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Abstract 

In recent years, the increasing severity of emission standards forced car manufacturers to integrate vehicle powertrains with 
additional mechatronic elements, consisting in sensors, executors and controlling elements interacting with each other. However, 
the introduction of the best available ecological devices goes hand in hand with the legislation and/or limitations in different 
regional markets. Thus, the designers adapt the mechatronic system to the target emission standards of the produced powertrain. 
The software embedded into the Engine Control Unit (ECU) is highly customized for the specific configurations: variability in 
mechatronic systems leads to the development of several software versions, lowering the efficiency of the design phase. 
Therefore the employment of a standard for the communication among sensors, actuators and the ECU would allow the 
development of a unique software for different configurations; this would be beneficial from a manufacturing point of view, 
enabling the simplification of the design process. Obviously, the new software must still guarantee the proper level of feedbacks 
to the ECU to ensure the compliance with different emission standards and the proper engine behavior. The general software is 
adapted to the powertrain: according to the specific target emission standard, some control elements may not be necessary, and a 
part of the software may be easily removed. 
In this paper, starting from a real case-study, a more general methodology is proposed for configurations characterized by 
different powertrain sets and manufacturing line constraints. The proposed technique allows to maintain the accuracy of the 
control system and improve process efficiency at the same time, ensuring lean production and lowering manufacturing costs. A 
set of mathematical techniques to improve software efficacy is also presented: the resulting benefits are enhanced by software 
standardization, because the design effort may be shared by the largest possible number of applications. 
 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the International Scientific Committee of “9th CIRP ICME Conference". 
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1. Introduction 

Mechatronic components have been first employed in 
automobiles in the 1970s, when the electronic voltage 
regulator and electronic ignition were introduced. The 
employment of mechatronic systems increased over time, with 
particular concern for engine management and control [1]. 
Today, mechatronic still represents a significant growth area 
in the motor vehicle branch, even if many engine and safety 
systems are considered standard equipment in vehicles [2]. 
The reason for this trend is twofold: on one side, customers 

require automobiles equipped with high efficiency and low 
fuel consumption engines; on the other side, as the number of 
vehicles in the world increases, stricter emission standards are 
necessary to reduce pollutant emissions [3]. Furthermore, 
electronic components are usually lighter than the mechanical 
components they replace, leading to lower fuel and power 
needed. However, customer satisfaction is not the only target 
in the development of mechatronic systems; they also must be 
implemented into the manufacturing processes in an efficient 
way, with minimum costs for the manufacturer. 

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
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The general configuration for an engine management 
control system is shown in Figure 1. The Engine Control Unit 
(ECU) is in charge of combustion optimization. It receives a 
set of electric signals from the sensors, which collect 
information to assess the current state of the engine. The 
quality of measured data is the result of a compromise among 
sensors cost, precision and reliability; further, several 
quantities like torque or emission concentrations are not 
measurable because of high measurement cost or short life of 
the data; hence, the ECU has to extract information from 
indirect measurements [4]. Data are analyzed by the ECU 
embedded software, which also includes a model of the engine 
operating conditions; the result of ECU calculation is 
translated into a new set of electric signals transmitted to the 
actuators, which determine engine behavior [3,5]. 
Mechatronic systems ensure benefits compared with merely 
mechanical frameworks, including higher engine performance 
and reduced risks for engine damages [6]; such systems are 
also able to adapt the fuel injection strategy according to the 
current state of the engine, taking into account, for example, 
the warm-up phase or the regeneration of particulate traps [5]. 

 

 

Fig. 1. Interconnection of engine mechatronic components. 

The improved engine calibration reduces pollutant 
emissions; moreover, electronics allow to calibrate and control 
engine functional parameters in order to comply with different 
emission characteristics. Actually, the prescribed standards for 
pollutants produced by passenger cars exhibit large 
differences according to the specific regional markets; hence, 
worldwide production lines are required to assemble engines 
with different emission requirements, and the introduction of 
the best available devices is strictly tied to the legislations 
holding in the different target markets. 

