2.4.1). In equation (3.2), MAD-COV for a generic environmental indicator and a defined level of 

specificity (Mj, j = 1:4 and Hybrid) is obtained using each single environmental result of a Monte Carlo 

simulation (xi, i = 1:1000) and the median value of all the 1000 Monte Carlo simulation results 

(median(XMj)). This performance metric was chosen in order to calculate the dispersion in results for each 
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case study and therefore to evaluate the different dispersions occurring with different levels of specificity 

in order to estimate the effectiveness of hybrid models. 

 

𝑀𝐴𝐷 − 𝐶𝑂𝑉𝑀𝑗 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖𝑀𝑗 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝑀𝑗)|)

𝑚𝑒𝑑𝑖𝑎𝑛(𝑋𝑀𝑗)
 (3.2) 

 

On the other hand, the efficiency of hybrid models was evaluated calculating the amount of components in 

the SOI and the corresponding share of the total BOM. 

3.3 CASE STUDIES 

The method described in section 3.2 was applied to two classes of existing benchmark buildings, described 

by Ochsendorf et al. and selected among representations of residential and commercial buildings that the 

U.S. Department of Energy and its national laboratories have prepared precisely for benchmarking studies. 

A 2400 ft2 (223 m2) two-story single family house and a 33763 ft2 (3137 m2) four-story multifamily building. 

Buildings and their BOMs (list of materials used for the envelope and for internal assemblies) were analyzed 

for two different climates (Phoenix and Chicago, USA) and for different structural materials (insulated 

concrete form and light-frame wood house). The buildings were designed in accordance with applicable 

building codes as well as standard industry practice (Ochsendorf 2011). 

The benchmark single-family house considered was modeled for two different climate regions, therefore 

the Phoenix house is supported by a slab-on-grade foundations while the Chicago house has a basement 

wall foundation. The main difference between the insulated concrete form (ICF) house and the wood frame 

house is represented by exterior walls, while the roof, partitions and floors are designed in the same 

manner. The light-frame wood house in Chicago uses 2x6 in (38 mm x 140 mm) studs at 24 in (61 cm) on 

center, while the Phoenix wood house uses 2x4 in (38 mm x 89 mm) studs at 16 in (41 cm) on center. The 

ICF house consists of a 6 in (152 mm) load bearing reinforced concrete wall with 2.5 in (63.5 mm) thick 

expanded polystyrene (EPS) panels on each side. The exterior cladding is stucco with a metal lath for 

support and expansion joints. The exterior has three layers of silicate emulsion paint (Ochsendorf 2011). 

The benchmark multi-family building consists of a four-story construction for a total of eight apartment 

units per floor. Again, the main difference between the ICF building and the wood frame building is 

represented by exterior walls. The ICF structure consists of 8 in (203 mm) load-bearing concrete walls with 

2.5 in (64 mm) of expanded polystyrene (EPS) insulation on either side as the formwork. The exterior walls 

for wood multi-family buildings use 2x4 in (38 mm x 89 mm) studs at 16 in (41 cm) on center, except for the 

first two levels of the 56 ft (17 m) sides which have 3x4 in (64 mm x 89 mm) studs at 16 in (41 cm) on 

center. All buildings have a 4 in (10.2 cm) concrete slab-on-grade with a plastic vapor barrier, a 4 in (102 
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mm) layer of gravel, and a 2 in (51 mm) layer of sand. Additionally, there is a continuous perimeter footing 

and 5x5 ft (1.5 m x 1.5 m) isolated footings for each column. The exterior cladding is stucco, that utilizes a 

metal lath for support and expansion joints, and finally three layers of silicate emulsion paint (Ochsendorf 

2011).  

Complete BOMs for 8 case studies are available in Table 3.1 and Table 3.2. 
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3.3.1 Single-family detached houses 

Table 3.1 - Bill of materials for single-family buildings. Materials for initial construction are reported for two 
different climate regions (Chicago and Phoenix, USA) and two different construction techniques (Insulated 
concrete forms, ICF or wood frame). Values in kg, totals may not agree because of rounding. 

Values in kg ICF - Chicago Wood - Chicago ICF - Phoenix Wood - Phoenix 

Foundation 121764.33 118364.79 80361.00 77672.00 

Concrete for perimeter footings 10867.68 8280.14 15788.85 13200.85 

Concrete for walls 48128.28 48128.28 9315.15 9315.15 

Concrete for slab on grade 26363.64 26363.64 26363.64 26363.64 

Concrete for isolated footings 6586.37 6586.37 
  

Gravel for slab on grade 28636.36 28636.36 28636.36 28636.36 

Steel  244.00 244.00 60.00 60.00 

Polyethylene film 96.00 96.00 96.00 96.00 

EPS Insulation  489.00 
 

61.00 
 

XPS insulation slab on grade 30.00 30.00 
  

Plastic ties 323.00 
 

40.00 
 

Floors 7105.07 6728.99 6626.54 6296.39 

Wood 2250.15 1897.78 2002.98 1696.54 

Plywood 2675.94 2675.94 2675.94 2675.94 

Wood Columns 133.64 133.64 133.64 133.64 

Insulation over Unheated Basement 231.36 231.36 
  

Drywall  1746.00 1746.00 1746.00 1746.00 

Steel for Connections 67.99 44.27 67.99 44.27 

Exterior Walls 69557.02 7596.39 69557.02 6167.39 

Concrete for walls 67265.41 
 

67265.41 
 

Steel rebar 541.63 
 

541.63 
 

Wood for exterior walls 
 

4781.35 
 

3493.15 

Plywood for exterior walls 
 

251.65 
 

183.85 

Plastic ties 692.00 
 

692.00 
 

EPS Insulation 1046.00 
 

1046.00 
 

Fiberglass insulation exterior walls 
 

195.00 
 

122.00 

Plywood sheathing 
 

2331.12 
 

2331.12 

Steel for connections 11.98 37.26 11.98 37.26 

Interior Walls 3844.81 3844.81 3702.18 3702.18 

Wood for load bearing partitions 1094.32 1094.32 951.68 951.68 

Plywood for load bearing partitions 26.84 26.84 26.84 26.84 

Paint 88.00 88.00 88.00 88.00 

Fiberglass insulation 78.55 78.55 78.55 78.55 

Drywall 2557.11 2557.11 2557.11 2557.11 

Openings 1104.00 1104.00 1104.00 1104.00 

Aluminum frame 99.00 99.00 99.00 99.00 

Glass 883.00 883.00 883.00 883.00 

PVC Expansion 122.00 122.00 122.00 122.00 

Cladding walls 2242.00 2242.00 2242.00 2242.00 

Stucco 2013.00 2013.00 2013.00 2013.00 

Paint 51.00 51.00 51.00 51.00 

Steel Lath 178.00 178.00 178.00 178.00 

Roofing 8725.16 8725.16 8347.63 8347.63 

Wood 2926.43 2926.43 2548.90 2548.90 

Plywood 1113.64 1113.64 1113.64 1113.64 

Insulation 318.03 318.03 318.03 318.03 

Steel Connections 15.32 15.32 15.32 15.32 

Drywall 1708.75 1708.75 1708.75 1708.75 

Asphalt 2643.00 2643.00 2643.00 2643.00 

Staircase 490.72 490.72 490.72 490.72 

Plywood 8.21 8.21 8.21 8.21 

Laminated Veneer Lumber 209.20 209.20 209.20 209.20 

Lumber Wood 273.31 273.31 273.31 273.31 
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3.3.2 Multi-family residential buildings 

Table 3.2 - Bill of materials for multi-family buildings. Materials for initial construction are reported for two 
different climate regions (Chicago and Phoenix, USA) and two different construction techniques (Insulated 
concrete forms, ICF or wood frame). Values in kg, totals may not agree because of rounding. 

Values in kg ICF - Chicago Wood - Chicago ICF - Phoenix Wood - Phoenix 

Foundations 704055.17 666834.62 654138.95 511139.73 

Concrete for footings 225089.96 185547.00 179166.80 41494.86 

Steel reinforcement for footings 19573.04 15278.00 15579.72 3635.50 

Concrete for isolated footings 70012.02 70012.02 70012.02 70012.02 

Steel for isolated footings 1033.51 1033.51 1033.51 1033.51 

Concrete for slab on grade 186401.11 189058.56 186401.11 189058.56 

Gravel 136114.40 138054.93 136114.40 138054.93 

XPS  299.74 590.25 300.00 590.00 

Polyethylene Film 224.57 227.77 224.57 227.77 

Steel rebar 5293.34 5368.80 5293.34 5368.80 

Sand 60013.49 60870.78 60013.49 60870.78 

Wood   793.00  793.00 

Floors 71628.37 71628.90 71628.37 71628.90 

Wood 24988.56 24988.78 24988.56 24988.78 

Plywood 37482.85 37483.16 37482.85 37483.16 

Rubber pad 6604.49 6604.49 6604.49 6604.49 

Carpet 2552.46 2552.46 2552.46 2552.46 

Exterior Wall 815112.56 24397.46 792749.47 24527.16 

Concrete 786063.77  764303.30  

Steel rebar 14317.64  14109.93  

Plastic ties 9185.88  8930.63  

EPS insulation 5545.26  5405.61  

Fiberglass insulation  1048.40  1048.40 

Wood  23349.07  23478.77 

Plywood  1228.90  1235.72 

Load Bearing Partition Walls 100618.89 100618.89 100618.89 100618.89 

Wood 11926.13 11926.13 11926.13 11926.13 

Plywood 627.69 627.69 627.69 627.69 

Insulation 1441.16 1441.16 1441.16 1441.16 

Drywall 81427.37 81427.37 81427.37 81427.37 

Paint 5196.53 5196.53 5196.53 5196.53 

Openings 11276.11 11270.86 11280.42 11272.58 

Aluminum frames 1234.11 1234.11 1234.11 1234.11 

Glass 8183.12 8183.12 8183.12 8183.12 

PVC expansion joints 369.49 364.25 373.81 365.96 

Interior wood doors 1270.20 1270.20 1270.20 1270.20 

Exterior steel doors 219.18 219.18 219.18 219.18 

Cladding walls 92496.74 90713.34 93396.39 91338.36 

Paint 1088.71 1062.00 1102.29 1071.68 

Stucco 68837.03 67161.00 69695.66 67760.27 

Steel lath 1508.17 1438.00 1526.98 1450.64 

Roofing 49415.67 49468.86 49542.38 49677.07 

Asphalt 6312.95 6312.95 6455.79 6455.79 

Gravel 19444.91 19444.91 19444.91 19444.90 

Insulation batt 1878.90 1863.00 1862.76 1862.76 

Wood 15050.94 15178.10 15050.94 15243.83 

Plywood 6450.40 6504.90 6450.40 6533.07 

Galvanized Steel 277.57 165.00 277.57 136.72 

Staircase 3218.00 3218.00 3512.03 3512.03 

Wood 1769.90 1769.90 1931.61 1931.62 

Laminated Veneer Lumber 1383.74 1383.74 1510.17 1510.17 

Plywood 64.36 64.36 70.24 70.24 

Elevator Core 55466.79 55466.79 55466.79 55466.79 

Concrete 51029.44 51029.44 51029.44 51029.44 

Steel 4437.34 4437.34 4437.34 4437.34 

Columns 7652.03 7915.87 7652.03 7915.87 

Wood 7652.03 7915.87 7652.03 7915.87 
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3.4 RESULTS  

The buildings described in section 3.3 were used to test probabilistic underspecification and probabilistic 

triage. The first approach was developed with 4 levels of specificity, from M1 (low-fidelity) to M4 (high-

fidelity), while triage was defined through hybrid models of M1 and M4 categories, with the latter category 

used just for the SOI. Sets of Interest were calculated at Level 1 (M1) as a fraction of cumulative percent 

impact (T = 75%) with 90% confidence. The ICF single-family detached house located in Chicago (ICF-

Chicago) was chosen to show an example of result distributions (for acidification, global warming, 

eutrophication, smog creation) at different levels of specificity, obtained with Monte Carlo simulations and 

the procedure detailed in the methodology section.  

 

Figure 3.1 - Probabilistic distributions of acidification, global warming, eutrophication, smog creation for the 
ICF-Chicago single-family house case study. Typical results from an LCA study are represented by M4; the 

probabilistic underspecification approach is used from M3 to M1, the probabilistic triage is used for hybrid 
models. 
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In Figure 3.1 boxplots show the first and third quartiles (25th and 75th percentiles), the band inside the box 

is the median (50th percentile) and the whiskers represent the 5th percentile and the 95th percentile. Results 

were normalized to the usable area and therefore referred to 1 m2.    

ICF-Chicago comprises 41 components for a total weight of approximately 215 tons. At M1, the materials of 

the building were characterized using the broadest groups, such as concrete, metals, thermal and moisture 

protection, wood plastics and composites, etc. The SOIM1 included the components that contribute to 75% 

of total environmental impacts, with 90% confidence. It is represented by 15 components for acidification 

(AP), 14 components for global warming (GW), 22 components for eutrophication (EP) and 15 components 

for smog creation (SM), 40% of the BOM on average. MAD-COVHybrid was 7.8% on average when these 

components were specified at Level 4 (triaged hybrid model), while at Level 1 and Level 4 these values were 

respectively 37.7% (MAD-COVM1) and 4.2% (MAD-COVM4).       

Figure 3.2 and Figure 3.3 show MAD-COV values for the four considered environmental indicators, with 

scenarios from M1 to hybrid model for single-family detached houses and multi-family buildings. Moreover, 

these two charts provide information about effectiveness for the eight case studies analyzed using hybrid 

models.  

 

   

Figure 3.2 - MAD-COV for different environmental indicators at different levels of specification, from M1 to 
hybrid model (SOI threshold 75%). Single-family detached houses. 
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Figure 3.3 - MAD-COV for different environmental indicators at different levels of specification, from M1 to 
hybrid model (SOI threshold 75%). Multi-family buildings. 
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the benchmark case (T = 75%) about 40% of the BOM, on average, is included in the SOI of hybrid models. 

The resulting size of the SOI is a function of both T and C, in particular the threshold T was analyzed in the 

range 50-100% (T = 100% implies the overall BOM included in the SOI, therefore this case is equivalent to 

M4). As T decreases, the fraction of the BOM included in the SOI decreases as well, reaching a 25% on 

average when T is equal to 50% (Figure 3.4).  

MAD-COVHybrid values ranged depended on the selected threshold T, since the number of components 

specified at M4 changed. Figure 3.5 shows how the performance metric reached best results when 100% of 

the BOM is specified at M4. However, by specifying only 40% of the BOM (benchmark hybrid model, T = 

75%) results had only 3.6% more uncertainty. In the most extreme case, 25% of the BOM specified at M4 

resulted in an average MAD-COVHybrid value of 13.4%, with an increase of about 9.2%.    
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Figure 3.4 - Average fraction of the BOM included in the SOI on varying the threshold T (50 – 100%). ICF-
Chicago single-family house case study 

 

 

 

Figure 3.5 - Relation between MAD-COV for hybrid models environmental results and percentage of BOM in 
the SOI. ICF-Chicago single-family house case study 
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3.5 DISCUSSION 

The purpose of this research was to understand whether probabilistic underspecification and probabilistic 

triage, as introduced by Olivetti, can streamline LCA studies for the construction sector. Tests were 

conducted with a series of case studies analyzed with a cradle-to-gate approach, i.e., using the BOM of the 

construction phase of a building. The aim of these tests was not to compare alternatives (single-family 

houses versus multi-family buildings, concrete vs. wood frames, humid continental vs. semiarid climate), 

but to determine if triaged hybrid models can streamline LCA results effectively and efficiently when 

different building typologies are considered. The effectiveness and efficiency of this method were 

evaluated by comparing the results obtained to full-fledged LCA results and estimating the reduction in 

effort during the LCI specification phase. 

