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Abstract 

Type 2 diabetes is a metabolic disorder that may cause major problems to several physiological systems. 

Exercise has proven to be very effective in the prevention, management and improvement of this pathology 

in patients.Muscle metabolism is often studied with Near-infrared spectroscopy (NIRS), a noninvasive 

technique that can measure changes in the concentration of oxygenated (O2Hb) and reduced hemoglobin 

(HHb) of tissues. These NIRS signals are highly non-stationary, non-Gaussian and nonlinear in nature.  

The Empirical Mode Decomposition (EMD) is used as a nonlinear adaptive model to extract information 

present in the NIRS signals. NIRS signals acquired from the tibialis anterior muscle of controls and Type 2 

diabetic patients are processed by EMD to yield three intrinsic mode functions (IMF). The Sample Entropy 

(SE), Fractal Dimension (FD), and Hurst Exponent (HE) are computed from these IMFs. Subjects are 

monitored at the beginning of the study and after one year of a physical training programme. 

Following the exercise programme, we observed an increase in the SE and FD and a decrease in the HE in all 

diabetic subjects. Our results shows the influence of  physical exercise program in improving muscle 

performance and muscle drive by the central nervous system in the patients. A multivariate analysis of 

variance performed at the end of the training programme also indicated that the NIRS metabolic patterns of 

controls and diabetic subjects are more similar than at the beginning of the study. 

Hence, the proposed EMD technique applied to NIRS signals may be very useful to gain a non-invasive 

understanding of the neuromuscular and vascular impairment in diabetic subjects. 

  



1. Introduction and background 

Type 2 diabetes mellitus is a commonly diffused pathology and it is increasing at an alarming rate.  

According to Adeghate et. al (1) diabetes will affect 300 million people by 2025 and Kaul et al. (2) state that 

97% of patients will suffer from type 2 diabetes who have insulin resistance and insulin deficiency. 

Moreover, the global prevalence of diabetes is not limited to only industrialized or only emerging countries, 

but is rather increasing in both. Type 2 diabetes mellitus is associated with cardiovascular diseases (3), 

neuropathy (4), peripheral vascular insufficiency (5), lung dysfunction (6), and retinopathy (7). 

Various studies have shown how a specific change in life-style, such as diet, weight loss, and 

exercise, are very effective in the prevention, management and improvement of this pathology in patients (8). 

Exercise in particular has shown promising results, improving vascular protection and insulin resistance (9) 

and reducing the negative effects of neuropathy (10).  

Exercise has positive effects on different aspects of muscular action, and it can often be difficult to 

correctly assess the actual improvement that exercise has on type 2 diabetes patients. Bagai et al. (11) 

analyzed the variation of the surface myoelectric signal (EMG – electromyogram) in diabetes patients as a 

result of polyneuropathy. Other experiments have shown how the spatial distribution of the EMG of the 

vastus lateralis is different when comparing patients with healthy controls (12). However, two very important 

factors in the assessment of diabetic patients, the local muscular metabolic rate and the efficiency of the 

peripheral muscle vascularization, cannot be fully captured by the EMG despite their importance in the 

determination of muscle contraction and performance. 

Near infrared spectroscopy (NIRS) has been used to monitor patients suffering from lower-extremity 

arterial disease (13) and diabetes (14). This technique is portable, non-invasive, and low-cost, making it easy 

for patients to use during exercise and rest. Electrochemical systems based on reverse iontophoresis are more 

accurate than NIRS systems in the glucose concentration monitoring (15); however NIRS systems are a good 

choice for this study as  they are less invasive and real-time. The light sources of the NIRS system emit 

electromagnetic radiation and the absorption of light of different tissues at certain wavelengths allows 

measuring the chromophore concentration in the observed tissue. Two main chromophores that are present in 



human tissue are oxygenated and reduced haemoglobin. Haemoglobin shows two different absorption peaks 

in the NIR spectrum: at 850-900 nm if in its oxygenated (i.e. oxidized) form (for simplicity, indicated by 

O2Hb from here on out), and at 730-750 nm if in its deoxygenated (i.e. reduced) form (HHb). These 

different properties, the concentration of each haemoglobin type, can be easily estimated by irradiating the 

tissue at two separate wavelengths (16). Features extracted from NIRS recordings of diabetics during 

exercise have proven to be useful to assess the neuromuscular and peripheral pattern (17).  

NIRS signals can typically tend to present a marked non-stationary nature (17) (18). Very low 

frequency components associated with long-term regulatory mechanisms makes the baseline of the NIRS 

signals vary (19), and the signal power depends on the local metabolic rate and oxygen consumption. 

Moreover, NIRS signals present a time dependent average value, which reflects the concentration changes of 

the chromophore. Due to the nonlinear nature of the NIRS signal, linear, frequency and time-frequency 

domain methods may not be able to fully extract the small variations from the signals, whereas nonlinear 

interrelationships in the NIRS data can provide more accurate information. Previous studies have 

demonstrated how non-stationary and nonlinear methods are needed to analyze glucose levels (20) and 

insulin sensitivity (21) of diabetic subjects. Also, bispectral analysis has been used for epilepsy diagnosis 

(22) (23), sleep stages (24), cardiac abnormalities (25), EEG signals  (26), and myoelectric signals (27). 

