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Abstract 

In this study a novel total flux normalized correlation equation is proposed for predicting single-collector efficiency 

under a broad range of parameters. The correlation equation does not exploit the additivity approach introduced by Yao 

et al. (1971), but includes mixed terms that account for the mutual interaction of concomitant transport mechanisms (i.e. 

advection, gravity and Brownian motion) and of finite size of the particles (steric effect). The correlation equation is 

based on a combination of Eulerian and Lagrangian simulations performed, under Smoluchowski-Levich conditions, in 

a geometry which consists of a sphere enveloped by a cylindrical control volume. The normalization of the deposited 

flux is performed accounting for all of the particles entering into the control volume through all transport mechanisms 

(not just the upstream convective flux as conventionally done) to provide efficiency values lower than one over a wide 

range of parameters. In order to guarantee the independence of each term, the correlation equation is derived through a 

rigorous hierarchical parameter estimation process, accounting for single and mutual interacting transport mechanisms. 

The correlation equation, valid both for point and finite-size particles, is extended to include porosity dependency and is 

compared with previous models. Reduced forms are proposed by elimination of the less relevant terms. 
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Introduction  

Particle transport and deposition in saturated porous media are important processes occurring in natural and engineered 

systems. Colloidal filtration is a phenomenon of pivotal importance in numerous fields, including the propagation of 

contaminants and of microrganisms in aquifer systems [1-8] and the clogging of depth filters and wells [9, 10]. Other 

applications involving particle transport and deposition are: the design of remediation interventions by using 

nanoparticles as reagents [11-15], the delivery of agents for contrast [16] or for thermo-radiotherapy in medicine [17, 

18], enhanced oil recovery or imaging in reservoir engineering [19] and several others [20, 21].  

In order to master and control all these applications, a deep understanding of the phenomena involved in particle 

transport and deposition in saturated porous media is necessary.  In this context porous media are described as an 

ensemble of “collectors” or grains on which the transported particles are collected or deposited. In turn, deposition of 

particles from a suspension to a collector surface may be viewed as a two-step process: (1) the transport of the particles 

from the bulk of the suspension to the proximity of the collector and (2) the particle adhesion to the collector/grain 

surface, which depends on the nature of particle-collector interactions [22]. The first step is usually quantified by 0 , 

the single collector contact efficiency, that expresses the number of particles that reach the collector divided by the 

advective rate entering through the projection of the collector (Eq. 3); the second step is commonly quantified by the 

attachment efficiency  , which is the fraction of the particles coming into contact with the collector that actually 

attaches onto it. The product of these two values gives, as a result, the single collector removal efficiency  , which 

accounts for both the transport and attachment steps [23, 24] . 

According to previous studies, the mechanisms responsible for particle transport are mainly three: Brownian motion, 

gravity and interception [25] (respectively the blue trajectory AD in Figure 1b, the magenta trajectory G in Figure 1a 

and the red trajectory AS in Figure 1a). Taking advantage of the additivity concept, Yao et al. [25] firstly proposed in 

1971 a correlation equation for the single collector contact efficiency, that is the summation of three partial efficiencies 

due to Brownian motion D , due to gravity G , and due to interception I . This approach, that neglects the full set of 

mutual interactions between the different transport mechanisms, reads as follows:  

2/3 2

0 Yao

3
4.04

2
D G I Pe G RN N N           

Eq. 1 
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where 
PeN  is the Peclet number, 

GN
 
is the gravity number and 

RN
 
was defined as the interception number, but in this 

study for the sake of generalization it will be referred to as steric number or aspect ratio. A detailed definition of these 

dimensionless numbers is reported in Table 1. It is important to remind here that the additivity is clearly a simplification 

hypothesis, as the different mechanisms, which are inherently non-linear, operate jointly and therefore neglecting their 

interactions may lead to large errors. 

The first term at the right side of Eq. 1 was derived analytically at high Peclet numbers ( 70PeN  ) from the results of 

Levich [26], and takes into account the mutual influence of advection and Brownian motion (or Brownian diffusion). 

The gravity and interception terms, were analytically calculated by Yao [27], and account respectively for the 

deposition rate due to gravity and to advection (in this last case for finite-size particles). 

