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Abstract Efficient algorithms for searching for optimal saturated designs for sam-1

pling experiments are widely available. They maximize a given efficiency measure2

(such as D-optimality) and provide an optimum design. Nevertheless, they do not3

guarantee a global optimal design. Indeed, they start from an initial random design4

and find a local optimal design. If the initial design is changed the optimum found5

will, in general, be different. A natural question arises. Should we stop at the design6

found or should we run the algorithm again in search of a better design? This paper7

uses very recent methods and software for discovery probability to support the deci-8

sion to continue or stop the sampling. A software tool written in SAS has been9

developed.10

Keywords Design of experiments · Optimal designs · Unobserved species ·11

Discovery probability12

1 Introduction13

In the design of experiments, optimal designs, or optimum designs, are a class of14

experimental designs that are optimal with respect to a given statistical criterion.15

In this paper we focus on saturated optimum designs for sampling experiments16

even if the methodology can also be applied to non-saturated designs without any17

modification. Saturated designs contain a number of points that is equal to the number18

of parameters of the model. It follows that saturated optimum designs are often used19

in place of standard designs, such as orthogonal fractional factorial designs, when20

R. Fontana (B)
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the cost of each experimental run is high. Main references to optimal designs include21

Atkinson et al. (2007), Goos and Jones (2011), Pukelsheim (2006), Rasch et al. (2011),22

Shah and Sinha (1989) and Wynn (1970).23

The optimality of a design depends on the statistical model that is assumed and is24

assessed with respect to a statistical criterion, which, for information-based criteria,25

is related to the variance-matrix of the model parameter estimators. Well-known and26

commonly used criteria are A-optimality and D-optimality.27

Widely used statistical systems like SAS and R have procedures for finding an28

optimal design according to the user’s specifications. In this paper we will refer to29

Proc Optex of SAS/QC (SAS Institute, Inc. 2010), but the approach can be adopted30

for other software.31

The Optex procedure searches for optimal experimental designs. The user specifies32

an efficiency criterion, a set of candidate design points, a model and the size of the33

design to be found and the procedure generates a subset of the candidate set so that the34

terms in the model can be estimated as efficiently as possible. By default, the standard35

output of the procedure is a list of 10 designs that are found as the result of 10 runs of36

the exchange search algorithm (Mitchell and Miller 1970) starting each time from an37

initial completely randomly chosen design.38

The number of times that we decide to run the search algorithm is crucial. Obviously,39

if we increase it, in general we will explore different local optima with the possibility40

to find better designs. On the other hand, sometimes, the extra time that we use to41

explore other possibilities is wasted because new optima do not exist. This work aims42

at developing a methodology based on a Bayesian updating methodology that could43

support the user in making the decision whether to stop or continue the search.44

Let us consider an example that will be described in more detail in Sect. 4.1. An45

experimenter wants to study the influence on a response Y (e.g. the fuel consumption46

of a given engine) of 7 factors (the type of fuel, the age of the engine, etc.) where47

each factor has 2 levels. The full factorial design has 27 = 128 runs. Let us suppose48

that both the size of the full factorial design is too high with respect to the available49

budget and the experimenter believes that a model with only the main effects and50

2-factor interactions would be sufficiently rich to describe with a good accuracy the51

phenomenon under study. A minimum size orthogonal fractional factorial design for52

this case requires 64 runs, which is still a high value (Fontana 2013). The experimenter53

decides to use a saturated D-optimal design (29 runs). The experimenter runs the Proc54

Optex procedure of SAS/QC with the default settings and gets a saturated D-optimal55

design with D-efficiency equal to 82.32. With the methodology described in this paper56

the experimenter would have been able to find both a better design (D-efficiency equal57

to 85.63) and a list of 103 D-optimal designs that could be further analysed with respect58

to different criteria like space filling.59

The paper is organized as follows. In Sect. 2 we state the problem of finding new60

optimal designs as the problem of finding new species in a population. Then, in Sect. 361

we describe how our methodology, which is based on the estimator of the discovery62

probability, could be used for optimal design generation. We also provide a detailed63

description of the algorithm. In Sect. 4 we describe the results of a computational64

study in which we ran our algorithm in different cases. Concluding remarks are made65

in Sect. 5.66
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Optimal design generation