Moreover, the entropy analysis of NIRS signals, coupled with unsupervised clustering, has proven to 

highlight the changes in muscle contraction performance of diabetic patients as a consequence of exercise 

(28). The results of these specific types of analysis can sometimes be difficult to interpret and understand. In 

a previous work, we analyzed the NIRS signals recorded during muscle contractions of diabetic patients by 

using higher-order spectra, bispectral and sample entropies (28). We demonstrated that physical activity 

improved the muscle metabolism and, specifically, that the NIRS pattern of diabetic subjects after physical 

activity is close to the healthy controls. Our previous study had two major limitations. Methodological point 

of view, we did not investigate the nonlinear architecture of the NIRS signals. Also from a physiological 

point of view, we only analyzed the NIRS signals recorded during muscle activation, but not during resting 

(i.e. baseline conditions). 

A simple, adaptive and local structure based, nonlinear measure, such as the empirical mode 

decomposition (EMD), can instead provide more intuitive understanding of the data. In this paper, we show 



how the EMD analysis of NIRS signals can highlight the changes in muscle contraction performance of 

diabetic patients. We tested a group of subjects with type 2 diabetes who underwent a year of an exercise 

programme, specifically adapted to their age and physical condition. NIRS captured the changes in the 

metabolic aspect of muscle contraction and showed that after the one-year training programme, the muscle 

metabolic pattern of diabetics as found with EMD is similar to those of healthy controls. 

 

 

2. Patient demographics and experimental setup 

Twenty-four diabetes type 2 subjects were enrolled in the study along with sixteen healthy controls. The 

diabetic patients were non-consecutive and enrolled  with the following inclusion criteria: age > 50 years; 

body mass index (BMI) between 18 and 23 kg/m2, and diabetes onset at least 10 years before the study. 

Exclusion criteria were only related to possible physical or mental states that precluded the possibility of 

following a long physical activity programme. All the diabetic subjects underwent daily physical activity for 

one year. Of the 24 patients, the physical activity for 15 of the patients was an adapted physical training 

(APT) program (age: 66.7 ± 5.7 years), whereas the remaining 9 practiced fit walking (FW) (age: 66.0 ± 6.2 

years). APT consisted in low load exercised for the lower and upper limb muscles, whereas FW consisted in 

walking at a constant pacing. Expert exercise physiologists and therapists followed each patient and set the 

intensity of each exercise. For the control group, the 16 healthy subjects were age-matched (age: 65.3 ± 3.9 

years) and physically active. Table 1 summarizes the patient demographics, including also their glycated 

haemoglobin (HbA1c) level (29) and the Neuropathy Disability Score (NDS) (4). The Gradenigo Hospital 

institutional review board, where all tests were performed, gave the approval for this study. All of the 

patients were informed about the study methods and goals and signed an informed consent before the test.  

The NIRO300 NIRS system (Hamamatsu Photonics, Japan) was used to record the NIRS signals of each 

patient before, during, and after the physical exercise. The NIRO300 emitting probe consists of four laser 

diodes at the following wavelengths: 775 nm, 813 nm, 853 nm, and 910 nm. In order to convert the light 

absorbance into concentration, the NIRS systems used the modified Beer-Lambert law (30). This law 

empirically models the light absorption in a highly scattering medium: 



𝐴 = 𝑙𝑜𝑔 !!
!
= 𝛼 ∙ 𝑐 ∙ 𝐵 ∙ 𝑑 + 𝐺    (1) 

where A is light attenuation, I0 the emitted light intensity, I the received intensity, c the concentration of a 

chromophore (in our study oxygenated or reduced hemoglobin), α is the extinction coefficient of the 

chromophore at a given wavelength, and d is the source-receiver distance. Scattering causes photon loss (i.e. 

photons that are emitted by the source but that are scattered so that they do not reach the receiver) and an 

increase in the path the photons travel before reaching the receiver. In eq. (1), G models the photon loss and 

B the path increase (called differential pathlength factor – DPF). Since photon loss cannot be quantified it is 

not possible to measure the absolute light attenuation. Assuming G as constant, the modified Beer-Lambert 

law is rewritten as: 

Δ𝐴 = 𝑙𝑜𝑔 !!
!
= 𝛼 ∙ Δ𝑐 ∙ 𝐵 ∙ 𝑑    (2) 

where ΔA is the change in light attenuation caused by the change Δc in the chromophore concentration. We 

set a value of B equal to 5 (31). Equation (2) is relative to a single wavelength, thus by combining different 

wavelengths it is possible to measure the concentration of different chromophores. 

In this study, we observed the changes in the concentration of four NIRS signals: the oxygenated 

haemoglobin (O2Hb), deoxygenated haemoglobin (HHb), the tissue oxygenation index (TOI), and the 

normalized tissue haemoglobin index (THI). The TOI is defined as the ratio between oxygenated 

haemoglobin and total haemoglobin (16), whereas the THI is defined as the relative concentration of total 

haemoglobin (16). 

The emission probe was positioned along the muscle belly of the patient’s left tibialis anterior muscle, 

whereas the detection probe was placed 4 cm away and in the distal direction of the muscle fibers (i.e. 

towards the subject’s ankle and away from the probe). The sampling frequency of the NIRS signals was 

equal to 2Hz. The experiment lasted a total of 7 min, divided into three separate steps: (i) rest for 1 minute 

(baseline), (ii) 3 minutes of ankle flex-extensions (exercise), and (iii) 3 minutes of recovery (rest). All the 

subjects were tested separately and in random order. 