By using probabilistic underspecification, in this experiment only four classification levels were defined, 

related to the hierarchical structure of MasterFormat®. For all of the case studies, MAD-COVM1 was always 

higher than 30% on average, while MAD-COVM4 resulted generally lower than 5%. Once these results were 

obtained, probabilistic triage was tested in order to understand how to reduce efforts in specification, 

thanks to the identification of the activities (i.e., the SOI) that require careful characterization. Concerning 

the buildings analyzed, triaged hybrid models showed both an effective and efficient way to streamline LCA 

results. In other words, by specifying only one part of the BOM to the highest level of specificity (i.e., by 

using individual LCA datasets) results revealed a reduced increase of uncertainty. In benchmark hybrid 

models, when the SOI was set at threshold T = 75% and confidence C = 90%, single-family houses required 

40-44% of the BOM specified with individual LCA datasets, while multi-family buildings required 43-46% of 

the BOM. This is a potential effort reduction for a resource intensive operation, such as data collection and 

specification during the LCI phase. Moreover, triaged hybrid models originated MAD-COVHybrid values 

ranging from 7.8% to 8.2% for single-family houses and from 7.5% to 8.4% for multi-family buildings, with 

an increase of uncertainty calculated to be just 4.2% in the worst case.    

Finally, hybrid model result distributions proved to be reasonably accurate and obtainable with a reduced 

need for data specification. However, one can argue about the effectiveness of these results when T is set 

at 75%, since accuracy is a concept that each analyst can interpret personally and it also depends on the 

goals of a given LCA study. Therefore several threshold T values were explored, in order to provide an 

example of result distributions when the SOI is greater or smaller than the baseline case. Using the ICF-

Chicago single-family house, different sets of interest were explored whose impacts represented 50% to 

100% of total impacts. The lowest limit, T = 50%, introduced a MAD-COVHybrid of 13.4%, on average, by 

including 25% of the BOM in the SOI. The threshold T = 60% included 29% of the BOM in the SOI for a MAD-

COVHybrid of 12%. When T was increased to 85%, 47% of the BOM needed the highest specificity and MAD-

COVHybrid became 6.4%. T equal to 95% could represent the best case if accuracy in results is the target: 64% 
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of the BOM was included in the SOI, MAD-COVHybrid was 4.7% and the difference with the M4 scenario was 

negligible (about 0.5%). 

Applying probabilistic triage to the BOM of a building made it possible to understand which components 

contribute the most to its total environmental impact. In detail, for the baseline triaged hybrid models that 

were analyzed, a recurring set of interest components can be identified. For ICF buildings, the concrete 

used in exterior walls and foundations played a key role and was always present in the SOI for both single-

family and multi-family buildings. For wood frame buildings, given the relatively reduced impact of wood, 

the main contributors to the SOI were the concrete used for the foundation, the glass used for openings, 

and the gypsum boards used for interior and exterior walls. 

The main motivation for the tests conducted in this work was to understand whether probabilistic triage 

can be used to streamline the LCA of buildings by prioritizing data collection and specification. Here, the 

probabilistic underspecification data are gathered and described using basic categories and therefore, an 

analysis can begin with a very rough estimate of impact. However, probabilistic triage is aimed at 

understanding and forecasting the specific parameters of influence for a system (materials, assemblies, 

activities, etc.), which stress the specification during the LCI modeling phase. This introduces a potential 

reduction of the issues and bias caused by the use of surrogate data or inappropriate LCA datasets during 

the LCI phase. 

In future works, probabilistic triage will be tested considering the overall life cycle of a building (including 

the operational use phase and end of life) and not only its initial construction. In this way, for a specific 

building typology and a specific context (location, climate zone, etc.), the parameters and activities of 

particular importance can be identified. This will potentially allow a life cycle analyst to know where to 

focus attention and concentrate data collection and specification efforts, thereby reducing the time and 

costs associated with long-established full-fledged LCA studies.  

The case studies considered were characterized by a complete list of measured materials, so an important 

area of future work would be uncertainty in quantities of materials used for a given building typology. 

Therefore, further research is needed to forecast the materials requirement of a residential building before 

construction (or during the design phase). 

Regarding probabilistic underspecification, four levels of specificity were used, but this decision was 

arbitrary and other structures could be analyzed depending on the goals of the LCA study. A recent study 

introduced the use of data mining to develop a material taxonomy, but further work is needed to 

determine the most appropriate classifiers as well as what classifier information would be most easily 

available to final users (designers, architects, scientists, engineers, etc.)  
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Finally, probabilistic triage was tested using the extreme levels of the classification (M1 and M4), but this 

was again an arbitrary decision. Future works will explore the possibility of using flexible hybrid models (M1 

or M2 or M3 and M4) that can be used in different stages of the design process. By taking into account the 

experience of professionals (architects and designers), streamlined LCA methods can be developed to 

support decisions made during the design process. 
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4 EX-ANTE LCA APPROACH 

The application of fully-fledged LCA to innovative materials presents two major limitations: it can be 

performed primarily as an ex-post analysis (i.e., after the industrial production of the new material) and it 

does not account for the intrinsic properties of the material. To overcome such limitations and forecast the 

potential impact of a product before its large-scale production, a radical change in perspective is 

warranted: a shift from an ex-post approach to an ex-ante analysis (Roes and Patel 2011). In the present 

work, a comprehensive and straightforward assessment approach (scale-up protocol) is proposed, which is 

aimed at assessing the environmental sustainability and economic feasibility of the introduction of a new 

material onto the market before it is produced at an industrial scale. 

4.1 RESEARCH QUESTION 

Polybutylene succinate (PBS) is an aliphatic polyester proposed as an alternative polymer for the 

production of polymeric films, among other possible uses. Industrial productions of PBS granules exist, but 

those are primarily focused on the fossil-fuel-based polymer, and just a few production processes use bio-

based input materials (Ichikawa and Mizukoshi 2012). PBS can be partially produced by renewable sources, 

in particular the bio-based succinic acid, one of the starting monomers. Laboratory-scale productions are 

possible, but the complete industrialization of the manufacturing process in Europe may take a relatively 

long time, and so the primary data collection required for a full LCA study is not possible. The research 

question is related to the environmental burden of the future production of partly bio-based PBS in Europe: 

is it possible to forecast the environmental burden of an innovative material without optimized primary 

data? An ex-ante LCA approach is needed to answer this question. Furthermore, this approach should 

satisfy the following criteria: 

 Rely on primary data obtained from simple chemical models and pilot productions; 

 Be relatively easy to apply by considering the efficiencies of the best available technologies (BAT) of 

similar existing technologies; 

 Include an uncertainty analysis in order to produce robust distributions of results. 

4.2 BIO-BASED POLYMERS 

Interest in bio-based plastics as substitution materials for petroleum-based plastics has increased in recent 

years. In particular, the annual growth rate of the bio-based plastics market between 2003 and 2007 

averaged 40% worldwide (Shen et al. 2010) and global industrial plastic production is expected to 

experience 400% growth by 2017 (European Bioplastics 2013) reaching a total production of approximately 

3.45 Mt in 2020 (Shen et al. 2009). This growth is due to a market demand for products with a lower 

environmental burden compared to traditional plastics and that are not dependent on fossil fuels. From a 
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technological perspective, Shen et al. estimated the maximum technical substitution potential of bio-based 

polymers by interviewing industrial experts and stated that the replacement of oil-based plastics by bio-

based polymers may reach 90% of total global plastic consumption, not considering resource availability or 

economic constraints (Shen et al. 2010). Thus, the need to quantify biopolymers’ environmental impacts is 

becoming more important due to the requirement to provide a concrete and objective answer to the 

market. 

In most cases, LCA studies of bio-based polymers have produced favorable results with respect to oil-based 

alternatives, but those evaluations have been subject to the initial assumptions and boundaries of the 

system considered (Madival et al. 2009). Additionally, a relatively lower environmental burden does not 

imply the full sustainability of the bio-based plastics currently on the market (Álvarez-Chávez et al. 2012). 

A part from starch-based plastics and polylactic acid (PLA), many biopolymer production technologies are 

still at the lab/pilot-plant scale. Therefore, as for most bio-based products, limited reliable primary data are 

available with which to perform a proper environmental impact assessment by means of LCA (Patel et al. 

2012). For this reason, an ex-ante LCA approach is here proposed to assess the environmental performance 

of innovative bio-based products, by combining primary data collected at the lab/pilot scale with chemical 

and thermodynamic considerations. 

4.3 METHODOLOGY 

The final goal of this work is to integrate ex-ante LCA with multi criteria material selection, moving from an 

evaluation based on the unit of mass of the material to an assessment that takes into account at the same 

time both the intrinsic properties of the material and its environmental burden. This synergic integration 

represents the most relevant added value element of the proposed methodology. 

4.3.1 Scope definition 

A cradle-to-gate system boundary is adopted. The initial phases of the material life cycle are considered, 

including all of the processes leading to the production of the polymer pellet. A reference unit of 1 kg of 

partly bio-based PBS is used to guarantee the consistency of results and direct comparability with the 

ecoprofiles available on the PlasticsEurope platform. 

4.3.2 Ex-ante LCA ecoprofile based on uncertainty analysis 

The operational framework for an ex-ante LCA is defined according to ISO 14040 standards for a full-

fledged LCA (ISO 14040 2010; ISO 14044 2010). The ex-ante LCA strategy proposed in the present work is 

grounded in the Generic Approach, developed by Patel et al., and it is focused mainly on the analysis of bio-

based products (fuels, chemicals and polymers) in the context of White Biotechnology (Patel 2006). The 
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Generic Approach is defined as a method that allows the estimation, ex- ante, of the environmental impacts 

and basic economics of new biotechnological processes for which data from the pilot plant or laboratory 

scale are not yet available or for which industrial-scale data are not publicly accessible due to 

confidentiality agreements. Such methodology was implemented utilizing primary data from production at 

the pilot plant scale and secondary data obtained by means of a stoichiometric model of the chemical 

processes involved. The aim is to perform a multiscale analysis whose results will be suitable for enabling a 

consistent scale-up of the environmental burden at the industrial scale.  

To ensure the feasibility of the analysis, some conditions have to be granted: (a) the biotechnological 

processes examined (fermentation, enzymatic conversion, etc.) have to be described in the literature and 

to be considered feasible; (b) the availability of basic information, theoretical and otherwise (for example, 

the stoichiometry of chemical reactions involved), is defined; and (c) the products analyzed have to be likely 

produced in large quantities within the current techno-economic context or in a reasonable future 

scenario. 

The main objective of such an analysis is to evaluate the environmental burden associated with the 

production of goods and, in particular, to allow a comparison with traditional products of the chemical 

industry. In this context, the scope of investigation is limited from cradle to factory gate: i.e. the system 

boundaries are chosen so that the final output is the studied chemical product. As far as biopolymers are 

concerned, the eventual goal is to extend the scope of the change-oriented assessment to include the use 

phase by means of material indices. These indices combine mechanical properties with environmental 

burdens for a straightforward comparison with the oil-based polymers currently in use. In the case of 

compostable or biodegradable polymers, appropriate considerations are required and the horizon of the 

analysis may need to be extended from cradle to grave, to include also the potential impacts associated 

with disposal and waste management (Davis and Song 2006; Song et al. 2009).  

Once the goal and scope of the analysis have been defined, subsequent steps of the ex-ante LCA include 

the creation of a flow chart representing the product system and describing inputs, outputs and internal 

mass and energy flows. Such a Life Cycle Inventory analysis is a more time and resources-demanding step, 

similar to the requirements of a full-fledged LCA. As mentioned above, the ex-ante LCA methodology 

adopted here does not rely on primary data collected by monitoring real industrial systems, as these do not 

yet exist for the production of interest, but on primary data from the lab/pilot plant scale and on a 

theoretically grounded model. Such a model is based on the current literature and can use analogous 

industrial processes, for which quantitative and qualitative information are available as a benchmark. Once 

the processes involved in the production system have been identified, the total energy consumption and 

the associated environmental impacts are estimated. 
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In a full-fledged LCA, manifold impact categories are considered consistent with the chosen level of detail 

and the quality and quantity of available data. Each category summarizes the environmental effects 

associated with specific emissions. During the development of the ex-ante LCA approach, the following 

impact categories were used: 

 Cumulative Energy Demand (CED) is one of the major causes of environmental impact and it 

represents a practical and direct approach because all industrial processes consume energy. It 

measures the amount of energy involved in a system, considering the upper heating value, from 

both renewable and non-renewable sources. 

 Global Warming (GW) is one of the indicators of greatest importance because it is used as a 

reference in many regulatory measures and environmental policies at the international level. It 

takes into account, first and foremost, the emissions of carbon dioxide, and other greenhouse 

gases such as CH4, N2O, etc. In the case of bio-based products, carbon uptake (i.e. the CO2 absorbed 

during photosynthetic processes) acquires particular relevance and must be accounted for. 

 

The choice of such a small set of indicators, however, does not affect the validity and comprehensiveness of 

the analysis. In fact, by linear regression, it is possible to associate total energy consumption (CED) with 

most impact categories, such as acidification, eutrophication, human toxicity, etc., as shown by Roes and 

Patel. This correlation has been verified for a large number of products, in particular commodities, and it is 

justified by the fact that energy consumption (in particular from fossil sources) is the primary source of all 

impacts associated with their production (Huijbregts et al. 2006; Huijbregts et al. 2010). Nevertheless, CED 

does not take into account impacts resulting from land use, and for this reason, it cannot be regarded as a 

comprehensive indicator in the case of agricultural products and/or derivatives (Hellweg et al. 2010; Patel 

et al. 2012). Therefore, in future works, the assessment of energy-related impact categories with land use 

and land use change indicators will be implemented. 

4.3.3 Scale-up protocol 

The scale-up protocol is first presented in general terms and afterwards applied to polybutylene succinate, 

the bio-based polymer chosen as a case study. To obtain a forecast of the environmental results in a cradle-

to-gate framework, this methodology is based on the identification of a proper mathematical relationship 

between the environmental burdens at the stoichiometric, pilot and industrial scales. This relationship is 

here called the scale-up function. The protocol is made up of five fundamental steps: 

 (1) Choice of reference polymer. Because data collected on the industrial scale are not available for 

innovative bio-based products, the definition of the scale-up function requires the choice of a 

reference polymer. This is selected according to the following considerations: (a) the reference 
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polymer and the biopolymer should belong to the same polymer class (e.g. polyesters); (b) the 

synthesis of the reference polymer and of the biopolymer should follow comparable chemical 

routes; and (c) data on the industrial scale must be available for the reference polymer. 

 (2) Pilot scale production and assessment. One or more batches of the bio-based polymer are 

produced in a monitored pilot plant: all of the inputs and outputs of the process and the pilot scale 

environmental impacts of the biopolymer are determined with the ex-ante LCA approach. 

Afterwards, a batch of the reference polymer is produced in the same pilot plant, again monitoring 

all of the inputs and outputs of the process, and the pilot scale environmental impacts of the 

reference polymer are determined with the ex-ante LCA approach. In this way, data on the 

environmental burdens of the biopolymer and the reference polymer are obtained 

straightforwardly on the same production lab/pilot scale. 

 (3) Industrial scale assessment of the reference polymer. The environmental impact related to the 

production of the reference polymer on the industrial scale is assessed, by means of a full-fledged 

LCA, using available secondary data or product ecoprofiles. 

 (4) Stoichiometric baseline. For both the bio-based polymer and the reference, it is possible to 

define stoichiometric models for the chemical conversions (e.g. polymerization) based on 

theoretical information. These models represent perfectly efficient ideal systems; therefore, their 

environmental impact (assessed by means of ex-ante LCA) is the lowest possible for the production 

routes considered, so it is used as a baseline. 

 (5) Scale-up function definition. The result of the previous steps is a set of environmental impact 

values on the pilot, industrial and stoichiometric scales for the reference polymer, whereas the 

environmental burden on the industrial scale is still missing for the new biopolymer. Therefore, 

considering the complete set of data pertaining to the reference polymer, a relationship among the 

impacts at different scales (Environmental Impact, 𝐸𝐼) is defined as function of the mass conversion 

yield (𝑦𝑚𝑎𝑠𝑠) of the chemical conversion process. 

