Noble Metal based Catalysts for Natural Gas Steam Reforming Activity, Endurance and Kinetics

Original

Availability:
This version is available at: 11583/2588279 since:

Publisher:
Politecnico di Torino

Published
DOI:10.6092/polito/porto/2588279

Terms of use:
Altro tipo di accesso
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Noble Metal based Catalysts for Natural Gas Steam Reforming Activity, Endurance and Kinetics

A thesis submitted in partial fulfillment of the requirement of degree of

Doctorate in Chemical Engineering

at

Department of APPLIED SCIENCE AND TECHNOLOGY (DISAT)

POLITECNICO DI TORINO

by

Um-e-salma Amjad

In supervision of

Prof. Stefania Specchia

XXVII Cycle

Academic year 2012-2014
This Research has been produced under the Project of UESTP by the Higher Education Commission, Pakistan at the Department of Applied Science (DISAT) of Politecnico di Torino, Italy.

December 2014
Dedication

To my family

Ami, Dady, Dada Abu, Dadi amman

Ayesha, Asma, Bhai, Aapa, Mamu, Rabi, Anu
Acknowledgement

My foremost gratitude to Almighty Allah, the most beneficent the most merciful, for His countless blessings on me in every walk of life.

I humbly thank my Ami, Dady, Dadi amman and Dada Abu for their courage and support without which I was unable to complete my studies, especially my late Dada Abu who supported greatly in studies.

My supervisor professor Stefania Specchia who always encouraged me and gave me the confidence for the research work and guided me throughout my PhD

I gratefully acknowledge Higher Education Commission, Pakistan who funded this PhD research under the program of UESTP.

Last but not the least, my friends Aneela and Rashmi, my PhD Colleagues and family members who supported me throughout the research and always helped in tough and hard moments
Abstract

This thesis illustrates catalytic activity, stability and intrinsic kinetics of methane steam reforming (MSR) reaction over noble metal catalysts. The main objective of this thesis is to evaluate a best performing catalyst based on the maximization of H$_2$ production and minimization of CO in the synthesis gas produced from MSR reaction.

The noble metal catalysts tested towards MSR reaction were Rh, Ru and Pt supported on different reducible and irreducible oxides. The oxides (CeO$_2$, MgO and Al$_2$O$_3$) used in this work were synthesized from their nitrite precursor by Simultaneous combustion synthesis (SCS) while Nb$_2$O$_5$ was prepared by heat treatment of Niobic acid obtained from Companhia Brasileira de Metalurgia e Mineração (CBMM, Brasil). In all the catalysts the noble metals were deposited on the support by wetness impregnation method, except Pt/CeO$_2$ which was prepared by one shoot SCS method. All the prepared catalysts were calcined under different calcination regimes. The best performing catalysts were characterized by different techniques BET, CO chemisorption, porosiometry, XRD, XPS, ICP, TEM and SEM analyses. Efforts have been made to correlate the catalytic activity with the physical characterization.

All the catalysts prepared were initially screened by MSR reaction in a tubular fixed bed quartz reactor of 4mm ID containing 30mg of catalyst diluted with 50mg of inert. For catalytic screening and stability test the feed was introduced at a weight hourly space velocity of 20 NLh$^{-1}$g$^{-1}$cat and steam to carbon ratio 3-4 depending upon the catalyst. The results obtained from basic screening of the catalysts were analyzed in terms of methane conversion, H$_2$ produced in dry reformate and CO$_2$ selectivity. Among all the catalysts tested towards MSR only two were chosen based on initial screening, Rh/CeO$_2$ and Pt/CeO$_2$, for the further test concerning catalyst stability.

The stability of Rh/CeO$_2$ and Pt/CeO$_2$ catalysts was determined based on daily start up and shut down cycle (DSS) with a 6h performance period. The Pt/CeO$_2$
catalyst was tested for a total of 150 h in which 100h performance was with DSS in N₂ environment while 50h of catalyst activity with DSS in reaction environment. The Rh/CeO₂ catalyst was tested for a total of 25 h catalyst activity with DSS in N₂ environment. Additionally the Rh/CeO₂ catalyst was also tested in 100h continuous ageing. Both the catalysts showed good results in terms of catalyst activity and stability during the time period. As Rh/CeO₂ catalyst showed good activity during 100h continuous endurance this catalysts was chosen to evaluate the intrinsic kinetics of methane steam reforming.

For the kinetics test firstly the heat and mass transfer limitations were evaluated both experimentally and theoretically. The reactor was operated in an integral mode and no inert was used in feed for the kinetic experiments. The effect of WHSV at constant S/C 3 on the methane conversion and product composition was also determined. The partial pressures of the reactants were varied by varying the steam-to-carbon ratio of the feed. An attempt was made to fit kinetic data obtained using the models available in literature. The kinetic data obtained was perfect fit for the model proposed by Berman, and the activation energy of Rh/CeO₂ was found to be 38.6 kJ/mol.
Table of Contents

Abstract.. v

Chapter 1 : Introduction ... 1

1.1 Natural gas.. 1

1.2 Natural gas Reforming Process.. 3

1.2.1 Catalytic Steam Reforming: .. 3

1.2.2 Partial Oxidation Process.. 4

1.2.3 Autothermal Reforming/ Oxidative Reforming: ... 5

1.2.4 Dry Reforming:.. 5

1.3 Research scope and thesis layout: ... 6

1.4 References.. 7

Chapter 2 Experimental .. 11

2.1 Methane steam reforming (MSR) plant: .. 11

2.2 Catalytic Activity... 13

2.3 Catalytic Stability... 14

2.4 Intrinsic Kinetics... 15

2.4.1 Simulation method... 15

2.5 Catalysts Characterization: .. 16

2.5.1 Brunauer, Emmet, Teller (B.E.T).. 16

2.5.2 CO Chemisorption... 16

2.5.3 X-ray diffraction (XRD)... 17

2.5.4 SEM & TEM ... 17

2.5.5 X-ray photoelectron spectroscopy (XRD)... 17

2.5.6 Catalyst Density (rho)... 17

2.5.7 Metal Loading (ICP).. 18

Part I: Catalytic Activity & Performance .. 19
Chapter 3 Methane steam reforming over supported Rh catalyst 20
3.1 Introduction: .. 20
3.2 Experimental: ... 20
 3.2.1 Catalyst Synthesis ... 20
 3.2.2 Catalytic Activity ... 21
 3.2.3 Catalysts Characterization: ... 21
3.3 Results and Discussion: .. 21
 3.3.1 Rh/MgO Characteristics: ... 26
 3.3.2 Effect of Niobic acid and Niobia Support: ... 29
3.4 References: .. 32

Chapter 4 Methane steam reforming over Perovskites 35
4.1 Introduction: .. 35
4.2 Experimental: ... 36
 4.2.1 Catalyst Synthesis .. 36
 4.2.2 Catalytic Activity ... 37
4.3 Results and Discussion: ... 37
4.4 References .. 39

Chapter 5 Methane steam reforming over supported Ru catalyst: Effect of Support and Calcination Temperature. 40
5.1 Introduction ... 40
5.2 Materials and methods .. 41
 5.2.1 Chemicals ... 41
 5.2.2 Preparation of the catalysts .. 41
 5.2.3 Catalytic Activity .. 43
 5.2.4 Catalysts Characterization: .. 43
5.3 Results and Discussion ... 43
Chapter 6: A Comparative Study on Steam and Oxidative Steam Reforming of Methane with Noble Metal Catalysts

6.1 INTRODUCTION

6.2 EXPERIMENTAL
 6.2.1 Catalysts preparations
 6.2.2 Catalytic Activity
 6.2.3 Catalysts Characterization:

6.3 RESULTS
 6.3.1 Screening of the catalytic activity performance towards the methane SR reaction
 6.3.2 Catalytic activity performance of best catalysts towards the methane OSR reaction
 6.3.3 Physical characterization of best catalysts

6.4 DISCUSSION
 6.4.1 Comparative analysis of the catalytic activity performance of best catalysts towards the methane SR and OSR reactions

6.5 REFERENCES

Part II: Catalytic Stability

Chapter 7 CeO₂ supported Pt catalyst for Methane steam reforming: Catalytic Activity and Stability

7.1 Introduction

7.2 Experimental
 7.2.1 Catalysts preparations
 7.2.2 Catalytic Activity
 7.2.3 Catalysts Characterization:

7.3 Results & Discussion
7.3.1 Fresh Catalyst Characterization ... 88
7.3.2 Catalyst Activity: ... 94
7.3.3 Aged Catalyst Characterization: .. 104
7.4 References ... 107

Chapter 8 Rh/\text{CeO}_2\text{ catalyst for methane steam reforming: Catalytic activity and stability} ... 114
8.1 Introduction ... 114
8.2 Experimental ... 116
 8.2.1 Catalysts preparations ... 116
 8.2.2 Catalytic Activity .. 116
 8.2.3 Catalysts Characterization: .. 116
8.3 Results and Discussion ... 116
 8.3.1 XRD .. 120
8.4 References ... 129

Part III: Intrinsic Kinetics ... 135

Chapter 9 Intrinsic kinetics of \text{Rh/\text{CeO}_2\text{ catalyst for methane steam reforming}}: ... 136
9.1 Experimental ... 136
 9.1.1 Preliminary experiments: ... 136
9.2 Results and Discussion ... 136
 9.2.1 Heat and Mass Transfer Limitations 136
 9.2.2 S/C ratio and methane partial pressure effect on MSR reaction: 138
9.3 Kinetic study: ... 142
9.4 Thermodynamic Analysis: ... 143
9.5 Derivation of experimental reaction rates: 146
9.6 Kinetic Model and mechanism of methane steam reforming: 148
Refernces: ... 151

Chapter 10 Conclusion ...152

Appendices ...155
Chapter 1: Introduction

1.1 Natural gas

Natural gas is a fossil fuel formed from exposure of heat and pressure to buried layers of plants and animals over thousands of years. Natural gas contains more than 80% methane.

Natural gas is usually burned to generate electricity and the main products of combustion are CO_2 and water vapours the same compounds human exhale. Coal and oil on the other hand have higher carbon ratio and high nitrogen and sulphur content which makes coal and oil structure much more complex. Burning of oil and coal, due to their structural complexity, releases high level of harmful emissions including NO_x and SO_x. Ash particles also results from oil and coal combustion and contribute to air pollution. Natural gas combustion do not produce any ash content and very low levels of CO, CO_2 and other reactive hydrocarbons. Natural gas is a non-renewable energy source. It is the cleanest of fossil fuels as evident from the chart below.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{Comparison of emission from Natural gas, Coal and oil1}
\end{figure}
Despite of all the natural gas advantages, it contains more than 80% methane which is the second most important greenhouse gas\(^2\). Methane is potentially more dangerous than \(\text{CO}_2\) because of its greater radiative forcing produced per molecule. However methane exists in atmosphere in far less concentrations than \(\text{CO}_2\) and is measured in ppb rather than ppm\(^3\). Also methane has a only 10 year residence time in atmosphere compared with hundreds of years of \(\text{CO}_2\).

The natural sources of methane along with the natural sinks are presented in methane cycle in Figure 1.2.

![Methane cycle](image)

Figure 1.2: The Methane Cycle\(^3\)

The greatest advantage of natural gas is being a source of syngas. Methane has the simplest structure among all the hydrocarbons so it produces syngas: a mixture of hydrogen and carbon monoxide with minimum amount of other byproducts. Hydrogen is the cleanest of all the fuels with high energy content. Industrially hydrogen is produced mainly from methane present in natural gas. The major route for hydrogen production is via catalytic steam reforming route.
Figure 1.3 presents the primary energy distribution of the sources to produce hydrogen.

![Pie chart showing energy sources for hydrogen production](image)

Figure 1.3: Distribution of primary energy sources for hydrogen production.

1.2 Natural gas Reforming Process

The routes of producing syngas from natural gas reforming are as follows;

i. Steam Reforming

ii. Partial oxidation

iii. Autothermal reforming/Oxidative steam reforming

iv. Dry reforming

1.2.1 Catalytic Steam Reforming:

Steam reforming or methane steam reforming (MSR) is the reaction where steam and hydrocarbons, such as natural gas or refinery feedstock, react in a reformer at temperature of 800–900°C and moderate pressure of around 30 bar, in the presence of metal based catalyst for the production of syngas. Syngas reacts further to give more hydrogen and carbon dioxide via water gas shift (WGS) equilibrium reaction, which is a side reaction in steam reforming. Steam reforming is a catalytic and energy efficient process for producing a H₂ rich
syngas from light hydrocarbons like natural gas, refinery off-gases, LPG or naphtha. The hydrocarbon feedstock is fed to the reformer after being mixed with steam in steam to carbon (S/C) ratios higher than 2.79. This excessive steam is required for completion of reactions as well as avoiding carbon formation10,11.

The main reactions involved in MSR are as follows12,

\[CH_4 + H_2O \leftrightarrow CO + 3H_2 \quad \Delta H_{298K} = 206.2 \text{ kJ/mol} \]
\[CO + H_2O \leftrightarrow CO_2 + H_2 \quad \Delta H_{298K} = -41.1 \text{ kJ/mol} \]
\[CH_4 + 2H_2O \leftrightarrow CO_2 + 4H_2 \quad \Delta H_{298K} = 164.9 \text{ kJ/mol} \]

The highly endothermic steam reforming reactions are usually catalyzed by Ni supported on ceramics such as alumina or alumina magnesium spinels12,13. However, the possible utilization of noble metal catalyst is also in progress and reported in literature14–17.

1.2.2 Partial Oxidation Process

1.2.2.1 Non Catalytic Partial Oxidation:

Non catalytic partial oxidation (NCPO) is a unique technology to produce CO rich syngas from hydrocarbons. The reaction takes place between 1200°C to 1500°C and the exothermic reaction7,18 involved is,

\[CH_4 + \frac{1}{2}O_2 \leftrightarrow CO + 2H_2 \quad \Delta H_{298K} = -126.2 \text{ kJ/mol} \]

However this process is mainly utilized for heavy hydrocarbons reforming. The main utilization of this process is in the following systems9

(i) in H\textsubscript{2} production for refinery applications,
(ii) synthesis gas production from coal and
(iii) in electric energy production from petroleum coke and deasphalter bottoms, through large Integrated Gas Turbine Combined Cycles (IGCC)
1.2.2 Catalytic Partial Oxidation:
In order to reduce the high temperature requirement for NCPO process the catalytic partial oxidation (CPO) is used19,20. The catalyst employed for partial oxidation reaction reduces the temperature to 800-900°C and is also known as the short contact time catalytic partial oxidation (SCT-CPO). The CPO process is sensitive to sulfur poisoning and can only work efficiently for fuels with sulphur content below 50 ppm9.

1.2.3 Autothermal Reforming/ Oxidative Reforming:
Autothermal reforming (ATR) is the combination of partial oxidation and steam reforming6,21,22. Firstly the partial oxidation reaction occurs followed by reforming in the catalyst bed. This reaction is exothermic due to the partial oxidation process. When the ATR uses dry reforming after partial oxidation the H\textsubscript{2}:CO molar ratio produced in syngas is 1:1. If steam reforming is employed the H\textsubscript{2}:CO molar ratio is 2.5:1. Operating ATR with O/C molar ratios less than 0.7 is generally called OSR23–25.

1.2.4 Dry Reforming:
The reforming of CH\textsubscript{4} with CO\textsubscript{2} produces synthesis gas with a lower H\textsubscript{2}/CO ratio than that generated by the widely employed steam/CH\textsubscript{4} reforming reaction.

\[
CH\textsubscript{4} + CO\textsubscript{2} \leftrightarrow 2CO + 2H\textsubscript{2} \quad \Delta H_{298K} = -247 \text{ kJ/mol}
\]

The two reactions have similar thermodynamic characteristics except that in the case of CO\textsubscript{2}/CH\textsubscript{4} reforming there is a greater potential for carbon formation, primarily due to the lower H/C ratio of this system26.

The choice of reforming process affects the thermal efficiency of the plant, plant size and location, plant capital cost, the physical size of downstream gas handling equipment, syngas composition and the downstream conversion process. A comparison of syngas generation technologies using natural gas as feed is shown below in Table 1.1.
Table 1.1: Comparison of syngas generation technologies (natural gas feed)\(^9\)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPOX</td>
<td>Feed stock desulfurization not required</td>
<td>Very high process operating temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Usually requires oxygen plant</td>
</tr>
<tr>
<td>MSR</td>
<td>Most extensive industrial experience</td>
<td>Highest air emissions</td>
</tr>
<tr>
<td></td>
<td>Oxygen not required, lowest process operating temperature</td>
<td>More costly than POX and autothermal reformers</td>
</tr>
<tr>
<td></td>
<td>Best (H_2/CO) ratio for production of liquid fuels</td>
<td>Recycling of CO and removal of the excess hydrogen by means of membranes</td>
</tr>
<tr>
<td>ATR</td>
<td>Lowest process temperature requirement than POX</td>
<td>Limited commercial experience</td>
</tr>
<tr>
<td></td>
<td>Syngas methane content can be tailored by adjusting reformer outlet temperature</td>
<td>Usually requires oxygen plant</td>
</tr>
<tr>
<td>MDR</td>
<td>Green house gas (CO_2) can be consumed instead of releasing in to atmosphere</td>
<td>Formation of coke on catalyst</td>
</tr>
<tr>
<td></td>
<td>Almost 100% of (CO_2) conversion</td>
<td>Additional heat is required as the reaction takes place at 873 K</td>
</tr>
</tbody>
</table>

1.3 Research scope and thesis layout:

This thesis presents an experimental and modeling work for \(H_2\) production from methane. The scope of this thesis is categorized in the three Parts:
Part I consists of **Chapter 3** to **Chapter 6** and includes experimental study for the catalytic activity for low-temperature steam reforming of methane over noble metal based catalyst.

Part II consists of **Chapter 7** and **Chapter 8** and deals with the stability and endurance of CeO$_2$ supported Pt and Rh catalyst

Part III addresses the intrinsic kinetics of MSR reaction over Rh catalyst encircled in **Chapter 9**.

Finally **Chapter 10** summarizes the general conclusions of the research and implies several recommendations for the improvement of the process. Future perspective for the H$_2$ production process

Part I and **Part II** cover the area of catalysis in terms of catalyst characterization, activity testing, stability, and reaction performance study, while **Part III** envelops the area of catalytic reaction engineering in terms of intrinsic kinetics

This thesis is an assemblage of a series of papers published and/or to be published in the relevant journals on this topic. Every chapter can be seen as a stand-alone research paper. The list of Published papers or the manuscripts in progress is given at the end of the thesis.

1.4 References

Chapter 2 Experimental

2.1 Methane steam reforming (MSR) plant:

The catalytic activity, stability and kinetics was carried out in a MSR plant which was designed to ensure a flexible system. The flow sheet of MSR plant is presented in Figure 2.1. The plant consists of following four sections

![MSR Process Flowsheet Diagram](image)

Figure 2.1: MSR Process Flowsheet Diagram

A feed section consists of an assembly of Bronkhorst mass flow controllers which are fed through 99.999% pure gases cylinders provided by SIAD. Ultrapure water obtained from a Millipore Milli-Q system with a resistivity > 18 MΩ cm⁻¹ was used for preparing steam. The water was supplied through water tank operated with 4bar of compressed air and fed in the system through Bronkhorst flow controller. All the flow rates in the feed section were controlled by computer through Bronkhorst Flow DDE controller.
Figure 2.2: The feed section

A mixer/evaporator section after the feed section which serves dual purpose, first to evaporate the water and secondly to mix the gas stream with the steam generated within the system. The mixer/evaporator section operates at 130°C and is controlled by a West 6100+ heating system.

Figure 2.3: Mixer Evaporator Section

A reactor/oven system following the mixer/evaporator section consists of a programmable heating furnace controlled by Lenton heater. The reactor consists of a 4mm ID quartz tube (in which 30mg of a catalyst diluted with 50mg of inert was placed between a quartz wool) inserted in the furnace. Provisions are made to bypass the reactor in order to increase the system flexibility. A water trap consisting of silica gel and condenser are placed at reactor outlet to condense the water in the system before entering an analysis section.
Finally the analysis section which consists of a gas chromatograph (Varian CP-3800) equipped with a thermal conductivity detector (TCD) and two Molsieve 5A columns.

2.2 Catalytic Activity

Catalytic activity tests on Steam Reforming (SR) of methane were conducted in a fixed-bed quartz micro-reactor with inner diameter of 4 mm at atmospheric pressure. Each sample (300 mg in powder, diluted with 500 mg of SiO2 (0.2–0.7
mm) was placed between two quartz wool plugs in the centre of the quartz tube and inserted into the furnace heated to the reaction temperature. A K-type thermocouple was inserted into the reactor to measure temperature of catalytic bed. Before experiments, each catalyst was reduced with a mixture of 50% H₂ in N₂ by heating from room temperature to 200 °C, and by maintaining that temperature for 1 h. For SR process, the fixed bed was fed with an overall flow of 100 NmL min⁻¹, maintaining a steam-to-carbon ratio equal to 4, with a weight space velocity (WHSV) of 0.33 NL min⁻¹ g⁻¹ cat⁻¹. The reaction temperature was varied from 400 to 750°C. The outlet gas stream was analyzed, after the removal of the water, through a gas chromatograph (Varian CP-3800) equipped with a thermal conductivity detector (TCD) and two Molsieve 5A columns.

For the OSR tests instead, the oxygen was added to the feed with an oxygen-to-carbon (O/C) molar ratio equal to 0.65, under lightly exothermic conditions, being all other conditions the same of the SR process (S/C molar ratio of 3). Such an O/C value was chosen to optimize fuel conversion and hydrogen concentration.

For all the performed tests, repeated at least three times for assuring the repeatability of the measures, the carbon balance was respected within 5%. All the measures were performed after condensing the remaining water in reformate: the reported values refer, too, to dry gas composition.

2.3 Catalytic Stability

The stability test was conducted under cyclic condition with daily startup and shutdown process (DSS). The cycle consisted of startup, reaction and shutdown processes. During startup process under inert conditions (DSS\textsubscript{inert}) the catalyst bed was heated from ambient temperature to the working temperature in N₂ flow. Once the catalyst achieved the working temperature the N₂ flow was stopped and the reaction mixture flow was started. After 6 h of reaction time the heating and reaction mixture flow was stopped and the catalyst bed was cooled down to ambient temperature in N₂ flow.

During startup process under reaction conditions (DSS\textsubscript{rxn}) the catalyst bed was heated from ambient temperature to the working temperature in reaction
mixture. Once the catalyst achieved the working temperature the reaction time
was noted. After 6 h of reaction time the heating and reaction mixture flow was
stopped and the catalyst bed was cooled down to ambient temperature in
reaction mixture flow. After completion of stability tests the catalytic performance
was re-evaluated in temperature range of 400°C-700°C.

2.4 Intrinsic Kinetics

For the kinetics the catalyst was heated to the desired temperature and after
reaching isothermal conditions S/C ratio was varied to see the effect of methane
and steam partial pressure on methane conversion, keeping WHSV constant.
After this another set of experiment was conducted keeping S/C ratio constant at
3 and changing the space velocity. No inert was used in the experiments and no
hydrogen was added in the feed as there was no visible catalyst deactivation.

2.4.1 Simulation method

The thermodynamic equilibrium can be calculated by two methods, one by
equilibrium constants, while other one by minimization of free energies reforming
reaction. The method of minimizing Gibbs free energy is normally favored in fuel-
reforming analysis in contrast with the equilibrium constant due to presence of
solid carbon which is difficult to analyze.