The software code that has been developed is written in SAS, is available on request67

and can be used for any choice of factors, levels and model. It is worth noting that the68

algorithm, being based on the Proc Optex procedure, can manage not only classical69

linear model but also nonstandard linear or nonlinear models, (SAS Institute, Inc.70

2010).71

2 Optimal designs vs richness of species72

We consider the following setting that is quite common in optimal design problems.73

We have d factors, A1, . . . , Ad . The factor Ai has si levels coded with the integer74

0, . . . , si − 1, i = 1, . . . , d. The full factorial design is D = {0, . . . , s1 − 1} × . . . ×75

{0, . . . , sd − 1}. For each point ζ = (ζ1, . . . , ζd) of D we consider a real-valued76

random variable Yζ1,...,ζd
. We make the hypothesis that the means of the responses,77

E [Y ] where Y is the column vector
[

Yζ ; ζ ∈ D
]

can be modeled as78

E [Y ] = XDβ , (1)79

where XD is the non-overparametrized design matrix, as it will be defined in Sect. 2.1,80

and β is the subset of all the effects (constant effect, main effects and interactions)81

that are supposed to affect the response Y . There is no restriction to the order of the82

interactions; polynomial effects (linear, quadratic, etc) can also be considered.83

Given an efficiency criterion φ, a saturated optimal design is a subset of the full84

factorial design D = {0, . . . , s1 − 1}×. . .×{0, . . . , sd − 1}, whose size is equal to the85

number of degrees of freedom of the model (1) and that maximizes this criterion φ. In86

this paper we focus on information-based criteria and, in particular, on D-optimality87

but other criteria can be chosen (like A-optimality and G-optimality). We denote88

this type of problem with the triple (D,M, φ) where D is the full design, M is the89

hypothesized model (see Eq. 1) and φ is the optimality criterion.90

Given a subset F of D, the information matrix is defined as X ′
F

XF where XF is91

the design matrix corresponding to F and X ′ is the transpose of X . D-optimality aims92

at maximizing DF , the determinant of the information matrix93

DF = det(X ′
F

XF ) . (2)94

There are several algorithms for searching for D-optimal designs. They have a com-95

mon structure. They start from an initial design, randomly generated or user specified,96

and move, in a finite number of steps, to a better design. In general, if a different initial97

design is chosen, a different optimal design is found.98

It follows that, given an algorithm α, a population AD
α of D-optimal designs can99

be defined. This population is made up of all the saturated designs that are the result100

of the execution of the algorithm α and is a subset of all the subsets of D of size equal101

to the number of degrees of freedom of the model.102

The elements of AD
α can be classified into species, according to the criterion for103

which F1 ∈ AD
α and F2 ∈ AD

α are of the same species if and only if they have the104

same value in terms of the D criterion, DF1
= DF2

.105
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Studying the species of AD
α or, in general, of A

φ
α where φ is an optimal criterion,106

is interesting for optimal design generation. Let us consider the problem (D,M, φ)107

and let us choose an algorithm α to search for φ-optimal saturated designs. If we run108

this algorithm n times, each time starting from a completely random initial design,109

we will get a sample of n elements of A
φ
α . Such elements can be classified in kn ≤110

n different species according to the value of the criterion φ. Recent methods for111

discovery probability estimation, Favaro et al. (2012), can be applied to the vector112

(ℓ1, ℓ2, . . . , ℓn) where ℓr is the number of species in the sample with frequency r ,113

r = 1, . . . , n. In particular, based on a sample of size n, for any additional unobserved114

sample size m ≥ 0 and for any frequency k = 0, . . . , n + m, these methods provide,115

an explicit estimator for the probability Un+m(k) that the (n + m + 1)-th observation116

coincides with a species whose frequency, within the sample size n + m, is exactly k.117

The case m = k = 0 corresponds to assessing the probability of finding a new species118

in the subsequent observation, that in the context of optimal designs, is the probability119

of finding a saturated design with a different value of the criterion φ in the subsequent120

run of the algorithm. If this probability Un+0(0) is sufficiently high (let us say greater121

than 0.1 or even 0.05) it would be convenient to run the algorithm again because it122

is quite likely that we could find a new optimal design. If we found a new design, it123

could have a greater value of φ and this obviously represents an improvement to our124

optimization process. Even if this new design did not have an higher value of φ than125

the existing ones, this would give the possibility to increase the known part of A
φ
α .126