In this paper, we consider the case-study of a plant for car 
engine production, located in Central Asia; these engines are 
installed on vehicles sold mostly in CIS countries and on 
Uzbekistan market. On the Russian market, the Euro 4 
standard is currently holding, but conformity to Euro 5 will be 
mandatory from 2015. In Uzbekistan, the compliance with the 
Euro 2 standard is currently mandatory, and no additional 
restrictions are expected. 

The employment of mechatronic systems enhances the 
flexibility of an already developed engine: a flexible 
monitoring and control system would allow to comply with 
different emission standards, thus making an engine available 
for different countries. The adaptation of this system may also 
allow a manufacturer to extend the production of an existing 
engine, even if new restrictions on pollutant emissions are 
prescribed. For example, the introduction of a Diesel 
Particulate Filter (DPF) allows to easily reach Euro 4 
prescriptions, while the installation of an Exhaust Gas 
Recirculation (EGR) valve on gasoline engines is necessary to 
comply with the Euro 4 standard.  

Unfortunately, in many cases, the ECU software is highly 
customized for specific applications; it is adapted to the 
specific platform, the target emission standard, and the 
employed set of sensors and actuators. This customization 
occurs because designers adapt the set of mechanical 
components to the specific application, and rarely reuse an 
existing engine control system; the software is, in turn, 
adapted to the employed hardware. This application-oriented 
approach leads to disadvantages: a single change in the 
requirements or in the employed system may lead to a 
completely new software development. Additionally, the 
software must be redesigned when a new vehicle is developed, 
even if the hardware set exhibits small variations and the 
target emission standard does not vary. According to [7], the 
R&D cost of an engine control system for a diesel passenger 
vehicle is approximately 14 million dollars. This amount of 
money includes the combustion optimization phase (design of 
mechanical components and of engine algorithms), the 
emission testing of the whole system (engine, after-treatment, 
and ECU), and the development of new models for the ECU.  

The aim of our work is to propose a methodology for the 
identification of a general formulation of the software 
embedded into the ECU: the replacement of an application-
oriented approach with a functional-oriented one may allow to 
use the same software on different configurations, enhancing 
its flexibility, with several advantages for the manufacturer 
and no quality loss for the customer. In an additional step, we 
will propose a methodology to develop new ECU models and 
improve the efficacy of the algorithms. 

In Section 2 we will introduce our case-study; in Section 3 
we will present the two steps of our methodology. In Section 
4, we will explain which are the main advantages of the 
proposed approach in a lean manufacturing perspective. 
Finally, in Section 5, we will discuss the impact of this work 
and provide some hints for future extensions.  

 

2. Case-Study 

In this paper, we consider different configurations – 
currently manufactured – of a four cylinders, gasoline 1.5L 
engine. In the following, in place of the real names of car 
models we simply use the tags “Car A” and “Car B”. The 
engine has been installed on Car A since 2011, and complies 
with the Euro 2 and Euro 4 standard. Two years later, Car B 
was updated and the same engine was adapted to this 
platform, proposed both in the Euro 2 and the Euro 5 versions. 
The employed sensors are the same in all the cases; 
conversely, there are some differences in the sets of actuators: 
the EGR valve is not used onto the Euro 2 vehicles, and other 
components, including the ECU, change with the platform. 
Finally, different software have been developed for these 
configurations. In Table 1, a subset of sensors and actuators is 
reported: different letters represent different components. 
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Table 1: Configurations of the engine management system in the case study. 
 Car A Car B 
 Euro 2 Euro 4 Euro 2 Euro 5 
Sensors  

T/Body a a a a 
Manifold air pressure  a a a a 
Air temperature a a a a 
Coolant temperature a a a a 
Heated oxygen a a a a 
Crank position a a a a 
Cam position a a a a 
Knock a a a a 