In order to analyze the performance of catalyst, it was compared with the results
calculated by the simulation software. The operating conditions maintained the
same as of practical test. The reactor was Gibbs free energy by using Peng-
Robinson property set. The reforming reator was modeled by using library model
RGibbs. The RGibbs reactor of the AspenPlus™ was selected to calculate the
chemical equilibrium value of MSR reaction by minimizing the Gibbs free energy
of all the species expected to participate in the equilibrium. For simplification,
components were limited to CH₄, H₂, CO, and CO₂. The RGibbs model is preferred
in fuel-reforming analysis. The inlet flow rate of methane was adjusted at 100
NmL min⁻¹, 138 NmL min⁻¹ correspond to 20 WHSV and 27.65 WHSV at steam to
carbon ratio 3.0 with pressure at 1 bar. In another comparison, the methane flow
rate was 100 NmL min⁻¹, but varying the steam to carbon ration of 2.8, 3.0 and
3.2. The reactor temperature ranged from 400 to 750 °C. A sensitivity analysis of CO towards CH₄ has also been conducted with regard to the effect of varying temperature. The H₂/CH₄ also conducted to see the extent of the reaction i.e. how much methane is converted into H₂.

2.5 Catalysts Characterization:

2.5.1 Brunauer, Emmet, Teller (B.E.T)

The specific surface areas (S_{BET}) of the catalysts was determined using the Brunauer, Emmet, Teller (BET) method within the relative pressure range of 0 to 1 on an ASAP 2020 M Micromeritics Instrument. Nitrogen adsorption isotherms were recorded at −196 °C. Prior to adsorption, approximately 50.0 mg of solid powder were placed in the cell and evacuated at 350 °C for 3 h under high vacuum.

2.5.2 CO Chemisorption

By using the ASAP 2020 M Micromeritics Instrument the chemisorption analysis was carried out, in order to evaluate the active metals dispersion on supports. H₂ saturation was firstly performed by flowing 20 Ncm³ min⁻¹ of H₂ for 2 h at 350 °C and at the end and He flow rate of 20 Ncm³ min⁻¹ for 1.5 h was fed to the apparatus increasing the temperature to 370 °C. Then, at room temperature, a mixture of 10% CO in He was injected in pulses of 500 Nµl each, till the fulfillment of constant outlet peaks. The amount of adsorbed gas was determined as difference between the total injected volume and the residual escaped one. The metal dispersion on the carrier surface was determined as follows:

\[D_{St} = 100 \cdot S_f \cdot \frac{V_{ads} \cdot M_{me}}{V_g \cdot F_{me}} \] (1)

considering a stoichiometric factor S_f equal to 1 (i.e., each Rh atom adsorbed one CO molecule), the total volume of CO chemisorbed referred to the mass of the carrier used for the analysis in Ncm³ g⁻¹ (V_{ads}), the metal atomic weight M_{me} (101.07 g mol⁻¹ for Ru; 102.91 g mol⁻¹ for Rh; 195.08 g mol⁻¹ for Pt,
respectively), the total mass fraction of the metal on the catalyst (F_{me}, expressed as $g_{me} \text{ g}^{-1}$ of carrier) and that one gas g-mole, V_{gh} occupies 22,414 cm3 at normal conditions.

2.5.3 X-ray diffraction (XRD)

The X-ray diffraction (XRD) patterns were collected using a Philips X-Pert MPD X-ray diffractometer equipped with a Cu Kα radiation at 40 kV and 30 mA to verify the effective composition of the samples and derive qualitative indications of the presence of comparatively large noble metals crystallite from its eventually visible peaks. All powder samples were scanned over 2θ range between 20° to 70° over 1 h. The peaks were assigned according to the PCPFWIN database. The particle size of carriers was determined by Scherrer’s equation, assuming a Gaussian shape of the peaks.

2.5.4 SEM & TEM

The morphology and metal particle size distribution of catalysts were examined by transmission electron microscopy (TEM Philips CM12).

2.5.5 X-ray photoelectron spectroscopy (XRD)

X-ray photoelectron spectroscopy (XPS) measurements were carried out on Fe–NX/C samples using a Physical Electronics PHI 5800 (USA) multi-technique ESCA system (with monochromatic Al-Kα X-ray radiation). The survey and narrow spectra were obtained under identical conditions and a charging correction with reference to C 1s at 285 eV, during which the samples were placed in an ultrahigh vacuum chamber at 2 x10$^{-10}$ Torr. Multipak 9.0 software was used for obtaining semi-quantitative atomic percentage compositions.

2.5.6 Catalyst Density (rho)

The catalyst density was measured by Ultrapyc 1200e analyzer.
2.5.7 Metal Loading (ICP)

The catalyst metal loading was measured by ICP technique using a Thermo Fisher Scientific ICP-MS.
Part I: Catalytic Activity & Performance

In first part of the thesis the catalytic activity and performance of different noble metal catalysts (Ru, Rh and Pt) was evaluated. Part I consists Chapter 3, Chapter 4, Chapter 5 and Chapter 6 dealing with the basic screening of these catalysts.

Chapter 3 deals with the screening of Rh catalyst over MgO, Niobic acid and Niobia support.

Chapter 4 deals with the performance of Perovskites towards MSR reaction.

Chapter 5 deals with the screening of Ru catalyst over MgO, Niobic acid and Niobia support. The effect of Niobic acid and niobia support was also determined.

Chapter 6 finally deals with the comparison of steam reforming and oxidative reforming reactions over different noble metals (Rh, Ru, Pt) on CeO₂ and Al₂O₃ support.
Chapter 3 Methane steam reforming over supported Rh catalyst

3.1 Introduction:

In order to explore highly active and selective catalysts for the MSR process, in this work comparative analysis of Rh catalysts on different supports was evaluated. The supports for Rh catalyst used were MgO, Niobic acid and Niobia. Ru/MgO catalytic system has been studied for ammonia synthesis but not been utilized for MSR reaction\(^1\). However MgO has been studied for MSR as an additive on Ni/Al\(_2\)O\(_3\) catalyst and it tends to improve the CO\(_2\) selectivity of the process\(^2\). The niobic acid support is known for its acidic nature and no studies regarding MSR reaction are found although the niobic acid is known to facilitates the reaction involving water\(^2,3\). Niobia on the other hand has been an active support ethanol steam reforming but no studies involving MSR is available\(^4-6\), also niobia tend to show strong metal support interaction\(^7-11\).

3.2 Experimental:

3.2.1 Catalyst Synthesis

Three type of supports were prepared. Firstly a support labeled as MgO was synthesized by using a simultaneous combustion synthesis technique\(^12\) through Mg(NO\(_3\))\(_3\) x 6H\(_2\)O precursor followed by a 3h air calcination at 650\(^\circ\)C. Secondly a Niobic acid (Nb\(_2\)O\(_5\)-nH\(_2\)O, type HY-340, water content \(\approx\) 20 wt.\%) was supplied by the Companhia Brasileira de Metalurgia e Mineracão (CBMM, Brasil) and used as support labeled as Nb\(_2\)O\(_5\) and a third niobia support was prepared by thermal treatment of Niobic acid at 500\(^\circ\)C for 5h\(^13\), and labeled as Nb\(_2\)O\(_5\) (500 \(^\circ\)C). All the three supports were impregnated by incipient wetness impregnation method
using aqueous solution of a RhCl$_3$ to obtain a nominal 1.5 wt% of Rh as catalysts. All the impregnated samples were further divided into two groups, one group was used as catalyst without any further treatment while the other group was calcined at 400°C for 3h14. The list of all the synthesized catalysts along with preparation conditions are tabulated in Table 3.1.

Table 3.1: List of prepared catalysts along with preparation conditions

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Support</th>
<th>T_c, support</th>
<th>T_c,final catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh/MgO</td>
<td>MgO</td>
<td>650</td>
<td>400</td>
</tr>
<tr>
<td>Rh/Nb$_2$O$_5$</td>
<td>Nb$_2$O$_5$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rh/Nb$_2$O$_5$(500°C)</td>
<td>Nb$_2$O$_5$(500°C)</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>Rh/Nb$_2$O$_5$(400°C)</td>
<td>Nb$_2$O$_5$</td>
<td>-</td>
<td>400</td>
</tr>
<tr>
<td>Rh/Nb$_2$O$_5$(500-400°C)</td>
<td>Nb$_2$O$_5$(500°C)</td>
<td>500</td>
<td>400</td>
</tr>
</tbody>
</table>

T_c, support = Calcination temperature of support (°C)

T_c,final catalyst = Calcination temperature after Rh impregnation (°C)

3.2.2 Catalytic Activity

The catalytic activity of the catalyst was evaluated in temperature range of 400-750°C. Details of catalytic activity measurements are presented in Chapter 2.

3.2.3 Catalysts Characterization:

The catalyst prepared were characterized by CO Chemisorption, XRD, SEM EDX and XPS analysis.

3.3 Results and Discussion:

All of the prepared catalysts were tested towards the MSR reaction with a S/C ratio 4. The obtained results are shown in Figure 3.1(A-C). At first a comparison of all the catalysts was made in terms of methane conversion, CO$_2$ selectivity and H$_2$ dry outlet concentration.

The Rh/MgO achieved 93% methane conversion at 650°C with a H$_2$ dry outlet concentration and a CO$_2$ selectivity of 78% and 63% respectively. Further
increase in the temperature to 700 and 750°C improved the methane conversion and the \(\text{H}_2 \) dry outlet concentration for Rh/MgO, however the \(\text{CO}_2 \) selectivity decreased to 51%.

For the Rh/MgO increase in the temperature to 700°C resulted in 98% methane conversion with a \(\text{H}_2 \) dry outlet concentration and a \(\text{CO}_2 \) selectivity of 78% and 51% respectively. Further increase of the temperature to 750°C had a small effect on methane conversion as it reached 99%; however the \(\text{H}_2 \) dry outlet concentration and the \(\text{CO}_2 \) selectivity remain similar.

The Rh/Nb\(_2\)O\(_5\) showed an increase in methane conversion with the temperature increase till 650°C where it reached a maximum methane conversion of 86% with 78% \(\text{CO}_2 \) selectivity and 74% \(\text{H}_2 \) in dry reformate. These values at 650°C are lower than that obtained on the Rh/MgO. The increase in temperature, for Rh/Nb\(_2\)O\(_5\) catalyst, to 700°C and 750°C resulted in decrease in the methane conversion to 81% and 80% respectively.

When the Rh/Nb\(_2\)O\(_5\) was calcined at 400°C for 3h we obtained the Rh/Nb\(_2\)O\(_5\)(400°C) catalyst. This calcinations at 400°C improved the catalytic activity of Rh/Nb\(_2\)O\(_5\)(400°C) as presented in Figure 3.1. On the other hand the influence of calcinations on Rh/Nb\(_2\)O\(_5\)(400°C) in terms of the methane conversion and \(\text{H}_2 \) dry outlet concentration was negligible as the values obtained were more or less similar to Rh/Nb\(_2\)O\(_5\). However for \(\text{CO}_2 \) selectivity a slight decrease was observed as the Rh/Nb\(_2\)O\(_5\)(400°C) achieved 73% and 67% \(\text{CO}_2 \) selectivity at 700°C and 750°C respectively.

The support calcinations effect was not visible for the Rh/Nb\(_2\)O\(_5\)(500°C) regarding the methane conversion as it reached a maximum of 88% at 700°C and remained constant at 750°C lower than Rh/Nb\(_2\)O\(_5\) catalyst. However, for the \(\text{H}_2 \) dry outlet concentration the Rh/Nb\(_2\)O\(_5\)(500°C) showed 74% at 700°C but at 750°C the \(\text{H}_2 \) dry outlet concentration increased to 75%. The \(\text{CO}_2 \) selectivity remained lower for Rh/Nb\(_2\)O\(_5\)(500°C) and could only achieve 72% at 750°C.

When the Rh/Nb\(_2\)O\(_5\)(500°C) was calcined at 400°C for 3h we obtained the Rh/Nb\(_2\)O\(_5\)(500°C-400°C) catalyst. The catalytic activity in terms of the methane
conversion and the H$_2$ dry outlet concentration for Rh/Nb$_2$O$_5$ catalyst reached 89% methane conversion with 74% H$_2$ in dry outlet concentration at 650°C. The temperature increase to 750 °C improved the methane conversion to 93%. However, the H$_2$ in dry outlet concentration slightly increased to 75%.
Summarizing, among these five catalysts tested towards MSR reaction only two [Rh/MgO, Rh/Nb$_2$O$_5$(500°C-400°C)] reached above 90% methane conversion at
750°C, while with the other three catalysts [Rh/Nb$_2$O$_5$, Rh/Nb$_2$O$_5$(500°C), Rh/Nb$_2$O$_5$(400°C)] showed less than 90% conversion at 750°C.

The activity of these catalysts is comparable to other catalysts available in literature as these are highly active at lower temperatures15–19. The activity of the Rh/MgO can be attributed to the effect caused by the MgO support which enhances CO$_2$ selectivity and H$_2$ production2,20. The Niobic acid supported catalysts showed excellent catalytic activity and niobia supported catalysts were also good for methane steam reforming. Overall the niobic acid and niobia supported Rh catalysts showed high CO$_2$ selectivity. This higher selectivity of Rh and niobic acid and niobia support can be associated with the strong metal support interaction9. The niobia supported catalysts showed activity better than ethanol steam reforming reaction21,22. All these Rh catalysts were equally active for water gas shift reaction as reaction resulted in high CO$_2$ selectivity23.

As the catalysts were active at 650 to 750°C resulting in above 80% methane conversion, to further observe the extent of water gas shift reaction the catalysts were compared for a CO$_2$/CO selectivity ratio ($S_{CO_2/CO}$), a H$_2$-to-CO molar ratio (H$_2$/CO) and a hydrogen-to-methane reacted molar ratio (H$_2$/CH$_4$,reacted) and the subsequent values are presented in Table 3.2. In general, the water gas shift activity decreased by temperature increment, as the $S_{CO_2/CO}$ and H$_2$/CO values decreased for all the catalysts by increasing the temperature from 650 to 750°C. For the Rh/MgO at temperature increment from 700°C to 750°C, $S_{CO_2/CO}$ and H$_2$/CO remained constant at 1 and 7.5 respectively. Concerning the Rh/Nb$_2$O$_5$ catalyst temperature increment decreased the $S_{CO_2/CO}$ and H$_2$/CO from 3.8 and 17 at 700°C to 2.8 and 14 at 750°C respectively. All these catalysts showed a selectivity ratio higher than 1 indicating the presence of water gas shift reaction and higher H$_2$/CO molar ratio compared to available in literature15,17. A very slight change in H$_2$/CH$_4$,reacted was observed for all the catalysts from 650°C to 750°C temperature increment and the Rh/MgO showed the highest value for H$_2$/CH$_4$,reacted.
Table 3.2: Selectivity and molar ratios of the best performing catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>T(°C)</th>
<th>S_{CO2/CO}</th>
<th>H₂/CO</th>
<th>H₂/CH₄,reacted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh/MgO</td>
<td>650</td>
<td>1.74</td>
<td>10.7</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>1.05</td>
<td>7.5</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>1.02</td>
<td>7.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Rh/Nb₂O₅</td>
<td>650</td>
<td>3.5</td>
<td>15</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>3.8</td>
<td>17</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>2.8</td>
<td>14</td>
<td>3.7</td>
</tr>
<tr>
<td>Rh/Nb₂O₅(500°C)</td>
<td>650</td>
<td>2.8</td>
<td>13</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>2.3</td>
<td>11</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>2.0</td>
<td>9</td>
<td>3.2</td>
</tr>
<tr>
<td>Rh/Nb₂O₅(400°C)</td>
<td>650</td>
<td>3.2</td>
<td>15</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>2.8</td>
<td>13</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>2.1</td>
<td>11</td>
<td>3.5</td>
</tr>
<tr>
<td>Rh/Nb₂O₅(500°C-400°C)</td>
<td>650</td>
<td>2.8</td>
<td>12</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>2.2</td>
<td>9</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>2.6</td>
<td>12</td>
<td>3.2</td>
</tr>
</tbody>
</table>

3.3.1 Rh/MgO Characteristics:

As Rh/MgO achieved 99% methane conversion, physical characterization of the catalyst was performed. Table 3.3 depicts the physical characteristics of the catalyst.
Table 3.3: Physical characteristics of the best performing catalysts CO Chemisorption Analysis

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Rh (wt%)</th>
<th>D (%)</th>
<th>Crystallite Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh/MgO</td>
<td>1.5</td>
<td>13.3</td>
<td>8.2</td>
</tr>
<tr>
<td>Rh/Nb₂O₅</td>
<td>1.5</td>
<td>4.7</td>
<td>23.3</td>
</tr>
<tr>
<td>Rh/Nb₂O₅(500°C)</td>
<td>1.5</td>
<td>12.8</td>
<td>8.5</td>
</tr>
</tbody>
</table>

The XRD analysis of the catalyst is shown in Figure 3.2.

Figure 3.2: XRD Pattern of Rh/MgO

The catalyst showed a crystalline structure. For the peaks related to magnesia periclase phase the Rh/MgO catalyst showed peaks at 2θ = 43.11°, and 62.31°. A slight shift of these peaks to higher degree compared to pure periclase (01-071-1176, 2θ = 36.88°, 42.85°, and 62.21°) can be envisaged. No peaks related to Rh are visible on Rh/MgO.

The FESEM micrograph of the Rh/MgO catalyst is presented in Figure 3.3. A blend of crystalline and porous surface morphology was observed for the Rh/MgO. At 10 μm magnification Figure 3.3-A a mixed crystalline and
amorphous structure is visible, however at 1 μm magnification Figure 3.3-B only porous structure is visible.

Figure 3.3: FESEM micrograph of as prepared Rh/MgO
Figure 3.4: Mg 2p binding energy spectrum

Figure 3.4 shows a binding energy spectrum of Mg 2p for the Rh/MgO catalyst and the surface atomic percentage and binding energy values are presented in Table 3.4. Rh/MgO showed only one peak of Mg 2p with a binding energy value 49.56 eV. These binding energy values are slightly lower than that of bulk Mg 2p value of 49.6 eV\(^2\). This slightly negative shift of binding energy indicates that the Mg is present in Mg\(^{2+}\) state\(^{25,26}\) mainly due to hygroscopic nature of magnesia\(^1\)

Table 3.4: XPS analysis of the catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Atomic (%) XPS</th>
<th>Atomic Ratio XPS</th>
<th>Mg 2p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
<td>Rh</td>
<td>Nb or Mg</td>
</tr>
<tr>
<td>Rh/MgO</td>
<td>81.7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Rh/Nb(_2)O(_5)</td>
<td>53.0</td>
<td>0.4</td>
<td>22.6</td>
</tr>
<tr>
<td>Ru(_n)/ Nb(_2)O(_5)(500(^\circ)C)</td>
<td>52.9</td>
<td>1</td>
<td>21.9</td>
</tr>
</tbody>
</table>

3.3.2 Effect of Niobic acid and Niobia Support:

To compare the effect of Niobic acid and niobia support on Rh catalyst, the physical characteristics of the two supports are compared in Table 3.3. The
 Nb$_2$O$_5$ showed less metallic dispersion and large crystallite size than Nb$_2$O$_5$(500°C), so the observed catalytic activity difference of two supports can be associated with the difference in metallic dispersion.

Figure 3.5: XRD diffractogram of (A) Niobic acid, (B) Niobia supported Rh

XRD diffractogram of the two catalysts is presented in **Figure 3.5**. It is clear that the Rh/Nb$_2$O$_5$, show an amorphous structure related to niobic acid (HY-340)13,27. On the other hand the Rh/Nb$_2$O$_5$(500°C) showed peaks at 2θ= 22.60°, 28.56°, 36.73°, 46.23°, 50.65° and 55.24°, related to crystalline tetragonal phase of Nb$_2$O$_5$13. The absence of Rh related peaks on the Rh/Nb$_2$O$_5$(500°C) can be due to fine dispersion of Rh in oxide form over the support.
Figure 3.6: Nb 3d binding energy spectrum

The typical XPS spectrum of Nb 3d is shown in Figure 3.6 and binding energy values are tabulated in Table 3.5. From Table 3.5 the Rh/Nb$_2$O$_5$ shows the 3d$_{5/2}$ binding energy value of 207.23 eV while the Rh/Nb$_2$O$_5$(500°C) showed a value of 207.221 eV. The value of Nb 3d$_{5/2}$ binding energy depicted by the catalysts is associated to bulk Nb where 3d$_{5/2}$ binding energy is observed at 207.5 eV28,29. The analysis of Nb 3d$_{3/2}$ binding energy shows the value of 209.96 eV and 209.93 eV for Rh/Nb$_2$O$_5$ and Rh/Nb$_2$O$_5$(500°C) respectively. The XPS results indicate that the surface composition and the state of support is the same for both niobic acid and niobia respectively. So the change in catalytic activity depends mainly on the metallic dispersion of the catalyst.

Table 3.5: Binding energies of Niobic acid and niobia support

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Nb 3d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3d$_{5/2}$</td>
</tr>
<tr>
<td>Rh/ Nb$_2$O$_5$</td>
<td>207.23</td>
</tr>
<tr>
<td>Ru_n/ Nb$_2$O$_5$(500°C)</td>
<td>207.21</td>
</tr>
</tbody>
</table>
3.4 References:

Chapter 4 Methane steam reforming over Perovskites

4.1 Introduction:

The carbon deposition on the catalyst during MSR reaction is a problem which can be resolved by replacing the conventional unreactive supports. The conventional support like Al$_2$O$_3$ can be replaced with supports which provide lattice oxygen. The lattice oxygen reacts with the deposited carbon thus minimizing the carbon deposition.

Supports like CeO$_2$ have been widely studied for their ability to provide lattice oxygen. Apart from CeO$_2$, perovskites are also structurally capable of providing with the lattice oxygen which enhances the steam reforming reaction. Perovskites have been studied for steam reforming reactions of ethanol1,2 and methane$^{3-6}$. Also dry reforming studies have been made on perovskites7. Usually Ni based perovskites have been utilized for MSR reaction.

However, the activity of the perovskites depends mainly on the species within the perovskite structure and the interaction between the species. Also in some cases the operational characteristics like steam to carbon ratio play an important role in determining the catalytic activity of the perovskite. There are contradictory studies available in literature. For example Provendier et al.5 found LaNiFeO$_3$ catalyst more active at S/C ratio 1 than at S/C ratio 3. On contrary Urasaki et. al.2 conducted steam reforming at S/C ratio 10 and found the perovskite structure active for reforming.

In this work the mixed perovskites were synthesized and tested towards MSR reaction. The effect of noble metal impregnation on the LaMn$_{0.7}$Cu$_{0.3}$O$_3$ perovskite was also evaluated.
4.2 Experimental:

4.2.1 Catalyst Synthesis

The polycrystalline samples of perovskites were prepared by a solid-state reaction and glycerin-nitrate technique. The list of all the prepared perovskite is presented as follows:

1. La$_{0.9}$Sr$_{0.1}$Mn$_{0.7}$Cu$_{0.3}$O$_3$
2. La$_{0.7}$Sr$_{0.3}$Mn$_{0.9}$Cu$_{0.1}$O$_3$
3. LaMn$_{0.7}$Cu$_{0.3}$O$_3$
4. LaMn$_{0.9}$Cu$_{0.1}$O$_3$
5. SmBaCo$_2$O$_{5.5}$
6. SmBaCo$_{1.6}$Cu$_{0.4}$O$_{5.5}$
7. SmBaCo$_{1.6}$Ni$_{0.4}$O$_{5.5}$
8. SmBaCo$_{1.6}$Fe$_{0.4}$O$_{5.5}$

Rare earth oxides with the purity not less than 99.99%, barium carbonate BaCO$_3$ (special purity grade), 3d-transition metal oxides: Fe$_2$O$_3$, Co$_3$O$_4$, NiO and CuO (either pure for analysis or special purity grade) or metallic cobalt and iron oxalate FeC$_2$O$_4$$\times$2H$_2$O (pure for analysis grade), nitric acid and glycerin both of pure for analysis grade were used as starting materials. According to the solid state route initial oxides and barium carbonate were mixed in appropriate ratios, grinded in the agate mortar in alcohol media and fired by stages within the temperature range 850-1100 °C. According to the glycerin-nitrate technique rare earth oxides, barium carbonate, metallic cobalt and iron oxalate or Ni or Cu oxides were dissolved in the 4.5M nitric acid while heating, then glycerin was added in amount equivalent to a complete reduction of nitrate groups. Then solution was dried to a viscous gel that further transformed to a brown powder. In both methods final anneals were performed at 950-1100 °C in air with intermediate grindings during 100-120 h with following slow cooling to room temperature at the rate of about 100 °C/h.
4.2.2 Catalytic Activity

The catalytic activity of the catalyst was evaluated in temperature range of 400-750°C. Details of catalytic activity measurements are presented in Chapter 2.