Many other more sophisticated correlation equations based on different geometries, such as Happel's and Hemisphere-

in-cell, derived by using different numerical approaches (i.e. Lagrangian versus Eulerian) and including more 

interaction mechanisms (i.e. Van der Waals forces and others) were proposed afterward. Most of them were fully or 

partially derived starting from the abovementioned additivity assumption. 

Rajagopalan and Tien [28] (RT in the figures) extended heuristically the correlation equation presented by Yao et al. 

[25] by performing a numerical trajectory analysis of non-Brownian particles in the presence of the Van der Waals 

force and of the hydrodynamic retardation in the Happel's sphere-in-cell model [29]. In 2004 Tufenkji and Elimelech 

[30] (TE) developed a correlation equation by performing Eulerian simulations in the Happel's geometry and 

accounting for the simultaneous presence of the transport mechanisms and the effects of the Van der Waals force and of 

the hydrodynamic retardation [31]. In 2005 Nelson and Ginn [32] adopted a Lagrangian approach in the Happel's 

geometry, simulating the simultaneous presence of all the forces acting on the particles (i.e. fluid drag, gravity, Van der 

Waals, electric-double layer, Brownian diffusion and hydrodynamic retardation). Ma et al. [33] (MPFJ) introduced the 

hemispheres-in-cell model geometry which allows the effect of grain-to-grain contact points to be taken into account. 

Recently Boccardo et al. [34] solved the full Navier Stokes flow field by exploiting a Eulerian approach and then 

proposing an extension of the correlation equation for higher Reynolds numbers.  As already mentioned, all the above 

mentioned models are based on the simplification hypothesis of additivity of the three partial efficiencies ( D , G  and 

I ), as reported in Eq. 1, accounting for two single acting transport mechanisms (gravity and advection) and one mixed 

term due to the interaction of Brownian diffusion and advection.  
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As already pointed out by Song end Elimelech [35], Nelson and Ginn [31] and Ma et al. [36], the other main drawback 

of most of the models is that they overestimate the rate of particle deposition, under some particular conditions. For 

very small or very big particles and/or for very low approaching velocities, the existing correlation equations predict a 

single collector contact efficiency higher than one, which is physically questionable [24]. Song and Elimelech [35] 

analyzed the Happel's-in-cell model and found out that the failure was in the transposition of the boundary conditions 

from the isolated sphere collector to the sphere-in-cell model: due to the different geometry the same boundary 

conditions are not correct in the case of very small Peclet numbers. Nelson and Ginn 2011 [31] (NG) proposed a 

normalized correlation equation, further refined in Nelson et al. 2013 [37], explaining that values above unity are due to 

an overestimation of 
0  by contributions of diffusion (for small

PeN ) and sedimentation (for large 
PeN ). Ma et al. [36] 

(MHJ) proposed a normalized correlation equation clarifying that in the case of Lagrangian simulations the prediction 

of efficiency values greater than one are due to the correlation equations themselves and not to mechanistic trajectory 

models.  

The aim of this study is therefore the development of a novel correlation, that overcomes the two main limitations 

described above, namely the simplification assumption of additivity, and the overestimation of the collector efficiency 

(i.e. greater than one) for low approach velocities. This is accomplished by exploiting a hybrid Eulerian-Lagrangian 

approach for the solution of the colloidal transport problem around a single sphere, by properly accounting for the fact 

that the different mechanisms operate jointly and interact, and by correctly normalizing the deposition rate with the 

actual total particle flux entering a control volume. This latter feature ensures efficiency values lower than one, over a 

broad range of parameters.  

 

Governing equations and numerical simulations 

CFD Modeling of Flow and Particle Deposition 

Flow and colloidal transport simulations were performed using the finite-elements software COMSOL Multyphisics
®
. 

The geometry studied by Yao et al. [25] was recreated in two dimensions under the assumption of axial symmetry, 

placing a single spherical collector characterized by a radius 250ca m   in a cylindical domain 15 times wider and 30 

times longer than the collector (Figure 2), in order to minimize the influence of the boundary conditions. Discretization 
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and meshing were performed using a total number of 249186 triangular and quadrilateral elements ranging from 10
-8

 to 

10
-5

m (see SI). 

Stokes flow field was solved numerically by imposing non-slip boundary conditions on the surface of the collector, 

vertical component of the velocity U at the inlet of the domain and zero pressure at the outlet of the domain.   