𝐸𝐼𝑟𝑒𝑓 = 𝑓(𝑦𝑚𝑎𝑠𝑠,𝑟𝑒𝑓) (4.1) 

 

The mass conversion yield is a valid indicator of the scale of a chemical process: the pilot scale is 

characterized by high inefficiency and then it has a low 𝑦𝑚𝑎𝑠𝑠 : conversely, industrial production is 

optimized (hypothesis of BAT) and it has a much higher 𝑦𝑚𝑎𝑠𝑠. Finally, the stoichiometric model is 

representative of the ideal process and 𝑦𝑚𝑎𝑠𝑠
𝑠𝑡𝑜𝑖𝑐 represents the upper limit for the conversion. Because the 

stoichiometric mass conversion yield is characteristic of the specific process considered and it does not 

depend on factors that are not chemical and physical, the 𝑦𝑚𝑎𝑠𝑠 at each scale is normalized with respect to 
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𝑦𝑚𝑎𝑠𝑠
𝑠𝑡𝑜𝑖𝑐 to enable the subsequent application of the function to slightly different processes. Therefore, 

equation (4.1) is rewritten as follows: 

𝐸𝐼𝑟𝑒𝑓 = 𝑓(�̅�𝑚𝑎𝑠𝑠,𝑟𝑒𝑓) (4.2) 

 

where �̅�𝑚𝑎𝑠𝑠,𝑟𝑒𝑓 is the normalized mass conversion yield. Equation (4.2) is the generalized form of the 

scale-up function. The set of data for the environmental impact of the reference polymer is made up of 

discrete points: therefore, a regression or interpolation is required to obtain a proper mathematical 

function. 

4.3.4 Monte Carlo simulations 

For this specific work, Monte Carlo analysis was used to process uncertainty data for all of the assessments: 

this way, for each parameter, there is not only one value representative of the impact, but a range of data 

points (domain of possible inputs), defined by a probability distribution and the standard deviation. Monte 

Carlo simulation randomly generates inputs from the probability density function over the domain and 

performs a deterministic computation on the generated inputs.  

The entire simulation was run 1000 times for each assessment to obtain a significant number of trials. 

Finally, each parameter of the LCA dataset is characterized by a distribution of results; these are then 

aggregated to obtain the total probabilistic distribution. 

4.4 CASE STUDY  

The case study addressed herein is focused on polybutylene succinate PBS, a biopolymer that is gaining 

interest, particularly as a replacement for polyolefins (Fujita and Wada 2011; Jacquel et al. 2011). This 

biopolymer is partly bio-based (i.e., it can be obtained from bio-based monomers, in particular bio-based 

succinic acid) as well as biodegradable (it satisfies the criteria of ISO 14855 (ISO 14855 2005)). 

PBS is an aliphatic polyester with mechanical properties and processability performances similar to those of 

widely used polymers. It has been proposed as an alternative in the production of polymeric films for use in 

agriculture (mulching film), shopping bags, bags for composting, etc. (Ichikawa and Mizukoshi 2012). 

 

Figure 4.1 - Polybutylene succinate chemical reaction 
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PBS is obtained from succinic acid and 1,4-butanediol monomers by means of a polycondensation reaction 

that forms the polyester and water as byproduct (Figure 4.1). Currently, the fossil monomers are, but 

alternatives from renewable sources have been studied to replace one or both of the reactants. In 

particular, succinic acid can be produced from starch, glucose or cellulose, through yeast-based or bacterial 

fermentation with a relevant potential reduction in CO2 emissions (Smidt et al. 2011). Furthermore, bio-

based succinic acid can become the source for a “green” C4 chemical derivatives platform, including 1,4-

butanediol (Deshpande et al. 2002; Werpy et al. 2004; Patel 2006; Minh et al. 2010; Jacquel et al. 2011). A 

sensitivity analysis was performed to evaluate and compare different renewable sources and chemical 

routes available for the production of bio-based succinic acid. The biomasses considered were maize starch, 

sugarcane, and lignocellulosics, and the methods of extraction taken into account were crystallization and 

electrodialysis, for a total of 6 different cases analyzed. Data about the environmental impact of bio-based 

succinic acid were derived from Patel (Patel 2006). 

The Japanese company Showa Highpolymer has successfully produced PBS on the pilot scale using bio-

based succinic acid. The mechanical properties and processability (extrusion bubble test) of the resulting 

bio-based PBS are in line with the performance of its oil-based counterpart (Ichikawa and Mizukoshi 2012). 

Because the production process of PBS from biomass is currently on the pilot scale, a forecast of its 

environmental impact on an industrial scale holds significant interest.  

The starting monomers for the production of PBS are a dicarboxylic acid and a diol undergoing an 

esterification reaction. According to step 1 of the scale-up protocol, the reference polymer should be a 

polyester obtained with the same chemical reaction (polycondensation) and for which an industrial 

ecoprofile is available. From a purely chemical point of view, one of the closest polymers to PBS is 

polybutylene terephthalate (PBT) because, although it is partly aromatic, it is obtained by polycondensation 

of terephthalic acid and 1,4-butanediol. Therefore, PBT meets both requirements (a) and (b) for the 

selection of the reference polymer in the first step of the scale-up protocol, but at present, a trustworthy 

ecoprofiles for this material is not available. For this reason, it was disregarded and polyethylene 

terephthalate (PET) was selected as an alternative. PET is produced from terephthalic acid (dicarboxylic 

acid) and ethylene glycol (diol) by means of polycondensation (Figure 4.2). Furthermore, a comprehensive 

ecoprofile for PET is available from PlasticsEurope13. Thus, PET satisfies all of the selection requirements 

and is a suitable candidate for use as reference polymer for the scale-up of the environmental impact of 

PBS.  

                                                           
13

 http://www.plasticseurope.org/ 
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Figure 4.2 - Polyethylene Terephthalate chemical reaction starting from Terephtalic Acid and Ethylen glycol. 

 

4.4.1 Bio-based succinic acid 

As reported in the BREW Project report (Patel 2006), Succinic acid (HOOC-CH2-CH2-COOH) is an aliphatic, 

saturated C4 dicarboxylic acid. It is typically produced by catalytic hydrogenation of petrochemically 

derived maleic acid or maleic anhydride, but can also be produced fermentatively from carbohydrates in a 

mixed-acid fermentation.  

The methodology and environmental impact results for a bio-based succinic acid production are detailed in 

the report, considering a functional unit of one ton of organic chemical and the so-called Generic Approach, 

a method that estimates the environmental impacts of new biotechnological processes for which process 

data are not publicly available. Bio-based succinic acid can be obtained via anaerobic batch fermentation on 

dextrose substrate. The starting material (biomass) can be maize starch, sugar cane or lignocellulosics, 

while the workup can be done via crystallization or electrodialysis, therefore making available six different 

options and six different environmental impact profiles.  

Table 4.1 provides information about total energy use, greenhouse gases emission and land use for the six 

available options, using a cradle to gate approach.   

On the other hand, the EcoInvent process "c1,4-butanediol, at plant, RER" has been used to model the 

production of 1,4-butanediol from acetylene in Europe. Raw materials, energy consumptions and emissions 

are modelled with literature data using a process of hydrogenation of butynediol from acetylene.  
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Table 4.1 - Succinic acid total energy use, greenhouse gases emission and land use for a cradle-to-factory 
gate basis 

 Non 
renewable 
energy use 

GJ/t 

Renewable 
energy use 
 

GJ/t 

Total 
energy use 
 

GJ/t 

Biogenic 
carbon 
stored 

t CO2 eq/t 

Greenhous
e gases 

emission 
t CO2 eq/t 

Land use 
 

 
ha/t 

Bio-based succinic acid 
Maize starch 
Crystallization 

66.5 36.1 102.6 -1.5 3.1 0.26 

Bio-based succinic acid 
Maize starch 
Electrodialysis 

27 34.7 61.7 -1.5 0.8 0.25 

Bio-based succinic acid 
Sugar cane 
Crystallization 

44.9 63.9 108.8 -1.5 2.1 0.26 

Bio-based succinic acid 
Sugar cane 
Electrodialysis 

5.4 62.5 67.9 -1.5 -0.2 0.26 

Bio-based succinic acid 
Lignocellulosics 
Crystallization 

54.5 49.7 104.2 -1.5 2.5 0.17 

Bio-based succinic acid 
Lignocellulosics 
Electrodialysis 

15 48.2 63.2 -1.5 0.2 0.17 

 

4.4.2 Pilot plant 

PBS and PET samples were synthesized via a two-step melt polycondensation reaction using a 7.5-L 

stainless steel batch reactor equipped with a heating system, a mechanical stirrer with torque 

measurement, a distillation column, a vacuum line and a nitrogen gas inlet (Jacquel et al. 2011). Chemical 

processes involved in the reaction are represented in Figure 4.3 and Figure 4.4. Primary data (material 

inputs/outputs and energy consumption) from pilot plant was collected, initially taking into consideration 

the phases of boiler ignition and final reactor cleaning, which have been later removed in order to emulate 

a continuous industrial production process. Details about the primary data collected are available in section 

4.4.3. 
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Figure 4.3 - Polybutylene succinate production at pilot plant.   

 

 

 

Figure 4.4 - Polyethylene Terephthalate production at pilot plant 
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4.4.3 Data collection 

In accordance with step 2 of the scale-up protocol, some batches of PBS and PET were produced in a pilot 

plant (Jacquel et al. 2011), while monitoring the process parameters, i.e. the input and output flows of 

reactants, products, emissions and waste as well as energy consumption. Because a pilot process is 

characterized by small batch production, there is a power absorption associated with the initial heating of 

the system and with its final cleaning. The energy related to these phases of the process was neglected to 

mitigate the effects of the discontinuous nature of pilot production and to approach the operative 

conditions of a large batch or a continuous system. The primary data (Table 4.2 and Table 4.3) collected 

were used to determine CED and GW for both the polymers produced on pilot scale. 

 

Table 4.2 - Inventory data for PET on the pilot and 
stoichiometric scales. 

PET Pilot Stoic. 

Input (kg)   

Terephtalic Acid 2.66 0.87 

Ethylene glycol 1.19 0.32 

Liquid Nitrogen 10.15 - 

Ethylene glycol (for 
cleaning) 

11.13 - 

Output (kg)   

PET Pellet 2.60 1.00 

Ethylene glycol 
(unreacted) 

0.07  - 

Ethylene glycol (for 
cleaning) 

11.13 - 

Nitrogen waste 10.15 - 

Waste water 0.44 0.19 

Energy consumption 
(MJ) 

220.54 0.85 

 

Table 4.3 - Inventory data for PBS on the pilot and 
stoichiometric scales. 

PBS Pilot Stoic. 

Input (kg)   

Succinic Acid 1.89 0.69 

1,4-Butanediol 1.51 0.52 

Liquid Nitrogen 10.15 - 

Ethylene glycol (for 
cleaning) 

11.13 - 

Output (kg)   

PBS Pellet 2.10 1.00 

1,4-Butanediol 
(unreacted) 

0.07 - 

Ethylene glycol (for 
cleaning) 

11.13 - 

Nitrogen waste 10.15 - 

Waste water 0.44 0.21 

Energy consumption 
(MJ) 

198.37 0.95 

 

 

Afterwards, following step 3 of the protocol, the impact for PET on the industrial scale was assessed with 

secondary data (Polyethylene terephthalate, granulate, amorphous, at plant/RER U, as implemented in 

SimaPro). 

Finally, the inventory data used to determine the stoichiometric baseline (step 4) were obtained from the 

chemical reactions involved in the polymerization of PET and PBS. In this case, energy consumption was 

estimated according to the polycondensation enthalpy of reaction, computed by means of Hess’s law. 

These “theoretical” inventory data (Table 4.2 and Table 4.3) were then used to assess the environmental 

burden (CED and GW) of the ideal stoichiometric scale production. 
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For steps 2, 3 and 4, the uncertainty of the impact assessment was processed by means of Monte Carlo 

simulation. This resulted in two sets of data points, for the reference polymer (PET) and for biopolymer 

(PBS). Each assessment was iterated 1000 times, giving rise to a statistical distribution of results whose 

most significant values were considered (i.e. the 5th, 25th, 50th, 75th and 95th percentiles). Each data point is 

defined by the value of the environmental impact (𝐸𝐼) and the corresponding normalized mass conversion 

yield (�̅�) that characterizes the scale of production: 

(𝐸𝐼, �̅�) (4.3) 

4.5 SCALE-UP FUNCTIONS 

The last step of the protocol consists of the identification of the scale-up function. Starting from the set of 

data points of the reference polymer, different mathematical functions (regressive or interpolating) were 

identified. In particular, linear, logarithmic, polynomial and power regression as well as linear interpolation 

were analyzed. Afterwards, each of these functions was translated along the ordinate axis to fit with the 

biopolymer data points. 

In the case of regression functions, the industrial point (𝐸𝐼𝑖𝑛𝑑) was identified by computing the value of the 

scale-up function corresponding to the normalized mass conversion yield in the best available technology  

hypothesis: 

𝐸𝐼𝑖𝑛𝑑 = 𝑓(�̅�𝐵𝐴𝑇) (4.4) 

 

The resulting impacts were inconsistent with the stoichiometric limit, and therefore, they were 

disregarded. On the other hand, linear interpolation proved to be a suitable trade-off between accuracy of 

results and ease of implementation. For this reason, linear interpolation was adopted in the present work. 

The minimum subset of data points defining the environmental impact of the reference polymer at 

different production scales is represented as follows: 

{(𝐸𝐼𝑝𝑖𝑙𝑜𝑡 , �̅�𝑝𝑖𝑙𝑜𝑡), (𝐸𝐼𝑖𝑛𝑑 , �̅�𝑖𝑛𝑑), (𝐸𝐼𝑠𝑡𝑜𝑖𝑐 , �̅�𝑠𝑡𝑜𝑖𝑐)} (4.5) 

 

This subset of points can be obtained by following the scale-up protocol as previously detailed. The linear 

interpolation on the set defined in (4.5) is represented by the concatenation of the linear interpolants 

between each pair of data points. The resulting function (general example in Figure 4.5) is continuous of 

class 𝐶0 and is defined by the following: 

{
�̅�𝑝𝑖𝑙𝑜𝑡 ≤ �̅� ≤ �̅�𝑖𝑛𝑑;  𝐸𝐼 = 𝑚′ ∙ �̅� + 𝑐′

�̅�𝑖𝑛𝑑 ≤ �̅� ≤ �̅�𝑠𝑡𝑜𝑖𝑐;  𝐸𝐼 = 𝑚′′ ∙ �̅� + 𝑐′′
 (4.6) 
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where 𝑚′ and 𝑚′′ are, respectively, the slopes of the lines interpolating the pilot-industrial data points and 

the industrial-stoichiometric ones. Equation (4.6) is called the linear scale-up function, and it can be used 

straightforwardly to forecast as a first approximation, the potential environmental impact of production of 

the biopolymer on an industrial scale. 

 

Figure 4.5 - Linear interpolation of reference polymer minimum subset of data points (general example). 

 

According to previously described scale-up protocol, the minimum subset of data points for the biopolymer 

is as follows: 

{(𝐸𝐼𝑝𝑖𝑙𝑜𝑡, �̅�𝑝𝑖𝑙𝑜𝑡), (𝐸𝐼𝑠𝑡𝑜𝑖𝑐 , �̅�𝑠𝑡𝑜𝑖𝑐)} (4.7) 

 

The data point representing the biopolymer impact on the industrial scale is missing, and it can be 

forecasted by means of the scale-up function defined from the set of data points of the reference polymer. 