Figure 1 shows typical O2Hb and HHb NIRS signals during the experiment. The O2Hb concentration 

decreases during muscle contraction, due to oxygen consumption and decreased blood inflow, whereas the 

concentration of HHb increases due to a reduced washout and a local accumulation of carbon dioxide (13). 

 

3. Methodology 

This section discusses the decomposition of NIRS signals using the Empirical Mode Decomposition 

(EMD) to obtain three intrinsic mode functions (IMFs). In this section we briefly explain the Higuchi fractal 

dimension (FD), sample entropy (SE) and the Hurst exponent (HE) applied on IMFs to study the 

characteristics of the NIRS signals.  

3.1 Empirical Mode Decomposition (EMD) 

The empirical mode decomposition is an adaptive, data dependent and direct method of time-frequency 

decomposition. Unlike any other time-frequency transform, it does not assume linearity as a requirement. 

The method is also called the Hilbert Huang transform (HHT)(32). Any complicated dataset can be 

decomposed into a set of a few intrinsic mode functions (IMFs) that have well defined proper rotation 

components. The decomposition of the given data into a set of IMFs is based on the data’s local 

characteristics of time and scale. The IMFs derived from the given signal satisfy two basic assumptions: (1) 

In the entire data segment, the total number of extrema (both maxima and minima) are equal to or differ at 

most by one with the number of zero crossings; (2) The mean value of the envelope given by the local 

minima and local maxima must be zero. The EMD algorithm is provided below as a step by step procedure 

(32).  

Step 1: Let ( )x t be the given signal. The local minima and local maxima are to be extracted. A cubic 

spline curve is used to connect all the local maxima, providing the upper envelope. Let this curve be ( )ux t . 

The local minima are connected in the same way with a cubic spline curve and name that curve as ( )lx t . 

The mean envelope between the upper and lower envelopes is computed as: 



1
( ) ( )( )
2

u lx t x tm t +=   (3) 

Then the first IMF is derived as: 

1 1( ) ( ) ( )h t x t m t= −   (4) 

This procedure is called as sifting. 

Step 2: The derived first IMF 1( )h t  is considered as the signal and its lower and upper envelopes are 

computed. From this mean envelope, the following is computed to provide: 

1 11 11h m h− =    (5) 

Step 3: This process is repeated k  times until 1kh is an IMF: 

1( 1) 1 1k k kh m h− − =   (6) 

This procedure is continued until the normalized standard deviation (NSD in the following equation) 

between the two consecutive IMFs is less than 0.2 or 0.3: 
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=
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  (7) 

The final IMF is 1 1kc h= . Then 1 1( )x t c r− =  is called the residue signal and represents the trend of the 

data time series. The original signal can be represented in terms of the linear combination of IMF and the 

residue as: 

1

( ) ( ) ( )
M

m M
m

x t h t r t
=

= +∑       (8) 

where M denotes the total number of IMFs, mh  is the m -th IMF and Mr is the residue signal. 



For each IMF we calculated three descriptors related to the complexity of the signals, which are: the Higuchi 

Fractal Dimension (FD); the Hurst Exponent (HE) and the Sample Entropy (SE). 

3.2 Higuchi Fractal Dimension (FD) 

The Higuchi’s algorithm is a method for the calculation of the fractal dimension D of a time series (33) 

(34). This algorithm is based on a measure of length, called L(k), of the time series by using a segment of k 

samples as a unit if the length scales as: 

L(k) ~ k-D                   (9) 

An increase in the Higuchi FD reveals a more complex and nonlinear system. Hence, in our study, since 

diabetes causes a selective loss of muscle fibers and a consequent reduction of the system complexity, higher 

values of FD of diabetic patients could indicate a muscle behavior similar to healthy controls. 

3.3 Sample Entropy (SE) 

Sample entropy is an embedding entropy which directly uses the time series instead of making use of 
probability values (35). Let ( ), 1,2,3,...,ih n n N=  be the original time series. New vector sequences of size 

m are generated from (1)u  to ( 1)u N m− + . These derived vector sequences are defined as, 

{ }( ) ( ), ( 1),...., ( 1)i i iu n h n h n h n m= + + − (35). The specified length m  is named the embedding 

dimension. The distance 1 2( ( ), ( ))d u n u n  between the two vectors 1( )u n  and 2( )u n is determined as (35): 

{ }1 2 1 3 2 3( ( ), ( )) max ( ) ( ) ,0 1d u n u n u n n u n n k m= + − + ≤ ≤ −     (10) 

where 3n  is an index.  Therefore, we can define the probability of locating another vector not beyond the 

distance r  from the vector 1( )u n  as (35): 

{ }
1

2 2 1 2 1 2The number of , , 1 such that ( ( ), ( ))
( )

1
n
n

n n n n N n d u n u n r
C r

N n
≠ ≤ − + ≤

=
− +

    (11) 

We can calculate, 

1

1

1
1

1

( ) ( 1) ( )
N n n

m n
n

n
r N n C rφ

− +
−

=

= − + ∑   (12) 

The sample entropy is determined as: 

 



 

𝑆𝐸 𝑛, 𝑟,𝑁 = −𝑙𝑛 !! !
!!!! !