Actuators  
Injectors a a a a 
Fuel rail a a a a 
EGR valve NO a NO b 
Ignition coil a a b b 
Canister purge solenoid a a b b 
PDA solenoid assembly a a a a 
VIM solenoid assembly a a b b 
Oil pressure switch a a a a 
Oil control valve a a b b 
Electric control thermostat a a b b 
Spark plug a a a a 
Starter motor A a a b b 

ECU  
Hardware a a b b 
Software a b c d 

 

3. Methodology 

Currently, because of the differences in the actuators sets, a 
completely new software is developed for each application. 
The aim of our work is twofold: first, we improve the 
flexibility of the employed software, so that it may be (at least 
partially) reused for different configurations; to do this, we 
will introduce a standard for the communication among 
sensors, executors and the ECU. Second, we identify a set of 
smart mathematical techniques that may improve the efficacy 
of the ECU embedded software, leading to a more efficient 
use of the engine and enhanced performances. 
 

3.1. Software standardization 

First of all, the employment of a standard communication 
protocol for the information transfer among the components of 
the monitoring and control system is necessary. For a given 
type of device, the kind and the format of the information 
provided (or requested) must be the same; the number of 
variants due to the specific hardware component leading to 
variability in software design must be minimized. 

A standard procotol named Autosar (AUTomotive Open 
System ARchitecture) has already been defined. Autosar is a 
partnership launched in 2003, composed of worldwide OEM 
manufacturers and automotive suppliers working together to 
establish and develop an open standard for automotive 
software architecture [8]. 

Autosar standard comprises a set of specifications that 
describe software architecture components and defines their 
interfaces. A layered structure is defined (see Figure 2), in 
which the software for car functionalities is separated from 
hardware-related basic software. The architecture 
distinguishes among three main software code groups: the 
Basic Software, the Runtime Environment, and the 

Application Software. The Basic Software provides essential 
functionalities for ECU hardware; the Runtime Environment 
is in charge of the integration among application software 
functionalities, and handles the exchange of data between 
Application and Basic software. The Application layer is 
composed of the software components related to ECU 
functionalities. In this approach, the functional content of the 
application software is OEM specific, and is related to the 
features desired by the car manufacturer. However, even if 
brand-oriented, also these applications are reusable for all 
models [9,10]. 

 

 

Fig. 2. Autosar software architecture. 

The first step of our project consists in adapting the 
currently employed software to Autosar standard. In this way, 
the application software may be immediately reused for 
several configurations; the elimination of variations due to the 
specific hardware components will lead to reduced variability 
in software design and lower efforts for software maintenance. 

However, the composition of the set of actuators varies 
with the configuration: for example, the EGR valve is 
employed on Euro 4 and Euro 5 applications, but it is not used 
on Euro 2 vehicles. Thus, in the adaptation to Autosar 
standard, we will also have to separate the software for single 
functionalities, in a sort of Object-Oriented Programming 
approach [11]. This methodology will allow us to reuse the 
most of the software on Euro 2, Euro 4 and Euro 5 vehicles, 
and employ the EGR functionalities only whether necessary. 
The net separation of the functionalities makes the software 
easier to understand, reduces its complexity and enhances its 
management: software modifications and extensions are 
easier, and code corruptions or failures are easily solvable, 
resulting in easier maintenance operations. 

 

3.2. Software efficacy improvement  

Once the adaptation to the Autosar standard will be 
fulfilled, the software for functionalities will consist in a set of 
independent, communicating code-objects, that may be easily 
replaced with more suitable ones. Hence, if a performance 
improvement is necessary, a new algorithm may be developed 
and integrated into the existing software. However, the 
algorithms to be implemented must meet the following 
requirements [12]:  
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 Reliability: the software must be extraordinarily reliable 
over the full vehicle lifetime; for example, rebooting 
during an operation is not feasible; 

 Functional safety: ECU also controls functionalities tied to 
safety systems: software errors may result in inability to 
change the throttle level, uncontrolled acceleration or 
degraded engine performance [6], hence a meticulous 
programming is mandatory and emergency procedures to 
be used in case of failure must be developed, according to 
the ISO 26262 standard. 

