
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Model based analysis of precursors of electromechanical servomechanisms failures using an artificial neural network /
Battipede, Manuela; DALLA VEDOVA, MATTEO DAVIDE LORENZO; Maggiore, Paolo; Romeo, Simone. - (2015).
(Intervento presentato al  convegno AIAA Modeling and Simulation Technologies Conference tenutosi a Kissimmee,
Florida nel 2015) [10.2514/6.2015-2035].

Original

Model based analysis of precursors of electromechanical servomechanisms failures using an artificial
neural network

Publisher:

Published
DOI:10.2514/6.2015-2035

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2588180 since: 2020-12-14T18:47:00Z

AIAA



 

American Institute of Aeronautics and Astronautics 
 

 

1 

Model based analysis of precursors of electromechanical 

servomechanisms failures using an artificial neural network 

Manuela Battipede1, Matteo D. L. Dalla Vedova2, Paolo Maggiore3 and Simone Romeo4 

Politecnico di Torino, Turin, Italy, 10129 

Several approaches can be employed in prognostics, to detect incipient failures of 

primary flight command electromechanical actuators (EMA), caused by progressive wear. 

The development of a prognostic algorithm capable of identifying the precursors of an 

electromechanical actuator failure is beneficial for the anticipation of the incoming failure: a 

correct interpretation of the failure degradation pattern, in fact, can trig an early alert of the 

maintenance crew, who can properly schedule the servomechanism replacement. Prognostic, 

though, is strictly technology-oriented as it is based on accurate analysis of the cause and 

effect relationships. As a consequence, it is possible that prognostics algorithms that 

demonstrate great efficacy for certain applications (electrohydraulic actuators, for 

examples) fail in other circumstances, just because the actuator is based on a different 

technology. The research presented in this paper proposes a prognostic technique able to 

identify symptoms of an EMA degradation before the actual exhibition of the anomalous 

behavior; to this purpose friction, backlash, coil short circuit and rotor static eccentricity 

failures are considered. An innovative model-based fault detection neural technique is 

proposed to analyze information gathered through FFT analysis of the components under 

normal stress conditions. A proper simulation test bench was developed: results show that 

the method exhibit adequate robustness and a high degree of confidence in the ability to 

early identify an eventual malfunctioning, minimizing the risk of false alarms or 

unannunciated failures. 

ANN = Artificial Neural Network 

ΔVij = ij-th phases differential voltage 

𝜃̇𝑟M = effective rotor speed 

eij = ij-th phases back-EMF 

EMA = electromechanical actuator 

FFT = Fast Fourier Transform 

kei = i-th back-EMF constants 

Ktr = EMA transmission shaft stiffness 

Ii = actual i-th phase currents 

Iref = reference current 

Iref_i = reference i-th phase current 

Vi = effective i-th phase voltages 

Vij = ij-th phases line-to-line voltage 

θrM , θrU = EMA motor or user position 

TM = BLDC motor torque 

TR = external aerodynamic torques 

Treaz = EMA transmission shaft reaction torque 
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I. Introduction 

ROGNOSTICS purpose is to predict when a certain component loses its functionality and is not further able to 

be fully operative or to meet the desired performances. Such a discipline is based on the analysis and 

comprehension of all the possible failure modes and on the capability of individuating the first symptoms of aging or 

wear. Once properly gathered and organized, such a database can be effectively used as an input of a proper failure 

propagation model. As for the other technological domains, applying prognostics to aeronautics could have a 

beneficial impact on the maintenance aspect, as it could reduce both costs and inspection time. The goal of this 

discipline, named Prognostics and Health Management (PHM), is to provide real-time data of the current status of 

the system and to calculate the Remaining Useful Life (RUL) before a fault occurs with the consequence that a 

component becomes unable to perform its functionalities at the desired level. The advantage of implementing PHM 

clearly emerges from the comparison with classical monitoring and maintenance concepts, based on overhaul or life-

limited parts. The primary flight controls, for example, are a critical part of the aircraft system and are therefore 

designed with a conservative safe-life approach, which imposes to replace the related components after having 

endured a fixed amount of flight hours or operating cycles. Obviously, when applying this approach, the effective 

status of the components is not assessed and maintenance is limited to the specific scheduled operation. In particular, 

the safe-life design criterion lacks of the possibility of evaluating initial flaws, which might derive from the 

manufacturing process and could degenerate in a sudden fault that compromises the aircraft safety. In fact, the 

progressive degradation of a system component, which initially does not create an unacceptable behavior, often 

leads to a condition in which the efficiency of such component is impaired, with the consequence that the actuator 

functionality is compromised. The safe-life criterion, moreover, does not allow the individuation of the 

malfunctioning cause and location, whereas an accurate identification of which specific subcomponent has failed 

could be effective in reducing maintenance inefficiencies and costs, as the replacement of the single subcomponent, 

instead of the whole system, could be sufficient to restore the system functionality. By applying PHM strategies, 

failures could be managed in a more effective way, with the following benefits: 