  (13) 

The variable r  is the tolerance of accepting analogous patterns between two segments.  

3.4 Hurst Exponent (HE) 

The Hurst exponent measures the presence or absence of long-range in a signal, along with the 

dependence degree(36). For each observation, the mean of the time series is computed, along with the mean 

centered series, obtained by subtracting the mean from the series, and the cumulative deviation of the series 

from the mean, obtained by summing up the mean centered values. The Hurst Exponent therefore quantifies 

the smoothness of a fractal time series, and can be defined as: 

HE =log(R/S)/log(T)                                                  (15) 

Where R represents the range, which is the difference between the maximum value of the cumulative 

deviation and the minimum value of the cumulative deviation, and S is the standard deviation of the mean 

centered values. T is the duration of the sample of data. Higher HE values correspond to smoother fractal 

time series, and therefore to less complex systems. 

 

Hence, for each subject we measured the Higuchi Fractal Dimension (FD), the Hurst Exponent (HE) and the 

Sample Entropy (SE) for each of the three intrinsic mode functions of the O2Hb, HHb, TOI, and THI 

signals. So, we obtained 36 measurements for each subject. Since we tested the same subjects in two 

different moments (i.e. baseline and during exercise), and hence total number of 72 variables associated to 

each subject. Therefore, we have a data matrix of 40 (number of tested subjects) by 72 (number of variables) 

describing the initial conditions before the physical activity programme onset, and another matrix of same 

dimensions that we obtained one year after, at the end of the activity programme. 

 

3.5 Statistical Analysis 

The grouped values are represented by average value ± SD. A statistical analysis of the average values is 

performed by using the Student’s t-test, after having tested for normality of the data by the Kolmogorov–



Smirnov test. The significance level is set to 0.9, thus allowing a first-species error of 0.1. The multivariate 

data matrix is analyzed by using the one-way multivariate ANOVA (MANOVA), which is applied on the 

data before and after the physical activity. The MANOVA represents the subjects in function of the so-called 

canonical variables, which are linear combination of the original features. The first canonical variable is the 

one explaining the maximum variance of the original feature set, the second is the one explaining the 

maximum residual variance, and so on. We will consider the representation of the subjects in function of the 

first two canonical variables, which are the most meaningful. The original features that have the highest 

coefficients in the canonical variables are considered the more discriminant to assess the changes induced by 

the physical activity and captured by NIRS. 

 

4. Results 

In this study, we applied the EMD on NIRS signals acquired from healthy and diabetic subjects before, 

during, and after muscle contraction, and then we computed the SE, FD and HE on the first three intrinsic 

mode functions (IMFs). The purpose of this work is to assess the metabolic muscular pattern differences in 

patients before and after physical training. 

First of all, we compared the EMD derived parameters for the three subject groups before and after 

physical training. Tables 2.a, 2.b and 2.c show the data for the three IMFs of the O2Hb, HHb, TOI and THI 

signals obtained before and after the training period during exercise for the healthy controls, the fit-walking 

patients, and the adapted physical training patients, respectively. It can be observed that there is no 

significant changes in the parameter values as a consequence of the physical activity, except for the HE of 

the first IMF of the TOI signal. Hence, the changes in the oxygenation signals of the healthy controls are 

absent. The change in the HE of the TOI reflects the change in the HHb signal, since the TOI value strongly 

depends on the HHb concentration changes. It demonstrates that physical activity has no significant effect on 

the metabolic pattern of the control subjects, who are physically active even when enrolled in the study. It 

can be observed in Tables 2.b and 2.c that both the fit walking and the adapted physical training patient 

groups show an increase in the SE after the physical activity, for all IMFs of the NIRS signals. Such increase 



is statistically significant for the third IMF of the O2Hb signal and the second IMF of the HHb signal for the 

fit walking group, whereas for the APT group, this increase is statistically significant for the first IMF of the 

HHb and TOI signals, and the second IMF of the O2Hb and THI signals. The HE decreases after the physical 

training, which is statistically significant for the third IMF of the O2Hb signal for the fit walking patient 

group. In the  APT patient group, the HE difference for the second IMF of the HHb and TOI signals, and for 

the third IMF of the TOI signal is statistically significant. The FD shows values that are quite similar for both 

before and after the physical training; however, a statistically significant increase can be observed in the fit 

walking patient group for the second and third IMF of the THI signal. A statistically significant difference 

for the first and second IMF of the O2Hb signal and for the third IMF of the HHb signal can be seen in the 

APT patient group.  

Similarly, Tables 3.a, 3.b and 3.c show the results of three IMFs using the O2Hb, HHb, TOI and THI 

signals obtained before and after the training period during baseline for the healthy controls, the fit-walking 

patients, and the adapted physical training patients, respectively. Controls did not show remarkable changes 

in the parameters during baseline conditions, except for the case of the FD and HE of the second and third 

IMF of the HHb signal, respectively, and the SE of the third IMF of the TOI signal (Table 3.a). The diabetic 

subjects of the fit walking group exhibited an increase in the SE for the O2Hb, THI and TOI signals. The HE 

increased in the third IMF of the O2Hb and of the THI signals, but decreased in the first and third IMF of the 

TOI signal and in the first IMF of the HHb signal. No significant changes are observed for the FD (Table 

3.b). Opposite to the fit walking group, Table 3.c shows that the HE decreased in the IMFs of the O2Hb and 

THI signals relative to the diabetic subjects who performed APT, and increased in the third IMF of the TOI 

signal. The HHb signal showed unclear changes, because the HE decreased in the first IMF and increased in 

the third IMF. The SE increased slightly in the third IMF of the TOI signal, whereas the FD did not show 

significant changes. Therefore, even if both groups of diabetic subjects showed changes in their NIRS pattern 

in resting condition, such changes are overall opposite and dependent on the kind of physical training 

performed.  