4.3 Results and Discussion:

All the prepared catalysts were tested towards the MSR reaction with a S/C ratio 4. At first a comparison of all the catalysts was made in terms of methane conversion as shown in Figure 4.1.

From Figure 4.1 the observed methane conversion for the perovskites remained lower than 1%. Only LaMn$_{0.7}$Cu$_{0.3}$O$_3$ could reach a conversion as high as 0.79%. All the other catalysts showed conversion below 0.5%. The resulted low conversion can be due to the structural changes within the catalyst due to reduction of the perovskite before the reaction. Also for La perovskite the high S/C ratio enhances the oxidizing power of the catalyst therefore resulting in decrease of catalytic activity.

To see the effect of perovskite as support in MSR reaction 1.5% Rh was deposited on LaMn$_{0.7}$Cu$_{0.3}$O$_3$ by incipient wetness impregnation method and calcined at 400°C for 3h. Figure 4.2 shows the MSR activity of Rh/LaMn$_{0.7}$Cu$_{0.3}$O$_3$ catalyst in terms of methane conversion. The catalytic activity improved as the catalyst achieved 72% methane conversion at 750°C. The
methane conversion is lower compared to other supported noble metal catalysts available in literature.

![Figure 4.2: Methane conversion for Rh/LaMn$_{0.7}$Cu$_{0.3}$O$_3$](image)

To observe the effectiveness of MSR reaction on the Rh/LaMn$_{0.7}$Cu$_{0.3}$O$_3$ catalyst, the H$_2$ dry outlet concentration and CO$_2$ selectivity are shown in Figure 4.3. The catalyst could only achieve 65% H$_2$ dry outlet concentration with 45% CO$_2$ selectivity.

![Figure 4.3: H$_2$ dry outlet concentration (black line and symbol) and CO$_2$ selectivity (gray line and symbol) for Rh/LaMn$_{0.7}$Cu$_{0.3}$O$_3$](image)
4.4 References

Chapter 5: Methane steam reforming over supported Ru catalyst: Effect of Support and Calcination Temperature.

5.1 Introduction

Hydrogen has to face many challenges from current commercial scale to future fuel for fuel cells (FCs). Due to absence of hydrogen delivery and storage system, the primary challenge in this context is the hydrogen production directly on board vehicles or on stationary mode using fuel processors\(^1,^2\). Commercially hydrogen is produced alongside CO and CO\(_2\) through catalytic MSR process usually with a steam to carbon ratio (S/C) of 2 to 5, over Ni catalyst at 1100°C\(^3,^4\). The catalytic MSR process is preferred among other catalytic processes like partial oxidation and auto thermal reforming due to its high efficiency, lower emissions and lower cost\(^6,^7\).

When hydrogen is produced from MSR processes, the product obtained is the syngas, which must be cleaned up to remove CO for obtaining a hydrogen-rich gas stream. CO, in fact, acts as a poison for FCs. When the catalytic MSR process is squeezed to small scale due to space shortage for on-board production, a problem of CO separation from hydrogen arises\(^5,^10\). Thus, research focused the attention to develop catalysts which produces minimum CO content without affecting hydrogen production. Nickel-based catalysts are effective industrially, but due to high metal loading, higher operating temperatures and carbon whiskers formation, attention is being focused on noble metal catalysts which operate at much lower temperatures, with low metallic loading and minimum carbon formation\(^11,^14\).
The present manuscript shows a comparative analysis of Ru-based catalysts on different supports to identify highly active and selective catalysts for the MSR process. Magnesia (MgO), niobic acid (Nb$_2$O$_5$·nH$_2$O) and niobia, or niobium pentoxide (Nb$_2$O$_5$), were used as support for Ru. Ru/MgO catalyst has been studied for ammonia synthesis15 but not for MSR reaction. However, MgO has been employed as an additive on Ni/Al$_2$O$_3$ catalyst for MSR: it improved the CO$_2$ selectivity of the process16. The niobic acid is known for its acidic nature and no studies regarding MSR reaction are available. The niobic acid is known to facilitates the reaction involving water16,17, while niobia provides strong metal-carrier interaction$^{18-22}$. Niobia on the other hand has been employed as an active support for ethanol steam reforming$^{23-25}$, but studies involving MSR are unavailable.

5.2 Materials and methods

5.2.1 Chemicals

Magnesium(III) nitrate hexahydrate Mg(NO$_3$)$_2$·6H$_2$O (99.999% purity), urea NH$_2$CONH$_2$ (≥ 98% purity), ruthenium(III) chloride hydrate RuCl$_3$·xH$_2$O (99.9% purity, degree of hydration, ≤1), and ruthenium(III) nitrosyl nitrate Ru(NO)(NO$_3$)$_3$ (Ru 1.5%, in dilute nitric acid) were purchase from Sigma Aldrich. Niobic acid (Nb$_2$O$_5$·nH$_2$O, type HY-340, water content ≈ 20 wt.%) was supplied by the Companhia Brasileira de Metalurgia e Mineracão (CBMM, Brasil). Ultrapure water obtained from a Millipore Milli-Q system with a resistivity > 18 MΩ cm$^{-1}$ was used for preparing aqueous solutions and steam. Pure methane (99.999%), hydrogen (99.999%) and nitrogen (99.999%) gases were supplied in cylinders provided by SIAD and used as received.

5.2.2 Preparation of the catalysts

Three type of carriers were prepared. MgO was synthesized by using a simultaneous combustion synthesis technique11,26 with Mg(NO$_3$)$_2$·6H$_2$O and urea at 350 °C, followed by a 3h calcination at 650°C in static air. Niobic acid was used to prepare Nb$_2$O$_5$ in two different ways:
as received (hereafter labeled as Nb$_2$O$_5$);
- washed with deionized water four times, dried at 90 °C for 72 h and calcined in furnace at 500 °C for 5 h in static air (hereafter labeled as Nb$_2$O$_5$-500)24,27.

The three supports (MgO, Nb$_2$O$_5$, and Nb$_2$O$_5$-500) were impregnated with Ru by incipient wetness impregnation (IWI) method using aqueous solution of a Ru(NO)(NO$_3$)$_3$ or RuCl$_3$ to obtain a nominal 1.5 wt% of Ru as active element. An aqueous solution of the metal precursor was prepared and deposited drop by drop on the carrier, meanwhile thoroughly mixing the whole mass at about 130 °C in order to let the water evaporate together with N$_2$. The samples obtained were labeled as Ru_n/support and Ru_c/support, respectively. All of the impregnated samples were further divided into two groups: the first group was used as catalyst without any further calcination treatment while the second group was calcined at 400°C for 3 h in calm air28. The list of all of the synthesized catalysts along with the various preparation conditions is tabulated in **Table 5.1**.

Table 5.1: List of the 1.5 nominal wt.% Ru catalysts prepared along with preparation conditions ($T_{C,\text{support}}$ = calcination temperature of the support; $T_{C,\text{catalyst}}$ = calcination temperature of the catalyst after Ru impregnation), and physical characterization of the best performing ones (n.d.: not determined). Ru loading determined by EDX analysis.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Support</th>
<th>$T_{C,\text{support}}$ [°C]</th>
<th>$T_{C,\text{catalyst}}$ [°C]</th>
<th>Ru loading [%at.]</th>
<th>S_{BET} [m2·g$^{-1}$]</th>
<th>D [%]</th>
<th>Crystallite size [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru_c/MgO</td>
<td>MgO</td>
<td>650</td>
<td>400</td>
<td>2.2</td>
<td>15.7</td>
<td>3.4</td>
<td>38.4</td>
</tr>
<tr>
<td>Ru_n/MgO</td>
<td>MgO</td>
<td>650</td>
<td>400</td>
<td>2.4</td>
<td>6.7</td>
<td>44.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Ru_c/Nb$_2$O$_5$</td>
<td>Nb$_2$O$_5$</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>98.7</td>
<td>5.8</td>
<td>22.8</td>
</tr>
<tr>
<td>Catalyst</td>
<td>Nb_2O_5</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
<td>114.7</td>
<td>86.1</td>
<td>1.5</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Ru_n/Nb_2O_5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.9</td>
<td>114.7</td>
<td>86.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Ru_c_400/Nb_2O_5</td>
<td>-</td>
<td>400</td>
<td>0.8</td>
<td>67.9</td>
<td>12.2</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>Ru_n_400/Nb_2O_5</td>
<td>-</td>
<td>400</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Ru_c/Nb_2O_5_500</td>
<td>Nb_2O_5</td>
<td>500</td>
<td>-</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Ru_n/Nb_2O_5_500</td>
<td>Nb_2O_5</td>
<td>500</td>
<td>-</td>
<td>1.5</td>
<td>43.3</td>
<td>< 1%</td>
<td>n.d.</td>
</tr>
<tr>
<td>Ru_c_400/Nb_2O_5_500</td>
<td>Nb_2O_5</td>
<td>500</td>
<td>400</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Ru_n_400/Nb_2O_5_500</td>
<td>Nb_2O_5</td>
<td>500</td>
<td>400</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

5.2.3 Catalytic Activity

The catalytic activity of the catalyst was evaluated in temperature range of 400-750°C. Details of catalytic activity measurements are presented in Chapter 2.

5.2.4 Catalysts Characterization:

The catalyst prepared were characterized by BET, CO Chemisorption, XRD, SEM EDX and XPS analysis.

5.3 Results and Discussion

All of the prepared catalysts were tested towards the MSR reaction, with a S/C ratio equal to 4, in terms of CH_4 conversion, CO_2 selectivity, and H_2 dry outlet concentration, and their performance compared (Figure 5.1).

At 650 °C the Ru_n/MgO and the Ru_c/MgO catalysts (Figure 5.1a,b) showed similar performance by achieving CH_4 conversion higher than 91%, with CO_2 selectivity and H_2 dry outlet concentration above 68% and 70%, respectively. An increase of the temperature to 750°C improved the CH_4, (99% for Ru_n/MgO and 98% for Ru_c/MgO), the H_2 dry outlet concentration (78% for Ru_n/MgO and 71% for Ru_c/MgO), while the CO_2 selectivity slightly decreased(62% for Ru_n/MgO and 55% for Ru_c/MgO).
The Ru-based catalysts obtained by Ru deposition on thermally untreated Nb₂O₅ (Figure 5.1c,d) performed slightly better compared to the MgO-based catalysts in the range 650-750 °C. The best performance belongs to the Ru_c/Nb₂O₅ catalysts with full CH₄ conversion, 71% selectivity, and 78% H₂ dry outlet concentration.

The calcination treatment at 400 °C for 3h on the Ru-based catalysts on thermally untreated Nb₂O₅ after the IWI process (Figure 5.1e,f) worsened the performance of the Ru_c_400/Nb₂O₅, and in a lesser extent the performance of the Ru_n_400/Nb₂O₅. In particular, the Ru_c_400/Nb₂O₅ reached 82% as maximum CH₄ conversion at 650 °C, then it decreased at higher temperature. The CO₂ selectivity and H₂ dry concentration were lower compared to the values of the previous catalysts.

The calcination treatment at 500 °C for 3 h on the Nb₂O₅ carrier (Figure 5.1g,h) again affected the performance of both the Ru_n/Nb₂O₅_500 and the Ru_c/Nb₂O₅_500: none of them was able to reach full CH₄ conversion. Similarly to the Ru_c_400/Nb₂O₅, the Ru_n/Nb₂O₅_500 reached 80% as maximum CH₄ conversion, then it decreased at higher temperature. The CO₂ selectivity and H₂ dry concentration were lower compared to the values of the previous catalysts.

The double calcination treatment, at 500 °C on the Nb₂O₅ carrier, then at 400 °C for 3 h after the Ru deposition by IWI (Figure 5.1i,j) greatly affected the performance of the Ru_n_400/Nb₂O₅_500 and the Ru_c_400/Nb₂O₅_500 catalysts. They reach a maximum of 79% and 60% CH₄ conversion at 750°C, respectively.

Summarizing, among all of the catalysts prepared, the calcination treatment on the support, or on the Ru-impregnated catalysts greatly affected the overall performance towards the MSR. Only six catalysts reached full CH₄ conversion between 700 and 750 °C (Ru_c/MgO, Ru_n/MgO, Ru_c/Nb₂O₅, Ru_n/Nb₂O₅, Ru_n/Nb₂O₅_500, and Ru_c_400/Nb₂O₅, respectively), while the other four showed less than 80% CH₄ conversion between 700 and 750°C.
Figure 5.1: CH₄ conversion (full black symbols), CO₂ selectivity (empty black symbols), and H₂ dry outlet concentration (full gray symbols) for all of the catalysts prepared, as reported in Table 1 (a,b:MgO;c,d: Nb₂O₅, e,f:_400/Nb₂O₅,
The best performing catalysts were selected for further investigations. Their activity is comparable to other Ru-based catalysts available in literature29-33. The activity of the Ru\textsubscript{c}/MgO and the Ru\textsubscript{n}/MgO can be attributed to the effect caused by the MgO support which enhances CO\textsubscript{2} selectivity and H\textsubscript{2} production16,34. The Nb\textsubscript{2}O\textsubscript{5}-supported catalysts and the Ru\textsubscript{n}/Nb\textsubscript{2}O\textsubscript{5}_500 showed excellent catalytic activity towards the MSR, better than the ethanol steam reforming reaction35,36. According to the literature37 Ru-based catalysts are equally active for the water gas shift (WGS) reaction as reaction, too, assuring high CO\textsubscript{2} selectivity.

As the best performing catalysts were equally active between 700 and 750°C (CH\textsubscript{4} conversion between 97 and 100%), to further observe the extent of the WGS reaction these catalysts were compared in terms of CO\textsubscript{2}-to-CO selectivity ratio (S\textsubscript{CO2/CO}), H\textsubscript{2}-to-CO molar ratio (H\textsubscript{2}/CO), and H\textsubscript{2}-to-reacted CH\textsubscript{4} reacted molar ratio (H\textsubscript{2}/CH\textsubscript{4,reacted}), as tabulated in Table 5.2.

Table 5.2: Selectivity and molar ratios of the best performing catalysts at 700 and 750 °C

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reaction T [°C]</th>
<th>S\textsubscript{CO2/CO}</th>
<th>H\textsubscript{2}/CO</th>
<th>H\textsubscript{2}/CH\textsubscript{4,reacted}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru\textsubscript{c}/MgO</td>
<td>700</td>
<td>1.9</td>
<td>8</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>1.2</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>Ru\textsubscript{n}/MgO</td>
<td>700</td>
<td>1.6</td>
<td>8.1</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>1.6</td>
<td>9.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Ru\textsubscript{c}/Nb\textsubscript{2}O\textsubscript{5}</td>
<td>700</td>
<td>2.0</td>
<td>11</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>2.4</td>
<td>12</td>
<td>3.6</td>
</tr>
<tr>
<td>Ru\textsubscript{n}/Nb\textsubscript{2}O\textsubscript{5}</td>
<td>700</td>
<td>2.5</td>
<td>11.9</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>1.9</td>
<td>9.5</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Ru_n/ Nb_2O_5_500 | 700 | 1.8 | 10 | 3.4 |
| 750 | 1.3 | 7.2 | 3.4 |
Ru_c_400/Nb_2O_5 | 700 | 2.2 | 12 | 3.6 |
| 750 | 1.8 | 9 | 3.4 |

In general, the WGS activity decreased by increasing the temperature, as S_{CO2/CO} and H_2/CO values decreased from 700 to 750°C, except for the Ru_n/MgO (S_{CO2/CO} remained constant, H_2/CO increased) and the Ru_c/Nb_2O_5. (S_{CO2/CO} and H_2/CO increased). S_{CO2/CO} values greater than 1 show the presence of the WGS reaction. Greater H_2/CO molar ratios were calculated according to the available data in the literature^{29-31}. A small variation of the H_2/CH_4,reacted ratio was observed for all of the catalysts from 700 to 750°C, the Ru_c/MgO showing the lowest values.

The six best catalysts were equally active at 700–750°C. Therefore, the influence of the specific surface area and of the Ru metallic dispersion on catalytic activity was evaluated by BET and CO chemisorption analyses (Table 5.1). Among the best performing catalysts no specific relationship can be observed between the catalytic activity, the specific surface area and the metallic dispersion, being the dispersion between 86% for the Ru_n/Nb_2O_5 and < 1% for the Ru_n/Nb_2O_5_500. The metallic dispersion <1% for the Ru_n/Nb_2O_5_500 could indicate that Ru may be present in oxide form on the catalyst surface. The observed order of Ru metallic dispersion is:

Ru_n/Nb_2O_5 > Ru_n/MgO > Ru_c_400/Nb_2O_5 > Ru_c/Nb_2O_5 > Ru_c/MgO > Ru_n/Nb_2O_5_500

The metallic dispersion of Ru remained higher when the Ru nitrosyl nitrate precursor was employed. The low dispersion of the Ru_n/Nb_2O_5_500 could be ascribed to the calcination treatment at 500 °C of the Nb_2O_5 support before the Ru deposition, which caused a huge reduction of the S_{BET} (from 114.7 of the Ru_n/Nb_2O_5 to 43.3 m^2 g^{-1} of the Ru_n/Nb_2O_5_500). On the contrary, an
increase of the metallic dispersion was observed for the Ru_c_400/Nb₂O₅ when compared to the Ru_c/Nb₂O₅, as if the calcination treatment after Ru deposition favored the dispersion of Ru on the uncalcined support. MgO-supported catalysts have low S_{BET}, of the same order of magnitude. All of the catalysts synthesized presented showed type III isotherm, characteristic of non-porous or macroporous solids, with pore total volumes below 0.05 cm3 g$^{-1}$.

As no evident relationship between the metallic dispersion and the MSR catalytic activity can be drawn, the catalytic activity could depend upon the structural and surface interaction between the Ru and the support. Thus, XRD (Figure 5.2) and SEM (Figure 5.3) were used to investigate on the structure and morphology of the best catalysts prepared.
Figure 5.2: XRD patterns of best performing catalysts, (a) Ru/MgO series and (b) Ru/Nb$_2$O$_5$ series.

XRD patterns of the Ru$_n$/MgO and Ru$_c$/MgO catalysts showed a crystalline structure (Figure 5.2a). For the peaks related to the magnesia periclase pure phase (JCPDS card n. 04-0829, 2θ = 36.88°, 42.85°, and 62.21°), the MgO-supported catalysts showed peaks to slightly lower degree (Ru$_c$/MgO at 2θ = 36.88°, 42.78°, and 62.05°, while Ru$_n$/MgO at 2θ = 36.80°, 42.80°, and 62.17°, respectively). Rather low intensity peaks for the Ru$_n$/MgO were observed compared to Ru$_c$/MgO. Additionally, Ru$_n$/MgO also showed low intensity peaks related to tetragonal RuO$_2$ at 2θ = 28.02° and 54.3° (JCPDS card n. 21-1172). No such peaks of Ru are visible on Ru$_c$/MgO. The XRD patterns of the Ru$_c$/Nb$_2$O$_5$, Ru$_n$/Nb$_2$O$_5$ and the Ru$_c$ 400/Nb$_2$O$_5$ catalysts (Figure 5.2b) show an amorphous structure related to the starting HY-340 precursor27,38. Despite the
calcination treatment at 400°C, the Ru_c_400/Nb_2O_5 still shows an amorphous structure, sign that temperatures below 400°C do not change the structure of niobic acid^{23}. On the other hand, calcining the support at 500 °C before the Ru depositing caused the formation of the crystalline tetragonal phase of Nb_2O_5 (JCPDS card n. 28-0317)^{27}. The Ru_n/Nb_2O_5_500, in fact, showed peaks at 2θ= 22.60°, 28.56°, 36.73°, 46.23°, 50.65° and 55.24°. The absence of Ru related peaks on the Ru_n/Nb_2O_5_500 could be due to fine dispersion of RuO_2 over the support^{27}.

![SEM micrographs](image)

Figure 5.3: SEM micrographs of the best performing catalysts, magnification 6000X.

SEM micrographs showed very similar morphology, not porous, for all of the catalysts observed (**Figure 5.3**), without critical differences. From the structural point of view, XRD and SEM analyses enlightened mixed structure. Three out of the six best performing catalysts were amorphous, while the three heat treated catalysts were crystalline. The catalytic activity in terms of CH_4 conversion appears unaffected by the crystalline/amorphous structure of the catalysts. On the contrary, apparently the structure plays a key role on the H_2 dry outlet concentration and CO_2 selectivity. The Ru_c/Nb_2O_5, Ru_n/Nb_2O_5 and the Ru_c_400/Nb_2O_5 catalysts, in fact, showed an amorphous structure and were
highly selective for \(\text{CO}_2 \) (values between 64 and 71% in the range 700-750 °C), with high \(\text{H}_2 \) dry outlet concentration (values between 77 and 78% in the range 700-750 °C), while the crystalline structure catalysts \(\text{Ru}_n/\text{MgO} \), \(\text{Ru}_c/\text{MgO} \) and \(\text{Ru}_n/\text{Nb}_2\text{O}_5_500 \) showed lower values (in the range 700-750 °C: \(\text{S}_{\text{CO}_2} \) values between 55 and 65%, and \(\text{H}_2 \) dry outlet concentration values between 71 and 78%, respectively).

Table 5.3: XPS analyses of the best performing catalyst.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Atomic %</th>
<th>Atomic Ratio</th>
<th>Binding energies [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ru</td>
<td>Nb or Mg</td>
<td>Ru/Mg or Ru/Nb</td>
</tr>
<tr>
<td>(\text{Ru}_c/\text{MgO})</td>
<td>2.5 25.0</td>
<td>49.0 - - 281.6 284.9</td>
<td></td>
</tr>
<tr>
<td>(\text{Ru}_n/\text{MgO})</td>
<td>3.2 32.0</td>
<td>49.2 - - 281.9 284.8</td>
<td></td>
</tr>
<tr>
<td>(\text{Ru}_c/\text{Nb}_2\text{O}_5)</td>
<td>1.9 0.2</td>
<td>- 207.3 210.0 282.4 284.8</td>
<td></td>
</tr>
<tr>
<td>(\text{Ru}_n/\text{Nb}_2\text{O}_5)</td>
<td>3.5 0.5</td>
<td>- 208.4 211.2 284.8 288.8</td>
<td></td>
</tr>
<tr>
<td>(\text{Ru}_c_400/\text{Nb}_2\text{O}_5)</td>
<td>1.5 0.1</td>
<td>- 207.2 209.9 279.3 283.6</td>
<td></td>
</tr>
<tr>
<td>(\text{Ru}_n/\text{Nb}_2\text{O}_5_500)</td>
<td>5.1 2.6</td>
<td>- 207.4 210.2 284.8 287.2</td>
<td></td>
</tr>
</tbody>
</table>

XPS analysis was then employed to further understand the metal/support interaction over the catalyst surface (Figure 5.4 and Table 5.3) along with the results obtained from EDX (Table 5.1). The surface atomic percentage from the general surveys and the calculated surface atomic ratios (Ru/Mg or Ru/Nb) depends upon the preparation conditions of the catalysts. Moreover, for the same preparation conditions and supports, also the choice of the precursor (Ru nitrosyl nitrate or Ru chloride) influences the surface atomic percentage of Ru catalysts. For example, the \(\text{Ru}_n/\text{MgO} \) shows 3.2 at.% Ru compared to the
2.5 at.% for Ru_c/MgO, whereas for the Ru_n/Nb_2O_5 or Ru_c/Nb_2O_5 these values are 3.5 and 1.9 at.%, respectively. Overall, catalysts prepared from Ru nitrosyl nitrate shows higher Ru at.% values (Table 5.3). EDX values measured during SEM analyses were on average slightly lower (Table 5.1) compared to the XPS values, sign that these catalysts show Ru surface enrichment. When the Nb_2O_5 supported catalyst was calcined at 500 °C before Ru deposition, the Ru at.% was higher (5.1 at.% for Ru_n/Nb_2O_5_500), whereas when the catalyst was calcined at 400 °C after Ru deposition the Ru at.% was lower (1.9 at.% for Ru_c_400/Nb_2O_5). Interestingly, catalysts with amorphous structure (XRD analysis of Ru_c/Nb_2O_5, Ru_n/Nb_2O_5, and Ru_c_400/Nb_2O_5, Figure 5.2) exhibited Ru/support atomic ratios < 1, while for the crystalline structure catalysts the Ru/support ratio exceeded 1 (structure (XRD analysis of Ru_c/MgO, Ru_n/MgO, and Ru_n/Nb_2O_5_500, Figure 5.2).