1) operating costs are diminished; 

2) less maintenance interventions are required; 

3) the amount of necessary redundancies is reduced; 

4) aircraft safety and reliability are improved; 

5) logistic is simplified, as maintenance actions can be planned appropriately with the immediate outcome that 

downtime and related costs are limited and the management of spare parts warehouses is more effective. 

It must be noticed that the prognostic concepts, because of the variety of applications and the huge impact that 

they generate, have aroused great interest in the scientific and technological world and, especially in recent years, 

have been the subject of extensive development and dissemination in the scientific literature. Very often these 

contributions, despite being extremely innovative and significant, result too theoretical or specific and tend to 

overlook a more comprehensive approach (i.e. systemistic vision), dwelling on well-defined and circumscribed 

aspects of the considered problem. 

In this paper the authors propose a more systemistic and multidisciplinary approach, in which the different 

aspects of the considered problem, concerning the electrical and mechanical characteristics of the actuator and its 

relevant failure modes, have been analyzed and modelled together in the same multi-domain numerical model. In 

particular, the research presented in the paper is focused on a fault detection/evaluation technique able to identify the 

failure precursors and evaluate the corresponding damage entity. To this purpose, a relatively accurate numerical 

model of the actuation system and its failure modes have been implemented, in the MATLAB Simulink® simulation 

environment, to analyze the EMA performance and the effects of different progressive faults. Several sets of 

simulations have been performed, encompassing nominal conditions and various failure modes. The numerical 

analysis of the Fast Fourier Transform of the closed loop signals have been used to single out the proper precursors 

of specific faults that can be effectively detected/evaluated by an innovative neural prognostic algorithm.  

To assess the actual ability of the algorithms to correctly sort out the failure precursors, an appropriate simulation 

test bench has been developed, based on the injection of an irregular degradation pattern into the flight control 

system. Results show that the method exhibits adequate robustness and a high degree of confidence in the ability to 

early identify an eventual malfunctioning, minimizing the risk of false alarms or unannunciated failures. 

To ensure the feasibility of the application on the proposed prognostic method on aircraft in the civil aviation 

category, real-time inflight analysis is not implemented: this technique specifically refers only to preflight/postflight 

or ordinary maintenance procedures, when the data can be analyzed by an external computer without affecting the 

normal inflight operations. These algorithms can be easily integrated in an automatic system check process, which 

can be performed by the maintenance staff. 
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Figure 1. EMA scheme. 

The built-in test can be executed without the component disassembly and requires a simple postprocessing and 

analysis of the downloaded data. Moreover, in order to avoid the introduction of new sensors or additional 

components, the proposed algorithms use only information gathered from transducers that already equip the 

considered system or that are derived from virtual sensors which post-process the actual raw measurements.  

II. Primary Flight Control EMAs 

Primary flight controls are typically proportional servomechanisms with continuous activation: they must return 

a force feedback related to command intensity and a high frequency response. Since their loss is a critical issue, their 

reliability must be very high. Their purpose is to control the dynamic of the aircraft by generating, by means of the 

rotation of the corresponding aerodynamic surfaces, unbalanced forces/couples acting on the aircraft itself. These 

controls are usually conceived to obtain the aircraft rotation around one of the three body axis when one control 

surface is activated, possibly minimizing the coupling effects. Depending on the actuation mode of the primary 

control surfaces, a flight control system can be classified as reversible or irreversible. The first type of system 

provides a direct mechanical linkage connection between the flight control surface and the control lever. The pilot 

must compensate the hinge moment generating an adequate force: hinge moment is mainly related to primary 

surface sizes, to their deflection in airstream, to aircraft speed and it could be lowered by using proper aerodynamic 