It is quite common, in practical applications, to choose a design where the optimal127

criterion has a slightly smaller value than the maximum obtained but which has other128

better characteristics, such as space filling properties.129

In particular, for D-optimal designs, we know that designs with different values of130

DF are non-isomorphic designs. Indeed we observe that, as proved in Proposition 1,131

see Angelopoulos et al. (2007), isomorphic designs belong to the same species. In132

general, the opposite is not true because there are designs with the same value of the133

D criterion but that are not isomorphic. As is known two designs are isomorphic if134

one can be obtained from the other by relabeling the factors, reordering the runs, and135

switching the levels of factors, e.g. Clark and Dean (2001).136

Proposition 1 Let us consider F1 ⊆ D and F2 ⊆ D. If F1 and F2 are isomorphic137

then DF1
= DF2

.138

Proof We separately analyse row/column permutations and the switching of the levels139

of some factors. If F2 is obtained permuting the rows and/or the columns of F1 it140

follows that141

XF2
= R XF1

C142

where R and C are permutation matrices. Then143

DF2
= det((X ′

F2
XF2

))144

= (det(R))2 det((X ′
F1

XF1
))(det(C))2

145

= DF1
146
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Optimal design generation

being det(R) = det(C) = 1. A similar argument holds for switching the levels of147

some factors. ⊓⊔148

The knowledge of a set of non-isomorphic designs can also be used for non para-149

metric testing procedures, Giancristofaro et al. (2012) and Basso et al. (2004).150

In Sect. 2.1 and 2.2 we provide some details on how the design matrix is built and151

on how to compute the estimates of the discovery probabilities.152

2.1 The design matrix153

The design matrix XD in Eq. 1 is built as follows.154

The first column is equal to 1 and corresponds to the constant effect, denoted by µ.155

The constant effect is always considered as a term of the model.156

If the main effect of the factor Ai is to be considered in the model, the corresponding157

si − 1 columns are computed as follows. For a design point with Ai at its k-th level if158

1 ≤ k ≤ si − 1 the columns are all 0 except for the k-th column that is 1; if k = si the159

columns are all −1.160

If an interaction Ai1 ⋆ . . . ⋆ Aik
is to be considered in the model, the corresponding161

(si1 − 1) · . . . · (sik
− 1) columns are computed by taking the horizontal direct product162

of the columns corresponding to the main effects of Ai1 , . . . , Aik
.163

This coding corresponds to modeling without over parametrization and XD is full164

rank.165

For a subset F of D, the design matrix XF is simply built deleting from XD the166

rows that correspond to the points of D that are not in F .167

2.2 Discovery probability168

We briefly summarize the main results that are used in this work, as in Favaro et al.169

(2012). The interested reader should refer to the original paper for a detailed descrip-170

tion of the methodology. We observe that the results in Favaro et al. (2012) are an171

improvement of those in Lijoi et al. (2007) concerning the evaluation of the probabil-172

ity that further sampling reveals new species.173

Given a sample of size n, the vector (ℓ1, . . . , ℓn) is built, where ℓr is the frequency174

of species that have been observed r -times in the sample, r = 1, . . . , n. We have175
∑n

i=1 iℓi = n. We denote the number of different species that have been observed in176

the sample by j . We get
∑n

i=1 ℓi = j .177

Based on a sample of size n, for an additional unobserved sample size m ≥ 0 and for178

any frequency k = 0, . . . , n + m, using a non parametric Bayesian approach, Favaro179

et al. (2012) provide an estimator for the probability Un+m(k) that the (n + m + 1)-th180

observation coincides with a species whose frequency, within the sample of size n+m,181

is exactly k.182

We are interested in discovering new species, that correspond to the case k = 0.183

From Sect. 2, p.1,190 of Favaro et al. (2012) we obtain184

Un+0(0) = Vn+1, j+1

Vn, j

185
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where, for the two-parameter Poisson-Dirichlet process, we have Vn, j =
∏ j−1

i=1 (θ +186

iσ)/(θ + 1)n−1, σ ∈ (0, 1), θ > −σ . The symbol (a)n denotes the n-th ascending187

factorial of a, (a)n = a(a + 1) . . . (a + n − 1), (a)0 ≡ 1. It follows that188

Un+0(0) = θ + jσ

θ + n
189

and, for m > 0, we obtain190

Un+m(0) = θ + jσ

θ + n

(θ + n + σ)m

(θ + n + 1)m

.191

The estimates σ̂ , θ̂ of σ, θ are obtained as192

arg max
(σ,θ)

∏ j−1
i=1 (θ + iσ)

(θ + 1)n−1
n!

n
∏

i=1

{

(1 − σ)i−1

i !