Figure 5.4a show the high resolution spectra of Mg 2p for the two MgO-supported catalysts. They have only one peak related to Mg 2p, with different binding energy values (Table 5.3). These binding energy values are lower than that of bulk Mg 2p value of 49.6 eV \(^{39}\). With a negative shift of the peaks the Mg is present as Mg\(^{2+}\) \(^{40,41}\), mainly due to hygroscopic nature of MgO \(^{15}\).

Figure 5.4b shows the high resolution spectra of Nb 3d for the Nb_2O_5-supported catalysts, with the two characteristic 3d\(_{5/2}\) and 3d\(_{3/2}\) peaks. The values of Nb 3d\(_{5/2}\) binding energies are associated with bulk Nb at 207.5 eV \(^{42,43}\). The Ru_n/Nb_2O_5 shows the highest 3d\(_{5/2}\) binding energy value (208.4 eV), higher than the pure bulk Nb, sign that this catalyst has more ionic character because of the presence of Nb\(^{5+}\) on the surface \(^{44}\). All the other Nb_2O_5-supported catalysts have lower binding energies compared to the bulk Nb. The analysis of the binding energies of the Nb 3d\(_{3/2}\) peak shows columbic interaction and higher oxidation state of Nb \(^{36}\).

Figure 5.4c shows the surface state of Ru for all of the catalysts. The high resolution spectra of Ru consists of two distinct peaks Ru 3d\(_{5/2}\) and Ru 3d\(_{3/2}\) peaks resulting from spin-orbital splitting \(^{45}\). The Ru 3d\(_{3/2}\) peak overlaps with C 1s peak (\(\approx\)284.5 eV): the appearance of C 1s peak is presumably caused by CH\(_x\) carbon.
impurities present on the sample surface or in the apparatus. Thus, the analysis focused on Ru 3d$_{5/2}$. For Ru/MgO supported catalysts, which underwent thermal treatment, Ru0, Ru$^{+2}$ and Ru$^{+4}$ oxidation states are visible. However, for all of the Ru/Nb$_2$O$_5$ catalysts the Ru is present mostly in Ru$^{+4}$ oxidation state with a shift from bulk Ru46. The shift of the Ru 3d peak is often interpreted as a result of electron transfer from the support to supported Ru metal particles47.
Figure 5.4: XPS high resolution spectra of the best performing catalysts: (a) Mg 2p for Ru/MgO series; (b) Nb 3d for Ru/Nb₂O₅ series; (c) Ru 3d for Ru/MgO and Ru/Nb₂O₅ series.

All the six catalysts showed comparable results. Among them, anyway, the most performing ones are the niobic acid-supported catalyst, with amorphous structure, which provided slightly higher activity at 700 °C, in terms of CH₄ conversion, CO₂ selectivity, and H₂ dry outlet concentration.

5.4 References

Chapter 6 : A Comparative Study on Steam and Oxidative Steam Reforming of Methane with Noble Metal Catalysts

6.1 INTRODUCTION

Hydrogen generation is one of the most challenging tasks in tomorrow’s world of hydrogen economy. With the improvements in fuel cell (FC) technology the call for clean and efficient fuels is becoming far more important. In such a context, auxiliary power units (APUs) are the most promising application for FC technology supplied with hydrogen from fossil fuel reforming. Natural gas is most prominently applied for residential applications, logistic fuels as LPG gasoline and diesel are the premium choice for mobile applications. Recent modeling calculations have shown that the efficiency of APUs decreases in the order of methane > gasoline > light diesel > heavy diesel. Natural gas is found to be most efficient source to produce hydrogen onboard maintaining maximum fuel cell efficiency, especially when steam reforming is used. However, reforming of higher hydrocarbons like diesel, gasoline and LPG, is of particular interest for the production of hydrogen as these fuels are readily available onboard vehicles in automotive systems. For PEM-FCs in the automotive sector, in fact, one of the major needs is to develop processes for onboard hydrogen production with reduced CO content, in order to reduce the CO clean-up process prior feeding PEM-FCs.

Currently, for hydrogen generation from hydrocarbons, three major approaches prevail: auto thermal reforming (ATR) catalytic partial oxidation (CPO), and steam reforming (SR). SR is a highly energy intensive process and
requires relatively high temperatures to proceed. However, in comparison to the other two processes, it gives the highest yield of hydrogen.28 CPO is highly exothermic and hence does not require any external heat supply. The major drawback of CPO is that hydrogen yield is much lower in comparison to SR. Moreover, because of the high heat generation, hot spot formation can occur resulting in catalyst damage.29 Moreover, CPO and ATR processes are characterized by lower system complexity, whereas SR fuel processors offer the advantage of a larger hydrogen yield and potentially higher system efficiency.4 For coupling with a PEM-FC, Cutillo \textit{et al.}16 concluded that SR appears superior to ATR considering the fuel processor efficiency and hydrogen concentration at the fuel cell inlet.

At present, one of the most important processes at industrial scale to produce hydrogen rich gas from natural gas to feed PEM-FCs is the catalytic SR.16 Anyway, the oxidative steam reforming (OSR),26-34 offers an advantageous alternative route for hydrogen generation, as the addition of a slight amount of oxygen to the SR process provides the advantage of favoring the complete conversion of methane fed to the reactor,16,35 by limiting thus the overall energy required by the system, and offers a better response to dynamic changes.4,7,16,36-387 OSR is essentially a combination of SR and CPO. The carbon monoxide yield results lower in comparison to SR because of the CO oxidation reaction, whereas the hydrogen yield is in between SR and CPO processes.28,30 The OSR process can be made autothermal by properly adjusting the oxygen-to-carbon (O/C) molar ratio. As the O/C molar ratio increases the hydrogen yield decreases, therefore an optimum value of O/C molar ratio must be used to maximize the hydrogen yield and to minimize the CO yield.28 Operating with O/C molar ratios less than 0.7 is generally called OSR.26

Ni catalysts have been industrially used for production of hydrogen through SR with metal concentration as high as 10\% on different oxide supports.29,39-43 However, Ni-based catalysts are also very active for decomposition of methane to carbon and hydrogen.44,45 At high reaction temperature, large amounts of fibrous carbon can be formed, known as carbon whiskers, which influence activity and
stability of the catalyst itself, and can even damage the reactor.39 Due to these constraints, and possible environmental concerns about Ni, researchers are working on alternative catalysts, capable to deliver the same or better catalytic performance compared to Ni, and being possibly cheaper to produce. On these regards, noble metals such as Pt, Pd, Rh, Ru are very active towards SR and OSR reactions and delivers better performance than Ni at very low concentrations.46

Extensive studies regarding methane SR and OSR reactions using noble metal catalysts are available in the literature: Pt,30,47–49 Ru,33,50,51 and Rh,26–28,52,53 based catalysts give promising results at low metallic dispersions. Commercial γAl\textsubscript{2}O\textsubscript{3} is used as carrier for noble metal catalysts due to its high specific surface area. But different oxides, pure and in mixed solid solution, are being explored as potential candidates for metal carrier.11,40,46–55 CeO\textsubscript{2}, for example, is considered a good carrier due to its oxygen storage capacity and strong interaction with metals thanks to its ability in creating metal-carrier redox couples.56–59 The CeO\textsubscript{2} reducibility (Ce4+/Ce3+) determines a higher specific rate of the supported noble metals, compared to the analogous alumina supported catalysts, particularly in reactions such as water gas shift, steam reforming and dry reforming of methane.47,48,56–60

For example, Mortola \textit{et al.}48 by carrying out methane SR over Pt/CeO\textsubscript{2}-La\textsubscript{2}O\textsubscript{3}-Al\textsubscript{2}O\textsubscript{3} found that a combination of Pt an Ce created Pt0/Ptδ+ and Ce4+/Ce3+ redox couples, which were able to increase methane conversion and coke resistance. Wang \textit{et al.}59 by studying methane dry reforming on Rh/CeO\textsubscript{2} catalysts showed that the coexistence of Rh0/Rhδ+ and Ce4+/Ce3+ redox couples facilitated the activation of methane and enhanced the catalytic activity. Methane, in fact, could be activated and dissociated on Rh0, releasing electrons to CeO\textsubscript{2} in close contact with Rh0 and generating the Ce4+/Ce3+ redox couple. Meanwhile, the electron transfer could also happen from Rh0 to CeO\textsubscript{2}, creating the Rh0/Rhδ+ couple. Thus, the coexistence of Ce4+/Ce3+ and Rh0/Rhδ+ redox couples promoted CH\textsubscript{4} adsorption and C–H bond cleavage.
In this work Pt, Ru and Rh based catalysts on CeO$_2$ and Al$_2$O$_3$ carriers were prepared, characterized and tested comparatively for methane SR and OSR reactions, respectively.

6.2 EXPERIMENTAL

6.2.1 Catalysts preparations

Two different methods based on solution combustion synthesis (SCS)61,62 were used to prepare the studied catalysts.

The Rh and Ru based catalysts were synthesized in two different steps, by employing first the SCS for preparing the carriers (CeO$_2$ and Al$_2$O$_3$), and then the incipient wetness impregnation for depositing the noble metals.63,64 For preparing CeO$_2$ and Al$_2$O$_3$ carriers, metal nitrate precursors of desired oxides (cerium nitrate Ce(NO$_3$)$_3$·6H$_2$O, or aluminum nitrate Al(NO$_3$)$_3$·9H$_2$O) and urea (CH$_4$N$_2$O) as fuel were placed together in aqueous solution and heated up to 600 °C in a furnace. In these conditions the reaction evolved up to the formation of desired oxides. The so-synthesized powders were then calcined in static air for 3 h at 650 °C. Active metals were deposited on the carriers by incipient wetness impregnation: an aqueous solution of the metal precursor nitrate was prepared and deposited drop by drop on the carrier, meanwhile thoroughly mixing the whole mass at about 130 °C in order to let the water evaporate together with N$_2$. A final calcination followed in static air for 3 h at 800 °C. The noble metal content of Ru and Rh based catalysts was 1.5% in weight.

Supported 1.1 wt.% Pt/CeO$_2$ and Pt/Al$_2$O$_3$ catalysts were prepared by one-shot oxalylidihydrazide–nitrate self-combustion synthesis, as detailed described in the previous work of Pino et. al.30 Briefly, the combustion mixture (containing ceric ammonium nitrate (NH$_4$)$_2$Ce(NO$_3$)$_6$, or aluminum nitrate Al(NO$_3$)$_3$·9H$_2$O, chloroplatinic acid H$_2$PtCl$_6$, and oxalylidihydrazide C$_2$H$_6$N$_4$O$_2$ as fuel) was dissolved in a minimum volume of water. The dish containing the redox mixture was then introduced into a muffle furnace preheated at 350 °C. The solution boiled with frothing and foaming with concomitant dehydration. At the point of its complete
dehydration, the fuel ignited the redox mixture with a flame temperature of ca. 1000 °C, yielding a voluminous finely dispersed solid product within about 5 min. Prepared catalysts were then calcined in static air for 3 h at 800 °C.

6.2.2 Catalytic Activity

The catalytic activity of the catalyst was evaluated in temperature range of 400-750°C. Details of catalytic activity measurements are presented in Chapter 2.

6.2.3 Catalysts Characterization:

The catalyst prepared were characterized by BET, CO Chemisorption, XRD, and TEM.

6.3 RESULTS

6.3.1 Screening of the catalytic activity performance towards the methane SR reaction

All prepared catalysts were firstly tested towards the methane SR reaction. The obtained results are depicted in Figure 6.1.

Concerning Rh-based catalysts (Figure 6.1 A and B), the 1.5% Rh/CeO₂ showed the most promising performance, as it reached 96.9% conversion rate with 74.1% at only 585 °C, and full methane conversion with 74.4% outlet hydrogen concentration already at 635 °C, whereas the 1.5% Rh/Al₂O₃ reached full methane conversion with 76.2% hydrogen outlet concentration at a slightly higher temperature, 660 °C. Even by analyzing the carbon dioxide selectivity (Figure 6.1B), the 1.5% Rh/CeO₂ showed a slightly better performance compared to the 1.5% Rh/Al₂O₃, reaching a maximum of 87.5% at 635 °C, corresponding to a CO volume concentration of 2.8% in the dry reformate gas, whereas the 1.5% Rh/Al₂O₃ reached a value of 81.8% as carbon dioxide selectivity value at 630 °C (corresponding to a CO volume concentration of 3.9%), and a value of 80.8% as carbon dioxide selectivity at 660 °C.
(corresponding to a CO volume concentration of 4.0%), with almost full methane conversion.

By observing the activities of Ru-based catalysts (Figure 6.1 C and D), their performance was very similar. The 1.5% Ru/Al₂O₃ performed slightly better than 1.5% Ru/CeO₂ in terms of methane conversion, outlet hydrogen concentration and carbon dioxide selectivity. It reached complete methane conversion at 699 °C (76.8% hydrogen outlet concentration and carbon dioxide selectivity equal to 77.9% with a CO volume concentration of 5.3% in the dry reformate). The 1.5% Ru/CeO₂, instead, did not reach complete conversion at 699 °C, but only 96.8% methane conversion, with 74.8% hydrogen outlet concentration and carbon dioxide selectivity of 74.4%, a CO volume concentration of 5.9% in the dry reformate.

With reference to Pt-based catalysts (Figure 6.1 E and F), the 1.1% Pt/CeO₂ performed much better compared to the 1.1% Pt/Al₂O₃, by reaching complete methane conversion with 78.2% hydrogen outlet concentration at 745 °C, with a carbon dioxide selectivity of 61.8%, corresponding to 8.3% CO volume concentration in dry reformate. The 1.1% Pt/Al₂O₃, was not able to reach complete methane conversion at 800 °C.
Figure 6.1: Methane conversion (A, C, and E), carbon dioxide selectivity (B, D, and F, black curves) and hydrogen outlet concentration (B, D, and F, gray curves) for all prepared catalysts tested towards methane SR reaction.

By summarizing, among all the tested noble metal catalysts, best performing catalysts towards the methane SR reaction were, respectively, the 1.5% Rh/CeO₂, followed by the 1.5% Ru/Al₂O₃ and the 1.1% Pt/CeO₂. The very promising performance of the 1.5% Rh/CeO₂ can be ascribed to the strong metal support affinity,26,56,57 high activity towards water-gas shift reaction,63,64 which allowed sensibly reducing the CO fraction in the reformate, and the high noble metal dispersion over the support, as enlighten by the chemisorption and TEM analyses (see section 6.3.3). In it worth noting that even if the performance of
the 1.5% Ru/Al₂O₃ and the 1.1% Pt/CeO₂ catalysts were slightly worse compared to 1.5% Rh/CeO₂, their temperature of complete methane conversion was lower compared to those catalysts available in the literature for noble metal based catalysts,⁴⁶,⁵¹,⁶⁵ even if our WHSV was almost half of the one used by Kusakabe et al.⁴⁶

6.3.2 Catalytic activity performance of best catalysts towards the methane OSR reaction

Best catalysts from the methane SR reaction screening, i.e, the 1.5% Rh/CeO₂, the 1.5% Ru/Al₂O₃, and the 1.1% Pt/CeO₂, were tested towards the methane OSR reaction. The methane conversion, carbon dioxide selectivity and hydrogen outlet concentration data are reported in Figure 6.2.

Figure 6.2: Methane conversion (A), carbon dioxide selectivity (B, black curves) and hydrogen outlet concentration (B, gray curves) for the best catalysts tested towards methane OSR reaction.

From Figure 6.2, concerning methane conversion data, the catalytic activity of 1.5% Ru/Al₂O₃ was found to be the most promising towards OSR, as it reached complete methane conversion with 68.6% hydrogen outlet concentration at 700 °C, whereas both the 1.5% Rh/CeO₂ and the 1.1% Pt/CeO₂ catalysts reached almost full methane conversion with 68.6% hydrogen outlet concentration at 750 °C. Concerning carbon dioxide selectivity data, displayed in Figure 6.2B, all catalysts showed similar values. In particular, the 1.5% Ru/Al₂O₃ catalyst showed the best performance at complete methane conversion: 67.8% carbon dioxide
selectivity at 700 °C with 10.2% residual CO volume concentration in the dry reformate. The 1.5% Rh/CeO$_2$ and the 1.1% Pt/CeO$_2$ catalysts showed very similar carbon dioxide selectivity, equal to 63.3% and 62.8%, respectively, with a residual CO volume concentration in the dry reformate of 13.0% and 11.5%, respectively, at 750 °C.

6.3.3 Physical characterization of best catalysts

Best catalysts previously selected from the methane SR and OSR reaction screening, i.e, the 1.5% Rh/CeO$_2$, the 1.5% Ru/Al$_2$O$_3$, and the 1.1% Pt/CeO$_2$, were fully characterized by means of BET, XRD, CO-chemisorption and TEM analyses.

Table 6.1: Physical characterization of catalysts from BET, CO chemisorption and XRD analyses.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Metal content [wt. %]</th>
<th>S_{BET} [m2 g$^{-1}$]</th>
<th>$D%$ [%]</th>
<th>CeO$_2$ crystallite size * [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh/CeO$_2$</td>
<td>1.5</td>
<td>13.9</td>
<td>22.5</td>
<td>372</td>
</tr>
<tr>
<td>Ru/Al$_2$O$_3$</td>
<td>1.5</td>
<td>191.5</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td>Pt/CeO$_2$</td>
<td>1.1</td>
<td>14.0</td>
<td>12.7</td>
<td>16</td>
</tr>
</tbody>
</table>

* calculated from CeO$_2$ (1 1 1) using Scherrer Equation

The specific surface area (S_{BET}) and the metal dispersion ($D\%$) measured values for all the catalysts are shown in **Table 6.1**. As expected, the S_{BET} of the Ru-based catalyst was the highest, due to the higher S_{BET} of the Al$_2$O$_3$ carrier.66 Lower S_{BET} values of Pt- and Rh-based catalysts can be attributed to the CeO$_2$ carrier.67,68

Regarding the noble metal dispersion, despite the highest S_{BET} displayed by the Ru-based catalyst, the Ru dispersion was the lowest, being less than 1%. Apparently the CeO$_2$ better favored the dispersion of the noble metal, since the Pt reached a dispersion of 12.7%, and the Rh reached a dispersion of 22.5%.
The highest dispersion value of the Rh could be responsible of the highest catalytic activity recorded during the catalysts screening towards the methane SR reaction.

The analysis of the XRD patterns enlightened interesting results, reported in Figure 6.3. For the 1.5% Rh/\(\text{CeO}_2\) catalyst (Figure 6.3A), only the peaks related to CeO\(_2\) in the fluorite oxide type structure were visible (2θ = 28.57°, 33.12°, 47.53°, 56.42°, 59.17°, 69.46°). A slight shift of these peaks to higher degrees compared to pure CeO\(_2\) (JCPDS card n. 81-0792, 2θ = 28.54°, 33.07°, 47.47°, 56.33°, 59.07°, 69.40°) can be envisaged, sign of a change in the lattice parameters, or sign that Rh could be partly incorporated into the CeO\(_2\), forming a solid solution that caused the observable peaks’ shift.\(^{56}\) Rh peaks (JCPDS card n. 5-0685, 2θ = 41.06°, 47.78°, 69.87°) were not visible, a sign that the Rh dispersion is high (see Table 6.1).

The XRD diffraction pattern of the 1.5% Ru/\(\text{Al}_2\text{O}_3\) catalyst (Figure 6.3B) showed peaks related to the Ru in its oxidized form (RuO\(_2\) JCPDS card n. 65-2824) and the Al\(_2\text{O}_3\) (JCPDS card n. 10-4903) in its amorphous structure. As for the noble metal, only some thin RuO\(_2\) peaks were clearly visible at 2θ equal to 28.22°, 35.24°, and 54.46°. These peaks resulted slight shifted to higher degree compared to pure RuO\(_2\) (27.89°, 34.94°, and 54.03°). Most probably, the calcination temperature in this case affected the interaction between the noble metal and the carrier, which resulted lower compared to other catalysts, causing the oxidation of the Ru.\(^{69}\) The presence of Ru in its oxidized form instead of the pure Ru can justify the low metal dispersion recorded by the CO chemisorption analysis (see Table 6.1).
Figure 6.3: XRD patterns for the 1.5% Rh/CeO$_2$ (A), the 1.5% Ru/Al$_2$O$_3$ (B), and the 1.1% Pt/CeO$_2$ (C) catalysts.

The XRD diffraction pattern of 1.1% Pt/CeO$_2$ catalyst, shown in Figure 6.3C, again the fluorite oxide type structure was identified ($2\theta = 28.59^\circ$, 33.14°, 47.58°, 56.47°, 59.24°, 69.54°), with very high and sharp peaks, sign of a very good degree of crystallinity. Once more, as for the other CeO$_2$-based catalyst, CeO$_2$ reflections were slightly shifted to higher degrees with respect to those of pure CeO$_2$: this observation can suggest the formation of a oxide solid solution.30,56 Besides, a scarcely visible broadening peak relative to the crystallographic diffraction of the metallic Pt (JCPDS card n. 4-0802, $2\theta = 39.76^\circ$, 46.24°, 67.45°) can be envisaged only by enlarging the diffraction pattern at 2θ
= 40.01°. This scarcely visible Pt metal phase may be due to the low loading or can denote a relatively high metal dispersion in the obtained catalyst, as enlighten by the data reported in Table 6.1.

Figure 6.4 reports some TEM images of the selected best catalysts. The 1.5% Rh/CeO₂ (**Figure 6.4 A and B**) presented well dispersed and small metal particles with size ranging from 5 to 10 nm, and CeO₂ polycrystalline particles ranging from 40 to 400 nm, which is surely consistent with the carrier grain size calculated by the XRD diffraction patterns. The 1.5% Ru/Al₂O₃ (**Figure 6.4 C and D**) evidenced the amorphous phase of the Al₂O₃ carrier, with metal clusters ranging from 5 to even 50 nm. The 1.1% Pt/CeO₂ (**Figure 6.4 E and F**) presented well dispersed and small metal particles with size ranging from 3 to 7 nm, smaller than Rh metal particles on the 1.5% Rh/CeO₂ catalyst, and quite regular CeO₂ polycrystalline particles ranging from 20 to 60 nm. The relatively small Pt particles could be due to the one-shot SCS technique adopted to prepare the Pt-based catalysts, compared to the SCS followed by the wetness impregnation used for the Ru- and Rh-based ones.
Figure 6.4: TEM images at various magnifications for the 1.5% Rh/CeO$_2$ (A and B), the 1.5% Ru/Al$_2$O$_3$ (C and D), and the 1.1% Pt/CeO$_2$ (E and F) catalysts.