compensation. Vice versa, irreversible flight control systems do not require a pilot's action to compensate the hinge 

moment and utilize command lines that can be mechanical, electrical (fly-by-wire) or optical (fly-by-light). Until a 

few years ago, the actuators mainly used in aeronautical applications were generally hydraulic and precisely 

hydromechanical or, more recently, electrohydraulic. This kind of actuator, because of its great accuracy, high 

specific power and very high reliability, is often equipped on current aircrafts, even if on more modern airliners 

electro-hydrostatic actuators (EHA) or electro-mechanical actuators (EMA) are installed. In EHA, highly-

pressurized hydraulic fluid is maintained only near the actuator, whereas otherwise the hydraulic line is replaced by 

an electric signal, which allows a consistent weight reduction. In this case, the actuator usually consists of an 

electrical motor that converts electrical power into mechanical power, which is then transformed into hydraulic 

power by means of an axial piston pump. Finally, a linear or a rotary actuator can be employed, depending on the 

architecture. Even if the EHAs provides attractive benefits and represents an interesting alternative to traditional 

hydraulic controls, in the last years the trend towards the all-electric aircrafts brought to an extensive application of 

novel optimized electrical actuators, such as the electromechanical ones (EMA). To justify the fervent scientific 

activity in this field and the great interest shown by the aeronautical world, it must be noticed that, compared to the 

electrohydraulic actuations, the EMAs offer many advantages: overall weight is reduced, maintenance is simplified 

and hydraulic fluids, which is often contaminant, flammable or polluting, can be elimination. For these reasons, the 

use of actuation systems based on EMAs is increasing in various fields of aerospace technology. In the framework 

of the COVADIS project, an EMA has been developed and produced by Sagem and flew for the first time in January 

2011, as the primary flight control for the aileron on an Airbus A320 commercial jet. EMAs have also become 

attractive candidates to replace hydraulic actuators for Thrust Vector Control (TVC) of launchers, thanks to an easier 

implementation and lower maintenance requirements. The TVC is a subsystem which controls the direction of 

gimballed nozzles of rocket engines, following the request/command from the launcher trajectory and attitude 

control system. In that case EMAs are currently under ESA development for the VEGA launcher and studied in the 

framework of the Future Launchers Preparatory Programme for Next Generation Launchers (NGL). 

Finally, Air Force Research 

Laboratory, AFRL/RQQM 

Mechanical & Thermal Systems 

Branch, has launched a program 

to develop a robust, thin-wing 

primary flight actuator, capable 

of achieving a high-duty cycle 

application (e.g. aileron) while 

fitting within the volume 

constraints, which is mandatory 

in future thin-wing aircraft 

design. 

As shown in Fig.1, a typical 

electromechanical actuator used 

in a primary flight control is composed by: 
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1) an actuator control electronics (ACE) that closes the feedback loop, by comparing the commanded position 

(FBW) with the actual one, elaborates the corrective actions and generates the reference current Iref; 

2) a Power Drive Electronics (PDE) that regulates the three-phase electrical power; 

3) an electrical motor, often BLDC type; 

4) a gear reducer having the function to decrease the motor angular speed (RPM) and increase its torque to 

desired values*; 

5) a system that transforms rotary motion into linear motion: ball screws or roller screws are usually preferred 

to acme screws because, having a higher efficiency, they can perform the conversion with lower friction; 

6) a network of sensors used to close the feedback rings (current, angular speed and position) that control the 

whole actuation system (reported in Fig. 1, as RVDT). 

III. Proposed Actuation System Numerical Model 

As previously mentioned, the primary goal of this research is to propose a technique to identify precocious 

symptoms of an EMA degradation. In order to assess feasibility performance and robustness of the aforesaid 

technique, a suitable simulation test environment has 

been developed in the MATLAB/Simulink® 

environment. The proposed scheme, reported in Fig.2, is 

consistent with the EMA architecture shown in Fig.1. 

As shown in Fig. 2, the EMA is composed by six 

different subsystems: 

1) an input block that generates the different 

position commands (block Com); 

2) a subsystem simulating the actuator control 

electronics, that closes the feedback loops and 

generates in output the reference current Iref 

(block ACE); 

3) a subsystem simulating the power drive 

electronics and the trapezoidal BLDC 

electromagnetic model, that evaluates the torque 

developed by the electrical motor as a function 

of the voltages generated by the three-phase 

electrical power regulator (block BLDC EM 

Model); 

4) a subsystem simulating the EMA mechanical 

behavior by means of a 2 degree-of-freedom 

dynamic system (block EMA Dynamic Model); 

5) another input block simulating the aerodynamic 

torques acting on the moving surface controlled 

by the actuator (block TR); 

6) a block simulating the monitoring system (block 

Monitor). 