}ℓi 1

ℓi !
. (3)193

Using (θ̂ , σ̂ ) we finally obtain the estimates of the discovery probability at the194

(n + 1)-th observation195

Ûn+0(0) = θ̂ + j σ̂

θ̂ + n
(4)196

and at the (n + m + 1)-th observation, m > 0,197

Ûn+m(0) = θ̂ + j σ̂

θ̂ + n

(θ̂ + n + σ̂ )m

(θ̂ + n + 1)m

(5)198

3 Methodology199

We repeat the search for optimal designs to analyse the population AD
α of D-optimal200

designs that can be found for a given problem using a predefined algorithm α. Each201

time the algorithm starts from a randomly chosen initial design. We set a maximum202

(minimum) number of iterations equal to M⋆ (m⋆). We continue the process until the203

minimum number m⋆ of iterations is performed and the estimate of the discovery204

probability at the subsequent observation goes under a given threshold p⋆, or until the205

maximum number M⋆ of iterations is reached.206

The procedure can be described as follows. A problem (D,M, φ), with φ = D207

in our examples, is defined and an algorithm α for φ-optimal design generation is208

chosen. For each iteration s, s = 1, . . . , M⋆,209

1. using the algorithm α, a φ-optimal saturated design Fs is obtained;210

2. the value of the φ-criterion of Fs is computed;211

3. the vector (ℓ1, . . . , ℓs) is built, where ℓr is the number of species with frequency212

r , r = 1, . . . , s;213

4. an estimate (σ̂s, θ̂s) is obtained, see Eq. 3;214

5. an estimate of Ûs+0(0) is computed using Eq. 4;215
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Optimal design generation

6. if Ûs+0(0) < p⋆ and s ≥ m⋆ the algorithm stops, otherwise the next iteration s +1216

is performed (if s + 1 > M⋆ the algorithm stops).217

The main output of the algorithm is a set of designs, where each design belongs to218

a different species, i.e. has a different value of the φ-criterion.219

We now provide a detailed description of each step of the algorithm.220

3.1 Steps 1 and 2221

At iteration s, with the chosen algorithm α, the Proc Optex procedure is used to222

generate a D-optimal design, Fs . The species of Fs is the value of its D-efficiency,223

E D
Fs

. The D-efficiency of a F , is defined as224

E D
F

= 100 ×
(

1

#F
D

1
#F

F

)

225

where #F is the number of runs of F that coincides with the degrees of freedom of226

the model for saturated designs and DF is the determinant of the information matrix.227

The value of the efficiency is rounded to four decimal digits to avoid creating228

different species from numerical effects.229

3.2 Step 3230

Using all the designs F1, . . . ,Fs with their corresponding D-efficiencies, E D
F1

, . . . ,231

E D
Fs

the vector (ℓ1, . . . , ℓs) is built, where ℓr is the number of species with frequency232

r , r = 1, . . . , s.233

3.3 Step 4234

An estimate (σ̂s, θ̂s) must be obtained searching for (σ, θ), σ ∈ (0, 1), θ > −σ that235

maximizes f(σ, θ), (see Eq. 3),236

f(σ, θ) =
∏ j−1

i=1 (θ + iσ)

(θ + 1)n−1
n!

n
∏

i=1

{

(1 − σ)i−1

i !

}ℓi 1

ℓi !
237

The Genetic Algorithm module of SAS/IML has been used. In order to manage238

the constraints σ ∈ (0, 1), θ > −σ the search has been performed in the region239

R = [δ, 1 − δ]×[−(1 − δ), TM ] with δ = 0.01 and TM = 1,000. This region contains240

the non-feasible region made by the points inside the simplex S = R ∩ {(σ, θ) : θ ≤241

−σ } whose vertices are (δ,−(1 − δ)), (δ,−δ) and (1 − δ,−(1 − δ)). We observe that242

the edges of S contain non-feasible points.243

We decided to manage this constraint with the penalty method, because this method244

usually works well when most of the points in the solution space do not violate the245

constraints, as in our problem. The way in which the penalty in the objective function246

for unsatisfied constraints has been imposed is described here.247
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From the point of view of the search of the point (σ⋆, θ⋆) that maximizes f (σ, θ),248

it is equivalent to consider log f(σ, θ) instead of f(σ, θ)249

log f(σ, θ) = log

⎛

⎝

j−1
∏

i=1

(θ + iσ)

⎞

⎠ + log(n!)250

− log((θ + 1)n−1) + log

(

n
∏

i=1

{

(1 − σ)i−1

i !