6.4 DISCUSSION

6.4.1 Comparative analysis of the catalytic activity performance of best catalysts towards the methane SR and OSR reactions

Considering the two best catalysts for the methane SR reaction, that is the 1.5% Rh/CeO$_2$, and for the methane OSR reaction, that is the 1.5% Ru/Al$_2$O$_3$, a deeper comparative analysis on their catalytic performance was carried out in terms of the hydrogen outlet concentration, the ratio of the CO$_2$ selectivity over the CO selectivity, hydrogen over carbon monoxide molar ratio, and the hydrogen over reacted methane molar ratio.
Figure 6.5: Comparative performance in terms of methane conversion (A), carbon dioxide selectivity (B, black curves), and hydrogen volume outlet concentration (B, gray curves) for the best catalysts tested towards methane SR reaction (1.5% Rh/CeO$_2$) and methane OSR.

Figure 6.5 shows the comparative analysis of the two best catalysts in terms of methane conversion, carbon dioxide selectivity, and hydrogen outlet dry volume concentration (already reported in Figure 6.1 and Figure 6.2). It is worth noting that the SR reaction showed better results than the OSR reaction, as the 1.5% Rh/CeO$_2$ catalysts was able to reach complete methane conversion at lower temperature (635 °C), with a carbon dioxide selectivity of 87.5%, compared to OSR catalyst, which reached complete methane combustion at 699 °C with a carbon dioxide selectivity of 68.6%. Moreover, even the hydrogen generated by the SR reaction was higher as dry volume concentration, being equal to 74.4%, compared to 68.6% reached by the 1.5% Ru/Al$_2$O$_3$ catalyst at 699 °C. The 1.5% Rh/CeO$_2$, catalyst always displayed a better methane conversion, carbon dioxide selectivity and outlet hydrogen concentration in the whole examined temperature range.
Figure 6.6: Comparative performance in terms of the ratio between the CO₂ selectivity and the CO selectivity for the best catalysts tested towards methane SR reaction (1.5% Rh/CeO₂) and methane OSR reaction (1.5% Ru/ Al₂O₃).

The ratio between the carbon dioxide selectivity and the carbon monoxide selectivity for the two best selected catalysts are compared in Figure 6.6. At low temperature both catalysts are highly selective towards carbon dioxide formation, which is the main goal to be pursued within this study. Anyway, the 1.5% Rh/CeO₂ for methane SR reaction remains more selective at high temperature than the 1.5% Ru/ Al₂O₃ catalyst for methane OSR reaction, a sign that probably the water gas shift reaction still occurred in a certain extent. This aspect was noted for steam reforming and dry reforming noble metal catalysts even by other authors.⁵⁸–⁶⁰ Most probably the reducibility of the CeO₂ carrier plays a crucial role in interacting with the noble metal to determine higher specific rates of carbon dioxide formation, compared to the Al₂O₃ carrier.⁵⁷–⁶⁰

The H₂/CO molar ratio for the two best catalysts was compared, and reported in Figure 6.7. The 1.5% Rh/CeO₂ for methane SR reaction always displayed a higher value of the H₂/CO molar ratio compared to the 1.5% Ru/ Al₂O₃ for methane OSR reaction. For both catalysts this ratio decreased with the temperature increase. In the case of the 1.5% Rh/CeO₂ catalyst, high values of molar ratio can be assigned to the strong metal/support interaction between Rh and CeO₂.⁵⁶,⁶³,⁶⁴
Figure 6.7: Comparative performance in terms of the molar ratio between the H\textsubscript{2} and the CO for the best catalysts tested towards methane SR reaction (1.5% Rh/CeO\textsubscript{2}) and methane OSR reaction (1.5% Ru/Al\textsubscript{2}O\textsubscript{3}).

Considering the hydrogen produced per mol of reacted methane, expressed by the molar ratio between the hydrogen and the reacted methane reported in Figure 6.8, the 1.5% Rh/CeO\textsubscript{2} catalyst presented the highest values, which are slightly higher than 3 at high temperature. The theoretical ratio for the SR reaction is equal to 3, thus these slightly higher values of the SR catalyst suggests that the water-gas shift reaction contributes in enhancing the hydrogen produced per mol of reacted methane. For the OSR catalyst, instead, the value of this ratio is almost 2 at high temperature. This suggests that the oxygen present in the feed stream reacts first with the methane to provide carbon dioxide and water (in fact, at low temperature, no hydrogen neither carbon monoxide were present in the reacted gases, see Figure 6.5), then probably the dry reforming reaction occurs, letting the un-reacted methane reacting with the formed carbon dioxide thanks to the heat developed by the total oxidation reaction, with the formation of hydrogen and carbon monoxide. The theoretical ratio between the produced hydrogen and the reacted methane for the dry reforming is equal to 2, in fact. Moreover, considering that in the OSR process an increase of the O/C molar ratio causes a decrease of the hydrogen yield26,28, it is not surprising in the present case that the 1.5% Ru/Al\textsubscript{2}O\textsubscript{3} catalyst for the OSR reaction, which worked with a relatively high O/C ratio, showed lower H\textsubscript{2}/CO and H\textsubscript{2}/CH\textsubscript{4,reacted} molar ratios compared to the 1.5% Rh/CeO\textsubscript{2} catalyst for the SR reaction.
Figure 6.8: Comparative performance in terms of the molar ratio between the H_2 and the reacted CH_4 for the best catalysts tested towards methane SR reaction (1.5% Rh/CeO$_2$) and methane OSR reaction (1.5% Ru/Al$_2$O$_3$).

Both the Rh and Ru are considered in the literature as highly active in SR and OSR among all the noble metals: their activities are usually on the same scale but depend on the reaction conditions. The addition of oxygen enhances the methane conversion in case of Ru catalyst but decreases in case of Rh. At low temperatures, below 500 °C, the addition of oxygen has a positive effect on Rh, but with the increase in temperature the conversion lowers for OSR than SR. In OSR conditions the Rh catalyst shows high carbon monoxide selectivity and low hydrogen concentrations. Mortola et al.48 showed that when oxygen concentration is low over the catalyst surface during partial oxidation, the formation of carbon monoxide and hydrogen is favored and low H_2/CO molar ratio shows the occurrence of reverse water gas shift reaction. Cavallaro et al.73 found that addition of oxygen promotes metal sintering causing the formation of hotspots, which reduce the Rh metal activity.

In conclusion, the 1.5% Rh/CeO$_2$ catalyst for methane SR reaction can be selected as the most suitable catalyst for producing a syngas containing the highest hydrogen concentration, and the lower carbon monoxide concentration, as the catalyst was very selective towards the formation of carbon dioxide. This would be very appropriate in case of fuel processors where it is necessary to minimize as much as possible the residual carbon monoxide concentration, for feeding PEM-FCs, as the following CO clean-up process can be reduced. The very
promising performance of the 1.5% Rh/\(\text{CeO}_2\) can be ascribed to the strong metal support affinity,\(^{56}\) high water-gas shift reaction ability,\(^{63,64}\) which allowed sensibly reducing the CO fraction in the reformate, and the high noble metal dispersion over the support, as enlighten by the CO chemisorption and TEM analyses.

6.5 REFERENCES

[73] Cavallaro, S.; Chiodo, V.; Vita, A.; Freni, S. Hydrogen production by autothermal reforming of ethanol on Rh/Al$_2$O$_3$ catalyst. *J. Power Sources* **2003**, *123*, 10
Part II: Catalytic Stability

In the second part of this thesis, after evaluating the catalytic activity and performance of different noble metal catalysts (Ru, Rh and Pt), two best catalysts were chosen and their stability were evaluated. Part II consists Chapter 7 and Chapter 8 dealing with the endurance of these catalysts.

Chapter 7 deals with the stability of 1.13% Pt catalyst over CeO$_2$ support.

Chapter 4 deal with the stability of 1.4% Rh catalyst over CeO$_2$ support.
Chapter 7 CeO$_2$ supported Pt catalyst for Methane steam reforming: Catalytic Activity and Stability

7.1 Introduction:

Global warming increase and depleting oil reservoirs call for an alternative environmental friendly energy resource. Hydrogen due to its high energy content and zero emission after combustion can potentially replace the conventional fuels$^{1-3}$. Hydrogen production on a small scale is the major shortcoming in this scenario. Commercially hydrogen is produced along with CO and CO$_2$ from methane via steam reforming reaction1,4. According to US department of energy the MSR can provide an initial step towards hydrogen economy.

Steam reforming is an endothermic process and thus requires a high energy input. MSR is preferred among other technologies like partial oxidation, autothermal reforming, oxidative steam reforming and coal gasification5 due to its energy efficiency (83%) with lowest hydrogen cost. Steam reforming also provides excellent H$_2$ concentration with good fuel processor efficiency6. Commercially Ni is used as a catalyst for MSR but the issues of sintering and carbon deposition are high on Ni catalyst. Also ageing reduces the porosity and Ni content therefore deactivating the catalyst and results in increase in operating temperature and pressure7. Noble metals are potential alternative for Ni in the MSR reaction, as the amount of Ni varies from 10% on commercial catalyst$^{8-12}$ while a small amount of noble metal can produce even better results13 and remain active for long time period.
Noble metals like Rh14–17, Pt18–27, Ru28–32, Pd33–35 and Ir36,37 have been widely studied for methane steam reforming. There is a constant debate regarding order of activity among noble metals38 and Rh and Ru are considered to be most active, but according to study conducted by Wei and Iglesia39 Pt is most active among noble metals for the activation of C-H bond during reforming reaction. De Souza et. al.40 studied Pt promotion effect on 10\% Ni/Al\textsubscript{2}O\textsubscript{3} for MSR finding that Pt addition decreases the reduction temperature by 200°C-300°C and metallic dispersion also decreases by adding the Pt but the catalytic activity increases.

Usually Noble metals are supported on inert supports like Al\textsubscript{2}O\textsubscript{3}, but CeO\textsubscript{2} supported noble metals are being considered due to oxygen storage capacity, strong metal support interaction, soot resistance and the CeO\textsubscript{2} reducibility (Ce4+/Ce3+). These properties of CeO\textsubscript{2} helps in determining a higher specific rate of the supported noble metals, compared to the usual inert oxide supported catalysts, particularly in reactions such as water gas shift, steam reforming and dry reforming of methane. According to the J. Xu et.al.41, the CeO\textsubscript{x} (x = 2 or 1.5) accelerate the reaction of steam with adsorbed carbon species on the metal surface at the metal–oxide interface, so, the surface carbon species can be quickly converted to gaseous products, preventing accumulation due to the ceria capacity of remove deposited carbon species via gasification by the O species supplemented from the lattice oxygen of the catalyst itself.

Pt/CeO\textsubscript{2} catalyst has been extensively studied for CO oxidation, oxidative methane steam reforming26,42. Mortola et. al.25 carried out MSR over Pt/CeO\textsubscript{2}-La\textsubscript{2}O\textsubscript{3-Al\textsubscript{2}O\textsubscript{3} and found that combination of Pt and Ce create Pt0/Ptδ+ and Ce4+/Ce3+ redox couples which gives increased methane conversion and carbon resistance over Pt catalyst.

In this work Pt catalysts supported on CeO\textsubscript{2} was synthesized, characterized and its catalytic activity towards MSR reaction was tested. Furthermore, the stability of the catalyst was also evaluated in cyclic conditions. The results of the reforming analysis were also compared with the equilibrium concentrations simulated through sensitivity analysis using AspenPlusTM software.
7.2 Experimental

7.2.1 Catalysts preparations

Supported 1.13 wt.% Pt/CeO$_2$ catalyst was prepared by oxalylhydrazide–nitrate self-combustion synthesis. The combustion mixture contained ceric ammonium nitrate [(NH$_4$)$_2$Ce(NO$_3$)$_6$], chloroplatinic acid (H$_2$PtCl$_6$) and oxalylhydrazide (C$_2$H$_6$N$_4$O$_2$) as fuel (molar ratios 0.99:0.01:2.33) was dissolved in a minimum volume of water in a borosilicate dish of 130 cm3 capacity. The dish with this redox mixture was then introduced into a muffle furnace preheated at 350 °C. The solution boiled with frothing and foaming with concomitant dehydration. At the point of its complete dehydration, the fuel ignites the redox mixture with a flame temperature of ca. 1000 °C, yielding a voluminous finely dispersed solid product within about 5 min.

The prepared catalyst was calcined in air at 800°C for 3 h.

7.2.2 Catalytic Activity

The catalytic activity of the catalyst was evaluated in temperature range of 400-750°C. Details of catalytic activity measurements are presented in Chapter 2.

7.2.3 Catalysts Characterization:

The catalyst prepared were characterized by CO Chemisorption, XRD, SEM EDX and XPS analysis.

7.3 Results & Discussion

7.3.1 Fresh Catalyst Characterization

7.3.1.1 BET and CO Chemisorption results

BET and CO chemisorption of the fresh catalyst are presented in Table 7.1. The Pt/CeO$_2$ catalyst showed a surface area of 14m2/g compared to other steam reforming catalysts available in literature47. This low surface area can be due to the effect of CeO$_2$ support as it results in low surface area. The metallic
dispersion of 12.7% with 8.9 nm crystallite size indicate the fine metal particle dispersion on CeO₂ carrier.

Table 7.1: Physiochemical properties of as prepared 1.13%Pt/CeO₂

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area:</td>
<td>14.0 m²g⁻¹</td>
</tr>
<tr>
<td>Metal Dispersion: d</td>
<td>12.7 %</td>
</tr>
<tr>
<td>Pt Crystallite Size D from metal dispersion=(1/d)</td>
<td>7.89 nm</td>
</tr>
<tr>
<td>Metallic Surface Area:</td>
<td>0.31 m²/g sample</td>
</tr>
<tr>
<td>Metallic Surface Area:</td>
<td>31.31 m²/g metal</td>
</tr>
<tr>
<td>Pt Crystallite Size (CO Chemisorption)</td>
<td>8.93 nm</td>
</tr>
</tbody>
</table>

7.3.1.2 XRD results

![XRD pattern of 1.13\% Pt/CeO₂ 20-70° as prepared catalyst](image.png)

Figure 7.1: XRD pattern of 1.13\% Pt/CeO₂ 20-70° as prepared catalyst

X-ray diffractogram of as prepared 1.13\% Pt/CeO₂ catalyst (see Figure 7.1) indicate a fluorite type CeO₂ structure with the reflections at 2θ = 28.52°, 33.06°, 47.4°, 56.32°, 59.08° and 69.40°. A slight shift of these peaks to a lower degree (2θ ~ 0.02°) compared to pure CeO₂ (JCPDS card n. 81-0792, 2θ = 28.54°, 33.07°, 47.47°, 56.33°, 59.07°, 69.40°) is observed. This slight shift to lower degree can be related to two principal factors:

a) the thermal defect generated in the CeO₂ structure during SCS can induces a lattice expansion (shifting the 2θ+ position to lower angles)⁴⁵,⁴⁶
b) a partial substitution of Pt$^{2+}$/Pt$^{4+}$ in the ceria lattice can determine a shrinkage of the lattice (shifting the 2+ position to high angles).

The combination of this effects can induce, in the current sample a lattice expansion, the related cell parameter of CeO2 for 1.13 wt %Pt/CeO2 is $a=5.415\text{
\AA}$ which is slightly higher than the pure CeO2 ($a=5.411\text{
\AA}$).

It is probable that during SCS the Pt ions are added in CeO$_2$ lattice thus shifting reflections to slightly low degree and increasing lattice parameter. Besides CeO$_2$ reflections a scarcely visible reflection ($2\theta=39.765^\circ$) is also present related to metallic Pt and is usually present when Pt/CeO$_2$ catalyst is synthesized by SCS also shown by other researchers26,42,48,49. The related CeO$_2$ crystallite size derived from CeO$_2$(200) reflection by application of Scherrer equation is 102nm.

FESEM & TEM results

![FESEM image of as prepared 1.13% Pt/CeO$_2$](image.png)

Figure 7.2: FESEM image of as prepared 1.13% Pt/CeO$_2$
The surface morphology of fresh catalyst is presented in Figure 7.2 and Figure 7.3. The FESEM micrograph (see Figure 7.2 A and B) shows uniform porous structure and integrated texture. Macropores are visible all over the catalyst surface and no metal particles are detectable on a magnification level of 20nm indicating fine dispersion.

TEM images (see Figure 7.3A and B) show a low contrast micrograph due to similar masses of CeO$_2$ and Pt. The CeO$_2$ crystal size is about 100-150nm good agreement with XRD calculation and Pt crystal size is about 2-7 nm which is in good agreement with CO chemisorption results (see Table 7.1). No catalyst agglomerates are visible.

Figure 7.3: TEM image of as prepared catalyst
X-ray Photoelectron Spectroscopy results

To better understand the metal support interaction on the catalyst surface the XPS analysis was carried out and the surface atomic composition is summarized in Table 7.2.

Table 7.2: Atomic Percentages from XPS analysis

<table>
<thead>
<tr>
<th>Samples</th>
<th>Surface Atomic %</th>
<th>Ratio</th>
<th>O_H</th>
<th>O_L</th>
<th>Ce^3+</th>
<th>Pt^0</th>
<th>Pt^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ce</td>
<td>O</td>
<td>Pt</td>
<td>Pt/Ce</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Fresh (0 h)</td>
<td>10.4</td>
<td>50.3</td>
<td>0.8</td>
<td>0.077</td>
<td>20.13</td>
<td>79.87</td>
<td>23.43</td>
</tr>
<tr>
<td>Used (150 h)</td>
<td>9.5</td>
<td>55.3</td>
<td>0.1</td>
<td>0.011</td>
<td>26.53</td>
<td>73.47</td>
<td>25.55</td>
</tr>
</tbody>
</table>

Figure 7.4: XPS Spectra of Ce 3d for Pt/CeO₂ catalyst a) fresh catalyst, b) aged catalyst after 150h

Ce (3d) peaks in B.E range 875-925 eV of as prepared catalyst are given in Figure 7.4a. Ce spectra consists of eight peaks which corresponds to four pairs of spin orbitals doublets. Ce (3d_{5/2,3/2}) peaks at 882.6 and 901.2 eV with characteristic satellite marks (see Figure 7.4a) corresponds to CeO₂ with Ce in
+4 oxidation state. Surface proportion of Ce\(^{3+}\), estimated according to typical procedure\(^{50}\) is presented in Table 7.2. It is interesting to note that in the as prepared catalyst contain only 23% Ce\(^{3+}\).

The Pt 4f XPS spectrum of as prepared catalyst is presented in Figure 7.5a and the atomic percentage is presented in Table 7.2. Pt metal particles (4f\(_{7/2,5/2}\)) peaks are observed at 71.08 and 74.4 eV respectively. XPS spectra of Pt 4f core level peaks can be resolved into two sets of spin orbitals doublets containing Pt\(^0\) and Pt\(^{+2}\) state. The 4f\(_{7/2}\) binding energy peaks can be deconvoluted into two peaks at 71.08eV and 72.87 eV while 4f\(_{5/2}\) binding energy peaks are visible at at 74.44 eV and 76.12 eV. The peaks at 71.08eV and 74.44 eV can be assigned to Pt\(^0\) state\(^{42}\), while peaks at 72.87 eV and 76.12 eV can be assigned to the presence of PtO. However, in as prepared catalyst the ratio of Pt\(^0\) : Pt\(^{+2}\) is 50:50 (see Table 7.2).

![Figure 7.5: XPS Spectra of Pt4f for Pt/CeO\(_2\) catalyst a) fresh catalyst, b) aged catalyst after 150h](image)
O1s XPS profile of as prepared catalyst is shown in Figure 7.6a and exhibits two binding energies at 529.6 eV and 532 eV respectively. The binding energy of 529.6 eV can be assigned to the surface lattice oxygen (O\textsubscript{L}) of ceria, while 532eV represents chemisorbed surface oxygen (O\textsubscript{H}). The surface oxygen percent of surface and chemisorbed oxygen is presented in Table 7.2. Higher O\textsubscript{H} concentration verifies the rich presence of chemisorbed surface oxygen species that generally act as the most reactive oxygen species50

7.3.2 Catalyst Activity:

7.3.2.1 Effect of WSV:
Firstly the effect of WHSV on catalytic activity of Pt/CeO$_2$ at S/C 3 in temperature range of 400 - 750°C was evaluated as presented in Figure 7.7 (a-d). The WSV was changed from 0.33NL-min$^{-1}$-g$_{cat}^{-1}$ (hereafter called “low WSV”) to 0.46NL-min$^{-1}$-g$_{cat}^{-1}$ (hereafter called “high WSV”) by changing the flow rate of gas mixture while the weight of the catalyst was kept constant.

In general the increase in WSV showed a slight decrease in catalytic activity in terms of methane conversion and H$_2$ dry outlet concentration (see Figure 7.7 a and c). Below 500°C the methane conversion and H$_2$ dry outlet concentration was slightly higher at high WSV but at 500 and 550°C the values were similar for both high WSV and low WSV. After 550°C the methane conversion remained slightly higher at low WSV as the catalyst achieved 97% and 100% methane conversion at 700 and 750°C respectively.

The temperature increment showed a negative effect on the CO$_2$ selectivity and low WSV favored the CO$_2$ selectivity (see Figure 7.7 c). At low WSV Increase in
the temperature from 400°C to 650°C resulted in a gradual decrease of CO$_2$ selectivity from 100% to 56% respectively, however after 650°C the catalyst showed improvement as it achieved 65% CO$_2$ selectivity at 750°C. High WSV, however disfavored the CO$_2$ selectivity of the catalyst achieving 88% CO$_2$ selectivity at 400°C and decreased down to 49% at 750°C. Variation of WSV resulted in higher CO$_2$ selectivity as compared to equilibrium calculations. Increase in CO$_2$ selectivity even at higher temperature can be attributed to water gas shift reaction50,51 along with CO oxidation characteristics of Pt/CeO$_2$47,52.

By increasing WSV the contact time of reaction mixture and the catalyst is decreased thus effecting the methane conversion and H$_2$ dry outlet concentration. At low WSV the contact time is high therefore the catalyst achieved higher methane conversion, H$_2$ dry outlet concentration and H$_2$/CH$_4$,reacted molar ratio. At high WSV the influence of WGS reaction is minimized due to slow reaction rate53 therefore resulting in low CO$_2$ selectivity and low hydrogen content. That’s why the H$_2$/CH$_4$,reacted molar ratio remained low at high WSV (see Figure 7.7d)

In comparison to equilibrium values the catalyst showed values lower than equilibrium till 650°C after which the catalyst achieved reaction equilibrium (see Figure 7.7)
7.3.2.2 Effect of S/C Ratio:

Figure 7.8: Temperature Effect on catalytic activity at WSV 20 on different S/C ratio, a) methane conversion, b) CO$_2$ selectivity, c) H$_2$ dry outlet concentration, d) H$_2$/CH$_4$. △ = S/C 3, ○ = S/C 2.8, -- = equilibrium values

Secondly the influence of S/C ratio on catalytic activity was determined as presented in Figure 7.8(a-d). The catalytic test was conducted in the temperature range of 400 to 750°C at low WSV as Pt/CeO$_2$ catalyst performed better at low WSV (see section 7.3.2.1). The S/C ratio was varied by keeping the WSV constant at 0.33NL-min$^{-1}$-g$_{cat}^{-1}$ and adjusting the corresponding flow rate of steam and methane.

At S/C ratio 3.2 the catalyst showed very unstable activity (figure not shown) below 600°C, however the catalyst achieved 99% methane conversion with 74% H$_2$ dry outlet concentration and 47% CO$_2$ selectivity at 750°C.

In general the catalyst performed better in the temperature range of 400 to 750°C at S/C 2.8 as the values of methane conversion and H$_2$ dry outlet concentration remained slightly higher than at S/C 3 (see Figure 7.8 a and c).
At 650°C the catalyst showed 90% methane conversion with 75% H₂ dry outlet concentration at S/C 2.8, slightly higher than S/C 3 where the catalyst achieved 86% methane conversion with 75% H₂ dry outlet concentration. At 750°C the catalyst achieved 99% methane conversion at both S/C 2.8 and 3 however, the catalyst showed a little low (77%) H₂ dry outlet concentration at S/C 2.8 compared to 78% H₂ dry outlet concentration at S/C 3.