If the reference polymer is chosen properly (first point of the scale-up protocol), it can be assumed that the 

environmental impact, as a function of the normalized mass conversion yield, has the same trend for both 

the reference polymer and for the bio-based polymer. Thus, with reference to the scale-up function (4.6), 

the following can be written: 

𝑚𝑟𝑒𝑓
′ ≅ 𝑚𝑏𝑖𝑜

′

𝑚𝑟𝑒𝑓
′′ ≅ 𝑚𝑏𝑖𝑜

′′  (4.8) 

 

In particular, the first part of function (4.6) is considered, relating pilot and industrial scale impacts for the 

reference polymer and the angular coefficient 𝑚′, a sheaf of lines for the biopolymer it can be defined: 
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𝐸𝐼𝑏𝑖𝑜 = 𝑚′ ∙ �̅�𝑏𝑖𝑜 + 𝑐 (4.9) 

 

Within such sheaf of lines, the line passing through the pilot scale data point can be identified 

(𝐸𝐼𝑝𝑖𝑙𝑜𝑡 , �̅�𝑝𝑖𝑙𝑜𝑡): 

𝐸𝐼𝑏𝑖𝑜 = 𝑚′ ∙ �̅�𝑏𝑖𝑜 + 𝑐𝑏𝑖𝑜
′  (4.10) 

 

Similarly, taking into account the second part of Equation (4.6), the angular coefficient 𝑚′′ and the data 

point (𝐸𝐼𝑠𝑡𝑜𝑖𝑐 , �̅�𝑠𝑡𝑜𝑖𝑐), it is possible to identify the line passing through that point: 

𝐸𝐼𝑏𝑖𝑜 = 𝑚′′ ∙ �̅�𝑏𝑖𝑜 + 𝑐𝑏𝑖𝑜
′′  (4.11) 

 

Finally, the intersection of (4.10) and (4.11) determines a point that represents the environmental impact 

of the bio-based polymer on the industrial scale (Figure 4.6). 

 

Figure 4.6 - Intersection of the scale-up functions applied to the biobased polymer 

 

The method described above can be applied straightforwardly to a larger set of data points, considering 

one pair of minimum subsets (as defined in (4.5) and (4.7)) per time. This way, the resulting environmental 

impact of the biopolymer on an industrial scale is defined not just by one number, but by means of a values 

distribution that is representative of the forecast uncertainty.  
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4.6 RESULTS  

The iteration of the procedure just described gave rise to a considerable number of results. For example, in 

Figure 4.7 the resulting linear interpolation for GW emissions of PET is presented. 

Because of the large number of data points, the scale-up function is not limited to just one polygonal chain, 

but to a bundle of lines (gray area in Figure 4.7). Each scale-up function was then applied singularly to the 

data points representing the environmental impact of PBS, at the pilot and stoichiometric scalea. The 

intersections of the resulting functions identified the GW emissions of PBS produced from bio-based 

succinic acid (Figure 4.8). 

 

Figure 4.7 - Linear interpolation of PET data points for GW at different production scales 

 

Following the same methodology, the CED for bio-based PBS produced on an industrial scale was assessed. 

Finally, the probability distribution of results for GW impact of PBS is presented in Figure 4.9 and Figure 

4.11. 

Furthermore, it is evident how the environmental burden of both PET and PBS on pilot scale is far higher 

than the respective industrial scale impact and, therefore, a direct comparison among processes at 

different scales would lead to inconsistent results. All of the results (mean values) for both PET and PBS are 

summarized in Table 4.4 and Table 4.5. 
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Figure 4.8 - GW impact of PBS at different production scales. 

 

 

 

Figure 4.9 - GW impact of 1 kg of PBS (probability distributions, 5th, 25th, 50th, 75th, 95th percentiles) at 
different scales (pilot, industrial, stoichiometric). 
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Figure 4.10 - CED for 1 kg of PBS (probability distributions, 5th, 25th, 50th, 75th, 95th percentiles) at different 
scales (pilot, industrial, stoichiometric). 

 

 

 

Figure 4.11 - Focus: GW impact of 1 kg of PBS (probability distributions, 5th, 25th, 50th, 75th, 95th percentiles) 
at different scales (industrial, stoichiometric) 
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Table 4.4 - Environmental impact of PET at different 
production scales (mean values). 

Production 
scale 
PET 

CED 
(MJ/kg 

PET) 

GW 
(kg CO2 eq/kg 

PET) 

Pilot 625.63 23.98 

Industrial 75.71 2.54 

Stoichiometric 69.05 2.15 
 

Table 4.5 - Environmental impact of PBS at different 
production scales (mean values). 

Production 
scale 
PBS 

CED 
(MJ/kg 

PBS) 

GW 
(kg CO2 eq/kg 

PBS) 

Pilot 893.55 36.57 

Industrial 138.85 6.35 

Stoichiometric 123.30 5.50 
 

 

4.6.1 Sensitivity analysis of bio-based succinic acid 

The results of the sensitivity analysis performed to evaluate the different renewable sources and 

production routes of the succinic acid monomer are presented in Figure 4.12. The values refers to the 

impact of 1 kg of PBS pellet obtained starting from the 6 different alternatives for the bio-based succinic 

acid. As for all of the other assessments, Monte Carlo analysis was used to cope with the uncertainty of the 

results and the error bars in Figure 4.12 indicate the 5th and the 95th percentile. 

   

Figure 4.12 - Sensitivity analysis of GW and CED indicators for PBS with succinic acid from different 
renewable biomasses (maize starch, sugar cane, lignocellulosic biomass) and from different processes (CR = 

crystallization, EL = electrodialysis). 

4.7 DISCUSSION 

For PET, the highest environmental burden occurs at the pilot scale due to the high inefficiencies present in 

a laboratory/pilot plant. At the industrial scale, the quality and reliability of inventory data are remarkable 

because the processes involved are highly optimized with the BAT and the operative conditions of the 
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terms of both CED and GW. Furthermore, the implementation of Monte Carlo analysis highlights a 

reduction in the uncertainty of results moving from the pilot scale to the industrial scale. 

The results obtained by applying the scale-up protocol to the case of partly bio-based PBS are in accordance 

with the previous statement. With a confidence interval of 90%, we can forecast CED and GW for a future 

industrial production of PBS characterized by the use of BAT.  

This approach clearly demonstrates that the environmental burden of a material at the pilot scale is 

characterized by high uncertainty and is generally far higher than the respective industrial scale impact. 

Therefore, a direct comparison among processes at different scales would lead to inconsistent results. 

In absolute terms, both the CED and GW indicators scored higher values in the case of PBS when compared 

to PET on the basis of 1 kg of polymer pellet. This result does not take into account the difference in the 

mechanical properties of the two polyesthers. For a more consistent comparison, information on the 

intrinsic properties of the materials will be detailed in the next chapter. 

Another relevant result derived from the linear interpolation is the forecast of the mass conversion yield 

that can be reached in the polymerization of PBS at the industrial scale. The estimated mass conversion 

yield for PBS ranges between 77.3% and 80.5%, which is lower than the mass conversion yield of the 

current industrial production of PET (82.7%). This result is reasonable in the light of the differing 

stoichiometry of the two polycondensation reactions. In fact, the maximum mass conversion yield that can 

be reached in ideal conditions (i.e. the stoichiometric case) for PET is 84.2%, whereas that for PBS is 82.7%. 

Finally, the sensitivity analysis of the bio-based succinic acid highlights two general trends. Among the 

renewable sources considered, sugar cane leads to the lowest GHG emissions, followed by lignocellulosics 

and maize starch, whereas energy consumption is not significantly affected by the biomass source. 

Regarding the extraction process, electrodialysis leads to a lower environmental impact than crystallization 

for both of the considered indicators and independently from the starting biomass. 

4.7.1 Final remarks 

Life Cycle Assessment is a standardized and well developed methodology, but it still has some limitations. 

In particular, the reliability and consistency of results might be compromised by a production scale issue in 

a comparative assessment of product systems at different stages of development. 

The scale-up protocol presented here aims at overcoming the scale issue arising in comparisons between 

innovative processes at an early stage of development and industrially optimized processes. The most 

relevant added value of the methodology lies in the use of primary data collected on the lab/pilot scale. 

Producing both the new polymer and a reference polymer in the same lab/pilot plant provides meaningful 

information on the actual relationship between the impacts of the two materials. A coherent model for the 
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scale-up of the environmental burden of the new polymer can then be proposed by combining the lab/pilot 

data with the stoichiometric baseline. 

The uncertainty analysis was performed via Monte Carlo simulations, to obtain results represented as 

probability density functions, rather than single deterministic values. This analysis is of particular interest in 

this case study, because it involved different systems (lab/pilot scale and industrial production) 

characterized by different efficiencies and uncertainties. This type of analysis is necessary when two 

alternative materials or designs have to be compared. 

The case study of PBS highlights the advantages of the scale-up methodology adopted, with particular 

reference to ease of implementation and consistency of results. A further validation of the scale-up 

methodology will be performed once an Environmental Product Declaration or cradle-to-gate ecoprofile is 

published. 

The proposed methodology could easily be applied to other biopolymers, subject to the identification of a 

suitable reference polymer. Furthermore, as mentioned before, the outcomes of the proposed scale-up 

protocol will be used for a multi-criteria comparison between bio-based PBS and traditional polymers used 

for food packaging, taking into account both the intrinsic properties of the materials and their 

environmental performance. 

In the next chapter, the ex-ante LCA approach will be integrated with multi criteria material selection in 

order to better support the decision making process at the early design. This synergic integration matches 

the forecasted environmental performance of the bio-based polymer with its intrinsic properties and 

represents one of the most relevant novels of the methodologies proposed. 

4.8 RESEARCH SPONSORS AND PARTNERS 

This research work was supported through the THALIA project (Produits éco-conçus pour le développement 

durable, validés par analyse de cycle de vie). THALIA partners provided a valuable technical support, as well 

as Prof. Giovanni Camino for the scientific help and Floriane Freyermouth for the initial experiments from 

which it was possible to develop the scale-up protocol. 
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5 MULTI-CRITERIA MATERIAL SELECTION 

Decisions made during the early stages of a product’s design determine a significant part of its overall life 

cycle. In this context, materials selection is one of the most crucial choices, and designers should take into 

account both the mechanical/thermal/electric properties and the environmental performance of materials. 

When LCA is applied to a material to obtain an ecoprofile, the scope of the analysis is generally from cradle 

to the factory gate; furthermore, the unit of mass (or volume) of the material is usually taken as the 

functional unit for the analysis. However, these methodological aspects place relevant limitations on the 

effectiveness of the assessment. In the present work, multi-criteria analysis is used to combine the 

environmental performance estimated with the ex-ante LCA approach with the intrinsic properties of the 

materials of interest to better develop materials selection. Life Cycle Thinking is here extended to a multi-

disciplinary life cycle approach. 

5.1 RESEARCH QUESTION 

The motivation for this research is driven by the fact that at an early stage of design, an engineering 

problem is set (requirements and constraints), but the solution cannot be completely defined because of 

the many possible scenarios still open to explore. Therefore, the research question that this work addresses 

is whether applying multi-criteria analysis may provide a way to innovate and support the Ecodesign 

process. The multi-criteria materials selection approach is here applied to the case of the previously 

described partly bio-based PBS, used for packaging applications. Thus, it must take into consideration the 

following:  

 The potential environmental impacts obtained by a customized ex-ante LCA for an innovative 

material, including the uncertainty analysis of the results; 

 A new concept of the system boundary of the environmental assessment: moving from a cradle-to-

gate horizon to a cradle-to-function system. 

 

5.2 METHODOLOGY 

Multi-criteria materials selection was implemented with LCA to extend the system boundaries of the 

analysis and empower a comprehensive comparison among alternative materials. When LCA is applied to a 

material to obtain an ecoprofile, the scope of the analysis is generally from cradle to the factory gate. An 

ecoprofile typically includes raw materials extraction and conversion into semi-finished products phases. 

Moreover, the unit of mass (or volume) of material is usually taken as functional unit for the analysis. 

However, this kind of functional unit does not describe the function that a material will perform when 

applied in a component, but rather refers to the material production process. 
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These methodological limits undermine the effectiveness of the assessment (Reap et al. 2008; Finnveden et 

al. 2009), particularly in the case of a comparison among different materials, whose overall performances 

cannot be expressed in terms of unit of mass. 

The approach used hereby aims at overcoming these limitations and has its turning point in the shift from a 

“kilogram-based” analysis to a function-oriented assessment. This change in paradigm passes through the 

adoption of appropriate material indices that include LCA results. Once identified, these indices were used 

in combination with bubble diagrams for a proper screening of the available alternatives. 

5.2.1 Target 

This work aims at assessing the impact of a PBS application using a multi-disciplinary life cycle approach. 

The adopted method synergically combines environmental results obtained by the customized ex-ante LCA 

with multi-criteria analysis for materials selection. Therefore, provided a specific function to fulfill, a 

comprehensive and consistent comparison between an emerging material and “traditional” materials was 

exploited. This multi-criteria materials selection approach was applied to the case of PBS used for packaging 

applications. 

5.2.2 Case study 

A series of design strategies have been already undertaken to mitigate the environmental impact 

associated with the packaging of goods. Bio-based polymers and biodegradable polymers have gained 

relevant attention as potential substitute materials to optimize the environmental performance of 

packaging solutions. In this regard, the approach here proposed was applied to PBS in order to verify and 

validate the environmental viability of its usage in packaging films.  

In the previous chapter, a scale-up protocol for a customized ex-ante environmental impact assessment of 

innovative materials was developed. The ex-ante LCA approach was proposed in order to forecast the 

environmental burden of PBS for which process data at industrial level are not yet available. 

Then, PBS used for a specific application was compared with the most common packaging polymers, i.e. 

low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP, both high flow and 

low flow), polyethylene terephthalate (PET, both amorphous and semi-crystalline), polybutylene 

terephthalate (PBT) and polylactic acid (PLA). This comparison includes polyolefins, fossil-based polyesters 

and a bio-based polyester that have a wide range of mechanical properties and are produced through 

different chemical routes. It follows that a kilogram-based environmental comparison may lead to 

inconsistent and incomplete results. 

Therefore, the first step of the procedure was the proper definition of the engineering problem that 

resulted in the identification of the most suitable material indices. In particular, it was modelled a thin film 
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of material undergoing a uniaxial planar tensile stress. The mechanical properties included in the model are 

Young modulus (𝑌), tensile strength at break (𝜎𝑓) and elongation at break (휀), while the environmental 

performance is represented by CED and GW impact categories. 

Data on the mechanical properties of PBS were retrieved both from direct measurements and from the 

scientific literature. In particular, tensile tests were performed on lab-scale PBS and on commercial PBS 

Enpol 4560J produced by IRe Chemical Ltd. Primary data were implemented with data from the datasheets 

of Enpol 4560J and Bionolle 1001 from Showa Denko. Data on the environmental impacts of PBS resulted 

from the cited ex-ante LCA, while data relating to the alternative polymers included in the comparative 

analysis were obtained from the database embedded in the software CES 2014 from Granta Design. An 

overview on all the data used is presented in Table 5.1. 

Table 5.1 - Summary of mechanical and environmental data for the materials considered in the case study. 

