Zerovalent iron micro and nanoparticles for groundwater remediation: from laboratory to field scale

Original

Availability:
This version is available at: 11583/2590168 since:

Publisher:
Fondazione Enrico Mattei

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Zerovalent iron micro and nanoparticles for groundwater remediation: from laboratory to field scale

Tiziana Tosco (*), Francesca Gastone (*), Michela Luna (*), Rajandrea Sethi (*)

(*) DIAT - Dipartimento di Ingegneria dell’Ambiente del Territorio e delle Infrastrutture, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email: tiziana.tosco@polito.it; website: http://areaweb.polito.it/ricerca/groundwater/index_e.html

International Conference on "Water and Development"
Fondazione Enrico Mattei, Milano, 14 gennaio 2015

Improving colloidal stability of MZVI and NZVI using biopolymers

MZVI (microscale zero valent iron) and NZVI (nanoscale zero valent iron) are not stable when dispersed in water:

- Relevant mass, high density
- Gravitational sedimentation

NZVI 5-100 nm

Particle-particle attraction (magnetic forces)

Aggregation and sedimentation

Green polymers (guar gum and xanthan gum) can improve stability via:

- Kinetic stabilization
- Increased fluid viscosity

MZVI and NZVI injection in porous media

The mobility in porous media of MZVI and NZVI dispersed in guar gum and xanthan gum was tested in column transport tests (1-D) and a finite-differences model was developped for 1D and radial simulation of MZVI/guar gum injection:

- Column tests provide information on:
 - porous medium clogging
 - pressure build up during Injection
 - interactions among iron particles and porous medium

- Transport modelling:
 1D transport tests performed at different flow rates and polymer concentration were fitted using MNMs (www.polito.it/groundwater/software).
 Results were used to develop a radial transport model.

Field applications

Delivery: Direct push systems (high pressure & discharge rates)

Site: Aarschot (Belgium)
Contamination: 1,1-DCA, 1,1,1-TCA, TCE, cis-1,2-DCE
MZVI: H20 (d50=1.2 mm, BASF)
Guar gum: 5 g/l
Slurry: 1.5 m3, iron conc. 66 g/l
Injection design: pressurized well

Injection point: P704
Injection points:
- 10.5 - 8.5 m bgl, 0.5 m spacing
- Injection well P704
- PV (-)

Acknowledgements and References

The work was co-funded by European Union project AGUAREHAB (FP7 - Grant Agreement Nr. 226565). The authors acknowledge the work of Leen Bastiaens, Milica Velimirovic, Martin Uyttebroek, Johan Gemoets, Rob Muyshond (VITO, Angleur, Belgium), De Boe, Nourdine, Jégo, Jean-Pierre, and Sethi R. (2014). nanoscale zero valent iron particles for groundwater remediation: a review, Journal of Contaminant Hydrol, 77, 10-21.

Results were used to develop a radial transport model.

Integer distribution in the subsurface (left determined from magnetic susceptibility analysis on core samples (center) and map of the test area(right).