At S/C 2.8 and between temperature range of 600 and 700°C a slight increase in CO₂ selectivity values (see Figure 7.8c) indicate the favoring of WGS reaction. A slightly higher H₂/CH₄ ratio was observed at S/C 3 (see Figure 7.8d). Increasing S/C ratio increases the partial pressure of steam in the reaction mixture and in case of Pt/CeO₂ low pressure favors the steam reforming reaction indicating that the catalyst is active at lower temperature.

At 700°C the catalyst was more active at S/C 2.8 as it gave higher CO₂ selectivity, so with the goal of producing pure hydrogen with higher CO₂ selectivity an ageing test with daily startup and shutdown cycle was carried out to test the stability of the catalyst.
7.3.2.3 Ageing with daily startup and shutdown cycles in N2 environment:

\[\text{Figure 7.9: Time effect on catalytic activity of 1.13\% Pt/CeO}_2\text{ catalyst at 700\(^\circ\)C with daily startup and shut down cycle in N}_2\text{ environment.} \quad \bigcirc = \text{methane conversion, } \bigtriangleup = \text{H}_2\text{ dry outlet concentration} \quad \bigtriangleup = \text{CO}_2\text{ selectivity } \Box = \text{H}_2/\text{CO molar ratio, } - = \text{H}_2/\text{CH}_4,\text{reacted molar ratio}
\]

Stability test carried out with N2 start up and shutdown cycles after about 6 h of reaction time at 700\(^\circ\)C with S/C 2.8 and WHSV 0.33NLmin\(^{-1}\)-g\textcat\(^{-1}\) are reported in Figure 7.9. The 6h time interval is indicated by vertical dotted line on the graph. High stability during 100h of reaction was observed for Pt/CeO\(_2\) catalyst. The methane conversion remained greater than 93\%, CO\(_2\) selectivity above 48\%, CO in dry reformate maximum about 12\%, CO\(_2\)/CO selectivity ratio varying between 0.8 to 2, H\(_2\) composition higher than 75\% reaching up to 80\% and H\(_2\)/CO ratio varying between 6-11.5 during entire reaction time.

Another phenomenon observed during 100h ageing with inert startup and shutdown cycle is frequent and analogous oscillation behavior of methane conversion, \(\text{H}_2\) composition and CO\(_2\) selectivity. Change in \(\text{H}_2\) composition (77±2\%) with respect to change in methane conversion (98±2\%) is almost
similar and less oscillatory but oscillation in CO₂ selectivity is rather large (59±8%). This frequent oscillatory behavior can be explained through the repeated oxidation/reduction cycle occurrence at catalyst surface.

The stability of Pt catalyst is high as compared to other steam reforming catalysts which show reduced catalytic activity within 5h of reaction. Zhai et al. carried out MSR stability test over Ni catalyst showing methane conversion above 90% for more than 10h and decreasing to 10% in slowly in later 30h, deactivating is mainly due to sintering and coke deposition. Mortola et al. carried out MSR over impregnated Pt catalyst and considerable catalytic activity decrease was observed within 24 h of reaction, same was observed by Pino et. al. During partial oxidation of methane when impregnated Pt sample deactivated evidently during 100 h of reaction.

Figure 7.10: Temperature Effect on catalytic activity before and after 100h reaction time ○ = 0h, ◇ =100h

After 100h ageing test the performance of catalyst from 400 -700°C was evaluated and a comparison of the performance of the catalyst is presented in **Figure 7.10.** Decreases in the methane conversion over time is evident from the
plot for the performance at 0 and 100 h conversion remain same with a very slight change as the conversion decreases about 1% at 100 h, however a 5% decrease in methane conversion is more evident at lower temperatures (see Figure 7.10a). For CO₂ selectivity Figure 7.10b the catalyst showed similar activity at and below 600°C, however 13% drop in CO₂ selectivity is observed at 650 and 700°C after 100 h of reaction time. A decrease of 5% in H₂ dry outlet concentration was observed at and below 550°C; though the catalyst showed similar values from 600 to 700°C. The H₂/CH₄,reacted molar ratio improved after 100 h of reaction time.

7.3.2.4 Ageing with daily startup and shutdown cycles in reaction Environment:

Figure 7.11: Time effect on catalytic activity of 1.13% Pt/CeO₂ catalyst at 700°C with daily startup and shut down cycle in reaction environment. ○ = methane conversion, ◊ = H₂ dry outlet concentration △ = CO₂ selectivity □= H₂/CO molar ratio, - = H₂/CH₄,reacted molar ratio

After stability test with daily start up and shutdown cycle N₂ environment, endurance test was carried out in daily start up and shut down cycle in the
reaction environment at 700C with S/C ratio 2.8 WHSV 0.33NLmin$^{-1}$g$_{cat}^{-1}$ as presented in Figure 7.11. The daily start up and shut down in the reaction environment was to evaluate the effect of heating and cooling in reaction environment on the catalytic activity. High stability during 50h of reaction was shown for Pt/CeO$_2$ catalyst. The methane conversion remained more than 96%, CO$_2$ selectivity above 48%, CO in dry reformate maximum about 12%, CO$_2$/CO selectivity ratio varying between 0.9 to 1.7, H$_2$ composition higher than 73% up to 80% and H$_2$/CO ratio varying between 6-10 during all the reaction time

Same oscillatory trend is observed in 50h ageing in reaction environment startup and shutdown cycle but less frequent. Comparison of ageing during inert and reaction environment shows no significant difference. Average methane conversion and composition of H$_2$ and CO$_2$ remains same for both environments showing that ageing is insensitive to cyclic environmental change

Figure 7.12: Temperature Effect on catalytic activity before and after 50h reaction time at 700°C, ○ = 100h, □ =150h
After performing ageing test with daily start up and shut down cycles in the reaction environment, the performance of catalyst from 400 to 700°C was evaluated as presented in Figure 7.12. A 5% decrease in the methane conversion at and below 550°C is evident from the plot for the performance at 100 and 150 h. The trend however remain the same and at temperature above 550°C the conversion remain same with a very slight change as the conversion decreases about 1%. A slight increase in CO$_2$ selectivity of 5% is observed at about 700°C, however the CO$_2$ selectivity remained unchanged below 550°C. H$_2$ dry outlet concentration showed negligible difference however H$_2$/CH$_4$ molar ratio improved over time.
7.3.3 Aged Catalyst Characterization:

7.3.3.1 TEM:

Figure 7.13: TEM image of catalyst after 150 h of ageing

Aged catalyst TEM is shown in Figure 7.13. A very thin layer of carbon is visible on catalyst surface with a slight change in Pt particle size indicating some degree of sintering.
7.3.3.2 XRD

XRD pattern of aged catalyst (not shown) the CeO$_2$ phase is visible with less intensity and lower 2θ shift than the original fresh catalyst and no Pt peaks are visible. The lower 2θ shift can be due to thermal defects generated within the system.

7.3.3.3 XPS

The XPS spectra of used catalyst is shown in [Figure 7.4-Figure 7.6](#). The peaks of Ce 3d core level region are fitted as before [Figure 7.4a](#). The surface concentration of Ce$^{3+}$ of total Ce ([Table 7.2](#)) on used sample is slightly higher than the fresh sample. This is mainly due to during H$_2$ reduction Ce$^{3+}$ concentration increases along with the chemisorbed oxygen O$_H$ which are highly reactive species36 therefore, high catalytic activity is due to in time supplemented oxygen vacancies. XPS study shows ratio of 1.6 of Carbon on spent catalyst to that on fresh catalyst and this value is somewhat very low compared to other situations14. The Pt peaks shift towards low B.E was observed due to decomposition of PtO which resulted in increase of Pt0 state on the catalyst during reduction as indicated in [Table 7.2](#). Moreover, surface atomic ratio of Pt/Ce decreased from 0.07 to 0.01 indicating decrease in Pt at surface due to sintering and carbon coverage of Pt particles as indicated by TEM and XRD analysis.

Despite some degree of sintering and thin layered carbon coverage on catalyst, as shown by TEM, XPS and XRD, the catalyst remained active after 150h of reaction. This highly stability of Pt/CeO$_2$ can be attributed to combination of Pt and Ce56 which creates Pt0/Pt$^{5+}$ and Ce$^{4+}$/Ce$^{3+}$ redox couples giving increased methane conversion and carbon resistance over Pt catalyst25. So during the whole reaction the oxygen specie formed from lattice oxygen at CeO$_2$/soot interface and is enhanced by deposition of noble metal over CeO$_2$.57 Redox coupling of Pt and Ce is responsible for decreased coking. Sintering of Pt particles is due to high temperature reaction and weakening of Pt-O-Ce bond.
Among 11 possible steam reforming reactions, CO$_2$ can only be produced through following three reactions.

1. $\text{CO} + \text{H}_2\text{O} = \text{CO}_2 + \text{H}_2$ (1)
2. $\text{CH}_4 + 2\text{H}_2\text{O} = \text{CO}_2 + 4\text{H}_2$ (2)
3. $2\text{CO} = \text{C} + \text{CO}_2$ (3)

The first reaction (1) corresponds to the water gas shift reaction in which 1 mole of CO, produced through MSR reaction, is converted to CO$_2$. Secondly, water gas shift reaction which in presence of Pt/CeO$_2$ is enhanced even higher temperature and quickly approaches equilibrium. If WGS reaction reaches equilibrium then the CO$_2$/CO selectivity ratio should be equal to 1, but in our reaction system this ratio exceeds 1 therefore it means CO is not solely converting to CO$_2$ by means of water gas shift but also through reaction with lattice oxygen. Lattice oxygen can be produced via the transformation of Ce$^{3+}$ and Ce$^{4+}$ through following equations:

$$4\text{Ce}^{4+} + \text{O}^2- \rightarrow 4\text{Ce}^{4+} + 2\text{e}^-/\square + 0.5\text{O}_2 \rightarrow 2\text{Ce}^{4+} + 2\text{Ce}^{3+} + \square + 0.5\text{O}_2$$

$$\text{CO} + \text{O}_{(lattice)} \rightarrow \text{CO}_2$$

The deposition of Pt metal on CeO$_2$ having strong metal surface interaction changes the surface electronic state thus increasing Ce$^{3+}$ concentration and the higher the concentration of Ce$^{3+}$ concentration of the total Ce, the more oxygen vacancies form. The deposition of Pt metal weakens the bond energy between Pt metal and oxygen atom close to Pt metal in CeO$_2$ crystal lattice which makes this kind of oxygen atom more easily reducible so number of oxygen vacancies increases. So with the MSR and water gas shift the change in product composition should be constant but it seems that CO reaction with the lattice oxygen, produced by oxidation/reduction behavior of catalyst is responsible for the oscillation of CO$_2$ in system.

Second reaction (2) however yields CO$_2$ along with 4 moles of H$_2$ per mole of CH$_4$ reacted. As during the whole reaction time (150h) the ratio of H$_2$ per mole of CH$_4$
reacted remained greater than 3 therefore the second reaction seems more dominating.

Third reaction (3) involves the dissociation of CO which yields carbon and CO$_2$ known as Boudouard reaction. Theoretically for Boudouard reaction/disproportionation reaction of CO the ratio of CO/CO$_2$ should be almost 2 but results show that this ratio is less than 1 for our system and also from TEM results there is a very thin layer of carbon on catalyst surface so if carbon is deposited through Boudouard reaction its effect is very small and insignificant.

7.4 References

Chapter 8 Rh/CeO$_2$ catalyst for methane steam reforming: Catalytic activity and stability

8.1 Introduction

Global warming increase and depleting oil reservoirs call for an alternative environmental friendly energy resource. Hydrogen due to its high energy content and zero emission after combustion can potentially replace the conventional fuels$^{1-3}$. Hydrogen production on a small scale is the major shortcoming in this scenario. Commercially hydrogen is produced along with CO and CO$_2$ from methane via steam reforming reaction1,4. According to US department of energy the MSR can provide an initial step towards hydrogen economy.

Steam reforming is an endothermic process and thus requires a high energy input. MSR is preferred among other technologies like partial oxidation, autothermal reforming, oxidative steam reforming and coal gasification5 due to its energy efficiency (83%) with lowest hydrogen cost. Steam reforming also provides excellent H$_2$ concentration with good fuel processor efficiency6. Commercially Ni is used as a catalyst for MSR but the issues of sintering and carbon deposition are high on Ni catalyst. Also ageing reduces the porosity and Ni content therefore deactivating the catalyst and results in increase in operating temperature and pressure7. Noble metals are potential alternative for Ni in the MSR reaction, as the amount of Ni varies from 10% on commercial catalyst$^8-12$ while a small amount of noble metal can produce even better results13 and remain active for long time period. Noble metals like Rh$^{14-17}$, Pt$^{18-27}$, Ru$^{28-32}$, Pd$^{33-35}$ and Ir36,37 have been widely studied for methane steam reforming. There is a constant debate regarding order of activity among noble metals38 and Rh and Ru are considered to be most
active, and Rh gives the highest affinity among noble metals with CeO$_2$39. According to study conducted by Wei and Iglesia40 Rh is active among noble metals for the activation of C-H bond during reforming reaction. Wang et al41 the decrease of electron density of Rh facilitates the activation and dissociation of CH$_4$.

Usually Noble metals are supported on inert supports like Al$_2$O$_3$, but CeO$_2$ supported noble metals are being considered due to oxygen storage capacity, strong metal support interaction42,43, soot resistance44 and the CeO$_2$ reducibility45 (Ce$^{4+}$/Ce$^{3+}$). These properties of CeO$_2$ helps in determining a higher specific rate of the supported noble metals, compared to the usual inert oxide supported catalysts, particularly in reactions such as water gas shift, steam reforming and dry reforming of methane. According to the J. Xu et.al.46, the CeO$_x$ (x = 2 or 1.5) accelerate the reaction of steam with adsorbed carbon species on the metal surface at the metal–oxide interface, so, the surface carbon species can be quickly converted to gaseous products, preventing accumulation due to the ceria capacity of remove deposited carbon species via gasification by the O species supplemented from the lattice oxygen of the catalyst itself.

Rh/CeO$_2$ catalyst has been extensively studied for CO oxidation45, oxidative methane steam reforming47. Wang et. al.16 carried out methane reforming over Rh/CeO$_2$-Al$_2$O$_3$ and evaluated the role of Rh0/Rh$^{5+}$ and Ce$^{4+}$/Ce$^{3+}$ redox couples which generate electron deficient Rh and Ce promoting CH$_4$ and CO$_2$ activation and enhancement of carbon elimination to yield CO over Rh catalyst.

In this work a Rh catalyst supported on a CeO$_2$ carrier was synthesized, characterized and tested towards MSR reaction. Moreover the stability of the catalyst was also evaluated by 100h endurance test. The performance of the catalyst in cyclic condition during daily startup and shutdown cycle was also evaluated.
8.2 Experimental

8.2.1 Catalysts preparations

1.5% Rh/CeO$_2$ was prepared by IWI method. CeO$_2$ carrier was prepared by solution combustion synthesis (SCS). Metal nitrate precursor of Ce i.e. Ce(NO$_3$)$_3$$\times$6H$_2$O and urea (CH$_4N_2$O) as fuel were placed together in aqueous solution and heated up to 600°C in a furnace. The reaction resulted in formation of CeO$_2$ powder. The so synthesized powder was then calcined for 3h at 650°C. Rh was deposited by incipient wetness impregnation method, an aqueous solution of RhCl$_3$ was prepared and deposited drop wise on support, meanwhile thoroughly mixing the whole mass at 130°C in order to let water evaporate.

The prepared catalyst was calcined in air at 800°C for 3 h.

8.2.2 Catalytic Activity

The catalytic activity of the catalyst was evaluated in temperature range of 400-750°C. Also stability under DSS$_{\text{inert}}$ conditions and 100h continuous ageing of the catalyst was performed. Details of catalytic activity measurements, stability tests and kinetic measurements are presented in Chapter 2.

8.2.3 Catalysts Characterization:

The catalyst prepared were characterized by CO Chemisorption, Porosimetry, Density, XRD, SEM EDX and XPS analysis

8.3 Results and Discussion

The physical characteristics of as prepared catalyst are presented in Table 8.1.

Table 8.1: Physical Properties of the fresh catalyst

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average pellet size</td>
<td>300 μm</td>
</tr>
<tr>
<td>BET Surface Area</td>
<td>2 m2/g</td>
</tr>
<tr>
<td>Rh Content -ICP</td>
<td>0.24 %</td>
</tr>
</tbody>
</table>
Table:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal Density</td>
<td>6.96 g/cm²</td>
</tr>
<tr>
<td>Geometric density</td>
<td>1.93 g/cm²</td>
</tr>
<tr>
<td>Pore Volume</td>
<td>0.015 cm³/g</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.72 cm³/cm³</td>
</tr>
<tr>
<td>Pore diameter of catalyst</td>
<td>32.3 nm</td>
</tr>
</tbody>
</table>

The Rh/CeO₂ catalyst showed a surface area of 2m²/g, very low than the other Rh catalysts available in literature. CeO₂ showed a surface area of 66.25m²/g and addition of Rh decreased the surface area significantly. ICP reveals 0.24% of Rh on CeO₂.

Figure 8.1: Porosimetry of as prepare Rh/CeO₂ catalyst

The N₂ adsorption isotherm obtained is shown in **Figure 8.1**. The catalyst showed a type IV isotherm with a type H3 hysteresis loop at the high relative pressure range. The type IV isotherm is associated with capillary condensation taking place in mesopores, and the limiting uptake over a range of high relative pressure. The shapes of hysteresis loops have often been identified with specific pore structures. Thus, the type H3 is often associated with the aggregates of plate like particles giving rise to slit shaped pores⁴⁸.
Figure 8.2: BJH pore size distribution of as prepared Rh/CeO₂

Figure 8.2 show the BJH pore distribution of Rh/CeO₂ catalyst. Most of the pores are in the range between 10-80nm.
Figure 8.3: SEM micrograph of as prepared Rh/CeO\textsubscript{2} catalyst

The morphology of as prepared catalyst is shown by SEM micrograph in Figure 8.3. The catalyst shows a porous and integrated structure. Plate like particles are also visible all over the catalyst surface as determined from Porosimetry.
8.3.1 XRD

![XRD Pattern](image)

Figure 8.4: XRD pattern of as prepared Rh/CeO₂ catalyst

XRD pattern of as prepared Rh/CeO₂ Figure 8.4 was recorded to check the presence of Rh metal or its oxide phases. XRD pattern corresponds to fluorite CeO₂ phase⁴⁹ (2θ = 28.67°, 33.26°, 47.68°, 56.58°, 59.23°) and diffraction lines due to Rh₂O₃, RhO₂ and Rh metal could not be detected. It shows that Rh metal is well dispersed on CeO₂. The related CeO₂ particle size, derived from Ce (111) peak by application of the Scherrer equation is 372 nm. Slight shift of CeO₂ peaks to higher degrees compared to pure CeO₂ (JCPDS card no 81-0792, 2θ = 28.54°, 33.07°, 47.47°, 56.33°, 59.07° and 69.401°) indicate the formation of oxide solid solution⁷. The related cell parameter of prepared catalyst results a = 5.3975 Å which is slightly smaller than pure CeO₂ (a = 5.4124 Å). The shrinkage in lattice parameter can be due to replacement of Ce⁴⁺ (ionic radius = 0.97 Å) by Rh³⁺ (0.665 Å) and Rh⁴⁺ (0.6 Å).
Figure 8.5: Temperature Programmed Reduction (TPR) profile of as prepared Rh/CeO$_2$ catalyst

TPR profile of Rh/CeO$_2$ catalyst presented in Figure 8.5 depicts two peaks: the first peak is a low temperature peak corresponding to the surface reduction of the material while the second high temperature peak corresponds to the bulk reduction of solids16. A twin peak centered at 185°C and 251°C corresponds to reduction of Rh$_2$O$_3$ to Rh0 state45. The peak at 185°C is related to reduction of well dispersed small Rh particles while at 251°C the large Rh$_2$O$_3$ crystals are reduced45. The second peak around 1018°C corresponds to the bulk reduction of CeO$_2$ to Ce$_2$O$_3$16.

The surface atomic composition obtained from XPS along with SEM EDX results is presented in Table 8.2. Atomic percent obtained from SEM EDX are higher compared to XPS results.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Surface Atomic %</th>
<th>Ratio</th>
<th>EDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td>O</td>
<td>Rh</td>
<td>Rh/Ce</td>
</tr>
</tbody>
</table>

Table 8.2: Surface atomic composition from XPS and EDX
Ce (3d) peaks in B.E range 875-925 eV of as prepared catalyst are presented in **Figure 8.6**. The Ce 3d spectrum consists of eight peaks which corresponds to four pairs of spin orbitals doublets. Ce (3d$_{5/2,3/2}$) peaks at 882.6 and 900.93 eV with characteristic satellite marks (see **Figure 8.6**) corresponds to CeO$_2$ with Ce in +4 oxidation state.

Figure 8.6: Ce 3d spectra of Rh/CeO$_2$ catalyst
XPS profile of O1s Figure 8.7 exhibits three binding energies at 529.27 eV, 530.77 eV and 532 eV. The first binding energy represents the surface lattice oxygen (O_L) while the second represents oxygen due to Rh oxidation and the third binding energy represents chemisorbed surface oxygen (O_H) which only makes up 12% of total oxygen. Higher O_H concentration verifies the rich presence of chemisorbed surface oxygen species that generally act as the most reactive oxygen species.\[50\]
Figure 8.8: Rh 3d spectra of Rh/CeO$_2$ catalyst

Rh 3d spectra Figure 8.8 has been resolved in two sets of spin orbital doublets. The Rh0 shows 3d$_{5/2}$ BE at 307.1 eV while the Rh$^{3+}$ shows 3d$_{5/2}$ BE at 308.8 eV. For CeO$_2$ promoted Rh catalyst the Rh 3d$_{5/2}$ and 3d$_{3/2}$ peaks moved to 308.75 eV and 313.08 eV respectively. The 3d$_{5/2}$ peak electropositive shift at 308.75 eV indicates a transition between Rh0 and Rh$^{3+}$, thus generating Rh0/Rh$^{5+}$ redox couple.
Effect of temperature on methane conversion at 1 atm pressure and S/C ratio 3 is presented in **Figure 8.9**. Methane conversion increases gradually with temperature starting from 7% at 400°C reaching 98% conversion at 750°C. The methane conversion of Rh at 750°C is higher and comparable to 3% Rh catalyst and higher than 10%Ni catalyst, although our space velocity is half of Kusakabe et al.13 and double than Zhai et al.51

At 750°C the CO\textsubscript{2} selectivity drops down to 38% with H\textsubscript{2}/CO molar ratio 5.41 and catalyst showed an increase in H\textsubscript{2} dry outlet concentration achieving up to 77%. The methane conversion, H\textsubscript{2} dry outlet concentration and CO\textsubscript{2} selectivity values remain lower than the equilibrium values.
Figure 8.10: Time effect on catalytic activity of Rh/CeO\(_2\) catalyst at 700°C with daily startup and shut down cycle in N\(_2\) environment at \(P_T=1\)bar, S/C: 3 and \(W/F_{CH_4}=16128\) kg\(_\text{cat}\)-h\(^{-1}\)-kmol\(^{-1}\). ○ = methane conversion, □ =\(H_2\) dry outlet concentration ◊ = \(CO_2\) selectivity, — = \(H_2/CO\) molar ratio, ---- = \(H_2/CH_4,\text{reacted}\) molar ratio

Secondly catalyst was aged at 700°C for 25h to determine whether the catalyst is stable enough for kinetic tests. Figure 8.10 The catalyst showed a stable activity over 25h time period with regular startup and shut down cycle indicated by the dotted lines. High stability during 25h of reaction was observed for Rh/CeO\(_2\) catalyst. The average methane conversion over 25h time was 88%, \(CO_2\) selectivity above 30%, \(H_2\) composition higher than 70% reaching up to 80% and \(H_2/CO\) ratio varying between 4.7-8.8 during entire reaction time.