 Density 
(g/cm

3
) 

Modulus 
(MPa) 

Tensile 
strength at 

break (MPa) 

Elongation at 
break (%) 

GW (kg CO2 

eq/kg) 
CED (MJ/kg) 

PBS MS CR 1.26 308.4 - 505.0 42.6 - 60.5 501.4 - 685.0 5.30 - 7.90 114.17 - 
176.37 

PBS MS EL 1.26 308.4 - 505.0 42.6 - 60.5 501.4 - 685.0 3.80 - 6.33 86.77 - 148.43 

PBS SC CR 1.26 308.4 - 505.0 42.6 - 60.5 501.4 - 685.0 4.53 - 6.86 117.37 - 
175.81 

PBS SC EL 1.26 308.4 - 505.0 42.6 - 60.5 501.4 - 685.0 3.20 - 5.54 90.86 - 150.18 

PBS LI CR 1.26 308.4 - 505.0 42.6 - 60.5 501.4 - 685.0 4.79 - 7.23 114.53 - 
170.31 

PBS LI EL 1.26 308.4 - 505.0 42.6 - 60.5 501.4 - 685.0 3.41 - 5.71 87.83 - 144.57 

PBS Fossil 1.26 308.4 - 505.0 42.6 - 60.5 501.4 - 685.0 6.96 - 9.54 111.42 - 
171.79 

PLA 1.24 - 1.27 3300 - 3600 47 - 70 2.5 - 6 3.43 - 3.79 49 - 54.2 

HDPE 0.952 - 
0.965 

1070 - 1090 22.1 - 31 1200 - 1290 2.64 - 2.92 77 - 85.1 

LDPE 0.917 - 
0.932 

172 - 283 13.3 - 26.4 100 - 650 3.29 - 3.64 79.1 - 87.5 

PP (high flow) 0.898 - 
0.908 

1370 - 1580 22.5 - 33.5 52.1 - 232 1.89 - 2.08 71 - 78.4 

PP (low flow) 0.899 - 
0.908 

1340 - 1590 33 - 42.9 168 - 598 1.89 - 2.08 71 - 78.4 

PET (amorphous) 1.29 - 1.39 2800 - 3000 55 - 60 280 - 320 3.76 - 4.15 80.9 - 89.5 

PET (semi-
crystalline) 

1.37 - 1.4 2760 - 3100 70 - 75 65 - 75 3.76 - 4.15 80.9 - 89.5 

PBT 1.30 - 1.38  1930 - 3000 56.5 - 60 50 - 300 4.67 - 5.16 94.2 - 104 

MS = maize starch. SC = sugar cane. LI = lignocellulosic biomass. CR = workup via crystallization. EL = workup 
via electrodialysis.  
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5.2.3 Problem definition 

The procedure leading to the identification of the material index combining tensile strength at break (𝜎𝑓) 

and GW is here introduced. Given the element of film presented in Figure 5.1, the design objective is to 

minimize the greenhouse gases emissions preserving the ability of the film to carry the load 𝐹. 

 

 

Figure 5.1 - Element of film undergoing a uniaxial load. 

 

The GW associated with the element of film (𝐺𝑊𝑓𝑖𝑙𝑚) that has to be minimized is given by: 

𝐺𝑊𝑓𝑖𝑙𝑚 = 𝐺𝑊 ∙ 𝑚 = 𝐺𝑊 ∙ 𝑤 ∙ 𝑡 ∙ 𝑙 ∙ 𝜌 (5.1) 

 

where 𝐺𝑊 is the impact category describing the greenhouse gases emissions per unit of mass of material, 

𝑤 is the width of the element of film, 𝑡 is the thickness of the element of film, 𝑙 is the length of the element 

of film and 𝜌 is the density of the material. At the same time, the requirement that the material must 

satisfy to sustain the load 𝐹 is expressed by the following condition: 

𝐹

𝑤 ∙ 𝑡
≤ 𝜎𝑓 

(5.2) 

 

Considering the film thickness 𝑡 as a free variable and a system of equations (5.1) and (5.2), it is possible to 

describe the performance parameter by means of the following inequality: 

𝐺𝑊𝑓𝑖𝑙𝑚 ≥ 𝐹 ∙ 𝑙 ∙
𝐺𝑊 ∙ 𝜌

𝜎𝑓
 

(5.3) 

 

Equation (5.3) is the objective function for the specific engineering problem here presented: the design 

objective is to minimize 𝐺𝑊𝑓𝑖𝑙𝑚 that is subjected to the condition expressed in (5.3) in order to guarantee 

the ability of the film to support the load 𝐹. In the hypothesis that both the load 𝐹 and the geometric term 

𝑙 are given by the problem constraints and requirements, the minimization of the performance parameter 
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can be obtained minimizing the material-related term of (5.3) or, alternatively, maximizing its reciprocal, 

i.e. the material index 𝑀𝐼: 

max
𝑖∈𝕄

(
𝜎𝑓

𝐺𝑊 ∙ 𝜌
)
𝑖

 (5.4) 

 

where the subscript 𝑖 indicates the ith material within the discrete set of alternative materials 𝕄. The same 

procedure was performed to identify all the material indices considered in the present case study that are 

summarized in Table 5.2. 

Table 5.2 - Material indices identified for the case study. 

 GW CED 

Tensile 
strength 

𝜎𝑓

𝐺𝑊 ∙ 𝜌
 

𝜎𝑓

𝐶𝐸𝐷 ∙ 𝜌
 

Elongation 
at break 

휀

𝐺𝑊 ∙ 𝜌
 

휀

𝐶𝐸𝐷 ∙ 𝜌
 

Young 
modulus 

𝑌

𝐺𝑊 ∙ 𝜌
 

𝑌

𝐶𝐸𝐷 ∙ 𝜌
 

 

The maximization problem formulated in (5.4) can be graphically addressed using bubble diagrams, that 

represent a powerful tool for a quick and visual comparison among the alternative materials belonging to 

the set 𝕄. Each material index defines a maximization problem and corresponds to a bubble diagram 

whose axes are respectively the numerator and the denominator of the index itself. Taking, for example, 

the index 
𝜎𝑓

𝐺𝑊∙𝜌
, the resultant bubble diagram is presented in Figure 5.2. On a bubble diagram it is possible 

to identify the locus of points 𝐿 where the material index 𝑀𝐼 is constant, i.e. to visually recognize the 

bubbles representing the materials which equally fulfill the design objective. The mathematical description 

of this set of points is: 

𝐿 = {(𝑥, 𝑦) | 𝑀𝐼 = 𝑐𝑜𝑛𝑠𝑡} (5.5) 

 

In the case of the maximization problem shown in  (5.4), this can be rewritten as: 

𝐿 = {(𝑥, 𝑦) |  
𝜎𝑓

𝐺𝑊 ∙ 𝜌
= 𝑐𝑜𝑛𝑠𝑡} (5.6) 

 

Since the axes of bubble diagrams are characterized by a logarithmic scale, the condition presented in (5.6) 

can be reformulated as: 
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log10 𝜎𝑓 − log10(𝐺𝑊 ∙ 𝜌) = 𝑐𝑜𝑛𝑠𝑡 (5.7) 

 

Equation (5.7) describes a sheaf of parallel lines that can be superimposed on the bubble diagram and that 

are called iso-performance lines. Taking a single iso-performance line belonging to the sheaf, all the points 

on this line are characterized by the same value of the material index. It follows that the bubbles lying on 

the same line represents the materials with an equivalent eco-mechanical performance (with reference to 

tensile strength and GW for the particular case of Figure 5.1). At the same time, moving upwards 

perpendicularly to the iso-performance lines, the value of the material index increases and, consequently, 

the performance parameter (GWfilm) decreases. As far as the optimization problem detailed hereinbefore is 

concerned, there is an increase of the value of 
𝜎𝑓

𝐺𝑊∙𝜌
 and a reduction of the value of 𝐺𝑊𝑓𝑖𝑙𝑚 moving 

upwards perpendicularly to the sheaf of iso-performance lines. The relative graphical representation is 

provided in Figure 5.2, where an iso-performance line is highlighted, as well as the direction along which 

the eco-mechanical performance increases. 

 

 

 

Figure 5.2 - Ashby plot for a materials selection based on the material index 
𝜎𝑓

𝐺𝑊∙𝜌
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5.3 RESULTS 

The procedure detailed in the previous section was applied for all the 6 relevant material indices that were 

identified in order to evaluate the viability of the usage of partly bio-based PBS in packaging films. The 6 

resulting Ashby plots are presented in Figure 5.3 to Figure 5.8. 

 

Figure 5.3 - Ashby plot for materials selection based on the material index 𝜎𝑓 vs 𝐺𝑊 ∙ 𝜌 

 

 

Figure 5.4 - Ashby plot for materials selection based on the material index 𝜎𝑓 vs 𝐶𝐸𝐷 ∙ 𝜌 
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Figure 5.5 - Ashby plot for materials selection based on the material index 휀 vs 𝐺𝑊 ∙ 𝜌 

 

 

 

Figure 5.6 - Ashby plot for materials selection based on the material index 휀 vs 𝐶𝐸𝐷 ∙ 𝜌 
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Figure 5.7 - Ashby plot for materials selection based on the material index 𝑌 vs 𝐺𝑊 ∙ 𝜌 

 

 

 

Figure 5.8 - Ashby plot for materials selection based on the material index 𝑌 vs 𝐶𝐸𝐷 ∙ 𝜌. 
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As far as partly bio-based PBS is concerned, the results of the 6 alternatives considered in the sensitivity 

analysis were classified in 2 categories according to the possible workup routes, i.e. crystallization (PBS CR) 

and electrodialysis (PBS EL). 

Considering tensile strength with respect both to GW and CED, PBS bubbles are located in an iso-

performance region that includes most of the alternatives. In particular, focusing on 𝜎𝑓 versus 𝐺𝑊 ∙ 𝜌, PBS 

has a performance equivalent to the polyesters and polyethylenes, while it is slightly outranked by the 

polypropylenes. In the case of 𝜎𝑓 versus 𝐶𝐸𝐷 ∙ 𝜌, PLA performs above all the other material, followed by PP 

and PET, while PBS is in line with the other alternatives. Looking at the elongation at break both in the case 

of 𝐺𝑊 ∙ 𝜌 and 𝐶𝐸𝐷 ∙ 𝜌, PBS shows a widely better performance than other polyesters and is comparable 

with the polyolefins considered. Finally, as far as the Young’s modulus is concerned, PBS is outranked by all 

the other polymers, with the exception of LDPE. 

Narrowing the scope of the comparison to the PBS options, oil-based PBS performs clearly worse than bio-

based alternatives when GHG emissions are considered (GW indicator), whereas it is characterized by a CED 

similar to the CED of partly bio-based PBS obtained through crystallization. In general, electrodialysis is the 

preferable chemical route for producing the succinic acid monomer from renewable sources. 

5.3.1 Oxygen permeability 

Focusing on the functions to be fulfilled by a packaging film, the oxygen permeability is one of the most 

relevant material property. In particular, food packaging must be designed to meet a series of 

requirements. The primary requirement is food protection from the external environment and long-lasting 

preservation. These features are of major importance in influencing customers behavior and buying 

preferences (Löfgren and Witell 2005). 

Given the previous considerations, the case study here implemented (packaging film for food) must 

concern data on oxygen permeability for the alternative materials considered in order to guarantee a 

comprehensive eco-selection. The oxygen permeability of PBS packaging film is shown in Figure 5.9 in 

comparison with the other alternatives. Data on the oxygen permeability of PBS were retrieved from 

Okamoto et al., (2003). Density is included because the design aims at mass minimization as it leads to 

environmental impact reduction. 
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Figure 5.9 - Values of 𝑂2 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ 𝜌 for the polymers considered in this case study. 

 

The best performance is reached by PET, that presents the lowest value of oxygen permeability, followed 

by PBS, while all the other alternatives have poorer barrier properties. Finally, a multi-criteria comparison 

was performed combining the oxygen permeability with the material index concerning elongation at break 

and GW.  

In particular, 𝑂2 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ 𝜌 was plotted against the reciprocal of 
𝜀

𝐺𝑊∙𝜌
 (Figure 5.10) and 

𝜀

𝐶𝐸𝐷∙𝜌
 (Figure 

5.11). In the resulting Ashby plot, the closer the material bubble is to the origin of the axes, the better is its 

performance for both the indices considered. In fact, moving towards the origin of the axes, the oxygen 

permeability is minimized and material indices are simultaneously maximized. 

As it generally happens in multi-criteria decision processes, there is no solution that optimizes all of the 

criteria at the same time, providing one single optimal choice. However, it is possible to identify a set of 

alternatives (in this case a set of materials) representing the best trade-offs; these alternatives are called 

non-dominated solution. All the others options are called dominated since there is at least one alternative 

that performs better in one criterion without detriment to the other criterion. 

In the cases of Figure 5.10 and Figure 5.11, the set of non-dominated solutions includes HDPE, PBS EL and 

PET (amorphous) options. 
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Figure 5.10 - Ashby plot for the multi-criteria materials selection based on 𝑂2 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ 𝜌 and 
𝜀

𝐺𝑊∙𝜌
. 

 

 

 

Figure 5.11 - Ashby plot for the multi-criteria materials selection based on 𝑂2 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ 𝜌 and 
𝜀

𝐶𝐸𝐷∙𝜌
. 
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5.4 DISCUSSION 

When deciding to substitute bio-based plastics for conventional petroleum-based plastics, it is important to 

understand the flow of these materials and their impacts in all phases of their life cycles to select a material 

that is more suitable (Álvarez-Chávez et al. 2012). The analysis conducted by Álvarez-Chávez et al. (2012) 

found that none of the analyzed bio-based polymers, currently in commercial use or under development, is 

fully sustainable. It is also challenging to address requirements such as naturalness and high quality through 

bio-based materials, as demonstrated by Karana (2012). 

The results obtained in the present work are coherent with these previous findings. In fact, partly bio-based 

PBS proved to be comparable to the most commonly used packaging polymers, but the environmental 

benefits are not straightforwardly guaranteed by the renewable origin of the monomers. However, the 

combination of mechanical performance, barrier properties, and environmental burden makes PBS a viable 

option for packaging film applications, particularly as an alternative to polyolefins. 

From the Ashby plots analysis, partly bio-based PBS performed comparably to PE for all the material indices 

and, in addition, it was characterized by considerably better barrier properties. At the same time, if 

compared to other polyesters, the higher elongation at break of PBS is beneficial in the case of films, 

because it ensures the packaging integrity to a larger extent of deformation. This is particularly evident in 

the multi-criteria comparison represented in Figure 5.10 and Figure 5.11: considering GW, for instance, the 

set of non-dominated solutions includes HDPE, because it is the best option for the maximization of 
𝜀

𝐺𝑊∙𝜌
; 

PET (amorphous), because it is the best option for the minimization of the oxygen permeability, and PBS EL, 

because it is the best trade-off of the two characteristics. 

Furthermore, it is important to recall that a proper LCA study requires a holistic approach and therefore, in 

the specific case here analyzed, it is advisable to consider not only the packaging itself but rather the 

overall product-packaging system (Williams et al. 2008). If the product is food, the analysis must include 

those elements that may affect the food’s shelf life and, eventually, the production of food leftovers and 

food waste (Williams and Wikström 2011). Williams and Wikström (2011) showed that in some cases, an 

increase in the environmental burden of the packaging may result in a reduction of food waste and 

ultimately in a reduction of the overall environmental impact of the relative food-packaging system. This is 

very likely to happen in the case of PBS packaging, which could extend the shelf life of some food products  

(Breedveld et al. 2014) because PBS has adequate barrier properties, especially regarding oxygen 

permeability. This feature is particularly useful in the case of primary food packaging. At the same time, the 

high elongation at break exhibited by PBS is of relevant interest if used for secondary packaging. 

As far as the approach here presented is concerned, the use of a material index as a functional unit for the 

environmental assessment leads to more comprehensive results with respect to a kilogram-based 
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evaluation. Actually, if CED and GW are referred to the unit of mass, partly bio-based PBS presents a higher 

impact compared to fossil polyolefins. This is mainly due to a different polymerization process and a 

different consumption of energy. Moreover, the mechanical properties are different. In particular, the 

higher mechanical performances of PBS allows a reduction of the component mass, without compromising 

the fulfilment of its function. It follows that a smaller mass of material needed for the component is 

translated into an overall decrease of the environmental impact of the component itself. 

This leads to conclude that functionality should be combined with environmental results to support a 

comprehensive materials selection. 

5.4.1 Final remarks 

In the present work, the authors applied a combined approach to perform a comprehensive comparison in 

the context of a change-oriented materials selection aimed at the optimization of the eco-mechanical 

performance of a packaging film. In particular, the proposed approach combines an ex-ante LCA, 

uncertainty analysis and the multi-criteria materials selection process based on the Ashby methodology. 

Here, PBS proved to be competitive with other fossil-based polymers thanks to a combination of properties 

related to the environmental impact, relevant mechanical properties, and barrier properties. In fact, 

considering all of these properties with a multi-criteria approach, PBS films rank among the best trade-offs. 

The results of the case study provided validation of the effectiveness and suitability of this approach in 

assessing the environmental burden of newly developed bio-based polymers. One of the key points of this 

research is the inclusion of non-environmental properties of the material in the functional unit by means of 

material indices. This shift in the functional unit allows an expansion of the system boundaries from a 

cradle-to-gate horizon to a cradle-to-function framework. This approach is intended to avoid possibly 

misleading interpretations of results when comparing materials on the basis of only their ecoprofiles. 