Point-particles can come into contact with the collector by three mechanisms of transport, namely advection (A), 

gravity (G), and Brownian diffusion (D). Interception is usually defined as the deposition of a particle which strikes the 

collector, due to its finite size, while moving along a streamline [23] (AS in Figure 1a). This term is related to the 

deposition of a finite-size particle in the presence of advective transport only, but in real systems the steric size of the 

particles can influence the deposition of particles transported by gravity (not just affecting the settling velocity), by 

Brownian motion (not just through change of diffusion coefficient) and by a combination of the transport mechanisms. 

Therefore we prefer to refer to the steric effect (S) as the increase of deposition due to finite-size particles, in the 

presence of any other transport mechanism.  

A Lagrangian approach was used only for the null diffusion cases  0, PeD N  , which is virtually impossible to 

simulate with the Eulerian approach, while most other transport simulations were performed in a Eulerian framework, 

thus numerically solving the advection diffusion equation reported in Eq. 2 

   u Vc c D c     

Eq. 2 

where u is local fluid velocity, V  is the velocity induced by the gravity force (Stokes or terminal velocity, defined in 

Table 1), c is the particle concentration and D is the diffusion coefficient of the suspended particle defined in Table 1. 

Inlet concentration was set equal to C0 and a perfect sink scenario was simulated by placing an assigned  c=0 

concentration on the surface of the collector for point-particles (or at distance
 pa  from the surface of the sphere to 

account for steric effect associated with finite-size particles). In order to recreate the scenario proposed by Yao et al. 

[25], London van der Waals and the hydrodynamic interactions between particles and the solid wall were neglected. 

This choice is coherent with the Smoluchowski–Levich approximation which assumes that hydrodynamic retardation 

experienced by the particle is balanced by the London Van der Waals forces between particles and collector [22, 23, 

38]. This approximation holds true when particle dimension is less than the particle diffusion boundary layer [34, 39] 

(which is always in the micrometer range for the simulations performed). 
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The simulations were performed over a wide range of variation of non-dimensional parameters involved in the problem 

as reported in Table 1: the values were chosen with a logarithmic pattern. A comparison with the range of values that 

these non-dimensional parameters typically assume in aquatic systems is reported in Table S2 of the SI. A total of 200 

Lagrangian and 1320 Eulerian simulations were performed. 

Numerical Calculation of Normalized Single Collector Contact Efficiency 

Previous studies determined the single collector contact efficiency as the ratio between the overall rate of particle 

collisions with the collector sI , calculated by integrating the particle flux over the entire surface of the sphere, and the 

advective particle flux entering the projected area of the collector [25, 30] (Eq. 3) or through the fluid envelope (by 

introducing the correction factor 
2 ,see Logan et al. [40] for detailed information and also the SI, Eq. S3). 

0 2

0




 s

c

I

a UC
 

Eq. 3 

In the framework of this study, we performed mass balance over a cylindrical control volume (with its radius 

incremented by pa  in case of finite-size particles to account for steric effect) tangent to the spherical collector. We 

propose a total flux normalized single collector contact efficiency (Eq. 4) as the ratio between the rate of particle 

colliding with the collector sI
 
divided by the total rate of particles cI

 
entering by advection, gravity and diffusion into 

the cylindrical control volume. The contribution of advection and gravity fluxes is predominant at the top of the 

cylindrical surface; conversely, diffusion is usually the dominant flux through the lateral wall of the cylinder (Figure 2). 

  s

N

c

I

I
 

Eq. 4 

In this way the denominator of Eq. 4 is always greater than or equal to the one present in the definition of 0
 (Eq. 3). 

cI is not only the advective flux coming from a limited part of the domain (as the projection of the collector), but it 

represents the total flux that could potentially deposit on the collector, thus it is always greater than or equal to sI . In 

fact, cI  includes also (i) the effect of other transport mechanisms (gravity and diffusion) acting on the particles, (ii) 

lateral fluxes contributing to the movement of particles toward the collector and (iii) an increased area of the top 
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projection of the sphere whose radius is increased by pa  to rigorously account for the finite size of the particles 

  2

c pa a  .  

General Formulation of the Novel Correlation Equation 

In the total flux normalized correlation equation the rate of particle collisions with the collector sI  and the total rate of 

particles entering into the cylinder cI  are expressed as a summation of seven terms (Eq. 5). As can be inferred from Eq. 