The numerical model includes the effects of the 

analogic to digital conversion of the feedback signals, the 

electrical noise acting on the signal lines and the 

electrical offset of the position transducers. 

Fig.3 shows the brushless DC motor electromagnetic 

model (block BLDC EM Model): it is composed by three 

blocks representing the reference current generator, the 

three-phase PWM inverter system and the BLDC motor 

electromagnetic model.1,2 

The trapezoidal back-EMF and the electrical current 

waveforms of the three-phase BLDC motor, evolving as a 

function of the rotor position θrM, are shown in Fig.4. 

                                                           
*  The RPM or torque variations are obviously related to the gear ratio of the mechanical reducer. The output torque (after the reducer) is also 

affected by the efficiency of the mechanical transmission. 

 
Figure 3. BLDC EM Model block diagram. 

 

Reference 
Current 

PWM 
EM 

Model 

Iref 

θrM 
Iref_a,b,c 

Ia,b,c 

Va0,b0,c0 

θrM 

TM 

Table 1. Reference Currents of BLDC Motor 

Rotor 

Position 

[Deg] 

Reference Currents 

[Amp] 

 Iref_a Iref_b Iref_c 

0-30 0 -Imax Imax 

30-90 Imax -Imax 0 

90-150 Imax 0x -Imax 

150-210 0 Imax -Imax 

210-270 -Imax Imax 0 

270-330 -Imax 0 Imax 

330-360 0 -Imax Imax 

 

 
Figure 2. Proposed EMA block diagram. 
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As shown in Table I, the Reference Current 

generator determines the motor reference phase 

currents, Iref_a, Iref_b, and Iref_c, by considering the 

reference current amplitude Iref, which is 

calculated depending on the rotor position.1 The 

PWM current control block simulates the 

inverter behaviour comparing the reference 

phase currents Iref_a, Iref_b and Iref_c with the 

motor actual phase currents Ia, Ib and Ic. As a 

matter of fact, the considered block diagram 

does not implement the structure and the real 

operation of the three-phase PWM inverter: its 

behavior is simulated by means of a relay block, 

with proper thresholds that can be set for each 

phase. The output of this subsystem is a rotating voltage vector having three 120° degrees displacement components, 

one for each phase, representing the corresponding phase voltages Va0, Vb0 and Vc0.  

As for the Iref calculation, at a same instant the first phase has a positive value, the second phase has a same 

absolute value with negative sign, the third phase must be null (even if not identically null, at least the mean value 

must satisfy this property). 

The EM Model block calculates the three-

phase currents, Ia, Ib and Ic, and the developed 

mechanical torque TM as a function of the PWM 

three phase voltages (Va0, Vb0, Vc0) and the 

effective rotor speed 𝜃̇𝑟M.  

The considered BLDC motor has a three-

phase winding topology with star connection: it 

has three resistive (R) – inductive (L) branches on 

which a counter-electromotive force (back-EMF) 

acts. The back-EMF phase voltages are 

implemented in look-up table form.2 In nominal 

conditions and no failure the back-EMF, acting on 

each phase, is a function of the rotor position θrM 

and the amplitude is defined by ea = ke·𝜃̇𝑟M, 

where ke is the back-EMF constant of the 

considered phase. In case of an electrical failure, such as coil short-circuits or static eccentricity, the back-EMF 

constants kei (one for each of the three branches)  can be adjusted to represent the failure effect by means of three 

functions f(u), one for each motor phase. To calculate the value of the three phase currents, Ia, Ib and Ic, it is 

necessary to evaluate the differential voltage acting on each phase. As shown in Fig. 5, the proposed model 

considers the three-phase currents in terms of the line-to-line voltages (i.e. the differential voltage between two of 

the three phases). These differential voltages, ΔVab, ΔVac, and ΔVbc,  are calculated as the difference between the 

corresponding line-to-line values of voltage, Vab, Vac, and Vbc, and back-EMF, eab, eac and ebc: 

 