Finally, the use of material indices as functional units for LCA of materials displayed great potential that 

goes beyond the scope of the present work and needs to be explored for other materials in future works. 
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6 CONCLUSIONS 

The work presented in this thesis was aimed at streamlining a complex process, specifically an LCA study. 

From a methodological point of view, the most recognized weaknesses of LCA are turned into points of 

strength for streamlined approaches: 

 The need for characterization of uncertainty in LCA results; 

 The lack of primary data for innovative or early-stage systems; 

 The integration of environmental results and material properties for materials selection. 

As stated by Lloyd and Ries (2008) the LCA community should develop a better understanding of the 

importance of different types of uncertainty and variability and develop protocols for reliably 

characterizing, propagating, and analyzing uncertainty in LCA. In this thesis, the uncertainty analysis 

represents one of the most relevant points of strength because, through a probabilistic characterization of 

the uncertainty in the results, it was possible to accomplish the following: 

 Develop a classification of materials, a classification of assemblies, and their corresponding 

distributions of environmental results at different levels of specificity. Thanks to this approach, the 

design process can be effectively supported by LCA, even during the early stages; 

 Realize a scale-up protocol for the potential environmental impacts of innovative materials. The ex-

ante LCA approach allows forecasting of the distributions of results, based primarily on 

experiments conducted at the pilot plant scale. Through the characterization of uncertainty, cradle-

to-gate results can be used in multi-criteria materials selection analyses, thereby developing cradle-

to-function information that is useful for Ecodesign.  

Although there are several common strategies in the case studies analyzed for this thesis, methodological 

differences can be highlighted as well. 

Probabilistic underspecification. 

 Probabilistic underspecification and probabilistic triage were focused on the application of LCA at 

different stages of the design process. Test results highlighted that the former approach is efficient 

and useful for limiting the need for data collection, though its performance depends on the 

assembly population: as the number of assemblies grows, the uncertainty in the results increases 

due to greater variation. A potential limitation in using probabilistic underspecification may be the 

broad uncertainty in the results for a concept or a schematic design.  

 The LCA results highlighted how data dispersion can vary depending on 1) the considered level of 

specification and 2) the considered environmental impact category. In some cases, the trends of 
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the MAD-COV performance metric indicated that the uncertainty in results can increase with the 

specificity. These anomalies occur due to the fact that the same group of materials can be 

heterogeneous and characterized by different environmental profiles. At certain levels, even the 

comparison indicator required more detail in data specification when a significant probability of 

success could not be reached.  

 This kind of approach is of particular interest in the United States of America because the 

construction sector there works in a particular way. Building designs (geometry, type of structure, 

etc.) are often standard, and generally, builders implement variations to meet the local building 

codes. Designers can therefore explore, by means of this approach, new construction techniques 

with a consistent number of options. 

 

Probabilistic triage. 

 To achieve results with this method effectively, a probabilistic triage is necessary. Tests conducted 

with the comparison indicator in support of probabilistic underspecification led to the development 

of a probabilistic triage approach that helps identify which components need to be specified to 

represent a significant part of the environmental impact of the product. 

 With probabilistic triage, for a specific product, it is possible to identify a set of specific parameters 

of influence. If applied to a specific category of products, it can be helpful to focus attention on 

what really matters. Application to a category requires 1) a significant number of previous LCA 

studies with which to identify the set of interest for the category and 2) a study of the uncertainty 

in the initial quantities of materials.  

 This approach can be useful for well-known product categories, such as buildings and construction 

materials, but also electronic products. Ongoing experiments are demonstrating how electronic 

devices use three main categories of materials (metals, precious metals and plastics), and specific 

information about materials (particularly precious metals) or components (e.g., integrated circuits) 

can streamline the analysis. Another area of future application will be the automotive sector. In this 

case, where bills of materials are already available, they include thousands of items and the LCI 

phase can be streamlined efficiently and effectively. 

 

Ex-ante LCA. 

 The scale-up protocol for ex-ante LCA was intended for the early-stage design of a non-

conventional system that has not yet been developed at the industrial scale.  

 Tests conducted with a partly bio-based polymer (polybutylene succinate) highlighted how LCA can 

be streamlined efficiently using the cradle-to-gate results of a similar and optimized technological 
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process. This test purposely avoided complex thermodynamic considerations or predictive models 

to preserve the efficiency of the process and avoid iterations between process engineers and life 

cycle analysts. 

 A major limitation of this case study is the lack of a third party review of this work, as a published 

ecoprofile for polybutylene succinate is not yet available. For this example, it was possible to 

estimate a distribution of environmental results, but it is not possible to associate a confidence 

interval with that distribution. Therefore, future works will evaluate the effectiveness of this case 

study. 

 In general, the scale-up protocol may face another limitation if it is not possible to find a 

conventional system or a similar technological process with available secondary data. However, it 

can be extremely useful if secondary data about best available technologies are available for use.  

 The use of a unit of mass as a functional unit is often applied for materials used for different 

purposes (plastic granules, metals, biomasses, etc.). This approach is convenient for life cycle 

specialists, but the possible function of the material is not taken into account. This is why a multi-

criteria analysis was developed to support materials selection.  

 

Multi-criteria materials selection. 

 The multi-criteria materials selection approach was implemented for the PBS case study using the 

results obtained with the ex-ante LCA. The use of multi-criteria analysis per se is not an innovative 

element, as materials selection tools allow the combination of material properties and 

environmental impacts. Here, the most novel element consists of the use of the customized ex-ante 

Life Cycle Assessment and the uncertainty analysis used to determine the uncertainty in material 

indices. 

 Test results indicated that the expansion of the scope definition for ecoprofiles was particularly 

useful for encompassing different features of the design under development. If Life Cycle 

Assessment includes all of the activities involved in a single product’s life cycle, this multi-

disciplinary approach streamlines the comparison among several single products characterized by 

different properties. 

 From a methodological point of view, multi-criteria materials selection appears to be the most 

promising tool for the immediate future. It was proven to strengthen Life Cycle Assessment for 

both sustainable and functional decision-making in design processes. Additionally, it is not just 

recommended for complex systems; if polybutylene succinate films are tested for food packaging, 

for instance, designers have to meet a series of requirements. The primary requirement is food 

protection from the external environment and long-lasting preservation. This approach can be 
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useful for developing better Ecodesign; it is not an option for changing the use of LCA, but rather a 

means of changing design management using a real multi-disciplinary life cycle approach. 

  



105 

7 BIBLIOGRAPHY 

ACADEMY (2008) Streamlined Life Cycle Assessment.  

AIA (1995) D200-1995 Project Checklist.  

Aktas CB, Bilec MM (2011) Impact of lifetime on US residential building LCA results. Int J Life Cycle Assess 17:337–349. 
doi: 10.1007/s11367-011-0363-x 

Allacker K (2012) Environmental and economic optimisation of the floor on grade in residential buildings. Int J Life 
Cycle Assess 17:813–827. doi: 10.1007/s11367-012-0402-2 

Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general 
comparative analysis and recommendations for improvement. J Clean Prod 23:47–56. doi: 
10.1016/j.jclepro.2011.10.003 

Ashby M (2000) Multi-objective optimization in material design and selection. Acta Mater. 48: 

Ashby M (2010) Materials Selection in Mechanical Design. doi: 10.1016/B978-1-85617-663-7.00030-8 

Bala A, Raugei M, Benveniste G, et al. (2010) Simplified tools for global warming potential evaluation: when “good 
enough” is best. Int J Life Cycle Assess 15:489–498. doi: 10.1007/s11367-010-0153-x 

Baldo GL (2008) Analisi del ciclo di vita LCA Gli strumenti per la progettazione sostenibile di materiali, prodotti e 
processi. 1–272. 

Bare J, Gloria T, Norris G (2006) Development of the method and U.S. normalization database for Life Cycle Impact 
Assessment and sustainability metrics. Environ Sci Technol 40:5108–15. 

Bare J, Young D, Hopton M (2012) Tool for the Reduction and Assessment of Chemical and other Environmental 
Impacts (TRACI). 1–24. 

Basbagill J, Flager F, Lepech M, Fischer M (2013) Application of life-cycle assessment to early stage building design for 
reduced embodied environmental impacts. Build Environ 60:81–92. doi: 10.1016/j.buildenv.2012.11.009 

Baumann H, Tillman A-M The Hitch Hiker’s Guide to LCA. An orientation in life cycle assessment methodology and 
application.  

Bayer C, Gamble M, Gentry R, Joshi S (2010) AIA Guide to Building Life Cycle Assessment in Practice. 193. 

Bieda B (2014) Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) 
to the steel process chain: case study. Sci Total Environ 481:649–55. doi: 10.1016/j.scitotenv.2013.10.123 

Blengini GA (2009) Life cycle of buildings, demolition and recycling potential: A case study in Turin, Italy. Build Environ 
44:319–330. 

Bolin CA, Smith ST (2011) Life cycle assessment of borate-treated lumber with comparison to galvanized steel framing. 
J Clean Prod 19:630–639. doi: 10.1016/j.jclepro.2010.12.005 

Börjesson P, Gustavsson L (2000) Greenhouse gas balances in building construction: wood versus concrete from life-
cycle and forest land-use perspectives. Energy Policy 28:575–588. doi: 10.1016/S0301-4215(00)00049-5 

Breedveld L, Fontana S, Miserocchi C (2014) LCA of vegetarian burger packed in biobased polybutylene succinate. 9th 
Int. Conf. LCA Food  



106 

Bumann a. a., Papadokonstantakis S, Sugiyama H, et al. (2010) Evaluation and analysis of a proxy indicator for the 
estimation of gate-to-gate energy consumption in the early process design phases: The case of organic solvent 
production. Energy 35:2407–2418. doi: 10.1016/j.energy.2010.02.023 

Chen JL, Wai-Kit C (2003) Matrix-type and pattern-based simple LCA for eco-innovative design of products. Int. Symp. 
Environ. Conscious Des. Inverse Manuf. 2003. EcoDesign ’03. 2003 3rd. pp 467–472 

Construction Specifications Institute C (2014) MasterFormat® Numbers & Titles. 1–186. 

Cooper JS, Fava JA (2006) Life-Cycle Assessment Practitioner Survey. 10:12–14. 

CSHub (2013) Survey of LCA Tools for Residential Buildings. https://cshub.mit.edu/sites/default/files/documents/LCA-
Brief 1-2013 CSHub.pdf. Accessed 8 Oct 2014 

Cuéllar-Franca RM, Azapagic A (2012) Environmental impacts of the UK residential sector: Life cycle assessment of 
houses. Build Environ 54:86–99. doi: 10.1016/j.buildenv.2012.02.005 

Curran MA (2013) Life Cycle Assessment: a review of the methodology and its application to sustainability. Curr Opin 
Chem Eng 2:273–277. doi: 10.1016/j.coche.2013.02.002 

Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste 
management. Ind Crops Prod 23:147–161. doi: 10.1016/j.indcrop.2005.05.004 

De Koning A, Schowanek D, Dewaele J, et al. (2009) Uncertainties in a carbon footprint model for detergents; 
quantifying the confidence in a comparative result. Int J Life Cycle Assess 15:79–89. doi: 10.1007/s11367-009-
0123-3 

Deshpande R., Buwa V., Rode C., et al. (2002) Tailoring of activity and selectivity using bimetallic catalyst in 
hydrogenation of succinic acid. Catal Commun 3:269–274. doi: 10.1016/S1566-7367(02)00119-X 

Dixit MK, Fernández-Solís JL, Lavy S, Culp CH (2012) Need for an embodied energy measurement protocol for 
buildings: A review paper. Renew Sustain Energy Rev 16:3730–3743. doi: 10.1016/j.rser.2012.03.021 

Environdec The International EPD® System. http://www.environdec.com/.  

European Bioplastics (2013) Institute for bioplastics and biocomposites. In: Bioplastics facts Fig. http://en.european-
bioplastics.org/.  

Finkbeiner M, Schau EM, Lehmann A, Traverso M (2010) Towards Life Cycle Sustainability Assessment. Sustainability 
2:3309–3322. doi: 10.3390/su2103309 

Finnveden G, Hauschild MZ, Ekvall T, et al. (2009) Recent developments in Life Cycle Assessment. J Environ Manage 
91:1–21. doi: 10.1016/j.jenvman.2009.06.018 

Frey P (2008) Building Reuse: Finding a Place on American Climate Policy Agendas. 1–39. 

Frischknecht R, Jungbluth N, Althaus H-J, et al. (2004) The ecoinvent Database: Overview and Methodological 
Framework (7 pp). Int J Life Cycle Assess 10:3–9. doi: 10.1065/lca2004.10.181.1 

Fujita I, Wada K (2011) Patent - Process for producing succinic acid - Showa Denko K.K.  

Geisler G, Hellweg S, Hungerbühler K (2005) Uncertainties in LCA ( Subject Editor : Andreas Ciroth ) Uncertainty 
Analysis in Life Cycle Assessment ( LCA ): Case Study on Plant-Protection Products and Implications for Decision 
Making. Int J Life Cycle Assess 10:184–192. 



107 

Ghattas R, Gregory J, Olivetti E, Greene S (2013) Life Cycle Assessment for Residential Buildings : A Literature Review 
and Gap Analysis. 1–21. 

Graedel TE, Allenby BR, Comrie PR (1995) Matrix Approaches to Abridged Life Cycle Assessment. Environ Sci Technol 
29:134A–139A. doi: 10.1021/es00003a751 

Gustavsson L, Joelsson A (2010) Life cycle primary energy analysis of residential buildings. Energy Build 42:210–220. 
doi: 10.1016/j.enbuild.2009.08.017 

Hacker JN, De Saulles TP, Minson AJ, Holmes MJ (2008) Embodied and operational carbon dioxide emissions from 
housing: A case study on the effects of thermal mass and climate change. Energy Build 40:375–384. doi: 
10.1016/j.enbuild.2007.03.005 

Hall DJ, Giglio NM (2010) Architectural Graphic Standards for Residential Construction, 2nd Edition. Am Inst Archit 1–
720. 

Heijungs R, Suh S (2002) The Computational Structure of Life Cycle Assessment. 131–241. 

Heinonen J, Säynäjoki A-J, Kuronen M, Junnila S (2012) Are the Greenhouse Gas Implications of New Residential 
Developments Understood Wrongly? Energies 5:2874–2893. doi: 10.3390/en5082874 

Hellweg S, Frischknecht R, Hendriks HWM (2010) Cumulative Energy Demand As Predictor for the Environmental 
Burden of Commodity Production. 44:2189–2196. 

Hochschorner E (2003) Evaluation of Two Simplified Life Cycle Assessment Methods. Int J Life Cycle Assess 8:119–128. 

Huang H, Liu Z, Zhang L, Sutherland JW (2009) Materials selection for environmentally conscious design via a proposed 
life cycle environmental performance index. Int J Adv Manuf Technol 44:1073–1082. doi: 10.1007/s00170-009-
1935-9 

Huang H, Zhang L, Liu Z, Sutherland JW (2010) Multi-criteria decision making and uncertainty analysis for materials 
selection in environmentally conscious design. Int J Adv Manuf Technol 52:421–432. doi: 10.1007/s00170-010-
2745-9 

Huijbregts M (2001) Framework for Modelling Data Uncertainty in Life Cycle Inventories. Int J Life Cycle Assess 6:127–
132. 