6 each term is composed by the sum of two power functions: the first depends on the transport mechanisms i.e. by their 

characteristic velocities   , , 2 cU V D a  and the second depends also on the steric contribution induced by the finite-

size of the particles and therefore on
 RN . Multiplication by the surface of the projection of the sphere  2

ca  was 

performed in order to more easily compare the proposed model with the results of previous studies. The seven terms 

reported in Eq. 5 are therefore due to single and mutually interacting transport mechanisms and the steric effect: 

- terms 1-3 depend on one transport mechanism (advection (A), gravity (G) or diffusion (D)) which acts 

alone, through its characteristic velocity (respectively  , , 2 cU V D a ), with or without steric contribution 

RN  (S);  

- terms 4-6 depend on two combined transport mechanisms (AG, AD, DG) and therefore simultanously on 

two characteristic velocities and on steric contribution;  

- term 7 depends on the mutual presence of the three combined mechanisms (ADG) and therefore on all the 

three characteristic velocities and on steric contribution . 

1, 2,, , ,  and i i i s i s ik k    are the exponents and the coefficients that need to be estimated by the fitting procedure. 

For non-null advection, in order to compare the proposed correlation equation to previous formulations, it is possible to 

arbitrarily divide 
sI and 

cI  by the denominator of 
0  (i.e. the advective rate passing through the top of the 

cylinder
2

0ca UC ) thereby obtaining Eq. 7. This equation depends on the non-dimensional numbers ,Pe GN N and RN . In 

this way, the numerator of the normalized efficiency (Eq. 7) can clearly be considered an extended formulation of Yao's 

0  (Eq.  8). 
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Eq. 5 
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Eq. 7 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 02

0

A AS G GS D DS AG AGS AD ADS DG DGS AGD AGDSs

c

I

a UC
              


                

Eq.  8 

 

Fitting and Parameter Estimation 

The fitting of the coefficients  1, 2, and s i s ik k  and exponents  ,  and i i i    was perfomed by simultaneously 

minimizing the sum of the residual between the CFD data of deposition sI , of the rate of particles entering the cilinder 

cI  and of the normalized efficiency N  and their correspondent models (Eq. 5 and Eq. 6); (further details are presented 

in the SI). The parameter estimation was performed using a hierarchical procedure which begins from point-particles by 

determing the coefficients and exponents corresponding to only one transport mechanism, thus when two transport 

mechanisms are absent (first level in Figure 3). Subsequently, the coefficients and exponents for couples of combined 

mechanisms acting together, (therefore when at least one transport mechanism is absent, second level in Figure 3 ) were 

estimated. Finally, the parameters of three combined transport mechanisms were determined (third level in Figure 3). 

The procedure was  then repeated in order to estimate the coefficients for finite-size particles (considering the steric 

effect).  
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The simultaneous fitting of the rates and of the efficiency was adopted in order to improve and regularize the fitting  

procedure. The hierarchical procedure is necessary to guarantee the full independence of the fitting results when any of 

the transport mechanisms is removed. Otherwise, a global fitting on all the data set (such as those conducted in some of 

the previous studies) would have provided coefficients that were always indirectly dependent on the mutual presence of 

all the transport and steric effect mechanisms acting together [32], thus biasing the results. 

 

Results and Discussion 

Overall Normalized Correlation Equation for Single-Collector Contact Efficiency 

The coefficients of the proposed correlation equation (reported in Table 2) were derived by applying the fitting 

procedure described in the previous paragraph to the data obtained from the CFD numerical simulations leading to Eq.  

9 and Eq.  10, which are valid in case of not null advection. (The relationships are implemented in an Excel spreadsheet 

that can be downloaded from http://areeweb.polito.it/ricerca/groundwater/software/ETAMMS2015.html). 

       

   

1.9834 2 1 1 0.8741 0.4210

0

0.6338 0.3737 0.6550 0.3450 0.6012 0.5873 0.2565 0.5

/ 1 6.0098 1 6.0187 7.5609 4.9534 0.0442 0.1220

2.9352 2.7480 2.7972 3.4372 1.1945 1.2616

N R G R Pe R G R

Pe R G Pe R G Pe R

N N N N N N N

N N N N N N N N

  

  

       


       438 


 

Eq.  9 

     

     