}ℓi

)

− log(ℓi !) .251

Omitting the terms that do not depend on σ and θ and as (a)n = Ŵ(a+n)
Ŵ(a)

where Ŵ is252

the gamma function, the previous equation becomes the function f⋆(σ, θ) here253

f⋆(σ, θ) = f(1)
⋆ (σ, θ) + f(2)

⋆ (σ, θ),254

where255

f(1)
⋆ (σ, θ) =

j−1
∑

i=1

f(1,i)
⋆ (σ, θ)256

with f
(1,i)
⋆ (σ, θ) = log(θ + iσ) and257

f(2)
⋆ (σ, θ) = − log Ŵ(θ + n) + log Ŵ(θ + 1)258

+
n

∑

i=1

ℓi log Ŵ(i − σ) − j log Ŵ(1 − σ) .259

We observe that, when the point (σ, θ) ∈ R does not satisfy the constraint θ > −σ260

only f
(1)
⋆ (σ, θ) becomes not defined. We apply a penalty value to f

(1)
⋆ (σ, θ) and to261

f
(2)
⋆ (σ, θ) as described below.262

Given a point P1 in the non-feasible region, P1 = (σ, θ) ∈ S, P̃1, the closest263

point to P1 with respect to the Euclidean distance that lies in the feasible region, is264

determined265

P̃1 = (σ̃ , θ̃ ) =
(

1

2
(σ − θ + ǫ),

1

2
(θ − σ + ǫ)

)

266

where ǫ is a very small number to ensure that P̃1 is feasible, i.e. P̃1 ∈ R ∩ S . We267

used ǫ = 0.001. The value of the function f
(1,1)
⋆ is computed in P̃1 getting Ỹ1 =268

f
(1,1)
⋆ (σ̃ , θ̃ ) = log ǫ. Then the value Y1 of f

(1,1)
⋆ in P1 is defined as f

(1,1)
⋆ (σ, θ) = (1 +269

b1)Ỹ1 where b1 is the Euclidean distance between P1 and P̃1, b1 =
√

1
2
(σ + θ − ǫ)2.270

In an analogous way, we apply this penalty method to all Pi = (iσ, θ) that even-271

tually fall in the non-feasible region S getting f
(1)
⋆,P (σ, θ), the penalized version of272

f
(1)
⋆ (σ, θ),273
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Optimal design generation

f
(1)
⋆,P (σ, θ) =

j−1
∑

i=1

f
(1,i)
⋆,P (σ, θ)274

where275

f
(1,i)
⋆,P =

{

log(θ + iσ) if θ + iσ > 0

(1 + bi ) log(ǫ) if θ + iσ ≤ 0
, i = 1, . . . , j − 1 ,276

and bi is the Euclidean distance between Pi = (iσ, θ) and P̃i = ( 1
2
(iσ −θ +ǫ), 1

2
(θ −277

iσ +ǫ)) determined as described above. The penalized version f
(2)
⋆,P (σ, θ) of f

(2)
⋆ (σ, θ)278

is simply defined as279

f
(2)
⋆,P (σ, θ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f
(2)
⋆ (σ, θ) if θ + σ > 0

(1 + b1)f
(2)
⋆ (σ, θ) if θ + σ ≤ 0

and f
(2)
⋆ (σ, θ) ≤ 0

(1 − b1)f
(2)
⋆ (σ, θ) if θ + σ ≤ 0

and f
(2)
⋆ (σ, θ) > 0

.280

We observe that281

{

p < q ⇒ bp > bq p, q = 1, . . . , j − 1;
b1 ≤

√
2

2
(1 + ǫ − 2δ).