Δ𝑉𝑎𝑏 = 𝑉𝑎𝑏 − e𝑎𝑏 = 𝑅𝐿𝐿𝐼1 + 𝐿𝐿𝐿
𝑑𝐼1

𝑑𝑡

Δ𝑉𝑏𝑐 = 𝑉𝑏𝑐 − e𝑏𝑐 = 𝑅𝐿𝐿𝐼2 + 𝐿𝐿𝐿
𝑑𝐼2

𝑑𝑡

Δ𝑉𝑐𝑎 = 𝑉𝑐𝑎 − e𝑐𝑎 = 𝑅𝐿𝐿𝐼3 + 𝐿𝐿𝐿
𝑑𝐼3

𝑑𝑡

            (1) 

 

Once the line-to-line differential voltages have been calculated, it is possible to derive the three phase currents, 

Ia, Ib and Ic, according to Eq. (2): 

 
𝐼𝑎 = 𝐼1 − 𝐼3
𝐼𝑏 = 𝐼2 − 𝐼1
𝐼𝑐 = 𝐼3 − 𝐼2

                (2) 

 

 

Figure 4. Phase back-EMF and current waveforms of a 

three-phase BLDC motor. 

 
Figure 5. Schematic of voltage and current parameters 

in three-phase BLDC motor. 
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Once the phase currents are known, total motor torque can be estimated as the sum of the three phase currents, 

multiplied by their respective back-EMF constants ke. The obtained mechanical motor torque TM, then, must be 

limited by a saturation function as in real actuator every component is subject to operative limitations. To validate 

the model, the dynamic response developed by the system under specific operating conditions, in terms of control 

input, boundary conditions and entities of different faults, was compared with data obtained from the current 

literature. In particular a fairly good match with literature data has been noticed on the back-EMF and phase current 

waveforms, related to different values of the rotor angular velocity and the dynamic responses of the BLDC, caused 

by various command input.3-5 The subsystem EMA Dynamic Model of Fig.2 simulates the EMA mechanical 

behavior. As shown in Fig.6, it consists of two non-linear second order dynamic models, which simulate, 

respectively, the BLDC motor/gear reducer (BLDC Motor) and the aircraft command surface controlled by the 

EMA (USER); they are linked together by means of an elastic shaft. The model includes effects of the dry friction 

forces developed in rotor bearings, gear reducer, 

hinges and screw actuators.6 

In particular, the frictional torque is 

accounted for as proposed in Ref. 7 and Ref. 8. 

The subsystem Mechanical Transmission 

models the behavior of the transmission shaft 

that connects the gear-motor assembly to the 

aircraft command surface. The corresponding 

reaction torque Treaz is calculate as a function of 

θrM and θrU (respectively the motor and user 

position) and Ktr, which represents the stiffness 

of the transmission shaft. The effects of the 

mechanical backlashes are also considered.9 

IV. EMA Failures and Degradations 

As EMA have been only recently employed in aeronautics, their cumulated flight hours are still not enough to 

provide reliable statistics data about more recurring failures. However, it is possible to single out four main failure 

categories: mechanical or structural failures, BLDC motor failures, electronics failures and sensor failures. 

The present work has been mainly focused on the effects of mechanical failures due to progressive wear, which 

causes an increase of backlash and friction, and on two typical BLDC motor failures: the coil short-circuits (SC) and 

the bearing wear generating rotor static eccentricity (RE). As a general rule, the detection/evaluation of mechanical 

failure due to friction or backlash is usually directly performed by analyzing specific characteristics of the dynamic 

response of the whole actuation system, such as position, speed or acceleration. Vice versa, in case of motor 

progressive failures, such as SC or RE, the 

characteristics of the mechanical transmission, in 

terms of inertia, dry and viscous frictions, 

backlashes, noises, etc., could disguise or 

mitigate the failure effects making inaccurate, if 

not ineffective, any prognostic effort. In these 

cases the analysis of electrical harmonics (e.g. 

phase currents) provides a better understanding of 

the failure progression and its estimation is far 

more accurate. Electrical and sensor failures are 

not less important than the others, but their 

evolutions are usually very fast, if not 

instantaneous, and the corresponding failure 

precursors are often difficult to identify and 

evaluate. It is well known that the dry friction 

phenomena always occur when two surfaces are 

in relative motion: when the friction coefficient 

increase due to wear, the reaction torque increases accordingly and the motor must provide higher torques to actuate 

the control surface. As a primary effect, an increment in dry friction, well before causing the seizure of the entire 

system, reduces the servomechanism accuracy and, sometimes, influences the system dynamic response generating 

unexpected behavior, such as stick-slip or limit cycles.10 

 

Figure 6. EMA Dynamic Models block diagram. 