1.9834 2 1 1 0.8741 0.4210

0

0.6338 0.3737 0.6550 0.3450 0.6012 0.5873 0.2565 0.5438

1.5062 1 6.0187 7.5609 4.9534 0.0442 0.1220

2.9352 2.7480 0.9461 1.1626 0.6740 0.7119

R G R Pe R G R

Pe R G Pe R G Pe R

N N N N N N N

N N N N N N N N

 

  

       

      

 

Eq.  10 

Because of the assumptions used for the numerical simulations, the results are valid under the conditions of creeping 

flow field and in the absence of external forces except gravity. In particular, the Smoluchowski-Levich assumption was 

used and therefore the Van der Waals interactions and the hydrodynamic retardation were neglected. A calibration plot 

showing the excellent agreement between the efficiency derived from numerical simulations and the correlation 

equation of 
N , over the wide and full set of data, is shown in Figure 4. In Figure 5 the proposed normalized correlation 

equation of N  is compared to numerical data calculated for typical values of engineering applications. 

 

Unique Features of the Normalized Correlation Equation and Comparison with Previous Results 
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From the parameters listed in Table 2 the following considerations can be drawn: 

- since ks1=0, the advection contributes, coherently with previous models, to the rate of deposition on the 

collector only in the presence of the particle finite-size effect, i.e. when interception (the advection 

associated with the steric effect) is not negligible; 

- the sum of the three exponents of the transport velocities is equal to one for every term, coherently with 

dimensional analysis; 

- the mixed terms account for mutual interaction among transport mechanisms, including also the steric 

effect; 

- the presence of other terms at the denominator of the expression for 
N  allows normalization of the 

efficiency also when advection is not the dominant transport mechanism and in particular at high 
GN and 

low 
PeN conditions. The value of 

N  is less than or equal to one in all the simulated domain and also in 

limiting conditions (e.g. , , 0,U V D  ); 

- previous studies have argued that the three terms present in the model proposed by Yao et al. [25] are due 

to the transport mechanisms of diffusion, gravity and interception. Analysing the extended formulation of 

0  here proposed, it is possible to note that the three terms introduced by Yao et al. [25] in Eq. 1 actually 

correspond to the mechanisms of: advection and steric effect (interception) (i=1, 
0

AS , AS in Figure 1a), 

gravity (i=2 with ks2=0, 0

G , G in Figure 1a) and advection and diffusion (i=5, with ks2=0, 0

AD , AD in 

Figure 1b). As a matter of fact the term usually called 
D  is actually the rate of attachment due to the mix 

processes of advection and diffusion, divided by the advection rate passing through the projection of the 

sphere ,5

0

,1

AD

sAD

A

c

I

I
  . This conclusion agrees with the assumption adopted by Levich [26] in deriving the 

total particle flux on a sphere at high PeN  numbers (i.e. 70PeN  ), a result later used by Yao for the 

calculation of the expression 
2/3

PeN 
. The value of ks1,5 derived in our expression is different from those 

proposed in previous studies due to the presence of a further term accounting only for diffusion as a 

transport mechanism ,3

D

sI . The term G  is ,2

0

,1

G

sG

A

c

I

I
   and therefore is exactly the ratio between the rate of 
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deposition due to the sole gravity and the advective rate through the top of the cylinder. Finally the 

interception term I  is due to advection and steric effect and it is equal to
,

,1

0

,1

A S

sAS

A

c

I

I
  ; 

- the novel correlation equation provides consistent results also for point particles (i.e. 0
R

N  ); 

- the total flux normalized equation provides values lower than one also for limiting conditions (Figure 6B); 

- the formulation provides consistent results also when one or two transport mechanisms are absent (since 

some single or mixed terms are disappearing). 

Comparison with Other Correlation Equations 

A comparison with previous correlation equations was attempted under two conditions: 

- high porosities ( 1n  ): this is the natural condition for the comparison of the different models since, for 

porosities approaching to one, they all produce a single collector in a pseudo-infinite domain (e.g. Yao's 

domain). In this case the normalizing flux (advective or total) is calculated over the projection of the 

collector  2

ca . 

- realistic porosities: in order to compare the models over a wide range of porosities and to normalize the 

efficiencies accounting for the fluxes entering the fluid enveloped  2b , the porosity-dependent 

parameters 
1 3(1 )n    and sA  were introduced in Eq.  9 and Eq.  10  leading to Eq.  11 and Eq.  12 

(further details are reported in the SI).  