282

For δ = 0.01 and ǫ = .001 we get b1 < 0.694.283

Using the penalty method, an estimate (σ̂s, θ̂s) is obtained finding the maximum of284

f⋆,P (σ, θ) = f
(1)
⋆,P (σ, θ) + f

(2)
⋆,P (σ, θ).285

Finally we point out that if n = 1 then f⋆(σ, θ) = 0 ∀σ, θ . It follows that n must be286

greater than 1 to obtain the estimates of σ and θ . If j = 1 then ℓ1 = . . . = ℓn−1 = 0,287

ℓn = 1, f⋆(σ, θ) ≡ f
(2)
⋆ (σ, θ) and288

f(2)
⋆ (σ, θ) = − log Ŵ(θ + n) + log Ŵ(θ + 1)289

+ log Ŵ(n − σ) − log Ŵ(1 − σ) .290

In this case we get σ̂ = δ and θ̂ = −δ + ǫ.291

3.4 Steps 5 and 6292

The estimate of the discovery probability at the next iteration, Ûs+0(0), is computed293

as described in Sect. 2, Eq 4. If its value is lower than p⋆ and s ≥ m⋆ the algorithm294

stops, otherwise the next iteration s + 1 is performed (if s + 1 > M⋆ the algorithm295

stops). The algorithm takes a decision only if s ≥ m⋆ because we want to avoid that296

the estimates (σ̂s, θ̂s) and consequently Ûs+0(0) be based on too small sample sizes.297

We suggest using m⋆ at least equal to 50.298
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Table 1 Test cases description; ID is the test case number, d is the number of factors, p is the number

of levels of each factor, M is the model and Method is the algorithm that is used for D-optimal design

generation. The notation x1| . . . |xd @h means that all the k-factor interactions, k ≤ h, are included in the

model M; k = 1 refers to main effects

ID d p M Method

1 7 2 x1| . . . |x7@2 Exchange

2 7 2 x1| . . . |x7@2 Fedorov

3 6 2 x1| . . . |x6@1 Exchange

4 6 2 x1| . . . |x6@1 Fedorov

5 5 3 x1| . . . |x5@2 Exchange

Table 2 Number ℓr of D optimal designs that have found r times, r = 1, . . . , 487; only ℓr �= 0 are shown

r 1 2 3 4 5 6 9 10 11 12 14 15 16 17 20 35 39 40 45 T

ℓr 48 17 8 10 1 4 1 1 1 1 2 2 1 1 1 1 1 1 1 103

4 Computational study299

We show how the methodology works using the test cases summarized in Table 1. We300

point out that all the test cases consider the problem of finding saturated D-optimal301

designs.302

4.1 Test cases 1 and 2303

Let us consider 7 factors, each with 2 levels, and the model that contains the overall304

mean, the main effects and all the 2-factor interactions for a total of 1 + 7 + 21 = 29305

degrees of freedom. We search for saturated D-optimal designs, that is, D-optimal306

designs that contain 29 points.307

In test case 1, we use Proc Optex SAS Institute, Inc. (2010) with the exchange308

method, which is its default search method. With the default setting, the algorithm309

starts from 10 initial randomly chosen designs providing 10 D-optimal designs. We310

consider the design with the highest value of the D-efficiency of the 10 optimal designs311

as the optimal design found by the algorithm.312

Setting the seed that is used for the random generation of the initial designs at 6789,313

the best of the 10 optimal designs, that we denote by F1, has DF1
= 9.0911E39 and314

E D
F1

= 82.3162.315

Now we run the procedure above with M⋆ = 1,000, m⋆ = 50 and p⋆ = 0.10. After316

487 runs, the estimate of the discovery probability at the next observation becomes317

lower than p⋆ = 0.10 and the algorithm stops (Û487+0(0) ≈ 0.099). We find 103 dif-318

ferent species of local D-optimal designs. All these designs are not isomorphic (Propo-319

sition 1). The maximum (minimum) value of D-efficiency is 85.6265 (78.9605) and it320

has been found 9 times (1 time). The statistics ℓr , r = 1, . . . , 487 are shown in Table 2.321

The estimates of the discovery probability at the next iteration Ûs+0(0) as a function322

of the iteration s are plotted in Figure 1. The increase of the sample size seems clearly323

to stabilize the discovery probability estimates.324

123

Journal: 180 Article No.: 0562 TYPESET DISK LE CP Disp.:2015/1/31 Pages: 14 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Optimal design generation

Fig. 1 Estimate of the discovery probability at the next iteration Ûs+0(0) as a function of the iteration s.