Another phenomenon observed during 25h ageing with daily startup and shutdown cycle is frequent and analogous oscillation behavior of methane conversion, \(H_2\) composition and \(CO_2\) selectivity. Change in \(H_2\) composition (75±4%) with respect to change in methane conversion (88±6%) is almost similar and less oscillatory but oscillation in \(CO_2\) selectivity is rather large (41±10%). The catalyst showed an oscillatory behavior which can be attributed to structural parameters of catalyst. This frequent oscillatory behavior of \(CO_2\) can be explained through the repeated oxidation/reduction cycle occurrence at
catalyst surface generating Rh$_0$/Rh$^{5+}$ and Ce$^{4+}$/Ce$^{3+}$ redox couples16,41,45. Now when the Ce$^{3+}$ is active the CO$_2$ undergoes dissociation on the support surface thus responsible to increase in CO in the product stream. However when Ce$^{4+}$ is dominant the CO concentration decreases in the dry reformate. The catalyst showed no deactivation over 25h time period.

Figure 8.11: Time effect on catalytic activity of Rh/CeO$_2$ catalyst at 750°C for 100h P$_T$= 1bar, S/C: 3 and W/F$_{CH_4}$=16128 kg$_{cat}$-h$^{-1}$-kmol$^{-1}$. ○ = methane conversion, □ =H$_2$ dry outlet concentration ◊ = CO$_2$ selectivity, — = H$_2$/CO molar ratio, ---- = H$_2$/CH$_4$,reacted molar ratio

Thirdly the catalyst was aged at 750°C for 100h **Figure 8.11** to determine whether the catalyst is stable enough for smooth continuous operation. The catalyst showed a stable activity over continuous 100h time period. High stability during 100h of continuous reaction time was observed for Rh/CeO$_2$ catalyst. The methane conversion remained constant at 98%,, H$_2$ composition higher than 73% reaching up to 76% and H$_2$/CO ratio varying between 4.58-6.72 during entire reaction time.
Another phenomenon observed during 100h ageing is frequent and analogous oscillation behavior of CO₂ selectivity. Change in H₂ composition (77±2%) with respect to change in methane conversion (98±2%) is almost similar and less oscillatory but oscillation in CO₂ selectivity is rather small (59±8%) than the daily start up and shut down cycle. This frequent oscillatory behavior can be explained through the repeated oxidation/reduction cycle occurrence at catalyst surface.

XRD pattern of aged catalyst is shown in Figure 8.4b. The CeO₂ phase is visible with considerably less intensity and lower 2θ shift than the original fresh catalyst and no Rh peaks are visible. The lower 2θ shift can be due to thermal defects generated within the system. However No peak due to carbon was visible in the XRD diffractogram. In the catalyst after 100h ageing XRD pattern show less intense peaks than fresh catalyst and the peaks also corresponds to fluorite CeO₂ phase49 (2θ = 28.23°, 32.78°, 47.2205°, 56.077°, 58.878°) but with a negative shift of 2θ. This negative shift can be due to defects generated within the system after prolonged heat exposure. Also the diffraction lines due to Rh₂O₃, RhO₂ and Rh metal could not be detected indicating the lack of particle sintering. The CeO₂ crystallite size calculated from the Ce(111) peak using Scherrer equation resulted in 58.5nm smaller than the fresh sample. The related cell parameter of aged catalyst results a= 5.474 Å which is slightly higher than pure CeO₂ (a = 5.4124 Å). This expansion in lattice parameter can be due to formation of oxygen vacancies resulted by reduction of Ce⁴⁺ to Ce³⁺.

The XPS spectrum of the aged catalyst is shown in Figure 8.6. the peaks of Ce 3d core level region are fitted as before. The surface concentration of Ce3⁺ of total Ce (Figure 8.6) on aged sample is slightly higher than the fresh sample. This is mainly due to during H₂ reduction Ce³⁺ concentration increases along with the chemisorbed oxygen OH which are highly reactive species36 therefore, high catalytic activity is due to in time supplemented oxygen vacancies. The Rh peaks shift towards low B.E was observed due to decomposition of Rh₂O₃ during reduction as indicated in Figure 8.8. Moreover, surface atomic ratio of Rh/Ce decreased from 0.03 to 0.026 indicating decrease in Rh at surface (Table 8.2).
8.4 References

[28] Carvalho, L. S.; Martins, A. R.; Reyes, P.; Oportus, M.; Albonoz, A.; Vicentini, V.; Rangel, M. do C. Preparation and Characterization of Ru/MgO-

Part III: Intrinsic Kinetics

In the third and final part of this thesis, after evaluating the catalytic endurance the intrinsic kinetics of Rh/CeO$_2$ was evaluated. Part III consists of Chapter 9 and comprises of the kinetic study of Rh/CeO$_2$.
Chapter 9 Intrinsic kinetics of Rh/CeO$_2$ catalyst for methane steam reforming:

In this work a Rh catalyst supported on a CeO$_2$ carrier was synthesized, characterized and tested towards MSR reaction. Moreover the stability of the catalyst was also evaluated by 100h endurance test. The performance of the catalyst in cyclic condition during daily startup and shutdown cycle was also evaluated.

9.1 Experimental

9.1.1 Preliminary experiments:

For kinetic measurements firstly the run consisting of catalytic activity of as prepared catalyst was made to ensure the catalytic activity. After that the same catalyst was aged for 20 h at 700°C to observe any catalytic deactivation. As there was no deactivation observed the catalyst was put through the kinetic test. For the kinetics the catalyst was heated to the desired temperature and after reaching isothermal conditions S/C ratio was varied to see the effect of methane and steam partial pressure on methane conversion, keeping WHSV constant. After this another set of experiment was conducted keeping S/C ratio constant at 3 and changing the space velocity. No inert was used in the experiments and no hydrogen was added in the feed as there was no visible catalyst deactivation.

9.2 Results and Discussion

9.2.1 Heat and Mass Transfer Limitations

To ensure that catalyst is well in the intrinsic kinetic region, internal and external mass transfer limitations were checked experimentally and theoretically. For
every data point obtained the heat and mass transfer limitations were theoretically check to further ensure kinetic controlled operation.

9.2.1.1 Interparticle Mass Transfer Limitations

For experimental determination of interparticle mass transfer limitations the methane conversion is measured at 600°C and 1 atm using different pellet sizes of the catalyst. The pellet sizes used were 600μm, 425μm, 250μm, 63μm and 45μm. Gas composition consisted of S/C 3 and constant WHSV of 0.33NL/g cat−min. The methane conversion does not change for pellet size below 250μm.

For theoretical calculation of interparticle mass transfer limitations, following Weisz-Prater Criteria was used.

\[C_{WP} = \frac{R_A^{obs} \rho_e R^2}{D_{A,eff} C_A} < 1 \]

9.2.1.2 External Mass Transfer Limitations

To determine experimentally whether external mass transfer is dominant, the methane conversion is measured using different volumetric flow rates from 20 to 100 Nml/min at a constant S/C 3 and a catalyst weight of 30mg with a particle size of 45μm. The linear velocity of the reactants was varied to assess the external mass transfer limitations.

The external mass transfer limitation was also determined theoretically using following Carberry Number relationship;

\[N_{Ca} = \frac{R_A^{obs}}{k_g a_v C_A} = \frac{C_{Ab} - C_A}{C_{Ab}} < \frac{0.05}{n} \quad (n > 0) \]

9.2.1.3 Internal Heat Transfer Limitations:

To determine the internal heat transfer limitation the Mears criterion of interparticle heat transfer was used;

\[\frac{\Delta H_{rxn} R_A^{obs} \rho_{cat} d_p E}{\lambda_p T^2 R} < 3.0 \]
9.2.1.4 External Heat Transfer Limitations:

To determine the external heat transfer limitation the Mears criterion of external heat transfer was used;

\[\frac{\Delta H_{\text{rxn}} R_{\text{A}}^b \rho_{\text{cat}} d_p E}{h_p T^2 R} < 0.3 \]

The detailed calculations are presented in Appendix.

9.2.2 S/C ratio and methane partial pressure effect on MSR reaction:

Partial pressure effect of methane and steam was observed from 400-750°C by varying steam to carbon ratio. As no inert gas was used in the reaction system variation of steam to carbon ratio enabled simultaneous change in methane and steam partial pressure. The partial pressure of methane \(P_{\text{CH}_4}^* \) and steam \(P_{\text{H}_2\text{O}}^* \) was varied simultaneously by varying the S/C ratio and keeping the WHSV constant at 0.33NL/g\text{-cat}-min under isothermal conditions.

![Figure 9.1: Effect of S/C ratio on methane conversion](image)

In terms of methane conversion increase in S/C ratio results in increase in methane conversion. Figure 9.1 and Figure 9.2 show the isotherms depicting the effect of S/C ratio and methane partial pressure on methane conversion respectively. Temperature showed a positive effect on methane conversion as
the isotherms show a gradually increment. Till 600°C the isothermal trend remained logarithmic but further increase in temperature changes the trend to third order polynomial.

![Graph showing the relationship between H2O partial pressure and CH4 conversion and CH4 partial pressure](image)

Figure 9.2: Effect of methane and steam partial pressure on methane conversion

A negative effect of the $P_{CH_4}^*$ on methane conversion was observed as the methane conversion decreased gradually with the increase in methane partial pressure. At low temperatures the decrease of methane conversion is slow but with the temperature increment the decrease in methane conversion with partial pressure is significant.

9.2.2.1 Effect of methane Partial Pressure on Product composition and distribution

Figure 9.3 and **Figure 9.4** show the isotherms depicting the effect of methane partial pressure on H2 dry outlet concentration and CO2 selectivity.
Figure 9.3: Effect of methane partial pressure on H₂ dry outlet concentration

A positive effect of temperature on the H₂ dry outlet concentration was observed, however this effect is less pronounced at temperature above 600°C. A negative effect of methane partial pressure on the H₂ dry outlet concentration was observed, at low methane partial pressure the concentration of H₂ in product stream is high but with the partial pressure increment the H₂ concentration decrease gradually till 550°C. After 550°C the abrupt decrease in H₂ dry outlet concentration with partial pressure increment was observed.
A negative effect of temperature and methane partial pressure on CO$_2$ selectivity was observed. At low temperature the decrease in CO$_2$ selectivity with partial pressure increment is slow but at high temperature a sharp decrease in the CO$_2$ selectivity with partial pressure increment was observed.

9.2.2.2 Effect of methane Partial Pressure on Methane Reaction Rates

The methane reaction rate was calculated by integral method. The methane partial pressure showed a positive effect on methane reaction rate as presented in Figure 9.5.
9.3 Kinetic study:

The steam reforming reaction is performed over a temperature range of 400-600°C and a total pressure of 1 atm using a constant S/C ratio of 3. Figure and Figure show the experimental data of the overall methane conversion and methane conversion to CO\textsubscript{2} versus the W/F\textsubscript{CH_4} (kg\textsubscript{cat} s mol-1\textsubscript{CH_4}) respectively. The conversions are calculated according to following equations;

\[x_{CH_4} = \frac{F_{CH_4,in} - F_{CH_4,out}}{F_{CH_4,in}} \]

And

\[x_{CO_2} = \frac{F_{CO_2,out}}{F_{CH_4,in}} \]
Figure 9.6: Effect of space velocity on methane conversion at S/C 3

Figure 9.7: Effect of space velocity on methane conversion to CO$_2$ at S/C 3

9.4 Thermodynamic Analysis:

Possible set of reactions which can occur in MSR along with their equilibrium constant are presented in Table 11,2.

Table 9.1: Equilibrium constant for reactions involved in MSR

<table>
<thead>
<tr>
<th></th>
<th>Reaction</th>
<th>K_{pi}</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{CH}_4 + \text{H}_2\text{O} = \text{CO} + 3\text{H}_2$</td>
<td>$1.167 \times 10^{13} \exp(-26830/T)$</td>
<td>atm2, bar2</td>
</tr>
</tbody>
</table>
From Thermodynamic perspective of reaction system the ratio;

\[V_i = \frac{\left(\prod_j p_j^{v_j} \right)_i}{K_{P_i}} \]

Calculated from experimental results can determine possible direction of a given reaction in following way;

If \(V_i < 1 \) reaction proceeds right

If \(V_i > 1 \) reaction proceeds left

From the experimental results from 400-600°C \(V_i \) value calculated for reaction 7-10 exceeds 1 therefore no carbon deposition can occur from these reactions. For reaction 5 which corresponds to CO\(_2\) reforming of methane \(V_i > 1 \) from 400-550°C and \(V_i < 1 \) from 600-750°C, so this reaction will not occur below 550°C but will be part of reaction system after 600°C. But from analysis of experimental reaction system with increase in methane conversion an increase in CO\(_2\) concentration is observed, thus this reaction is not considered. For reaction 1-4 and 6 \(V_i \) value is always less than 1 at all temperatures. As the value for \(V_6 \) is less than 1 it means there is a possibility of carbon deposition from decomposition of methane. Isotherms of \(V_1 \) as a function of space velocity are presented in fig showing a gradual increase.
Figure 9.8: Effect of space velocity on extent of MSR reaction

Figure 9.9: Effect of space velocity on extent of water gas shift reaction

It is interesting to note that with increase in temperature from 400-500°C there is a gradual rise in V_1 values indicating a slight decrease in steam reforming reaction potential but after 550°C V_1 values began to lower and at 750°C isotherm lowest values of V_1 are obtained indicating the prevalence of steam reforming reaction.
9.5 Derivation of experimental reaction rates

The obtained experimental methane conversion data is treated in an integral approach. The relationship between overall methane conversion and methane conversion to CO\textsubscript{2} versus inlet space time (W/F\textsubscript{CH\textsubscript{4},in}) at constant pressure and temperature can be analytically described in terms of polynomial functions\(^1,3\)

\[
x_{\text{CH}_4} = a_0 + a_1 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right) + a_2 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right)^2 + a_3 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right)^3
\]

(1)

\[
x_{\text{CO}_2} = b_0 + b_1 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right) + b_2 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right)^2 + b_3 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right)^3
\]

(2)

 Assuming that steam reforming reaction proceeds only in the presence of catalyst; following boundary condition holds

\[
\text{At } \frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} = 0.0, \quad x_{\text{CH}_4}, x_{\text{CO}_2} = 0.0
\]

The parameters in these polynomials are determined by data fitting and are presented in Table 9.2.

Table 9.2: Maximum Initial reaction rate Parameters for methane

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>a(_1)(b(_1))</th>
<th>a(_2)(b(_2))</th>
<th>a(_3)(b(_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/C=3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400°C</td>
<td>0.333</td>
<td>0.149</td>
<td>-0.016</td>
</tr>
<tr>
<td>450°C</td>
<td>1.282</td>
<td>0.057</td>
<td>-0.011</td>
</tr>
<tr>
<td>500°C</td>
<td>2.507</td>
<td>-0.116</td>
<td>0.003</td>
</tr>
<tr>
<td>550°C</td>
<td>3.301</td>
<td>-0.058</td>
<td>-0.003</td>
</tr>
<tr>
<td>600°C</td>
<td>4.914</td>
<td>-0.134</td>
<td>0.000</td>
</tr>
<tr>
<td>650°C</td>
<td>8.855</td>
<td>-0.466</td>
<td>0.012</td>
</tr>
</tbody>
</table>

WHSV =0.33 NL/min-g\textsubscript{cat}
Once these polynomial constants are determined, the experimental rate were obtained by differentiating these functions with respect to inlet space time.

\[
r_{\text{CH}_4} = \frac{dx_{\text{CH}_4}}{d \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right)} = a_1 + 2a_2 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right) + 3a_3 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right)^2 \tag{3}
\]

\[
r_{\text{CO}_2} = \frac{dx_{\text{CH}_4}}{d \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right)} = b_1 + 2b_2 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right) + 3b_3 \left(\frac{W_{\text{cat}}}{F_{\text{CH}_4,\text{in}}} \right)^2 \tag{4}
\]
Figure 9.10: Dependence of maximum initial reaction rates on temperature

9.6 Kinetic Model and mechanism of methane steam reforming:

An attempt was made to fit the experimental data with the models proposed in literature for Ni, Rh and Ru catalysts. The list of models is presented in Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xu & Froment2 Ni catalyst</td>
<td>$Rate = \frac{k P_{CH_4} P_{H_2}^{2.5}}{P_{H_2} \left(1 + K_{CO} P_{CO} + K_{H_2} P_{H_2} + K_{H_2O} P_{H_2O} / P_{H_2} + K_{CH_4} P_{CH_4}\right)}$</td>
</tr>
<tr>
<td>Model</td>
<td>Rate</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Halabi³</td>
<td>$rate = \frac{k}{P_{H_2}^{2.5}} \left(P_{CH_4} P_{H_2O} - \frac{P_{H_2}^3 P_{CO}}{K_{eq}} \right) \left(1 + K_{CH_4} P_{CH_4}/P_{H_2} + K_{H_2} P_{H_2} + K_{CO} P_{CO} \right) \left(1 + K_{H_2O} P_{H_2O}/P_{H_2} + K_{H_2} P_{H_2} \right)$</td>
</tr>
<tr>
<td>Hou¹ Ni catalyst</td>
<td>$rate = \frac{k}{P_{H_2}^{1.75}} \left(P_{CH_4} P_{H_2O} - \frac{P_{H_2}^3 P_{CO}}{K_{eq}} \right) \left[1 + K_{H_2O} P_{H_2O}/P_{H_2} + K_{H_2} P_{H_2}^{0.5} + K_{CO} P_{CO} \right]$</td>
</tr>
<tr>
<td>Jakobsen⁴</td>
<td>$rate = \frac{A \exp \left(\frac{-E}{RT} \right) P_{CH_4} (1 - b)}{\left(1 + A_{CO} \exp \left(\frac{-\Delta H_{CO}}{RT} \right) P_{CO} + A_{H} \exp \left(\frac{-\Delta H_{H_2}}{RT} \right) P_{H_2}^{0.5} \right)^2}$</td>
</tr>
<tr>
<td>Wei & Iglesia⁵ Rb catalyst</td>
<td>$rate = k P_{CH_4}$</td>
</tr>
<tr>
<td>Berman⁶ Ru catalyst</td>
<td>$rate = \frac{k P_{CH_4}}{b_{CH_4} P_{CH_4} + b_{H_2O} P_{H_2O}^{0.5}}$</td>
</tr>
<tr>
<td>Power Law⁷ Ni catalyst</td>
<td>$rate = k P_{CH_4}^{n} P_{H_2O}^{m}$</td>
</tr>
</tbody>
</table>

The parameter estimation and model discrimination was based on minimizing sum of squares (SSQ) of the outlet methane conversion by using following equation

$$SSQ = \sum_{i=1}^{n} (X_{calculated} - X_{measured})^2$$ (I)

The accuracy of parameter estimate is determined by its t-value and 95% confidence interval.

The discrimination between the models is conducted based on the physical consideration of parameter estimate. If the model results in negative values...
which should be positive the model was rejected. Additionally the goodness of fit was estimated by the parity diagram.

Based on the above criteria, only Berman’s models fit the experimental data as shown by the parity diagram in Figure 9.11

![Parity Diagram](image)

Figure 9.11: Parity diagram for Berman’s model fit

The activation energy value calculated for Rh/CeO$_2$ from our experimental data is 38.6 kJ/mol. This value is very low compared to other activation energies on supported Rh catalyst. Wei & Iglesia5 found steam reforming activation energy of 109 kJ/mol on Rh/Al$_2$O$_3$ surface while Halabi et al.3 reported an activation energy of 83.8 kJ/mol on Rh/Ce$_{0.6}$Zr$_{0.4}$O$_2$ catalyst. Jakobsen et al.4 reported an activation energy of 89 kJ/mol on Rh/ZrO$_2$ catalyst and Zeppieri et al.8 evaluated an activation energy of 69.1 kJ/mol on Rh-perovskite catalyst.

For pure Rh metal, a methane activation energy of 29 kJ/mol and 46.4 kJ/mol on Rh films8 for dissociative adsorption of CH$_4$ has been reported. Liu et al.9 by using density functional theory (DFT) calculated the activation energy of CH$_4$ dissociation reaction on Rh and reported C-H activation energy of 67, 32 and 20 kJ/mol on flat, stepped and kinked Rh surface respectively. The theoretical estimates are in
good agreement with the activation energy of 38.6 kJ/mol found in this work for Rh/CeO₂ catalyst.

9.7 References:

Chapter 10 Conclusion

The Rh catalysts on the MgO, the niobic acid and the niobia supports were tested towards MSR reaction at S/C 4 with the WSV of 0.33NL min$^{-1}\cdot$g$^{-1}$cat and low temperature range of 400-750°C. Among the five catalysts prepared, only MgO supported Rh achieved full methane conversion, while the other four catalysts although active towards MSR could only reach a maximum of 88% methane conversion. However further investigations regarding endurance and S/C variation of these catalysts can ensure the stability of the catalysts.

The Ru catalysts on MgO, niobic acid and niobia supports were tested towards the MSR reaction between 400 and 750 °C, with steam-to-carbon equal to 4 and weight space velocity equal to 0.33NL min$^{-1}\cdot$g$^{-1}$cat. Among ten different catalysts prepared, at 700-750°C only six of them achieved full CH$_4$ conversion, while the other catalysts reached only a maximum of 80% CH$_4$ conversion. The best catalysts were slightly more active at 700°C than at 750°C. The morphological and surface characteristics suggest that catalysts with amorphous structure and Ru/support atomic surface ratio less than 1 were more selective towards CO$_2$ compared to catalysts with crystalline structure.

Finally for Part I different noble metals (Rh, Ru and Pt) deposited on two different oxide carriers (CeO$_2$ and Al$_2$O$_3$) were synthesized, characterized and tested towards MSR and methane oxidative steam reforming reactions. All of the catalysts showed complete methane conversion, for both reactions, at different minimum temperatures. A comparative analysis pointed out the 1.5% Rh/CeO$_2$ as the best catalyst for methane SR reaction as it gave very good catalytic activity at the lower reaction temperature: complete methane conversion at 635 °C, with carbon dioxide selectivity of 87.5% and outlet hydrogen concentration of 74.4% (volume dry reformate). Also the 1.5% Ru/Al$_2$O$_3$ showed good performance for OSR reaction, but at higher temperature, and with slightly lower CO$_2$ selectivity and hydrogen outlet concentration.
The 1.5% Rh/CeO$_2$ catalyst for methane SR reaction provided desirable results at relatively low temperature for generating a hydrogen-rich gas with low content of carbon monoxide. This would be very appropriate in case of fuel processors where it is necessary to minimize as much as possible the residual carbon monoxide concentration, for feeding PEM-FCs, as the following CO clean-up process can be reduced in size and volume.

From **Part I** the best catalysts found to be active for MSR were tested towards the stability under cyclic conditions and continuous operation in **Part II**.

The SCS prepared Pt/CeO$_2$ performance and ageing was analyzed for MSR reaction in low temperature range 400-750°C. The obtained result showed that the catalyst is more active at low WHSV (0.33NI min$^{-1}$-g$_{cat}^{-1}$) and performs better at low S/C ratio (2.8) as it produces 76% H$_2$ with 61% CO$_2$ selectivity in dry outlet gas stream with 99% methane conversion at 700°C. Stability test carried out at 700°C for 150h ensures high catalytic activity and stability under cyclic conditions, and is mainly attributed to strong metal support interaction generated through formation of solid solution during solution combustion synthesis. Also the structure of the catalyst is responsible for resistance to sintering and coking as shown by the characterization of used catalyst.

The Rh/CeO$_2$ catalyst performance and ageing was analyzed for MSR reaction in low temperature range 400-750°C. Stability test carried out at 750°C for 100h ensures high catalytic activity and stability and is mainly attributed to strong metal support interaction generated within the catalyst. Also the structure of the catalyst is responsible for resistance to sintering and coking as shown by the characterization of used catalyst.