     
   
 

1.9834 2 2 1 1

, 0,

0.1259 0.8741 0.4210 0.3662 0.6338 0.3737

0.6550 0.3450 0.6012 0.1

/ 1 6.0098 1 6.0187 7.5609 4.9534 / (2 2 )

0.0442 0.1220 2.9352 2.7480

2.7972 3.4372

N S R G R Pe R

S G R S Pe R

G Pe R S

A N N N N N

A N N A N N

N N N A

    





       


    

   562 0.5873 0.2565 0.54381.1945 1.2616G Pe RN N N  


 

Eq.  11 

   
   
 

2 1.9834 2 1 1

0,

0.1259 0.8741 0.4210 0.3662 0.6338 0.3737

0.6550 0.3450 0.6012 0.1562 0

1.5062 1 6.0187 7.5609 4.9534 / (2 2 )

0.0442 0.1220 2.9352 2.7480

0.9461 1.1626

S R G R Pe R

S G R S Pe R

G Pe R S G

A N N N N N

A N N A N N

N N N A N

  





      


    

    .5873 0.2565 0.54380.6740 0.7119Pe RN N  


 

Eq.  12 
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From the plots shown in Figure 6, it is possible to state that the novel 
0  can be compared to the previous proposed 

equations normalized over the advective flux (namely, Yao, TE, MPFJ), which provide efficiencies higher than one 

under low 
PeN  and high 

GN  conditions both for unity and realistic porosities.  The Rajagopalan and Tien [28] (RT) 

equation corrected by Logan et al. [40] produces values different from the other equations at high porosity values. On 

the contrary 
N  generates values always lower than one over the entire range of parameters. Under gravity dominating 

conditions it produces an asymptote which is equal to one for n=1 and lower than one for realistic porosities, in 

accordance with previous models (NG and MHJ). For pure diffusion (low 
PeN ) the proposed correlation tends 

asymptotically to one without showing any local maximum. This behavior is different from those presented in previous 

models by NG and MHJ, showing respectively values above unit (as stated in Nelson at al. [37]) and a local maximum 

at increasing 
PeN  (see Figure 6 IIB)). The absence of a local maximum in the MMS model can be explained by the 

presence of additional terms both at the numerator and at the denominator of the proposed formula, in particular by the 

presence of a pure diffusion term ,3

D

sI  which is not present in previous correlation equations. The numerical simulation 

results point out the absence of a local maximum as shown in Figure S6 in the SI, where deposition efficiency for small 

particles is reported. 

In the SI further comparisons are presented including the London Van der Waals force implementation in previous 

correlation equations. Figure S5 (in the SI) shows that our correlation equation generates robust results over a wide 

range of parameters even if it was derived under the Smoluchowski-Levich approximation. 

Reduced Models 

Figure 7 shows the effect on the fitting residual when a single or a combination of mechanisms is removed from Eq.  9. 

The best fit of the numerical simulations in a pseudo infinite domain is obtained when all the mechanisms are acting 

with all the possible combinations leading to a residual of 0.23 (full N ). As expected, the three terms included in the 

Yao et al. [25] model are the most important ones (advection term is obviously fundamental and present only at the 

denominator), but also pure diffusion is a key term.  

Several reduced models for the total flux normalized correlation equation can be proposed by eliminating the less 

important terms in Eq.  9. In particular a reduced model providing a residual of 0.53 can be obtained including, both at 

the numerator and at the denominator, the mechanisms of A, G, AS, AD, D, DG, ADS. Eq. 13 shows the reduced model 

of N  including the porosity dependency.  
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Furthermore, the extended expression of 
0  provides a residual of 0.38 if compared to numerical values derived from 

CFD simulations. Keeping only the terms present in the Yao equation (A, G, AS, AD) leads to a residual of 36.09 that 

reduces to 5.09 if the same mechanisms reported above are included (i.e. A, G, AS, AD, D, DG, ADS). The reduced 

model, extended to include porosity dependency, is reported in Eq. 14. These two reduced models are consistent with 

the efficiency definition presented in Eq. S3 (SI), which normalizes the fluxes on the fluid envelope of the Happel's 

model.  