 

TR 

Treaz 

θrM 
Mechanical 

Transmission 
TM 

BLDC 
Motor 

USER 

θrU 

 
Figure 7. Reference system for the definition of air gap. 

 

y 

x 

Rs Rr 

x0 

θr 

 =
  

  −   
 



 

American Institute of Aeronautics and Astronautics 
 

 

7 

The mechanical wear can also generate backlash in 

EMA moving parts such as gears, hinges, bearings and 

especially screw actuators. These backlashes, acting on 

the elements of the mechanical transmission, reduce the 

EMA accuracy and can lead to problems of stiffness 

and controllability of the whole actuator.11 

BLDC motor failures are mainly seen as progressive 

coil short-circuits or bearing wear generating rotor 

static eccentricity. Short-circuits usually start between a 

few coils belonging to the same phase (coil-coil 

failure). As in short-circuited coils the voltage remains 

the same and the resistance decreases, the resulting 

currents increases, generating a localized temperature 

rising in conductor, which favors the extension of the 

failure to adjacent coils. If this kind of failure is not 

promptly detected it could propagate and generate 

phase-phase or phase-neutral damages.  

The static eccentricity of a rotating body consists in a misalignment between the rotor rotation axis and the stator 

axis of symmetry. This misalignment is mainly due to tolerances and imperfections introduced during motor 

construction or to a gradual increase of wear of the rotor shaft bearings. When this failure occurs, the motor having 

more than one polar couple generates a periodically variable magnetic flux, as the air gap varies during its 360° 

degrees turn. In case of static eccentricity, the air gap changes during the rotor spinning (Fig.7) as a function of the 

rotor position 𝜃𝑟: 

𝑔′(𝜃𝑟) = 𝑔0 + 𝑥0cos⁡(𝜃𝑟)               (3) 

where g0, is the clearance between stator and rotor, without considering misalignments, and the second term 

represents the variation of the air gap. In terms of motor performances, the provided torque is lower than in nominal 

conditions, whereas, spectral analysis reveals the presence of sub-harmonics which increase for higher eccentricities. 

The rotor static eccentricity and the partial stator coil short circuit effects have been modeled by means of a 

simplified numerical algorithm. As both the failures change the magnetic coupling between stator and rotor, in fact, 

failures can be modelled by modifying the values and angular modulations of the back-EMF coefficients†: 

𝑘𝑒𝑎 = 𝑘𝑒𝑎 ∙ 𝐶𝑒𝑎 ∙ (1 + 𝜁cos⁡(𝜃𝑟))               (4)  

where ζ is the rotor static eccentricity. The constants kea, keb and  kec are then used to calculate the corresponding 

counter-electromotive forces, ea, eb and ec, and to evaluate the mechanical couples, Cea, Ceb and Cec, generated by 

the three motor phases. The effects that the abovementioned progressive failures produce on the dynamic behaviors 

of the considered actuation system are thoroughly discussed in Ref. 12. 

V. Proposed Prognostic Algorithm 

As previously reported, an innovative model based fault detection technique, based on neural identification, is 

proposed as a prognostic method which analyzes data obtained through FFT spectral analisys.13,14 

In particular, this method is based on two distinct Multi-Layer Perceptron (MLP) Neural Networks (NN), each 

one designed and trained to perform a specific task15: the first neural network (ANN_A) detect the damage and 

classify it according to a predefined classification scheme, whereas the second network (ANN_B) provides a 

measure of the fault extent, according to a quantification scheme. 

A. Data Collection / Preprocessing 

The command input used for the data collection is a step signal Com and the data are recorded immediately after 

the transient. Values of speed and currents are recorded in two matrices: they refer to situations of a growing level of 

the fault gravity, where the failure extent can vary within a range considered sustainable and realistic for the engine. 

Increments of the failure extents are discrete: they are moderate but noticeable, to highlight the differences between 

two successive cases. Furthermore, random noise is added to the simulation signals to improve the network 

                                                           
†  The proposed algorithm, implemented in the BLDC EM Model block diagram, acts on the three back-EMF constants Cei (one for each branch) 

modulating their trapezoidal reference values Kei as a function of coil short circuit percentage, static rotor eccentricity ζ and angular position ϑr. 