The previous results compared the NIRS metabolic pattern of the subjects belonging to the same group 

before and after physical training. To compare the effect of training among the groups, we performed the 



one-way MANOVA analysis considering the group as the independent variable. Figure 2 is relative to the 

baseline, and it represents the subjects in the plane of the first and second canonical variable of the 

MANOVA before (left panel) and after (right panel) physical training. It can be noticed that, after training, 

the subjects are closer than at the beginning, showing that diabetic subjects became more similar to controls. 

Before training, the dimension of the MANOVA is 2 (p values equal to 10-5 and 0.0483), thus it is possible to 

reject the hypothesis that the subjects belonged to the same group. After training the dimension is equal to 1 

(p values equal to 0.0238 and 0.9706), thus indicating that only two groups can be distinguished (APT from 

controls plus FW). Similarly, figure 3 shows the subjects in function of the canonical variables during 

exercise. Before the training (left panel) the dimension of the MANOVA is equal to 1 (p values equal to 10-5 

and 0.1522), and the subjects did not belong to the same group. After the training (right panel) the dimension 

lowered to 0 (p values equal to 0.2037 and 0.5361), thus it is not possible to reject the hypothesis that the 

subjects belonged to the same group. In other words, during exercise and after training, all the subjects 

(diabetic and controls) showed substantially the same NIRS pattern. Finally, Table 4 reports the five most 

discriminant variables among groups for the four conditions (baseline before/after and exercise before/after). 

 

5. Discussion 

Our obtained results demonstrate that physical activity (either APT or FW) increased the SE and FD, and 

decreased the HE of the NRS signals during excercise. When comparing the subjects before and after the 

training, the increase in SE is more evident on the O2Hb and TOI signals, which directly reflect the 

oxygenation status of the muscle fibers (13, 37). Previous studies already showed that accurately measuring 

the improvement in the overall neuromuscular status of the subjects is a significant step (28).  

We have also performed multivariate analysis of variance (MANOVA) test on the dataset. We separately 

analyzed the baseline condition and during exercise. During baseline, when the muscle is not active, the 

changes in the concentration of the chromophores are mainly due to vascular and neurological impairment, 

whereas during exercise the muscle metabolism and composition plays a role. We observe that at the 

beginning of the study there is a neat separation between the groups in baseline conditions, while this 



difference decreased after one year of physical training (fig. 2). The most discriminant features among the 

groups are relative to either the HHb or the TOI signal. Particularly, the FD of the first IMF of the HHb 

signal is the most important feature to distinguish the subjects (Table 4, first row). Higher values of FD 

describe more complex and variable patterns, which correspond to a healthy and well functioning 

neuromuscular system (12, 28). Also, previous studies related to the central nervous system demonstrated 

that, carbon dioxide is the chromophore whose changes are more indicative of the status of the system (28, 

38). During muscle contraction (fig. 3), muscle metabolism, muscle fiber conduction velocity, and venous 

outflow play a major role and the effect of training is even more evident. After training, it is not possible to 

reject the hypothesis that all subjects belong to the same group. Even during exercise, the most discriminant 

variables are all related to the first IMF of the HHb signal (Table 4, the two rightmost columns).  

We have taken care to avoid possible biases due to degradating of the optical instrumentation. The 

NIRO300 system has an emitting probe consisting of laser diodes. We have calibrated the system before 

each acquisition by using the optical phantom provided by the manufacturer  in order to  exclude the 

degradation of the laser source., We did not observe any failure or warning messages in the calibration 

procedures. 

From a clinical point of view, the use of non-linear features extracted from the NIRS signals during a 

muscle contraction yielded a better assessment of the neuromuscular system of the subjects. The overall 

system complexity can be adequately quantified by using FD, HE, and SE. The EMD time-frequency 

analysis can extract the inner nonstationarity present in the NIRS signals. In fact, traditional spectral 

techniques cannot provide adequate information on this kind of signals, because of a lack of spectral 

resolution. The EMD is a nonlinear method which can be used for processing NIRS signals and it does not 

require stationarity and linearity conditions of the signals. 

A limitation of the study is the impossibility of assessing separately the neurological and vascular 

impairment of diabetic subjects. More studies are needed to understand vascular impairments (mainly in the 

arterial compartment), and impact of the EMG signal due to dynamic contractions. An important 

development, connected to the, is the investigation of the recovery phase (fig. 1, last part of the signals). 

During recovery the NIRS signals can be approximated by exponential functions (13), and it is shown that 



longer recovery time is associated to a peripheral artery disease with claudication (13). However, the 

estimation of the exponential time constant may be difficult in certain conditions, because of the low signal-

to-noise ratio typical of NIRS recording. In our experience, often the recovery time did not produce 

significant results. However, since the NIRS signal has overt variations during recovery, dedicated 

procedures must be developed. In this work, we did not analyze the recovery phase. A second limitation of 

this study is the absence of a group of diabetic patients who did not follow any physical activity programme. 