 

 

1.9834 2 1

, 0,

0.3662 0.6338 0.3737 0.6550 0.3450

/ 1 6.0098 7.5609 / (2 2 )

2.9352 2.7480 2.7972

R R

N S R Pe G

S Pe R G Pe

A N N N

A N N N N

    

 

     


  


 

Eq. 13 

 2 1.9834 1 0.3662 0.6338 0.3737 0.6550 0.3450

0, 1.5062 7.5609 / (2 2 ) 2.9352 2.7480 0.9461R

S R Pe G S Pe R G PeA N N N A N N N N           
 

 

Eq. 14 

It is important to note that both the full and reduced models, that we derived (a comparison is shown in Figure 8), 

include a term which accounts for pure diffusion, scaling with
1

PeN 
. This term is not present in the Yao et al. [25] 

equation, but it is of pivotal importance in order to extend  the correlation equation to low Peclet regime (i.e. 

70PeN  ). This conclusion is consistent with the study by Prieve and Ruckenstein [39] and Ma et al. [36]. 

Conclusions 

In this study a novel total flux normalized correlation equation (i.e. less than or equal to one in any conditions) for 

predicting single-collector efficiency was derived by means of a mass balance acting on a cylindrical domain including 

the collector. The proposed correlation equation is not derived by exploiting the additivity concept proposed by Yao et 

al. [25], but includes also mixed terms accounting for the mutual interaction of concomitant transport mechanisms (i.e. 

advection, gravity and Brownian motion) and steric effect. The correlation equation was extended in order to include 

porosity dependency and reduced forms were presented including the most relevant interacting mechanisms. In future 

studies the proposed approach will be further extended to more complex geometry and more particle-collector 

interactions. 
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SUPPORTING INFORMATION AVAILABLE 

Details on mesh features, the range of dimensionless parameters investigated, the fitting method, the role of porosity are 

provided in the Supporting Information.  

An Excel spreadsheet implementing the proposed correlation equations, together with CFD data, can be downloaded 

from http://areeweb.polito.it/ricerca/groundwater/software/ETAMMS2015.html). 
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Figure Captions 

 

Figure 1: Main mechanisms of particles transport and deposition. (a) Single transport mechanism: diffusion D (blue line), 

advection A (black line), gravity G (magenta line), diffusion and steric effect DS (orange line), advection and steric effect AS 

(red line), gravity and steric effect GS (green line); (b) Two active transport mechanisms: diffusion and advection AD (blue 

line), gravity and diffusion DG (black line), advection and gravity AG (magenta line), diffusion-advection and steric effect 

ADS (red line), gravity-diffusion and steric effect DGS (orange line), advection-gravity and steric effect AGS (green line); (c) 

Three transport mechanisms acting together: advection-diffusion and gravity ADG (blue line), advection-diffusion-gravity 

and steric effect ADGS (red line). 

 

 

Figure 2: Geometry characteristics of the domain and directions of the main fluxes. 
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Figure 3: Schematic representation of the three step interpolation procedure. First level: single transport mechanisms; 

second level: coupled transport mechanisms; third level: advection, gravity and diffusion acting together. 

 

Figure 4: Calibration diagram of 
N .  
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Figure 5: The proposed correlation equation of 
N  (full line) and 

0  (dotted line) and some numerical simulations results 

(triangles for
N  and squares for 

0 ). Data: f =998 kg/m3, T=288 K,  =9.8∙10-4 Pa∙s, ac=250 μm, U =  1∙10
-6

 m/s (red lines), 

1∙10
-5

 m/s (blue lines), 1∙10
-4

 m/s (green lines)  and p  = 1050 kg/m3 (red lines), 7800 kg/m3 (blue lines), 2500 kg/m3 (green 

lines). 

 

 

 

Figure 6: Comparison of the proposed 
N  and 

0  equations with existing models. A) Porosity n ≈1, normalization over the 

collector projection (Eq.  9 and Eq.  10); B) Porosity n < 1, normalization over the fluid envelope of radius b (Eq.  11 and Eq.  

