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Hierarchical Modeling of OPV-based Crossbar Architectures

A. Zahir1, A. Mahmoud2, A. Pulimeno1, M. Graziano1, Member, IEEE, G.Piccinini1, P. Lugli2 Fellow, IEEE,

Abstract— Recently, molecular devices with interesting be-
haviour like conductance, switching, rectification, gate modula-
tion and negative differential resistance were realized. In this
paper we propose a method to model hierachical logic circuits
based on Oligo-Phenylene Vinylene (OPV) molecular field effect
transistor (MOLFET). The modeling is based on a device level
spice equivalent model and on a versatile language (VHDL-
AMS) assuring a hierarchical description and a successive
approximation approach. Elementary logic blocks as well as
a more complex circuit (RCA) were designed and simulated
with a crossbar organization, both in a NMOS-like and in a
CMOS-like configuration.

Molecular transistor, Circuit Modelling, Nonlinear de-

vices.

I. INTRODUCTION

Molecular devices can play an important role in emerging

future nanoelectronics with advantages in terms of functional

density and integration. These devices were able to provide

features like rectification, negative differential resistance and

conductance switching [1]–[6]. Recently molecular electron-

ics has gained a great interest from both a theoretically

and an applied electronics point of view. A lot of work,

mostly based on first-principle or semi-empirical , has been

performed in order to understand the physics of molecular

devices. The commonly used methods include Density Func-

tional Theory [7], [8], Non-Equilibrium Green’s Function

[9], [10] and semi-empirical methods [11], [12].

However, less effort has been devoted for the circuit

modelling of molecular system. Some studies were focused

to provide a circuit analogy to first principle calculation

[13]. A circuit model for bistable molecular crossbars was

presented in [14]. Recently, a modeling methodology for

molecular devices in terms of circuit elements was intro-

duced in [15]. The behavior of logic systems based on sets

of molecules as elementary devices can be well predicted

by such concrete models. And beyond, a crucial leverage

resides in the possibility on the one hand to refine the

model according to the level of accuracy required, and in

the other hand to describe complex logic circuits, for eval-

uating the impact of detailed physical level characteristics

on realistic circuits performance. With these purposes we

adopted a flexible methodology based on a versatile hardware

description language favoring both hierarchical descriptions

and successive approximation modeling.
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Fig. 1. From device modelling to circuit simulation: (a) molecular transistor
(MT) based crossbar architecture, (b) OPV molecular transistor (MT) with
the oxygen linker group on both terminals, (c) equivalent circuit model
for MT, (d) current-voltage (IV) characteristic, (e) modular HDL circuit
description, (f) hierarchical circuit implementation and simulation.

In this paper, we use a molecular circuit modeling method-

ology involving a gated OPV device presented in [15] to

build elementary logic circuits based on a crossbar architec-

ture [16]. Figure 1 shows the design flow for hierarchically

creating the circuit. Figure 1(b) shows the OPV molecule

[17] with two oxygen linkers on both sides employed. The

corresponding circuit modeling detailed in [15] is shown in

Figure 1(c).

The employed molecular circuit modeling methodology

allowed to obtain a strong matching of the I-V characteristics

of the gated OPV device [15] as shown in Figure 1(d). The

transistor model is included in a VHDL-AMS description

(Figure 1(e)) and is enclosed within a hierarchical device-

to-logic-elements structure (Figure 1(f)). We then defined

the structure of a library of elementary logic circuits using

a crossbar architecture [16] and exploiting the features of

VHDL-AMS for the hierarchical modeling and the structure

organization. We built elementary logic blocks such as in-

verters, NOR gate, NAND gate and Half Adder. We used the

library to design more complex logic architectures based on

a hierarchical organization. Here we consider a 3-bit Ripple

Carry Adder (RCA) as a simple case of study.

The paper is organized as follows. First the methodology



used in this paper is discussed. Afterwards, issues related to

non-linear behavior of molecular devices in circuit simulation

are explained. Finally, the simulation results of different

logic circuits in crossbar like architecture using OPV-based

molecular transistor are discussed.

II. METHODOLOGY

In this section we firstly explain the electrical behavior

of the molecular transistor and how the equivalent elec-

trical model is defined (see Section II-A). In Section II-

B the equivalent electrical model implemented in Spice is

described and then a description of how it is encapsulated in a

hierarchical system design is reported. The section ends with

the extension of this method to the complementary MOLFET

architecture (see Section II-C).