Test case 1, M⋆ = 1,000, m⋆ = 50 and p⋆ = 0.10

We decide to continue the search for new species choosing p⋆ = 0.05 and325

M⋆ = 2,000. The latter value is chosen taking into account that using Eq. 5 we326

get Û487+1000(0) = 0.048 and Û487+2000(0) = 0.034. These supplementary runs are327

added to the previous ones.328

After 1,252 supplementary runs the estimate of the discovery probability at the329

next observation becomes lower than 0.05, Û1739+0(0) ≈ 0.0499. After 1,252 +330

487 = 1,739 simulations we observe 191 different species of D-optimal designs. The331

maximum value of D-efficiency is still 85.6265, while the minimum is 78.1134.332

In test case 2 we use the Fedorov algorithm, Fedorov (1972), that is considered more333

reliable, even if slower, than the exchange algorithm. We keep the standard setting for334

which, at each iteration, 10 local D-optimal designs are generated and the one among335

them that has the highest D-efficiency value is taken as the optimal design.336

We choose 3456 as the initial seed. The first iteration provides an optimal design337

F1 with E D
F1

= 82.7079. Now we repeat the procedure with M⋆ = 1,000 and p⋆ =338

0.10. After only 18 iterations the estimate of the discovery probability at the next339

observation becomes less than 0.10, Û18+0(0) ≈ 0.097. But being m⋆ = 50 the340

algorithm continues to iterate. It stops after 50 iterations, with the discovery probability341

approximately equal to 2% and with 4 designs. The maximum (minimum) value of342

D-efficiency is 83.9844 (82.4212). Thus we have empirical evidence that the Fedorov343

algorithm is more stable than the exchange algorithm. We observe that the best design344

found with the exchange algorithm, that has D-efficiency equal to 85.6265, is not345

found in this first sample. We were able to find it running the algorithm again with346

M⋆ = 1,000 and p⋆ = 0.01. In this case after 47 supplementary runs, 97 in total, we347

123

Journal: 180 Article No.: 0562 TYPESET DISK LE CP Disp.:2015/1/31 Pages: 14 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

R. Fontana

find 5 designs and Û97+0(0) = 0.0099. The maximum value of D-efficiency becomes348

85.6265. If we run the algorithm again with M⋆ = 2,000 and p⋆ = 0.001 after 1,009349

supplementary runs, 1,106 in total we find 8 designs and Û1106+0(0) = 0.00099. The350

maximum (minimum) value of D-efficiency is 85.6265 (82.3622).351

4.2 Test cases 3 and 4352

Let us consider 6 factors, each with 2 levels, and the model that contains the overall353

mean and the main effects for a total of 1 + 6 = 7 degrees of freedom. We search for354

D-optimal designs that contains 7 points.355

In test case 3 we use the same D-optimal design generation method of test case 1356

(i.e. at each iteration the optimal design is the best design among ten optimal designs357

found using the exchange method starting from ten initial randomly chosen designs).358

We run our algorithm setting the initial seed to 6116 and with M⋆ = 1,000, m⋆ = 50359

and p⋆ = 0.10. After 50 iterations the algorithm stops with Û50+0(0) ≈ 0.005 and360

has found two classes of designs with D-efficiency equal to 84.91 and 87.92.361

After 50 iterations the estimate of the discovery probability at the next iteration is362

already quite small, around 0.5% but we decide to run a maximum of M⋆ = 1,000363

supplementary runs setting p⋆ = 0.0001. After a total of 1,050 runs the algorithm364

stops. No designs with different D-optimal efficiency are found. The estimate of the365

discovery probability at the next iteration is Û1050+0(0) ≈ 0.00014.366

In test case 4 we replace the exchange algorithm with the Fedorov method. After 50367

iterations we find only one class of optimal designs with D-efficiency equal to 87.92.368

The estimate of the discovery probability at the next iteration is Û51+0(0) ≈ 0.00002.369

4.3 Test case 5370

Let us now consider 5 factors, each with 3 levels, and the model that contains the overall371

mean, the main effects and all the 2-factor interactions for a total of 1+5·2+10·4 = 51372

degrees of freedom. We search for D-optimal designs that contain 51 points.373

If we run the algorithm with the setting of test case 1 or 3 (M⋆ = 1,000, m⋆ = 50,374

p⋆ = 0.10, method=exchange) after 1,000 iterations we find Û1000+0(0) ≈ 95%375

and 978 different D-optimal designs with efficiencies ranging between 25.4333 and376