Huijbregts MAJ, Gilijamse W, Ragas AMJ, Reijnders L (2003) Evaluating Uncertainty in Environmental Life-Cycle 
Assessment. A Case Study Comparing Two Insulation Options for a Dutch One-Family Dwelling. Environ Sci 
Technol 37:2600–2608. doi: 10.1021/es020971+ 

Huijbregts MAJ, Hellweg S, Frischknecht R, et al. (2010) Cumulative energy demand as predictor for the environmental 
burden of commodity production. Environ Sci Technol 44:2189–96. doi: 10.1021/es902870s 

Huijbregts MAJ, Rombouts LJA, Hellweg S, et al. (2006) Is Cumulative Fossil Energy Demand a Useful Indicator for the 
Environmental Performance of Products? Environ Sci Technol 40:641–648. doi: 10.1021/es051689g 

Hung M-L, Ma H (2008) Quantifying system uncertainty of life cycle assessment based on Monte Carlo simulation. Int J 
Life Cycle Assess 14:19–27. doi: 10.1007/s11367-008-0034-8 

Hunt RG, Boguski TK, Weitz K, Sharma A (1998) Case studies examining LCA streamlining techniques. Int J Life Cycle 
Assess 3:36–42. doi: 10.1007/BF02978450 

Ichikawa Y, Mizukoshi T (2012) Bionolle ( Polybutylenesuccinate ). 1–13. doi: 10.1007/12 



108 

Ihm P, Krarti M (2012) Design optimization of energy efficient residential buildings in Tunisia. Build Environ 58:81–90. 
doi: 10.1016/j.buildenv.2012.06.012 

ILCD Handbook - JRC (2010) General guide for Life Cycle Assessment - Detailed Guidance. 1–417. doi: 10.2788/38479 

ISO (2008) ISO/IEC Guide 98-3:2008 Uncertainty of measurement -- Part 3: Guide to the expression of uncertainty in 
measurement.  

ISO 14025 (2006) ISO 14025 - Environmental labels and declarations -- Type III environmental declarations -- Principles 
and procedures.  

ISO 14040 (2010) ISO 14040 - Environmental management -- Life cycle assessment -- Principles and framework.  

ISO 14044 (2010) ISO 14044 - Environmental management -- Life cycle assessment -- Requirements and guidelines.  

ISO 14855 (2005) ISO 14855 - Determination of the ultimate aerobic biodegradability of plastic materials under 
controlled composting conditions -- Method by analysis of evolved carbon dioxide -- Part 1: General method.  

Jacquel N, Freyermouth F, Fenouillot F, et al. (2011) Synthesis and properties of poly(butylene succinate): Efficiency of 
different transesterification catalysts. J Polym Sci Part A Polym Chem 49:5301–5312. doi: 10.1002/pola.25009 

Jeswani HK, Azapagic A, Schepelmann P, Ritthoff M (2010) Options for broadening and deepening the LCA approaches. 
J Clean Prod 18:120–127. doi: 10.1016/j.jclepro.2009.09.023 

Karana E (2012) Characterization of “natural” and “high-quality” materials to improve perception of bio-plastics. J 
Clean Prod 37:316–325. doi: 10.1016/j.jclepro.2012.07.034 

Karlsson R, Luttropp C (2006) EcoDesign: what’s happening? An overview of the subject area of EcoDesign and of the 
papers in this special issue. J Clean Prod 14:1291–1298. doi: 10.1016/j.jclepro.2005.11.010 

Kloepffer W (2008) Life Cycle Sustainability Assessment of Products (with Comments by Helias A. Udo de Haes, p. 95). 
Int J Life Cycle Assess 13:89–95. 

Koch AL (1966) The logarithm in biology 1. Mechanisms generating the log-normal distribution exactly. J Theor Biol 
12:276–290. doi: 10.1016/0022-5193(66)90119-6 

Kylili A, Christoforou E, Fokaides PA, Polycarpou P (2014) Multicriteria analysis for the selection of the most 
appropriate energy crops: the case of Cyprus. Int J Sustain Energy 1–12. doi: 10.1080/14786451.2014.898640 

LaGrega MD, Buckingham PL, Evans JC (2010) Hazardous Waste Management: Second Edition. 1202. 

Lee YJ (2013) Streamlined carbon footprint computation : case studies in the food industry.  

Lindajl M, Jensen C, Tingstrom J (2000) A Comparison between the Environmental Effect Analysis (EEA) and the Life 
Cycle Assessment (LCA) methods – Based on Four Case Studies. 7th Int. Semin. Life Cycle Eng. pp 1–8 

Lloyd SM, Ries R (2008) Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment: A Survey of 
Quantitative Approaches. J Ind Ecol 11:161–179. doi: 10.1162/jiec.2007.1136 

Löfgren M, Witell L (2005) Kano’s Theory of Attractive Quality and Packaging. Qual Manag J 12:7–20. 

Luttropp C, Lagerstedt J (2006) EcoDesign and The Ten Golden Rules: generic advice for merging environmental 
aspects into product development. J Clean Prod 14:1396–1408. doi: 10.1016/j.jclepro.2005.11.022 



109 

Madival S, Auras R, Singh SP, Narayan R (2009) Assessment of the environmental profile of PLA, PET and PS clamshell 
containers using LCA methodology. J Clean Prod 17:1183–1194. doi: 10.1016/j.jclepro.2009.03.015 

Malin N (2005) Life Cycle Assessment for Whole Buildings: Seeking the Holy Grail. Build Des Constr 6–11. 

Maxwell D, van der Vorst R (2003) Developing sustainable products and services. J Clean Prod 11:883–895. doi: 
10.1016/S0959-6526(02)00164-6 

Michel J-B, Shen YK, Aiden AP, et al. (2011) Quantitative analysis of culture using millions of digitized books. Science 
331:176–82. doi: 10.1126/science.1199644 

Minh DP, Besson M, Pinel C, et al. (2010) Aqueous-Phase Hydrogenation of Biomass-Based Succinic Acid to 1,4-
Butanediol Over Supported Bimetallic Catalysts. Top Catal 53:1270–1273. doi: 10.1007/s11244-010-9580-y 

Mithraratne N, Vale B (2004) Life cycle analysis model for New Zealand houses. Build Environ 39:483–492. doi: 
10.1016/j.buildenv.2003.09.008 

Monahan J, Powell JC (2011) An embodied carbon and energy analysis of modern methods of construction in housing: 
A case study using a lifecycle assessment framework. Energy Build 43:179–188. doi: 
10.1016/j.enbuild.2010.09.005 

Newsham GR, Mancini S, Birt BJ (2009) Do LEED-certified buildings save energy? Yes, but…. Energy Build 41:897–905. 
doi: 10.1016/j.enbuild.2009.03.014 

Noshadravan A, Wildnauer M, Gregory J, Kirchain R (2013) Comparative pavement life cycle assessment with 
parameter uncertainty. Transp Res Part D Transp Environ 25:131–138. doi: 10.1016/j.trd.2013.10.002 

Ochsendorf J (2011) Methods , Impacts , and Opportunities in the Concrete Building Life Cycle.  

Okamoto K, Sinha Ray S, Okamoto M (2003) New poly(butylene succinate)/layered silicate nanocomposites. II. Effect 
of organically modified layered silicates on structure, properties, melt rheology, and biodegradability. J Polym 
Sci Part B Polym Phys 41:3160–3172. doi: 10.1002/polb.10708 

Olivetti E, Patanavanich S, Kirchain R (2013) Exploring the viability of probabilistic under-specification to streamline life 
cycle assessment. Environ Sci Technol 47:5208–16. doi: 10.1021/es3042934 

Optis M, Wild P (2010) Inadequate documentation in published life cycle energy reports on buildings. Int J Life Cycle 
Assess 15:644–651. doi: 10.1007/s11367-010-0203-4 

Patanavanich S (2011) Exploring the Viability of Probablistic Underspecification as a Viable Streamlining Method for 
LCA. 1–88. 

Patel AD, Meesters K, den Uil H, et al. (2012) Sustainability assessment of novel chemical processes at early stage: 
application to biobased processes. Energy Environ Sci 5:8430. doi: 10.1039/c2ee21581k 

Patel MK (2006) Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals 
from Renewable Resources - The Potential of White Biotechnology - The BREW Project. 1–474. 

Pesonen H-L, Horn S (2012) Evaluating the Sustainability SWOT as a streamlined tool for life cycle sustainability 
assessment. Int J Life Cycle Assess 18:1780–1792. doi: 10.1007/s11367-012-0456-1 

Plank R (2008) The principles of sustainable construction. IES J Part A Civ Struct Eng 1:301–307. doi: 
10.1080/19373260802404482 



110 

Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Int J Life Cycle 
Assess 13:374–388. doi: 10.1007/s11367-008-0009-9 

Rebitzer G, Ekvall T, Frischknecht R, et al. (2004) Life cycle assessment part 1: framework, goal and scope definition, 
inventory analysis, and applications. Environ Int 30:701–20. doi: 10.1016/j.envint.2003.11.005 

Reis L (2013) An exploration of materials taxonomies to support streamlined life cycle assessment. 1–166. 

Roes a. L, Patel MK (2011) Ex-ante environmental assessments of novel technologies – Improved caprolactam catalysis 
and hydrogen storage. J Clean Prod 19:1659–1667. doi: 10.1016/j.jclepro.2011.05.010 

Roes AL, Alsema EA, Blok K, Patel MK (2009) Ex-ante Environmental and Economic Evaluation of Polymer 
Photovoltaics. 372–393. doi: 10.1002/pip 

Ross S, Evans D, Webber M (2002) How LCA studies deal with uncertainty. Int J Life Cycle Assess 7:47–52. doi: 
10.1007/BF02978909 

Rousseeuw PJ, Croux C (2012) Alternatives to the Median Absolute Deviation.  

RSMeans Engineering Department (2013) RSMeans Green Building Cost Data 2013.  

Säynäjoki A, Heinonen J, Junnila S (2012) A scenario analysis of the life cycle greenhouse gas emissions of a new 
residential area. Environ Res Lett 7:034037. doi: 10.1088/1748-9326/7/3/034037 

Schulz M, Short MD, Peters GM (2012) A streamlined sustainability assessment tool for improved decision making in 
the urban water industry. Integr Environ Assess Manag 8:183–93. doi: 10.1002/ieam.247 

Schwartz Y, Raslan R (2013) Variations in results of building energy simulation tools, and their impact on BREEAM and 
LEED ratings: A case study. Energy Build 62:350–359. doi: 10.1016/j.enbuild.2013.03.022 

Scofield JH (2009) Do LEED-certified buildings save energy? Not really…. Energy Build 41:1386–1390. doi: 
10.1016/j.enbuild.2009.08.006 

Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics. 1–245. 

Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. 25–40. doi: 10.1002/bbb 

Shields DJ, Blengini GA, Solar S V. (2011) Integrating Life Cycle Assessment and Other Tools for Ex Ante Integrated 
Sustainability Assessment in the Minerals Industry. Am J Appl Sci 8:1214–1227. doi: 
10.3844/ajassp.2011.1214.1227 

SimaPro (2013) SimaPro Database Manual Methods library.  

Simapro (2013) Introduction to LCA with SimaPro.  

Smidt M, Manager M, Tm R (2011) A sustainable supply of succinic acid. 10:11–12. 

Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional 
plastics. Philos Trans R Soc Lond B Biol Sci 364:2127–39. doi: 10.1098/rstb.2008.0289 

Sonnemann GW, Schuhmacher M, Castells F (2003) Uncertainty assessment by a Monte Carlo simulation in a life cycle 
inventory of electricity produced by a waste incinerator. J Clean Prod 11:279–292. 

Steen B (1997) On uncertainty and sensitivity of LCA-based priority setting. J Clean Prod 5:255–262. doi: 
10.1016/S0959-6526(97)00039-5 



111 

Subramanian V, Ingwersen W, Hensler C, Collie H (2012) Comparing product category rules from different programs: 
learned outcomes towards global alignment. Int J Life Cycle Assess 17:892–903. doi: 10.1007/s11367-012-0419-
6 

Sugiyama H, Fischer U, Hungerbühler K, Hirao M (2008) Decision framework for chemical process design including 
different stages of environmental, health, and safety assessment. AIChE J 54:1037–1053. doi: 10.1002/aic.11430 

Thackara J (2005) In the bubble: designing in a complex world. MIT Press 

Toso D, Baldo G, Tecchio P, et al. (2012) Bioplastics in food packaging field: Ecodesign approach and critical issues.  

Utama NA, Mclellan BC, Gheewala SH, Ishihara KN (2012) Embodied impacts of traditional clay versus modern 
concrete houses in a tropical regime. Build Environ 57:362–369. doi: 10.1016/j.buildenv.2012.06.006 

Verbeeck G, Hens H (2010) Life cycle inventory of buildings: A contribution analysis. Build Environ 45:964–967. doi: 
10.1016/j.buildenv.2009.10.003 

Weidema BP (1998) Multi-user test of the data quality matrix for product life cycle inventory data. Int J Life Cycle 
Assess 3:259–265. doi: 10.1007/BF02979832 

Weidema BP (2000) Increasing Credibility of LCA. Int J Life Cycle Assess 5:63–64. 

Weidema BP, Bauer C, Hischier R, et al. (2013) Overview and methodology. Data quality guideline for the ecoinvent 
database version 3. Ecoinvent Report 1(v3). St. Gallen: The ecoinvent Centre 

Weidema BP, Wesnaes MS (1996) Data quality management for life cycle inventories—an example of using data 
quality indicators. J Clean Prod 4:167–174. 

Wenzel H (1998) Application dependency of lca methodology: Key variables and their mode of influencing the 
method. Int J Life Cycle Assess 3:281–288. doi: 10.1007/BF02979837 

Werpy T, Petersen G, Aden A, et al. (2004) Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening 
for Potential Candidates From Sugars and Synthesis Gas.  

Williams H, Wikström F (2011) Environmental impact of packaging and food losses in a life cycle perspective: a 
comparative analysis of five food items. J Clean Prod 19:43–48. doi: 10.1016/j.jclepro.2010.08.008 

Williams H, Wikström F, Löfgren M (2008) A life cycle perspective on environmental effects of customer focused 
packaging development. J Clean Prod 16:853–859. doi: 10.1016/j.jclepro.2007.05.006 

www.leonardo-energy.org The Big 6 environmental impact categories. http://www.leonardo-energy.org/acidification-
potential-ap. Accessed 20 Nov 2014 

Yang CJ, Chen JL (2012) Forecasting the design of eco-products by integrating TRIZ evolution patterns with CBR and 
Simple LCA methods. Expert Syst Appl 39:2884–2892. doi: 10.1016/j.eswa.2011.08.150 

Zabalza Bribián I, Aranda Usón A, Scarpellini S (2009) Life cycle assessment in buildings: State-of-the-art and simplified 
LCA methodology as a complement for building certification. Build Environ 44:2510–2520. doi: 
10.1016/j.buildenv.2009.05.001 

Zabalza Bribián I, Valero Capilla A, Aranda Usón A (2011) Life cycle assessment of building materials: Comparative 
analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build 
Environ 46:1133–1140. doi: 10.1016/j.buildenv.2010.12.002 



112 

Zhang HC, Kuo TC, Lu H, Huang SH (1997) Environmentally conscious design and manufacturing: A state-of-the-art 
survey. J Manuf Syst 16:352–371. doi: 10.1016/S0278-6125(97)88465-8 

  



113 

LIST OF FIGURES 

Figure 1.1 - LCA structure according to ISO 14040 and ISO 14044 ................................................................... 5 

Figure 1.2 - Iterative nature of LCA (ILCD Handbook - JRC 2010) ...................................................................... 6 

Figure 1.3 - Impact categories (midpoints and endpoints) of a Life Cycle Impact Assessment phase (ILCD 

Handbook - JRC 2010)........................................................................................................................................ 7 

Figure 1.4 - Number of EPDs registered by category (courtesy of The International EPD® System) .............. 10 

Figure 1.5 - Number of EPDs published per year (courtesy of The International EPD® System) .................... 11 

Figure 1.6 - Published EPDs per country (courtesy of The International EPD® System) ................................. 11 

Figure 1.7 - Lognormal density functions with identical location parameter (μ) and different scale 

parameters (σ). Source: Wikipedia. ................................................................................................................. 16 

Figure 1.8 - Boxplot chart example. Definition of a probability distribution by means of 5th, 25th, 50th, 75th 

and 95th percentiles. ........................................................................................................................................ 17 

Figure 1.9 - Ashby plot for a materials selection based on stiffness. Three material indices, corresponding to 

different loading condition of the component, are superimposed as straight lines with a different slope. .. 25 

Figure 2.1 - MasterFormat® structure adapted to classify LCA datasets (M5) in nested groups. Polystyrene, 

extruded (XPS), at plant/RER is the single entry that can be then categorized at different levels of specificity.