Such control group may be useful to better understand the reasons why physical activity caused this overt 

effect on the NIRS signals architecture.  

 

 

6. Conclusions 

NIRS signals can be reliably used to assess the neuromuscular and metabolic state of muscles in type 2 

diabetic patients. The subtle changes in NIRS signals must be captured accurately and robust processing 

techniques must be adopted, because of their non-stationary and non-linear nature. In this paper, various 

nonlinear features are extracted from the IMFs of the EMD method applied on muscular NIRS signals 

recorded during baseline and during ankle movement. Our results clearly indicate that diabetic subjects who 

underwent one year of physical training improved their NIRS pattern and increased the FD and SE, while the 

HE is reduced. These results document that the NIRS metabolic pattern of diabetic patients becomes more 

complex and this is a clinically positive results, because complexity is a condition typical of healthy subjects. 

Even though more studies are needed, EMD applied to NIRS signals is very useful to gain a non-invasive 

deeper understanding of the neuromuscular and vascular impairment of diabetic subjects. 
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Tables 

 

Table 1.  

Demographics of the patients and of the healthy controls 

 
APT group 

(15 patients) 

FW group 

(9 patients) 

Controls 

(16 subjects) 

Age (years) 66.7 ± 5.7 66.0 ± 6.2 65.2 ± 3.9 

Males 10 14 8 

HbA1c (%) 7.8 ± 1.0 7.4 ± 0.9 5.2 ± 1.6* 

HbA1c (mmol/mol) 62 ± 14 57 ± 14 33 ± 6* 

BMI (km/m2) 19.3 ± 2.2 20.2 ± 1.9 19.5 ± 1.5 

Duration diabetes (years) 19.0 ± 9.9 18.7 ± 10.1 - 

Neuropathy disability score (NDS) 2.04 ± 1.92 1.82 ± 1.87 - 

*The values are statistically different from those of patients (p < 0.1) 

 

  



Table 2.a – EMD derived features for controls during exercise. 

Controls exercise 

Signal IMF Features Pre Post p-Value 

O2Hb 

IMF1 

FD 2.0514 ± 0.0387 2.0404 ± 0.0271 0.4532 

HE 0.1985 ± 0.1347 0.2592 ± 0.0853 0.2151 

SE 2.1307 ± 0.0620 2.1225 ± 0.1097 0.7660 

IMF2 

FD 1.8804 ± 0.1003 1.8582 ± 0.1139 0.4723 

HE 0.3385 ± 0.1353 0.2798 ± 0.1526 0.3103 

SE 2.1331 ± 0.0700 2.0900 ± 0.1068 0.1746 

IMF3 

FD 1.3353 ± 0.1262 1.3296 ± 0.1644 0.9089 

HE 0.5084 ± 0.1015 0.4750 ± 0.1619 0.5312 

SE 1.8720 ± 0.3131 1.9201 ± 0.3217 0.6294 

HHb 

IMF1 

FD 2.0524 ± 0.0355 2.0407 ± 0.0275 0.4061 

HE 0.2565 ± 0.1213 0.2936 ± 0.1130 0.3757 

SE 2.1200 ± 0.1069 2.1445 ± 0.1191 0.5949 

IMF2 

FD 1.8822 ± 0.0736 1.8939 ± 0.0663 0.7024 

HE 0.3090 ± 0.1064 0.2909 ± 0.1045 0.6477 

SE 2.1106 ± 0.0984 2.0680 ± 0.1072 0.2341 

IMF3 

FD 1.3733 ± 0.1071 1.3786 ± 0.1249 0.8969 

HE 0.4651 ± 0.1263 0.5078 ± 0.1561 0.4630 



SE 1.9565 ± 0.2580 2.0467 ± 0.1828 0.2914 

THI 

IMF1 

FD 2.0594 ± 0.0414 2.0421 ± 0.0307 0.2187 

HE 0.2081 ± 0.0909 0.2769 ± 0.1206 0.1053 

SE 2.1105 ± 0.0678 2.0897 ± 0.1382 0.5357 

IMF2 

FD 1.8988 ± 0.0687 1.8948 ± 0.0616 0.8595 

HE 0.2384 ± 0.0922 0.2658 ± 0.1233 0.5300 

SE 2.1271 ± 0.0753 2.0767 ± 0.1428 0.2688 

IMF3 

FD 1.4508 ± 0.1197 1.4438 ± 0.1126 0.8364 

HE 0.3882 ± 0.1206 0.4132 ± 0.1003 0.5250 

SE 2.0702 ± 0.1369 2.0493 ± 0.1540 0.6644 

TOI 

IMF1 

FD 2.0455 ± 0.0161 2.0367 ± 0.0184 0.1929 

HE 0.2395 ± 0.0975 0.2928 ± 0.0518 0.0781* 

SE 2.1530 ± 0.0905 2.1572 ± 0.0774 0.9003 

IMF2 

FD 1.9132 ± 0.0327 1.8962 ± 0.0357 0.1526 

HE 0.2491 ± 0.1311 0.2761 ± 0.0671 0.4058 

SE 2.1365 ± 0.0726 2.1389 ± 0.1379 0.9533 

IMF3 

FD 1.4353 ± 0.0760 1.4024 ± 0.1074 0.2771 

HE 0.4076 ± 0.1381 0.4310 ± 0.1321 0.6133 

SE 2.0309 ± 0.1935 2.0905 ± 0.1225 0.1579 

 

  



Table 2.b – EMD derived features for diabetic subjects who performed fit walking during exercise. 