12). Data: f =998 kg/m3, T=288 K,  =9.8∙10-4 Pa∙s. (I) Case study from [30]  (n=0.39, 
ca =0.2 mm, U=8∙10-6 m/s, p =1050 

kg/m3, T=288 K); (II) Case study from [31]  (n=0.35, 
ca =0.5 mm, U=10-7 m/s, p =1100 kg/m3, T=291 K). 
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Figure 7: Residual of 
N  neglecting the ith term 

 

Figure 8: Comparison between the full equations of N  and 0  (Eq.  11 and Eq.  12) and the reduced equations (Eq. 13 and 

Eq. 14). Data: n=0.35, U=10-6m/s, p =5500 kg/m3, f =998 kg/m3, T=288 K,  =9.8∙10-4 Pa∙s, ca =250 μm; 
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Tables 

Table 1:  Range of variation of dimensional and non-dimensional parameters. U  is the approach velocity (velocity far from 

the collector), D  is the diffusion coefficient, k  is the Boltzmann constant,  T  is the absolute temperature,   is the water 

dynamic viscosity, pa  is the particle radius, V is the sedimentation velocity given by the Stokes low [22], p  is the particle 

density, f  is the fluid density, g is the gravity acceleration vector and ca  is the collector radius 

 Parameters 
Type of 

simulations 
Values 

# 

Values 
Units 

Advection U  
Eulerian 0; 10-5 2 

m/s 
Lagrangian 0; 10-5 2 

Diffusion 
6


p

kT
D

a
 

Eulerian 2.5∙10-17; 2.5∙10-16; 2.5∙10-15; 2.5∙10-14; 2.5∙10-13; 2.5∙10-12;  

2.5∙10-11; 2.5∙10-10; 2.5∙10-9; 2.5∙10-8 
10 

m2/s 

Lagrangian 0 1 

Gravity 
 2

2

9

 






p p fa
V g  

Eulerian 0; 10-9 ; 10-8; 10-7; 10-6; 10-5; 10-4; 10-3; 10-2; 10-1; 1 11 
m/s 

Lagrangian 0; 10-9 ; 10-8; 10-7; 10-6; 10-5; 10-4; 10-3; 10-2; 10-1; 1 11 

Particle radius pa  

Eulerian 0, 10-8 ; 10-7; 10-6; 10-5; 10-4 6 

m 

Lagrangian 0; 5∙10-9; 10-8; 5∙10-8; 10-7; 5∙10-7; 10-6; 5∙10-6; 10-5; 10-4 10 

Peclet number 
2

 c
Pe

a U
N

D
 

Eulerian 0,10-1; 1; 101; 102; 103; 104; 105; 106; 107; 108 10 
- 

Lagrangian ∞ 1 

Gravity number G

V
N

U
 

Eulerian 0; 10-4; 10-3; 10-2; 10-1; 1; 101; 102; 103; 104; 105, ∞ 12 
- 

Lagrangian 0; 10-4; 10-3; 10-2; 10-1; 1; 101; 102; 103; 104; 105, ∞ 12 

Steric  number 

or 

Aspect ratio 


p

R

c

a
N

a
 

Eulerian 0; 4∙10-5; 4∙10-4; 4∙10-3; 4∙10-2; 4∙10-1 6 

- 

Lagrangian 
0; 2∙10-5; 4∙10-5; 2∙10-4; 4∙10-4; 2∙10-3; 4∙10-3; 2∙10-2; 4∙10-2; 

4∙10-1 
10 

 

 

Table 2: Exponents and coefficients for Eq. 6 and Eq. 7. (*) Yao et al.[25] values for the correspondent terms (more 

significant digits can be found at http://areeweb.polito.it/ricerca/groundwater/software/ETAMMS2015.html). 

Parameters 

Transport Mechanisms 

i=1 i=2 i=3 i=4 i=5 i=6 i=7 

Advection  

(A) 

Gravity 

(G) 

Diffusion 

(D) 
A - G A - D G - D A - D - G 

Point-particles 

Exponents 

αi 
1 

(*1) 
0 0 0.1259 0.3662 0 0.1562 

βi 0 
1 

(*1) 
0 0.8741 0 0.6550 0.5873 

1-αi-βi 0 0 1 0 
0.6338 
(*2/3) 

0.3450 0.2565 

Coefficients 

ks1,i 0 
1 

(*1) 
7.5609 0.0442 

2.9352 
(*4.04) 

0.9461 -0.6740 

kc1,i 
1 

(*1) 
1 7.5609 0.0442 2.9352 2.7972 -1.1945 

Steric effect for  Exponents γi 
1.9834 

(*2) 
2 1 0.4210 0.3737 0.6012 0.5438 
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finite-size 

particles 

(S) 
Coefficients 

ks2,i 
1.5062 
(*3/2) 

6.0187 4.9534 0.1220 2.7480 1.1626 -0.7119 

kc2,i 6.0098 6.0187 4.9534 0.1220 2.7480 3.4372 -1.2616 
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