 Real-time behavior: the software must be able to analyze 
data and provide an output in a few milliseconds, hence the 
algorithms must be highly optimized; 

 Resource consumption: the amount of resources (processor 
and memory) necessary for the software must be 
minimized. A common ECU is provided with a few 
Megabytes of embedded memory, and a CPU with less 
than 100 MHz.  

In the ECU, software for the following functionalities must 
be embedded: evaluation of the amount of fuel to be injected 
into the engine; determination of the right moment to deliver 
the air and the fuel to the engine; control of the idle speed, the 
ignition timing of the engine, the engine speed, the coolant 
temperature, the gas emission content. 

Thus, the software must deal with a complex system 
characterized by interconnected dynamics; further, several 
bounds and constraints, due to physical limits and to the 
current state of the engine, must be taken into account to avoid 
damages. Hence, the ECU must deal with an optimal multi-
objective problem, but the commonly employed software is 
not able to take into account the necessary constraints [13]. 

The ECU may be represented through the model of 
Nonlinear Model Predictive Control proposed in [14], in 
which the controller is composed of a system model, an 
objective function with a set of constraints and a dynamic 
optimizer (see Figure 3). 

 

 

Fig. 3. Model of Nonlinear Model Predictive Control. 

Two approaches are available for the formulation of the 
model describing engine behavior. The first option is a fixed-
model, containing all the information which is known a priori. 
However, this approach does not allow to take into account 
the deviations from the expected behavior. The second 
approach is a direct-feedback model; this is a totally adaptive 
methodology, but a large quantity of data is necessary to build 
the model, and the extrapolation rules may be unknown, as in 
the Artificial Neural Networks. A third possibility consists in 
the employment of a hybrid approach, given by the 
combination of the two techniques: the software to be 

developed will be given by a fixed-model and a data-mining 
technique able to identify global patterns in the observed data. 
The integration of these two methods allows data-driven 
changes in the structure of the model, without the drawbacks 
of a totally direct-feedback model. Another advantage of the 
hybrid approach is that model adaptability can also take into 
account deviations due to non-measurable events, such as 
components aging, environmental effects, or combustion 
deposits.  

The choice of the optimization method is also critical for 
the performance of the system. Three methods are proposed in 
[13]. The explicit Model Predictive Control exhibits a low 
computational effort, but is only able to deal with linear 
problems; the parameterized MPC allows to derive a low 
dimensional optimization problem, that can be solved using 
simple solutions. According to us, the more promising 
technique is the online Nonlinear Model Predictive Control 
(NMPC), which can deal with complex nonlinear problems; it 
is able to evaluate the optimal solution and to stop after a fixed 
time if the convergence takes a long time. Because of its 
formulation, MPC explicitly takes into account the physical 
limits of the system (for example the throttle opening) and the 
constraints to comply with in order to avoid engine damages. 
Conversely, the standard ECU software tries to compensate 
these limits through additional feed forward functions, and the 
mechatronic system cannot be fully exploited. The importance 
of this feature is particularly relevant in the transients: the 
MPC shows a more intensive use of the actuators, leading to 
faster responses. However, the features of the ECU hardware 
must be taken into account: the implementation of MPC may 
require high computational cost and memory loads. 

 

4. The Lean Manufacturing approach 

The innovations previously explained can provide different 
advantages in the automotive lean manufacturing context. 
According to [15], lean production is a multi-dimensional 
approach consisting in a large variety of management 
practices with the aim of creating a quality system able to 
produce finished products with little or no waste. Lean 
principles have also been applied to the field of software 
design [16]. Similarly to the manufacturing framework, lean 
software development is not a conventional software 
engineering methodology, but a set of practices for building 
software systems. In [17], seven principles for lean software 
development are listed; in particular, the principles that our 
approach is able to deal with are: 

 Optimization of the whole: the value of a software does not 
only result from the development phase; the capability to 
modify a code assumes increasing importance over time. 
Software standardization and the separation of codes 
related to different functionalities allow to improve the 
efficiency of the maintenance phase: a problem in the 
software or a functionality to be enhanced may be quickly 
identified, and a code-object may be easily replaced with a 
more adequate one. Further, the improvement of software 



57 P. Chiabert et al.  /  Procedia CIRP   33  ( 2015 )  53 – 58 

efficacy is helpful to optimize the utilization of the 
mechatronic system, leading to better engine performance.  