Fit Walking exercise 

Signal IMF Features Pre Post p-Value 

O2Hb 

IMF1 

FD 2.0246 ± 0.0741 2.0469 ± 0.0394 0.2874 

HE 0.2701 ± 0.1929 0.2604 ± 0.0857 0.8701 

SE 1.9663 ± 0.4705 2.0700 ± 0.2246 0.4666 

IMF2 

FD 1.8275 ± 0.1287 1.8770 ± 0.0628 0.1608 

HE 0.2677 ± 0.1924 0.2662 ± 0.1147 0.9807 

SE 1.8521 ± 0.5138 2.0569 ± 0.3056 0.2042 

IMF3 

FD 1.2873 ± 0.1147 1.3415 ± 0.1302 0.2103 

HE 0.5128 ± 0.1498 0.3943 ± 0.1279 0.0231* 

SE 1.5638 ± 0.4958 1.8837 ± 0.2813 0.0226* 

HHb 

IMF1 

FD 2.0397 ± 0.0592 2.0435 ± 0.0249 0.8235 

HE 0.3315 ± 0.1414 0.2911 ± 0.1060 0.4050 

SE 2.0582 ± 0.3134 2.1100 ± 0.1137 0.5624 

IMF2 

FD 1.8475 ± 0.1071 1.8896 ± 0.0764 0.1899 

HE 0.2604 ± 0.1627 0.2232 ± 0.1010 0.4037 

SE 1.9349 ± 0.3615 2.0980 ± 0.0951 0.0925* 

IMF3 

FD 1.3343 ± 0.0879 1.3378 ± 0.1063 0.9165 

HE 0.4428 ± 0.1501 0.4822 ± 0.1081 0.4135 



SE 1.7543 ± 0.4024 1.8751 ± 0.3249 0.3959 

THI 

IMF1 

FD 2.0238 ± 0.0791 2.0494 ± 0.0366 0.2660 

HE 0.2837 ± 0.1126 0.2496 ± 0.0958 0.3862 

SE 2.0446 ± 0.3598 2.1181 ± 0.1656 0.4962 

IMF2 

FD 1.8565 ± 0.0501 1.8944 ± 0.0418 0.0672* 

HE 0.2683 ± 0.1014 0.3176 ± 0.1233 0.2533 

SE 2.0176 ± 0.3188 2.0767 ± 0.2491 0.5937 

IMF3 

FD 1.3841 ± 0.0797 1.4638 ± 0.0813 0.0161* 

HE 0.4245 ± 0.1358 0.3685 ± 0.1281 0.1577 

SE 1.9186 ± 0.2864 2.0471 ± 0.1339 0.1537 

TOI 

IMF1 

FD 2.0301 ± 0.0398 2.0460 ± 0.0237 0.2203 

HE 0.2739 ± 0.1241 0.2337 ± 0.1050 0.3911 

SE 2.1282 ± 0.1294 2.1504 ± 0.1050 0.5408 

IMF2 

FD 1.8914 ± 0.0345 1.9067 ± 0.0356 0.2326 

HE 0.2572 ± 0.0896 0.2361 ± 0.0989 0.4779 

SE 2.1117 ± 0.1217 2.1517 ± 0.0739 0.2987 

IMF3 

FD 1.4493 ± 0.0927 1.4843 ± 0.0809 0.2176 

HE 0.4377 ± 0.1042 0.3754 ± 0.1113 0.1306 

SE 2.0988 ± 0.1510 2.1091 ± 0.0899 0.8369 

 

  



Table 2.c – EMD derived features for diabetic subjects who performed adapted physical therapy during 

exercise. 