 ......................................................................................................................................................................... 32 

Figure 2.2 - Hierarchical structure for building assemblies. Single assemblies are analyzed using materials at 

M3, M4 and M5 (LCA datasets). Then assemblies are grouped to form L2 categories and L1 macro-

categories. Numbers in brackets refer to the volume of the population. ...................................................... 36 

Figure 2.3 - Probabilistic distributions of global warming results applied to an exterior wall (ICF). Typical 

results from an LCA study are represented by L5, while from L4 to L1 the probabilistic underspecification 

approach is used. ............................................................................................................................................. 40 

Figure 2.4 - Probabilistic distributions of acidification results applied to an exterior wall (ICF). Typical results 

from an LCA study are represented by L5, while from L4 to L1 the probabilistic underspecification approach 

is used. ............................................................................................................................................................. 40 

Figure 2.5 - Probabilistic distributions of eutrophication results applied to an exterior wall (ICF). Typical 

results from an LCA study are represented by L5, while from L4 to L1 the probabilistic underspecification 

approach is used. ............................................................................................................................................. 41 

Figure 2.6 - Probabilistic distributions of smog creation results applied to an exterior wall (ICF). Typical 

results from an LCA study are represented by L5, while from L4 to L1 the probabilistic underspecification 

approach is used. ............................................................................................................................................. 41 

Figure 2.7 - MAD-COV for the environmental impacts at different levels of specificity: From a generic wall 

(L1) to a specific ICF wall (L5). L2 refers to the ICF wall category. .................................................................. 42 

Figure 2.8 - CV for the environmental impacts at different levels of specificity: From a generic wall (L1) to a 

specific ICF wall (L5). L2 refers to the ICF wall category. ................................................................................. 42 

Figure 2.9 - MD  for the environmental impacts at different levels of specificity: From a generic wall (L1) to a 

specific ICF wall (L5). L2 refers to the ICF wall category. ................................................................................. 43 

Figure 2.10 - Global warming distributions for design A and design B. On the left hand side distributions 

represent L3, in which material details are not specified (β = 69%). On the right hand side distributions 

represent L5, where BOMs are fully specified (β = 92%). ............................................................................... 44 

Figure 2.11 - Average MAD-COV for exterior walls obtained from the analysis of 52 walls (from L3 to L5), 5 

wall typologies (L2) and one macro-category (L1, generic wall). .................................................................... 45 

Figure 2.12 - Average MAD-COV for interior walls obtained from the analysis of 4 walls (from L3 to L5), 2 

wall typologies (L2) and one macro-category (L1, generic wall). .................................................................... 45 

Figure 2.13 - Average MAD-COV for foundations obtained from the analysis of 49 foundations (from L3 to 

L5), 4 typologies (L2) and one macro-category (L1, generic foundations). ..................................................... 46 



114 

Figure 2.14 - Average MAD-COV for doors obtained from the analysis of 7 doors (from L3 to L5), 2 

typologies (L2) and one macro-category (L1, generic door). .......................................................................... 46 

Figure 2.15 - Average MAD-COV for windows obtained from the analysis of 48 windows (from L3 to L5), 6 

frame typologies (L2) and one macro-category (L1, generic windows). ......................................................... 47 

Figure 2.16 - Average MAD-COV for roofs and ceilings obtained from the analysis of 96 assemblies (from L3 

to L5), 4 typologies (L2) and one macro-category (L1, generic roof). ............................................................. 47 

Figure 2.17 - Average MAD-COV for floors obtained from the analysis of 12 assemblies (from L3 to L5), 2 

typologies (L2) and one macro-category (L1, generic floor). .......................................................................... 48 

Figure 2.18 - Average MAD-COV for exterior finishes obtained from the analysis of 29 finishes (from L3 to 

L5), 2 typologies (L2) and one macro-category (L1, generic exterior finish). .................................................. 48 

Figure 2.19 - MAD-COV values for an ICF wall (from L3 to L5) analyzed with two possible material 

taxonomies: Base taxonomy grounded on the CSI specifications and Alternative taxonomy grounded on 

price (M3) and conductivity (M4) as classifiers. .............................................................................................. 49 

Figure 3.1 - Probabilistic distributions of acidification, global warming, eutrophication, smog creation for 

the ICF-Chicago single-family house case study. Typical results from an LCA study are represented by M4; 

the probabilistic underspecification approach is used from M3 to M1, the probabilistic triage is used for 

hybrid models. ................................................................................................................................................. 60 

Figure 3.2 - MAD-COV for different environmental indicators at different levels of specification, from M1 to 

hybrid model (SOI threshold 75%). Single-family detached houses. .............................................................. 61 

Figure 3.3 - MAD-COV for different environmental indicators at different levels of specification, from M1 to 

hybrid model (SOI threshold 75%). Multi-family buildings. ............................................................................ 62 

Figure 3.4 - Average fraction of the BOM included in the SOI on varying the threshold T (50 – 100%). ICF-

Chicago single-family house case study .......................................................................................................... 63 

Figure 3.5 - Relation between MAD-COV for hybrid models environmental results and percentage of BOM in 

the SOI. ICF-Chicago single-family house case study ...................................................................................... 63 

Figure 4.1 - Polybutylene succinate chemical reaction ................................................................................... 72 

Figure 4.2 - Polyethylene Terephthalate chemical reaction starting from Terephtalic Acid and Ethylen glycol.

 ......................................................................................................................................................................... 74 

Figure 4.3 - Polybutylene succinate production at pilot plant. ....................................................................... 76 

Figure 4.4 - Polyethylene Terephthalate production at pilot plant ................................................................. 76 

Figure 4.5 - Linear interpolation of reference polymer minimum subset of data points (general example). 79 

Figure 4.6 - Intersection of the scale-up functions applied to the biobased polymer .................................... 80 

Figure 4.7 - Linear interpolation of PET data points for GW at different production scales........................... 81 

Figure 4.8 - GW impact of PBS at different production scales. ....................................................................... 82 

Figure 4.9 - GW impact of 1 kg of PBS (probability distributions, 5th, 25th, 50th, 75th, 95th percentiles) at 

different scales (pilot, industrial, stoichiometric). .......................................................................................... 82 

Figure 4.10 - CED for 1 kg of PBS (probability distributions, 5th, 25th, 50th, 75th, 95th percentiles) at different 

scales (pilot, industrial, stoichiometric). ......................................................................................................... 83 

Figure 4.11 - Focus: GW impact of 1 kg of PBS (probability distributions, 5th, 25th, 50th, 75th, 95th percentiles) 

at different scales (industrial, stoichiometric) ................................................................................................ 83 

Figure 4.12 - Sensitivity analysis of GW and CED indicators for PBS with succinic acid from different 

renewable biomasses (maize starch, sugar cane, lignocellulosic biomass) and from different processes (CR = 

crystallization, EL = electrodialysis). ................................................................................................................ 84 

Figure 5.1 - Element of film undergoing a uniaxial load. ................................................................................. 90 

Figure 5.2 - Ashby plot for a materials selection based on the material index 𝜎𝑓𝐺𝑊 ∙ 𝜌 .............................. 92 

Figure 5.3 - Ashby plot for materials selection based on the material index 𝜎𝑓 vs 𝐺𝑊 ∙ 𝜌 ........................... 93 

Figure 5.4 - Ashby plot for materials selection based on the material index 𝜎𝑓 vs 𝐶𝐸𝐷 ∙ 𝜌 .......................... 93 

Figure 5.5 - Ashby plot for materials selection based on the material index 휀 vs 𝐺𝑊 ∙ 𝜌 .............................. 94 

Figure 5.6 - Ashby plot for materials selection based on the material index 휀 vs 𝐶𝐸𝐷 ∙ 𝜌 ............................. 94 



115 

Figure 5.7 - Ashby plot for materials selection based on the material index 𝑌 vs 𝐺𝑊 ∙ 𝜌 ............................. 95 

Figure 5.8 - Ashby plot for materials selection based on the material index 𝑌 vs 𝐶𝐸𝐷 ∙ 𝜌. ........................... 95 

Figure 5.9 - Values of 𝑂2 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ 𝜌 for the polymers considered in this case study. ........................ 97 

Figure 5.10 - Ashby plot for the multi-criteria materials selection based on 𝑂2 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ 𝜌 and 

휀𝐺𝑊 ∙ 𝜌. ........................................................................................................................................................... 98 

Figure 5.11 - Ashby plot for the multi-criteria materials selection based on 𝑂2 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ 𝜌 and 

휀𝐶𝐸𝐷 ∙ 𝜌. ......................................................................................................................................................... 98 

  



116 

LIST OF TABLES 

Table 2.1 - Bill of materials, LCA datasets (M5) and probabilistic underspecification categories (M3 and M4) 

for ICF wall, with 0,5” (1,27 cm) of exterior stucco, 2” (5,08 cm) of insulation, 4” (10,16 cm) of concrete, 

other 2” (5,08 cm) of insulation and 0,5” (1,27 cm) of gypsum board. .......................................................... 35 

Table 2.2 - Classifiers and clusters of materials used to define an alternative taxonomy. ............................. 49 

Table 3.1 - Bill of materials for single-family buildings. Materials for initial construction are reported for two 

different climate regions (Chicago and Phoenix, USA) and two different construction techniques (Insulated 

concrete forms, ICF or wood frame). Values in kg, totals may not agree because of rounding. .................... 58 

Table 3.2 - Bill of materials for multi-family buildings. Materials for initial construction are reported for two 

different climate regions (Chicago and Phoenix, USA) and two different construction techniques (Insulated 

concrete forms, ICF or wood frame). Values in kg, totals may not agree because of rounding. .................... 59 

Table 4.1 - Succinic acid total energy use, greenhouse gases emission and land use for a cradle-to-factory 

gate basis ......................................................................................................................................................... 75 

Table 4.2 - Inventory data for PET on the pilot and stoichiometric scales. ..................................................... 77 

Table 4.3 - Inventory data for PBS on the pilot and stoichiometric scales. ..................................................... 77 

Table 4.4 - Environmental impact of PET at different production scales (mean values). ............................... 84 

Table 4.5 - Environmental impact of PBS at different production scales (mean values). ............................... 84 

Table 5.1 - Summary of mechanical and environmental data for the materials considered in the case study.

 ......................................................................................................................................................................... 89 

Table 5.2 - Material indices identified for the case study. .............................................................................. 91 

  



117 

APPENDIX A - PEDIGREE MATRIX 

 

  



118 

APPENDIX B - BASIC UNCERTAINTY 

 

  



119 

APPENDIX C - STREAMLINED LCA APPROACHES 

 



120 

Source: Hanna-Leena Pesonen & Susanna Horn, 2012. Evaluating the Sustainability SWOT as a streamlined 
tool for life cycle sustainability assessment. International Journal of Life Cycle Assessment. DOI 
10.1007/s11367-012-0456-1 

 

  



121 

APPENDIX D - ACRONYMS  

 

AP   Acidification 

BAT   Best Available Technologies 

BOA   Bill Of Activities 

BOM   Bill Of Materials 

CV   Coefficient Of Variation 

DfE   Design for Environment 

ECD   Environmentally Conscious Design 

EEA   Environmental Effect Analysis 

EP   Eutrophication 

EPD   Environmental Product Declaration 

ERP   Energy Related Product 

EUP   Energy-Using Product 

FMEA   Failure Mode and Effect Analysis 

GHG   Greenhouse gas 

GW   Global Warming 

GWP   Global Warming Potential 

ICF   Insulated Concrete Form 

INSA   Institut National des Sciences Appliquées de Lyon 

LCA   Life Cycle Assessment 

LCI   Life Cycle Inventory 

LCIA   Life Cycle Impact Assessment 

LCT   Life Cycle Thinking 

MAD-COV  Median Absolute Deviation – Coefficient Of Variation 

MCA   Multi-criteria Analysis 

MD   Median Distance 

MSL   Materials Systems Laboratory  

PBS   Polybutylene succinate 

PCR   Product Category Rules 

POCP   Photochemical Ozone Creation Potential 

SM   Photosmog creation 

SOI   Set of Interest 

  



122 

APPENDIX E - AUTHOR’S PUBLICATIONS  

Under review. Tecchio P., Freni P., De Benedetti B., Fenouillot F. (2015). Ex-ante life cycle assessment 

approach developed for a case study on bio-based polybutylene succinate. Journal of Cleaner Production. 

Under review. Freni P., Tecchio P., De Benedetti B., Fenouillot F. (2015). Life Cycle Assessment results 

combined with performance indices to support function-oriented materials selection. Advances in 

Materials Science and Engineering. 

Work in progress (article). Tecchio P., Gregory J., Ghattas R., Kirchain R. (2015). The Probabilistic 

Underspecification approach applied to streamline Life Cycle Assessment of buildings. 

Work in progress (article). Tecchio P., Gregory J., Ghattas R., Kirchain R. (2015). Streamlining the life cycle 

assessment of buildings by data specification triage. 

Conference item. Freni P., Tecchio P., Rollino S., De Benedetti B. (2014). Porosity characterization of 

biomedical magnesium foams produced by Spark Plasma Sintering2014 IEEE International Symposium on 

Medical Measurements and Applications (MeMeA). In: 9th IEEE International Symposium on Medical 

Measurements and Applications, IEEE MeMeA 2014, Lisboa Portugal. pp. 1-6.  

Conference item. Giacomello L., De Benedetti B., Tecchio P., Rollino S. (2013). Life Cycle Assessment of 

sustainable home gateways and product category rules definition for environmental labeling. In: Intelec 

2013, Hamburg, Germany, 13-17 October 2013. 

Conference item. De Benedetti B., Tecchio P., Rollino S., Giacomello L. (2013). Quantified innovation in ICT: 

Life Cycle Assessment approach applied to two generations of home gateways. In: 11TH INTERNATIONAL 

CONFERENCE ON ECOMATERIALS (ICEM11), Hanoi (Vietnam), 11th (Mon) - 14th (Thu) November, 2013. 

Article. De Benedetti B., Barbera A.C., Freni P., Tecchio P. (2013). Wastewater valorization adopting the 

microalgae accelerated growth. In: DESALINATION AND WATER TREATMENT. - ISSN 1944-3994. 

Conference item. Toso D., Baldo G.L., Tecchio P., Rollino S., Freni P. (2012). Bioplastics in food packaging 

field: Ecodesign approach and critical issues. In: BIOPOLPACK 2nd Congress on biodegradable polymer 

packaging, Milan (Italy), 10-11 May 2012. pp. 65-70. 

Conference item. Tecchio P., Foschia M., Talon O. (2012). Evaluation of the environmental impacts of PLA-

waste chemical recycling as lactic acid production method: the LCA approach. In: BIOPOLPACK 2nd 

Congress on biodegradable polymer packaging, Milan (Italy), 10-11 May 2012. pp. 59-64. 



123 

Article. De Benedetti B., Tecchio P., Foschia M., Rollino S., Pignatelli S. (2012). Sustainability perspectives 

when crop use is implemented indifferent sectors: a Life Cycle Assessment approach. In: JOURNAL OF 

SHANGHAI JIAOTONG UNIVERSITY. SCIENCE, pp. 334-336. - ISSN 1995-8188. 

Conference item. Cucchietti F., Giacomello L., Griffa G., Vaccarone P., Tecchio P., Bolla R., Bruschi R., 

D’Agostino L. (2011). Environmental benefits of a universal mobile charger and energy-aware survey on 

current products. In: Intelec, The International Telecommunications Energy Conference 2011. 

Conference item. De Benedetti B., Tecchio P., Foschia M., Rollino S. (2011). Sustainability perspectives 

when crops use is implemented in different sectors: an LCA approach. In: EcoBalance 2011, The 10th 

International Conference on EcoBalance. 

  



124 

 