A. Circuit implementation with N-type MOLFET and molec-

ular resistor

The circuit in Figure 2 resembles the implementation

of an N-type MOS logic. The resistors in the circuit can

be realized using molecules with high insulating property,

like the saturated methyl chain [18] illustrated on top of

Figure 2(a). The simplest logic gate we tested is the cascade

of two logic inverters (Figure 2(a)). It is important, for

obtaining a proper logic operation, i) to set-up the resistance

values, ii) to define the logic levels, and iii) to define the

input and output voltages for the two stages. The first stage

IN and OUT voltages are V 1

in and V 1

o ,respectively, that

are chained with the second stage IN and OUT voltages

V 2

in = V 1

o and V 2

o , respectively. Similarly to MOS logic,

in order to guarantee the proper switching, V 1

oH has to be

higher than V 2

inH (recognized as high input level), while

V 1

oL has to be lower than V 2

inL (defined as low input level).

Differently from an ideal MOSFET, the output value (i.e

Vds) influences strongly the behavior of the MOLFET: as

shown in Figure 1(d), for Vg = 0V the molecular device

starts conducting when the bias voltage (Vds) is greater than

approximately 1.5V , which is defined as a threshold voltage

for the low logic level, Vγ (VinL) (which depends on the

input voltage). Since VoH = Vds, to keep the MOLFET off

VoH has to be lower than 1.5V . If the low logic level at the

input is not exactly equal to 0V , VoH should be reduced to

avoid that the MOLFET starts conducting. On the other hand,

for high input, the VoL has to be higher than the threshold

voltage Vγ (VinH ), which depends on the high level input

voltage. To summarize, for the two inverters to work properly

in cascade, the following conditions have to be fulfilled:

VinH ≤ VoH ≤ Vγ(VinL) (1)

Vγ(VinH) ≤ VoL ≤ VinL (2)

The fulfillment of this condition could require a tuning of

the MOLFET, enhancing the coupling between the molecule

and gate electrode. This can be realized technologically by

reducing the thickness of the oxide layer used in the device

(it was originally 200nm [17]). For α = 0.08, VinH has

to be higher than 3V , but it is not compliant with the

Fig. 2. (a) Saturated methyl chain used as molecular resistor and OPV
molecule as Molecular transistor. (b) Logic structure of two cascade invert-
ers. (c) Crossbar architecture of basic logic circuits. (d) Input waveform for
inverter. (e) Output waveform of inverter having bad swing for next cascade
inverter (α = 0.08). (f), (g) and (h) Output waveforms of 1st, 3rd and 6th
stage inverter, respectively, with improved gate coupling (α = 0.2).

maximum allowed output voltage of the previous stage. Thus,

cascading more than one inverter would not work properly, as

demonstrated in Figure 2(e). We therefore set the coupling

α to 0.2, which allows a complete switching at bias gate

smaller than 1.5V , see Figure 2(f).

B. Circuit level description

We simulated all the blocks using Advance MS (ADMS)

2008.1 by Mentor Graphics and verified the correct circuit

behavior. ADMS is a powerful designing tool that allows

us mixed signal analysis. Spice circuits and models can be

integrated into VHDL-AMS. ADMS uses Eldo engine for

this purpose. An example of the methodology adopted with

both the electrical and structural descriptions is reported in

Figure 4 for the case of an inverter. In first part of the code

(as shown in Figure 4), the spice description of molecular

resistor mol resistor and molecular transistor mol fet are

reported and linked to VHDL-AMS source file. In particular,

the molecular resistance is modeled with a simple resistor,

whose value is estimated from experimental measurements of

current in methyl chain [4]. The SPICE model of the N-type

molecular transistor is based on NMOS level 1 FET-model

with typical parameter values of Kp = 5 × 10−7, λ = 0,

γ = 0.586 and Vth fitted on experimental results [15]. The

spice models is then incorporated by using property attribute

in VHDL-AMS and used to build an inverter. Starting from

this description, it is possible to design complex logic system



Fig. 3. (a) Crossbar architecture and (b) Output waveforms of Half Adder
with improved gate coupling (α = 0.2). Low input (0V ) and high input
(1.5V ) values represents logic ’0’ and logic ’1’, respectively.

using standard VHDL methodology. Moreover, in this way it

is also possible to change a single parameter in the physical

model without modifying the circuit level implementation

and evaluate the impact on the system performance.