 Waste elimination: in the lean approach, it is necessary to 
minimize the processes that do not add value to the product 
or do not help to reach that value more effectively. First, 
the identification of a standard protocol contributes to 
reduce waste, because the same software may be reused for 
different configurations. Furthermore, the separation of 
code-objects allows to reduce the maintenance time spent 
to identify bugs and failures. The improvement of software 
efficacy leads to better exploitation of the mechatronic 
system; if it is oversized, a system with lower 
performances may be employed, leading to money savings 
without performance downgrade. 

 Build quality in: when a new functionality is developed, it 
may be immediately integrated into the existing software; 
it is not necessary to wait until the end of a development 
cycle. Further, if the new functionality does not require 
additional mechanical components, it may also be 
integrated into the software of already existing vehicles. 

 Deliver fast: the increased rapidity in software design and 
maintenance allows to think development as a flow system 
in which the software is designed, developed and delivered 
in a continuous, steady flow of small changes. This 
approach is completely different from thinking software 
development as a project to be completed, or a series of 
periodical releases. 

 

5. Expected impact 

The innovation strategy we presented in this paper is 
divided into two steps. First, we want to adapt the currently 
employed ECU software to the Autosar standard: benefits for 
the manufacturer may be reached in a short-medium term 
outlook, because software components may be shared among 
different configurations, and they will not be linked to specific 
sensors or actuators. This also allows the manufacturer to have 
already available software for new projects. In this way, the 
initial investment for software development may be amortized 
over a larger quantity of vehicles. Further, software designers 
may neglect the redevelopment of basic code parts, and are 
able to focus their work on the study of new functionalities 
and on algorithm refinements, for performance improvement 
or due to the introduction of stricter norms or to new 
customers necessities. The second step, consisting in software 
efficacy improvement, will lead to long-term benefits, both for 
the manufacturer (cost savings due to an eventual downsizing 
of the mechatronic system) and the customer (improved 
vehicle performance). To approach this step, software 
standardization is mandatory: the development of new 
mathematical techniques may require a huge effort, thus the 
resulting algorithm must be employed on the largest possible 
number of configurations. Further, each algorithm will deal 
with a particular functionality; hence, the separation of the 
codes related to different functionalities is necessary, because 
it makes easier software objects replacement. 

In this paper, we employed the ECU as a case-study, but 
the same approach may be used on other electronic control 

units. Actually, cars may have up to 70 control units [10] to 
manage, control and coordinate different functionalities, such 
as safety (ABS, ASR, ESP, airbags,…), comfort (climate, 
infotainment systems,…), and vehicle management 
(transmission, automatic gear, …). The proposed methodology 
may be profitably applied to standardize the software 
embedded in the single control units, but is also helpful to 
improve the communication among different electronic 
systems. 

Another application may concern the transformation of a 
vehicle from mono- to bi-fuel. When the vehicle undergoes 
the conversion, it is equipped with another ECU, because 
some functional parameters (such as the ignition spark) must 
vary with the employed fuel. With the proposed methodology, 
software designers may easily prepare the ECU for the 
information exchange with the secondary control unit. In this 
case, the standardization of the communication protocol has a 
significant importance because, during the conversion, some 
mechanical components (such as the injectors or the sensors 
for pressure and temperature) are replaced; hence, the ECU 
must be able to work even if non-original components are 
installed on the vehicle. In addition, our approach may allow 
to merge the software of the secondary ECU with the original 
manufacturer’s one, to reach a better integration among the 
two systems. 
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