 
Figure 8. ANN model 
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robustness. To test the noise amount that can be tolerated by the prognostic algorithm, signals are corrupted with 

three different noise levels, including the noise free situation (0%), the high noise case (5% of the maximum signal 

value) and an intermediate situation for which the noise level is halved (2.5%). The data processed by the two neural 

networks (ANN_A and ANN_B) are mainly based on macro-observations of the behavior of the speed and currents 

and on the spectral analysis of signals. 

B. Phase Current analysis 

In this subsection the signal features, derived as a consequence of a fault condition, are identified and 

mathematically defined. Trends related to the growing failure extent are also discussed. The main difference 

between Fig. 9 and Fig. 10, which reports two different failures, concerns the distribution of the concavity of the 

phase current signals, in correspondence of the two-PhaseON (TPO) phenomena. By approximating this part of the 

signal with a second degree equation and by varying 

the extent of the fault, it is observed that the failure to 

static rotor eccentricity (RE) presents, for each phase, 

concavity that are always positive. Conversely, the 

short-circuit (SC) fault presents an alternation of the 

signs of the concavity: two negatives and one positive 

in the TPO positive portion and vice versa, two 

positives and one negative when the TPO is the 

negative. Another observation concerns the signal 

symmetry: analyzing all the positive and negative TPO 

sections as a single signal, a sort of envelope, it can be 

noticed that, in case of SC, the positive and negative 

signals are symmetrical with respect to the horizontal 

axis, whereas in the case of RE, these signals are 

simply shifted. It must be noticed that the evaluation of 

the maximum and average trends of these current 

signals plays an important role in the failure detection: 

as the fault extent increases, in fact, the maximum 

value increases monotonously for the SC fault, whereas 

the RE failure exhibit a constant trend followed by a 

rapid growth. The average value has a monotonous 

increasing behavior in the SC fault whereas for the RE, 

the trend shows an oscillating behavior around a mean 

value. 

C. Speed analysis 

As for the speed signals, the main differences for the 

two faults can be observed through the FFT analysis. 

As shown in Fig.11, in fact, the SC fault features clear 

signature marks for four characteristic frequencies 

around the values of 0 Hz, 251 Hz, 503 Hz and 755 

Hz. In particular, the gains associated with these 

frequency values are characterized by a trend which 

changes monotonously with the increase of the fault 

extent. The RE fault exhibits a similar behavior, but 

the three characteristic frequencies are around the 

values of 0 Hz, 122 Hz, and 375 Hz (Fig.12) 

D. ANN_A 

The first neural network (ANN_A) has the task to 

perform the first fault detection and classification, 

through a two class separation: SC fault on the stator 

coils and RE fault. The network is trained to associate 

the training vector P to the target vector T. 

 
Figure 9. Reference current signal, 25% short-

circuit fault entity 

 
Figure 10. Reference current signal, 5% rotor 

eccentricity fault entity 
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The training set P consists of 3 sections, each one characterized by a different noise level, organized on 42 rows 

each. Each row contains 7 elements: the first three elements indicate, by means of the values +1 or -1, the three 

positive PhaseON concavities, the fourth and the fifth ones indicate the frequency of the two main carrier 

frequencies; the sixth and seventh show, 

respectively, the maximum value and the mean 

value of the envelope signal of the three PhaseON. 

The vector target T consists of three equal 

sections of 42 rows each for 2 columns. Each row 

of the vector T is associated with a row of the 

vector P. The first column represents the SC fault, 

whereas the second column represents the RE 

failure. The training set is manually generated from 

a properly dimensioned matrix of zero elements, 

where unitary values are inserted in the appropriate 

column, to give the neural network the indication 

related to which fault type the corresponding row 

of the training vector belongs. In this context, the 

ANN_A essentially perform a pattern recognition 

task and is morphologically shaped as a single-

hidden-layer perceptron, with a Log-Sigmoid 

activation function on the hidden layer. 