C. Circuit implementation with complementary MOLFET

A complementary structure based on both N-type and

P-type molecular transistors would be preferable from the

power consumption point of view. In this case the resistors

in the crossbar are replaced by P-type MOLFETs as shown

in Figure. 5(a), with the aim to reduce the dissipated power.

We hereby assume having a P-type transistor of a symmetric

behavior like the realized N-type one. This can be obtained

modifying the molecule energy levels involved in the conduc-

tion mechanism: in the N-type case the conduction is mainly

due to the Lowest Unoccupied Molecular Orbitals (LUMOs),

while for the P-type MT the Highest Occupied Molecular

Orbitals (HOMO) are interested. In order to address this

issue, two possible solutions are available: changing the

molecular structure to achieve the expected characteristics or

involving a back-gate technique to shift the position of the

energy levels with respect to the electrodes and thus change

the type of conduction.

III. RESULTS

A. Circuit implementation with N-type MOLFET and molec-

ular resistor

With the adjusted α and suitable methyl chain as a

resistor, we designed and simulated some basic logic circuits

like Inverter, NOR and NAND organized in a crossbar

architecture (Figure 2(c)) [16]. The green box represents

the N-type region, where the N-type MTs are placed. The

light blue rectangles are the connection regions, necessary

Fig. 4. VHDL-AMS code of the N-type MT based inverter. The molecular
resistor is described as a simple resistance with a value derived by experi-
mental results. The N-type MT is based on NMOS level 1 FET-model.

to provide the proper interconnections among MTs in order

to implement the logic functions and to forward the signals

to the output pins. In the pink area, the molecular resistors

are placed and connected to the power supply to provide the

high logic value.

Regarding the inverter, Figure 2(d) shows the waveform

provided as input signal. In Figure 2(e) an example of

output waveform is reported for a wrong set of molecular

parameters (α = 0.08): the logic levels do not match with

the requirements for the next cascaded inverter, as described

by equations (1) and (2) in Section II-A. Considering α =
0.2, the output waveforms of Figure 2(g)-(h) show that the

voltage level for 3-stage and 6-stage cascaded inverter are

maintained.

One possible nanowire crossbar architecture of an Half

Adder (HA) is shown in Figure 3(a). The output waveforms

for both ”Sum” and ”Carry” signals are reported in Figure

3(b). Also in this case with α = 0.2 the voltage levels

are maintained. Combining in a modular way the crossbar



Fig. 5. (a) Crossbar architecture of an Half Adder implemented using
complementary logic. (b) Crossbar architecture of a single bit Full Adder,
implemented connecting two HA block and an OR gate. (c) Output
waveforms of a 3-bit ripple carry adder implemented using complementary
logic. In this case, the low input and high input values to encode logic ’0’
and logic ’1’ are −0.3V and 1.5V , respectively.

architectures of the inverter and the HA, it is conceptually

possible to design CMOS-like complex circuits organized as

chain of this basic block [16].

B. Circuit implementation with complementary MOLFET

Considering both N-type and P-type MTs, we imple-

mented the basic logic gates (inverter, NAND, NOR and HA)

with crossbar architectures. We used these gates as building

blocks to design and simulate a Full Adder (FA) and then a

three bit Ripple Carry Adder (RCA), as a case of study.

We started implementing the Half Adder and the related

crossbar architecture is reported in Figure 5(a). In this

case, the pink box represents the P-type region and proper

connection regions (light blues rectangles) are considered to

provide MT interconnections and output signals.

Combining properly HA blocks and OR gates, we firstly

designed a single bit Full Adder, whose crossbar architecture

is shown in Figure 5(b), and then a 3-bit Ripple Carry Adder.

Regarding the simulations of the 3-bit RCA, the input gate

voltage swings from -0.3V (logic ’0’) to +0.3V (logic ’1’).

As an example, the output waveforms of SUM (S2-S1-S0)

and carry (Cout) for two different input conditions are shown

in Figure. 5(c).

IV. CONCLUSIONS

In this work, different logic circuits were simulated in

a crossbar like architecture using already existing molecu-

lar transistors. Using N-type OPV transistor and saturated

methyl chain as molecular resistor, some basic logic circuits

are built and their functionality are simulated by using SPICE

model of the molecular transistor in VHDL-AMS. To illus-

trate the feasibility of realizing logic with complementary

transistors (both N-type and P-type MTs involved), a 3-bit

ripple carry adder is implemented and simulated as case of

study. The issues related to the nonlinear behavior of such

devices in circuit simulation are discussed and technological

aspects to be considered were suggested.
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