From **Part II** the best catalysts found to be stable under cyclic conditions and continuous operation was tested to determine the intrinsic kinetics for MSR in **Part III**. The intrinsic kinetics of Rh/CeO$_2$ catalyst was evaluated between 400°C-650°C in integral mode reactor at 1 atm pressure. The data obtained from Rh/CeO$_2$ catalyst followed Berman Model and resulted in activation energy of 38.6 kJ/mol.
List of Publications:

Chapter 6 was presented at 3rd North American Symposium on Chemical Reaction Engineering (NASCRE-3), Houston (TX), USA, 17-20/03/2013 and published as: A Comparative Study on Steam and Oxidative Steam Reforming of Methane with Noble Metal Catalyts” was published in ACS journal INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 52 n. 44, pp. 15428-15436. - ISSN 0888-5885

Chapter 5 has been presented at International Symposium on Air & Water Pollution Abatement Catalysis - AWPAC2014, Krakow (Poland), 1-5/09/2014. p. 59 and submitted as “MgO and Nb2O5 oxides used as supports for Ru-based catalysts for the methane steam reforming reaction” to the peer reviewed journal Catalysis Today with the manuscript number CATTOD-S-14-00969-1

The manuscript for **Chapter 3, Chapter 7, Chapter 8 and Chapter 9** are in preparation and will be submitted to peer reviewed journals in the next future
Appendices
Mass Balance:

To convert the dry outlet concentration to wet concentration the mass balance was applied to evaluate the water concentration and partial pressures of the components based on wet concentration.

\[\text{Total Flow} = F_T = 100\text{ml} \]

\[\text{Methane flow} = F_{CH_4} = x_{CH_4} \times F_T = 0.25 \times 100 = 25\text{ml} \]

\[
\frac{25\text{ml}}{\text{min}} \times \frac{\text{mmol}}{22.4 \text{ml}} \times \frac{1 \text{ mol}}{1000 \text{mmol}} \times \frac{1 \text{ kmol}}{1000 \text{mol}} \times \frac{1 \text{min}}{60\text{s}} = 1.86 \times 10^{-8} \text{kmol/s}
\]

As S/C=3 so,

\[\text{Steam flow} = F_{H_2O,in} = 3 \times F_{CH_4} = 3 \times 1.86 \times 10^{-8} = 5.58 \times 10^{-8} \text{ kmol} \]

\[F_{T,in} = F_{CH_4,in} + F_{H_2O,in} = 1.86 \times 10^{-8} + 5.58 \times 10^{-8} = 7.44 \times 10^{-8} \text{kmol} \]

Based on the carbon balance the total outlet flow is;

\[F_{T,out} = \frac{F_{CH_4,in}}{x_{CH_4,out} + x_{CO_2} + x_{CO}} \]

\[F_{T,out} = \frac{1.86 \times 10^{-8} \times 100}{(82.5 + 2.89 + 0.18)} = 2.17 \times 10^{-8} \text{ kmol} \]

So corresponding outlet moles are;
Based on overall mass balance;

\[F_{\text{H}_2\text{O, out}} = F_{\text{T, in}} - F_{\text{T, out}} = 7.44 \times 10^{-8} - 2.17 \times 10^{-8} = 5.27 \times 10^{-8} \text{kmol} \]

So overall outlet flow is;

\[F'_{\text{T, out}} = F_{\text{T, in}} = F_{\text{T, out}} + F_{\text{H}_2\text{O, out}} = 7.44 \times 10^{-8} + 5.27 \times 10^{-8} = 2.17 \times 10^{-8} \text{kmol} \]

To convert to partial pressure following equation was used,

\[P_{\text{CH}_4}^* = \frac{F_{\text{CH}_4,\text{out}}}{F'_{\text{T, out}}} \times P_T = \frac{1.79 \times 10^{-8} \text{kmol} \times 1 \text{ atm}}{2.17 \times 10^{-8} \text{ kmol}} = 0.239 \text{ atm} \]

\[P_{\text{CO}_2}^* = \frac{F_{\text{CO}_2,\text{out}}}{F'_{\text{T, out}}} \times P_T = \frac{0.019 \text{ mol} \times 1 \text{ atm}}{2.24 \text{ mol}} = 0.0085 \text{ atm} \]

\[P_{\text{H}_2}^* = \frac{F_{\text{H}_2,\text{out}}}{F'_{\text{T, out}}} \times P_T = \frac{0.094 \text{ mol} \times 1 \text{ atm}}{2.24 \text{ mol}} = 0.042 \text{ atm} \]

\[P_{\text{CO}}^* = \frac{F_{\text{CO, out}}}{F'_{\text{T, out}}} \times P_T = \frac{0.0012 \text{ mol} \times 1 \text{ atm}}{2.24 \text{ mol}} = 0.00054 \text{ atm} \]

\[P_{\text{H}_2\text{O, out}}^* = \frac{F_{\text{H}_2\text{O, out}}}{F'_{\text{T, out}}} \times P_T = \frac{1.59 \text{ mol} \times 1 \text{ atm}}{2.24 \text{ mol}} = 0.71 \text{ atm} \]
Average Molecular weight of the gas mixture;

\[M_{avg} = \sum_{i=1}^{5} y_i M_i \]

\[M_{avg} = y_{CH_4} M_{CH_4} + y_{CO_2} M_{CO_2} + y_{H_2} M_{H_2} + y_{CO} M_{CO} + y_{H_2O} M_{H_2O} \]

Where;

\[y_{CH_4} = \frac{P_{CH_4}^*}{P_T}, \quad y_{CO_2} = \frac{P_{CO_2}^*}{P_T}, \quad y_{H_2} = \frac{P_{H_2}^*}{P_T}, \quad y_{CO} = \frac{P_{CO}^*}{P_T}, \quad y_{H_2O} = \frac{P_{H_2O, out}^*}{P_T} \]

So,

\[M_{avg} = (0.239 \times 16) + (0.0085 \times 44) + (0.042 \times 2) + (0.00054 \times 28) + (0.71 \times 18) \]

\[M_{avg} = 17.083 \text{kg/kmol} \]

So, at 400°C the fluid density is;

\[\rho_f = \frac{M_{avg} \times 273}{22.4 \times T} \]

\[\rho_f = \frac{17.083}{22.4} \times \frac{273}{(400 + 273)} \]

\[\rho_f = 0.3093 \text{kg/m}^3 \]

To calculate the fluid mixture viscosity Wilke equation (1950) was used

\[\mu_m = \frac{\sum y_i M_i^{1/2}}{\sum y_i M_i^{1/2}} \]

At 400°C,

\[\mu_{CH_4} = 2.119 \times 10^{-5} \text{kgm}^{-1}\text{s}^{-1} \]

\[\mu_{CO_2} = 3.061 \times 10^{-5} \text{kgm}^{-1}\text{s}^{-1} \]

\[\mu_{H_2} = 1.57 \times 10^{-5} \text{kgm}^{-1}\text{s}^{-1} \]
\[
\mu_{CO} = 3.111 \times 10^{-5} kg m^{-1} s^{-1}
\]
\[
\mu_{H_2O} = 2.446 \times 10^{-5} kg m^{-1} s^{-1}
\]

<table>
<thead>
<tr>
<th>Component</th>
<th>(y_i)</th>
<th>(M_i)</th>
<th>(\mu_i)</th>
<th>(y_iM_i^{1/2})</th>
<th>(\mu_iy_iM_i^{1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_4)</td>
<td>0.239</td>
<td>16</td>
<td>2.119 \times 10^{-5}</td>
<td>0.944</td>
<td>2 \times 10^{-5}</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>0.0082</td>
<td>44</td>
<td>3.061 \times 10^{-5}</td>
<td>0.054</td>
<td>1.65 \times 10^{-6}</td>
</tr>
<tr>
<td>H(_2)</td>
<td>0.041</td>
<td>2</td>
<td>1.57 \times 10^{-5}</td>
<td>0.058</td>
<td>9.106 \times 10^{-7}</td>
</tr>
<tr>
<td>CO</td>
<td>0.0005</td>
<td>28</td>
<td>3.111 \times 10^{-5}</td>
<td>0.0026</td>
<td>8.08 \times 10^{-8}</td>
</tr>
<tr>
<td>H(_2O)</td>
<td>0.71</td>
<td>18</td>
<td>2.446 \times 10^{-5}</td>
<td>3.025</td>
<td>7.4 \times 10^{-5}</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td></td>
<td></td>
<td>4.0836</td>
<td>9.66 \times 10^{-5}</td>
<td></td>
</tr>
</tbody>
</table>

So,

Viscosity of gas mixture is;

\[
\mu_{mix} = \frac{\sum \mu_i y_i M_i^{1/2}}{\sum y_i M_i^{1/2}} = \frac{9.66 \times 10^{-5}}{4.0836} = 2.366 \times 10^{-5} kg m^{-1} s^{-1}
\]

Mass Transfer Limitation:

To calculate diffusion, Fuller equation (1966) was used;

\[
D_{ij} = \frac{10^{-3} T^{1.75} \left(\frac{1}{M_i} - \frac{1}{M_j} \right)^{1/2}}{P_T \left(\sum \nu_i^{1/3} + \sum \nu_j^{1/3} \right)^2}
\]

Where;

\(\nu_{ij} = \text{diffusion volumes of gas components}\)

And

\(\nu_{CH_4} = 24.42, \quad \nu_{H_2} = 7.07, \quad \nu_{CO_2} = 18.9, \quad \nu_{CO_2} = 26.9, \quad \nu_{H_2O} = 12.7\)

As CH\(_4\) is the limiting reactant, the binary diffusivity \(D_{ij}\) was calculated of all the components with respect to CH\(_4\), so,
Based on the binary diffusion calculation the mixture diffusion is given by Fairbans & Wilke equation (1950) as;

\[
D_{CH_4-H_2} = \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{M_{CH_4}} + \frac{1}{M_{H_2}} \right)^{1/2}}{P_T \left(V_{CH_4}^{1/3} + V_{H_2}^{1/3} \right)^2}\\
= \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{16} + \frac{1}{2} \right)^{1/2}}{1 \times (24.42^{1/3} + 7.07^{1/3})^2} = 2.87 \text{ cm}^2 \text{s}^{-1}
\]

\[
D_{CH_4-CO_2} = \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{M_{CH_4}} + \frac{1}{M_{CO_2}} \right)^{1/2}}{P_T \left(V_{CH_4}^{1/3} + V_{CO_2}^{1/3} \right)^2}\\
= \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{16} + \frac{1}{44} \right)^{1/2}}{1 \times (24.42^{1/3} + 26.9^{1/3})^2} = 0.743 \text{ cm}^2 \text{s}^{-1}
\]

\[
D_{CH_4-H_2O} = \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{M_{CH_4}} + \frac{1}{M_{H_2O}} \right)^{1/2}}{P_T \left(V_{CH_4}^{1/3} + V_{H_2O}^{1/3} \right)^2}\\
= \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{16} + \frac{1}{44} \right)^{1/2}}{1 \times (24.42^{1/3} + 12.7^{1/3})^2} = 1.11 \text{ cm}^2 \text{s}^{-1}
\]

\[
D_{CH_4-CO} = \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{M_{CH_4}} + \frac{1}{M_{CO}} \right)^{1/2}}{P_T \left(V_{CH_4}^{1/3} + V_{CO}^{1/3} \right)^2}\\
= \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{16} + \frac{1}{28} \right)^{1/2}}{1 \times (24.42^{1/3} + 18.9^{1/3})^2} = 0.903 \text{ cm}^2 \text{s}^{-1}
\]

\[
D_{CH_4-CH_4} = \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{M_{CH_4}} + \frac{1}{M_{CH_4}} \right)^{1/2}}{P_T \left(V_{CH_4}^{1/3} + V_{CH_4}^{1/3} \right)^2}\\
= \frac{10^{-3} (400 + 273)^{1.75} \left(\frac{1}{16} + \frac{1}{16} \right)^{1/2}}{1 \times (24.42^{1/3} + 24.42^{1/3})^2} = 0.925 \text{ cm}^2 \text{s}^{-1}
\]
The effective diffusivity is calculated from the relation in Fogler as;

\[
D_{\text{CH}_4\text{-mix}} = \frac{1 - y_{\text{CH}_4}}{\sum_{j \neq 1} \frac{y_j}{D_{ij}}}
\]

\[
D_{\text{CH}_4\text{-mix}} = \frac{1 - y_{\text{CH}_4}}{D_{\text{CH}_4\text{-CO}_2} + D_{\text{CH}_4\text{-CO}} + D_{\text{CH}_4\text{-H}_2} + D_{\text{CH}_4\text{-H}_2O}}
\]

\[
= \frac{1 - 0.239}{0.0082 + 0.0005 + 0.041 + 0.71 + \frac{(100)^2}{(100)^2}} = 1.144 \times 10^{-4} \text{m}^2 \text{s}^{-1}
\]

The effective diffusivity is calculated from the relation in Fogler as;

\[
D_{\text{A,eff}} = \frac{D_{\text{CH}_4\text{-mix}} \phi_p \sigma_c}{\tau}
\]

Where;

\[
\phi_p = \text{Pellet porosity} = 0.40
\]

\[
\sigma_c = 0.8
\]

\[
\tau = \text{Tortosity} = 3.0
\]

So effective diffusivity is;

\[
D_{\text{CH}_4\text{,eff}} = \frac{1.144 \times 10^{-4} \times 0.4 \times 0.8}{3} = 1.22 \times 10^{-5} \text{m}^2 \text{s}^{-1}
\]

The Schmidt number calculated on the basis of effective diffusivity is;

\[
N_{Sc} = \frac{\mu_{\text{mix}}}{\rho_f D_{\text{CH}_4\text{,eff}}} = \frac{2.366 \times 10^{-5}}{0.309 \times 1.22 \times 10^{-5}} = 6.24
\]

And the Reynolds number is;

\[
N_{Re} = \frac{d_p \rho_f \nu_s}{\mu_{\text{mix}}}
\]

Where;

\[
d_p = \text{Particle diameter} = 0.15 \text{mm} = 0.15 \times 10^{-3} \text{m}
\]
\[v_s = \text{superfacial velocity} = \frac{F_T}{A} \]

\[F_T = \frac{100 \text{ml}}{\text{min}} \times \frac{1 \text{min}}{60 \text{s}} \times \frac{1 \text{L}}{1000 \text{ml}} \times \frac{1 \text{m}^3}{1000 \text{L}} = 1.66 \times 10^{-6} \text{ms}^{-1} \]

\[A = \frac{\pi d^2}{4} = \frac{\pi}{4} \times \left(4 \text{mm} \times \frac{1 \text{m}}{1000 \text{mm}}\right)^2 = 1.25 \times 10^{-5} \text{m}^2 \]

So,

\[v_s = \frac{F_T}{A} = \frac{1.66 \times 10^{-6}}{1.25 \times 10^{-5}} = 0.1328 \text{ms}^{-1} \]

So, the Reynolds number is,

\[N_{Re} = \frac{0.15 \times 10^{-3} \times 0.309 \times 0.1328}{2.366 \times 10^{-5}} = 0.26 \]

Sherwood number is calculated using the Froessling relation;

\[N_{Sh} = 2 + 0.552 N_{Re}^{1/2} N_{Sc}^{1/3} = 2 + 0.552(0.26)^{1/2}(6.24)^{1/3} = 2.52 \]

Putting the values in following equation;

\[N_{Sh} = \frac{k_G d_p}{D_{eff}} \]

\[2.52 = \frac{k_G \times 0.15 \times 10^{-3}}{1.22 \times 10^{-5}} \Rightarrow k_G = \frac{2.52 \times 1.22 \times 10^{-5}}{0.15 \times 10^{-3}} = 0.205 \text{ m/s} \]

External Mass Transfer Limitation:

Carberry Number;

\[N_{Ca} = \frac{R^\text{obs}_A}{k_G a_v c_{Ab}} = \frac{C_{Ab} - C_{As}}{C_{Ab}} < \frac{0.05}{n} (n > 0) \]

\[R^\text{obs}_A = 3.95 \times 10^{-5} \text{mol s}^{-1} \text{kg}^{-1} = 3.95 \times 10^{-8} \text{kmol s}^{-1} \text{kg}^{-1} \]

\[a_v = 2.05 \text{ m}^2 \text{g}^{-1} \text{cat} = 2.05 \times 10^3 \text{m}^2 \text{kg}^{-1} \text{cat} \]

\[C_{Ab} = \frac{F_{\text{CH}_4}}{F_T} = \frac{1.86 \times 10^{-8} \text{kmol}}{s} \times \frac{s}{1.66 \times 10^{-6} \text{m}^3} = 0.0112 \text{ kmol m}^{-3} \]
So,

\[N_{Ca} = \frac{R_A^{obs}}{k_G a_v C_{Ab}} = \frac{3.95 \times 10^{-8} \text{kmol}}{kg_{cat} s} \times \frac{kg_{cat}}{2.05 \times 10^3 m^2} \times \frac{m^3}{0.0112 \text{kmol}} \times \frac{s}{0.205 m} \]

\[= 8.39 \times 10^{-10} \]

\[N_{Ca} = \frac{C_{Ab} - C_{As}}{C_{Ab}} \Rightarrow 8.39 \times 10^{-10} = \frac{0.0112 - C_{As}}{0.0112} \]

\[C_{As} = 0.0112 - (8.39 \times 10^{-10} \times 0.0112) = \frac{0.01119 \text{kmol}}{m^3} \]

For external mass transfer limitations following criterion must be fulfilled;

\[N_{Ca} < \frac{0.05}{n} \quad (n > 0) \]

Where n=reaction order

From 400°C to 650°C the methane reaction order n = 1

So,

\[N_{Ca} < \frac{0.05}{n} \quad (n > 0) \]

\[8.39 \times 10^{-10} < \frac{0.05}{1} \quad (n > 0) \]

\[8.39 \times 10^{-10} \ll 0.05 \]

So; external mass transfer limitations are OK.

Internal Diffusion Limitation:

Weisz-Prater Criterion:

\[C_{WP} = \frac{R_A^{obs} \rho_c R^2}{D_{A,eff} C_{As}} \]
so no internal diffusion is present.

Heat Transfer Limitation:

\[
C_{WP} = \frac{3.95 \times 10^{-6} \text{kmol}}{kg_{cat} \text{s}} \times \frac{6957 \text{kg}}{m^3} \times \left(\frac{0.15 \times 10^{-3} m}{2}\right)^2 \times \frac{s}{1.22 \times 10^{-5} m^2} \times \frac{m^3}{0.01119 \text{kmol}}
\]

\[
C_{WP} = 5.66 \times 10^{-6} \ll 1
\]

At 400°C,

\[
C_{p,CH_4} = 3836 J kg^{-1}K^{-1}, \quad C_{p,CO_2} = 1156 J kg^{-1}K^{-1},
\]

\[
C_{p,CO} = 1135 J kg^{-1}K^{-1}
\]

\[
C_{p,H_2} = 14653 J kg^{-1}K^{-1}, \quad C_{p,H_2O} = 2137 J kg^{-1}K^{-1},
\]

So,

\[
\sum_{i=1}^{n} y_i C_{p,i} = y_{CH_4} C_{p,CH_4} + y_{CO_2} C_{p,CO_2} + y_{H_2} C_{p,H_2} + y_{CO} C_{p,CO} + y_{H_2O} C_{p,H_2O}
\]

\[
\sum_{i=1}^{n} y_i C_{p,i} = (0.239 \times 3836) + (0.0085 \times 1156) + (0.042 \times 14653)
\]

\[
+ (0.00054 \times 1135) + (0.71 \times 2137) = 3060 J kg^{-1}K^{-1}
\]

\[
C_{p,mix} = \frac{3060 J kg^{-1}K^{-1}}{17.083 kg kmol^{-1}}
\]

At 400°C,

\[
\lambda_{CH_4} = 0.11933 W m^{-1}K^{-1}
\]

\[
\lambda_{CO_2} = 0.05293 W m^{-1}K^{-1}
\]
\[\lambda_{H_2} = 0.3509 \text{ Wm}^{-1}\text{K}^{-1} \]
\[\lambda_{CO} = 0.05412 \text{ Wm}^{-1}\text{K}^{-1} \]
\[\lambda_{H_2O} = 0.06677 \text{ Wm}^{-1}\text{K}^{-1} \]

<table>
<thead>
<tr>
<th>Component</th>
<th>(y_i)</th>
<th>(M_i)</th>
<th>(\lambda_i)</th>
<th>(y_i M_i^{1/3})</th>
<th>(\lambda_i y_i M_i^{1/3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH\text{\textsubscript{4}}</td>
<td>0.239</td>
<td>16</td>
<td>0.11933</td>
<td>0.602</td>
<td>0.072</td>
</tr>
<tr>
<td>CO\text{\textsubscript{2}}</td>
<td>0.0082</td>
<td>44</td>
<td>0.05293</td>
<td>0.029</td>
<td>0.002</td>
</tr>
<tr>
<td>H\text{\textsubscript{2}}</td>
<td>0.041</td>
<td>2</td>
<td>0.3509</td>
<td>0.052</td>
<td>0.018</td>
</tr>
<tr>
<td>CO</td>
<td>0.0005</td>
<td>28</td>
<td>0.05412</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>H\text{\textsubscript{2}O}</td>
<td>0.71</td>
<td>18</td>
<td>0.06677</td>
<td>1.861</td>
<td>0.124</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td></td>
<td></td>
<td>2.545</td>
<td></td>
<td>0.216</td>
</tr>
</tbody>
</table>

So,

Thermal conductivity of gas mixture is;

\[
\lambda_{mix} = \frac{\sum \lambda_i y_i M_i^{1/3}}{\sum y_i M_i^{1/3}} = \frac{0.216}{2.545} = 0.085 \text{ Wm}^{-1}\text{K}^{-1}
\]

So, Prandtl Number is;

\[
N_{Pr} = \frac{\mu_{mix} c_{p, mix}}{\lambda_{mix}} = \frac{2.366 \times 10^{-5} \text{kg} \text{m} \text{s}^{-1}}{\text{m} \text{s}^{-1}} \times \frac{3060 \text{J}}{\text{kg} \text{K}^{-1}} \times \frac{\text{m} \text{K}}{0.085 \text{W}} = 0.852
\]

\[
N_{Nu} = 2 + 1.1 N_{Re}^{0.6} N_{Pr}^{1/3}
\]

\[
N_{Nu} = 2 + 1.1 (0.26)^{0.6} (0.852)^{1/3} = 2.464
\]

\[
N_{Nu} = \frac{h_p d_p}{\lambda_{mix}} \implies 2.464 = \frac{h_p \times 0.15 \times 10^{-3}}{0.085} \implies h_p = \frac{2.464 \times 0.085}{0.15 \times 10^{-3}} = 1396 \text{ Wm}^2\text{K}^{-1}
\]

\[
\frac{\Delta H_{rxn} \rho_A^{abs} \rho_{cat} d_p E}{h_p T^2 R} < 0.3
\]
\[
\frac{\Delta H_{\text{rxn}} R_A^{\text{obs}} \rho_{\text{cat}} d_p E}{T^2 R} = \frac{206.2 \times 3.95 \times 10^{-8} \times 6957 \times 0.15 \times 10^{-3} \times 100}{673^2 \times 8.314} = 2.25 \times 10^{-10}
\]

\[
\frac{\Delta H_{\text{rxn}} R_A^{\text{obs}} \rho_{\text{cat}} d_p E}{h_p T^2 R} = \frac{2.25 \times 10^{-10}}{1396} = 1.6 \times 10^{-13} \ll 0.3
\]

So external heat transfer not present

\[\lambda_p = 18 \text{ W/m-K for Rh-Ce catalyst}\]

\[
\frac{\Delta H_{\text{rxn}} R_A^{\text{obs}} \rho_{\text{cat}} d_p E}{\lambda_p T^2 R} = \frac{2.25 \times 10^{-10}}{18} = 1.25 \times 10^{-11} \ll 3.0
\]

So internal heat transfer not present