Training is performed by the Levenberg-

Marquardt backpropagation algorithm.16,17 

E. ANN_B 

The second neural network (ANN_B) provides a quantification of the failure extent. To assess two different 

failures, ANN-B is doubled in two parallel neural networks, each specialized for a single type of fault. After the first 

network ANN_A perform its first classification task, only one branch of ANN_B is activated according to which of 

the two failures has been detected. The two ANN_B have the same macro-structure of the ANN_A, with 3 sections, 

each one characterized by a different noise level, composed by a certain number of row and elements. 

The SC training vector consists of 21 row, each 

one containing 11 elements: the first four elements 

indicate the amplitudes of the four characteristic 

peaks of the FFT speed signal (frequency: 0 Hz, 251 

Hz, 503 Hz and 755 Hz); the fifth and the sixth 

element show, respectively, the maximum value and 

the mean value of the envelope signal of the three 

PhaseON. The last five elements represent the first 

five peaks of the current FFT. The SC target vector 

consists of 3 equal sections of 21 rows each. 

Assuming a classification pattern constituted by 

three levels of failure (small / medium / large), the 

target vector is composed of three columns: the first 

column represents failures of small entities, the 

second one is related to failures of medium entities 

and the third column refers to failures of great 

magnitude. Also in this case, this vector is initially 

identically null, but inserting a unitary value into 

the appropriate column, it is possible to indicate to 

the neural network in which fault category the 

corresponding row of the training vector belongs. 

It is also possible to divide the failure range in more than three levels, provided the training set contains a fair 

amount of information related to each fault level. The RE training vector consists of 21 row, each one containing 12 

elements: the first three elements indicate the amplitudes of the three characteristic peaks of the FFT speed signal 

(frequency: 0 Hz, 122 Hz and 375 Hz); the fourth and the fifth element show, respectively, the maximum value and 

the mean value of the envelope signal the three PhaseON; the sixth and seventh element represent the relationship 

 
Figure 12. Rotor eccentricity: example of related 

EMA angular speed FFT 

 
Figure 11. Short circuit failure: example of related 

EMA angular speed FFT 
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between the maximum value and the minimum value of the speed signal, and between the maximum value and the 

mean value of the speed signal; the last five elements represent the first five peaks of the current FFT.  

As for the ANN_A, also the two ANN_B neural networks perform a pattern recognition task. They have 

identical morphologies, but different dimensions, determined as a result of an optimization procedure.  

 

VI. Results  

The three networks provide results in form of row vectors: each element  represents the percentage of probability 

that the input corresponds to the fault indicated by the target vector column. Ideally, the ANN_A network should 

always respond with an output in the form Y = sim(net, Ptester) = [1 0] to an input of SC, whereas, in case of RE, 

it should respond with vector [0 1]. As shown in Table 2 and 3, the obtained results are very close to the 

theoretical values. 

 

 
 

The two ANN_B networks, used for the quantification of the SC and RE failure, are based on particular target 

vectors: the target vectors are structured with an element which is shared between the two entities representing two 

different fault level. This element is called intersection and is effective in widening the fault detection capability. It 

is observed that around the intersections there are bands of interference, i.e. range of fault percentages (from 2% up 

to 5%) in which both fault level are perceived. Results are shown in table form, both for the two and three levels 

classification. 

 

 

Table 2. SC fault recognition 

 

Table 3. RE fault recognition 

 

               

Figure 13. SC fault analysis - two columns target vector 
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From the technical point of view, nothing prevents to increase the fault levels to more than three. The analysis 

performed on more than four fault levels, though, show that the interference band widen to such an extent that the 

network detection capability is impaired. This result represents only a theoretical limitation, however, as widening 

the level classification beyond a certain level would bring no real benefit to the prognostic analysis, with the only 

outcome of possible misinterpretation of result. 

 

VII. Conclusions 

Although the employed neural networks are very simple and have not been optimized, preliminary results shows 

that the proposed prognostic technique is effective for the diagnosis of the state of a BLDC motor. Only two faults 

have been analyzed for this paper, short-circuit of a stator coil and static eccentricity of the rotor, and no attempt has 

been made to consider the cross effects. Results encourage the extension of the technique to investigate more 

challenging occurrences, such as the electrical and sensor failures, for which  the evolutions are usually very fast, if 

not instantaneous, and the corresponding failure precursors are often difficult to identify and evaluate. To this 

purpose the actuator model should be further detailed and new element should be modelled. Combined failures 

should also be investigated. 

           

Figure 14. SC fault analysis - three columns target vector 

        
Figure 15. RE fault analysis - two columns target vector 
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