28.6677.377

In this case it can be appropriate to round the efficiency values not to four decimal378

digits (as in all the previous test cases) but to one decimal digit. If we adopt this379

rounding, after 3,600 iterations we get 33 different designs with D-efficiencies ranging380

between a minimum of 25.2 to a maximum of 28.7. The estimate of the discovery381

probability at the next iteration is Û3600+0(0) ≈ 0.0014 (Û3600+1000(0) ≈ 0.0011).382

4.4 Practical considerations and guidelines383

After s iterations the algorithm provides Ûs+0(0), an estimate of the probability of384

discovery of a new value of efficiency at the next iteration. This value is useful to assess385

how far the set of optimal designs that has been collected up to the iteration s is repre-386
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sentative of all the optimal designs A
φ
α . 1−Ûs+0(0) estimates the sample coverage, that387

is the proportion of distinct species present in the sample observed with respect to the388

total population. If the probability of discovery is judged to be still too high or, equiv-389

alently, the sample coverage too low, the user can decide to run the algorithm again.390

From a practical point of view, the ideal situation is when the computational budget391

of the user, M⋆, is large enough to reach a very high coverage, let us say of around392

99.9% (i.e. Ûs+0(0) ≈ 0.1%). In practice, in this ideal case, the algorithm can be run393

for the first time with p⋆ = 0.001, M⋆ = 1,000 and m⋆ = 50. If after the first 1,000394

iterations the estimate of the discovery probability at the next iteration has not gone395

under p⋆ the algorithm can be run again to obtain supplementary observations. The396

value of M⋆ can be chosen computing the estimates of the discovery probability at397

the (1000 + m + 1)-th observation with different values m of the size of an additional398

unobserved sample size.399

In any case, even if M⋆ is not large enough to make the estimate of the discovery400

probability at the next iteration as small as desired, the user has valuable information401

about the sample coverage that has been reached so far. Again, an estimate of the dis-402

covery probability at the next (n +m +1)-th observation can be computed. It is useful403

to consider this estimate for some values of m, let us say m = 1,000 and m = 2,000,404

to make the decision to continue or stop the sampling.405

It is important that the number of simulations is not too small to make the estimates406

of the discovery probabilities sufficiently stable. We chose to work with m⋆ = 50. To407

support the choice of m⋆ the plot of the estimate of the discovery probability Ûs+0(0)408

as function of the iteration s is useful (see Fig. 1).409

The values of the efficiency must be rounded to avoid creating different species from410

numerical effects. Different values of rounding allow us to reduce or to enlarge the411

number of species of the population under study. This reflects the user’s opinion regard-412

ing the difference between efficiency values that must be considered significant from a413

practical point of view. For example, at the initial stage of our exploration we can round414

the values of the efficiency to one decimal digit just to know their approximate range.415

Then in the next stages we can decide to run the algorithm with more decimal digits.416

We ran the simulation study on a standard laptop (CPU Intel Core i7-2620M CPU417

2.70 GHz 2.70 GHz, RAM 8 Gb). To give an idea of the computational times required418

we report that the first stage of test case 1 (487 iterations, exchange method) needed419

around 387 seconds (1.26 second per iteration) while the the first stage of test case 2420

(50 iterations, Fedorov method) needed around 27 seconds (1.85 second per iteration).421

5 Conclusion422

Given an optimality criterion φ, the problem of φ-optimal design generation has been423

addressed. A methodology to support the decision whether to continue or stop the424

search for optimal designs has been developed. It combines recent advances on dis-425

covery probability estimation, based on a Bayesian non parametric approach, Favaro426

et al. (2012), with well known methods for optimal design generation.427

In principle, this methodology could be applied to any discrete optimisation prob-428

lem. This topic will be part of future research.429
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A software code, written in SAS, that makes use of the Proc Optex procedure, has430

been developed.431

It should also be pointed out that the innovative side of this work lies in using432

sampling stopping rules to improve the generation process of optimal designs. In this433

paper we used the Bayesian updating of the discovery probability as proposed by434

Favaro et al. (2012) but other approaches could be adopted. For example Christen and435

Nakamura (2003) developed an algorithm based on backward induction. It makes use436

of a utility function based on the number of new species to be observed and the effort437

saved from the maximum horizon for accumulation. It could be part of future research438

using this algorithm in the context of optimal designs generation.439
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