Adapted Physical Therapy exercise 

Signal IMF Features Pre Post p-Value 

O2Hb 

IMF1 

FD 2.0331 ± 0.0419 2.0348 ± 0.0316 0.8985 

HE 0.2937 ± 0.1059 0.2347 ± 0.0945 0.1194 

SE 2.0183 ± 0.3292 2.0998 ± 0.2322 0.3566 

IMF2 

FD 1.8221 ± 0.0800 1.8902 ± 0.0565 0.0114* 

HE 0.2938 ± 0.1408 0.2350 ± 0.1411 0.1411 

SE 1.8882 ± 0.3648 2.0494 ± 0.3045 0.1635 

IMF3 

FD 1.3105 ± 0.1077 1.4152 ± 0.0959 0.0083* 

HE 0.5206 ± 0.1550 0.4599 ± 0.1457 0.1754 

SE 1.7135 ± 0.3844 1.9182 ± 0.3068 0.0748* 

HHb 

IMF1 

FD 2.0448 ± 0.0355 2.0446 ± 0.0232 0.9794 

HE 0.2871 ± 0.1089 0.2656 ± 0.0858 0.5404 

SE 2.0586 ± 0.1840 2.1481 ± 0.0822 0.0219* 

IMF2 

FD 1.8640 ± 0.0584 1.8983 ± 0.0669 0.1206 

HE 0.2984 ± 0.1084 0.1918 ± 0.1248 0.0063* 

SE 2.0054 ± 0.2017 2.1100 ± 0.0961 0.0350* 

IMF3 

FD 1.3466 ± 0.0967 1.4261 ± 0.1220 0.0523* 

HE 0.4484 ± 0.0969 0.4749 ± 0.1192 0.4652 



SE 1.8616 ± 0.3046 2.0061 ± 0.2451 0.1460 

THI 

IMF1 

FD 2.0359 ± 0.0412 2.0426 ± 0.0169 0.5292 

HE 0.2925 ± 0.0981 0.2399 ± 0.0878 0.1075 

SE 1.9827 ± 0.4421 2.1753 ± 0.0333 0.0561* 

IMF2 

FD 1.8652 ± 0.0502 1.8937 ± 0.0540 0.1253 

HE 0.2602 ± 0.0959 0.2327 ± 0.1107 0.4541 

SE 1.9110 ± 0.3762 2.1340 ± 0.0628 0.0215* 

IMF3 

FD 1.4391 ± 0.1095 1.4508 ± 0.1129 0.6902 

HE 0.3510 ± 0.1760 0.3737 ± 0.1143 0.6117 

SE 1.9658 ± 0.2104 2.0193 ± 0.2694 0.5140 

TOI 

IMF1 

FD 2.0362 ± 0.0400 2.0439 ± 0.0120 0.4352 

HE 0.2891 ± 0.1119 0.2550 ± 0.1005 0.3333 

SE 2.0877 ± 0.3879 2.1758 ± 0.0318 0.3194 

IMF2 

FD 1.8806 ± 0.0629 1.8972 ± 0.0212 0.2643 

HE 0.2809 ± 0.0942 0.2333 ± 0.0791 0.0806* 

SE 2.1131 ± 0.1999 2.1430 ± 0.0763 0.5640 

IMF3 

FD 1.4291 ± 0.0889 1.4238 ± 0.0738 0.7955 

HE 0.3883 ± 0.1178 0.4686 ± 0.0950 0.0424* 

SE 2.0494 ± 0.1908 2.1075 ± 0.1763 0.3875 

 

  



Table 3.a – EMD derived features for controls during baseline. 

Controls  Baseline 

Signal IMF Features Pre Post p-Value 

O2Hb 

IMF1 

FD 2.0454 ± 0.0229 2.0464 ± 0.0247 0.9004 

HE 0.2053 ± 0.1358 0.2229 ± 0.1152 0.5503 

SE 2.1020 ± 0.1524 2.1176 ± 0.2136 0.8153 

IMF2 

FD 1.9021 ± 0.0487 1.8978 ± 0.0425 0.8221 

HE 0.2647 ± 0.1679 0.2607 ± 0.1968 0.9582 

SE 2.1862 ± 0.1052 2.1066 ± 0.1988 0.2202 

IMF3 

FD 1.4714 ± 0.1568 1.4264 ± 0.1172 0.3212 

HE 0.5015 ± 0.1844 0.5795 ± 0.1632 0.2551 

SE 1.9751 ± 0.3270 2.0306 ± 0.2972 0.6380 

HHb 

IMF1 

FD 2.0465 ± 0.0271 2.0428 ± 0.0296 0.7238 

HE 0.1749 ± 0.1661 0.2164 ± 0.1461 0.5239 

SE 2.0569 ± 0.2376 2.0933 ± 0.2428 0.6864 

IMF2 

FD 1.9126 ± 0.0421 1.8770 ± 0.0717 0.0758* 

HE 0.2125 ± 0.1727 0.2552 ± 0.1236 0.4439 

SE 2.0605 ± 0.3111 2.0606 ± 0.2649 0.9988 

IMF3 

FD 1.4051 ± 0.1317 1.4976 ± 0.1628 0.1028 

HE 0.6244 ± 0.1776 0.5207 ± 0.1395 0.0747* 



SE 2.0814 ± 0.1737 2.0183 ± 0.3344 0.4821 

THI 

IMF1 

FD 2.0437 ± 0.0297 2.0369 ± 0.0230 0.3558 

HE 0.2105 ± 0.1309 0.2105 ± 0.1418 0.9990 

SE 2.0551 ± 0.2366 2.1381 ± 0.1581 0.3160 

IMF2 

FD 1.8856 ± 0.0586 1.8869 ± 0.0401 0.9256 

HE 0.2593 ± 0.1611 0.2685 ± 0.1604 0.8766 

SE 2.1056 ± 0.1526 2.1091 ± 0.2226 0.9582 

IMF3 

FD 1.4407 ± 0.1201 1.4475 ± 0.0868 0.8524 

HE 0.5429 ± 0.1116 0.5221 ± 0.1533 0.6399 

SE 2.0991 ± 0.2621 2.0797 ± 0.3413 0.8638 

TOI 

IMF1 

FD 2.0364 ± 0.0277 2.0434 ± 0.0293 0.4471 

HE 0.2012 ± 0.1571 0.2086 ± 0.1215 0.8568 

SE 2.1520 ± 0.0743 2.1934 ± 0.0296 0.0640* 

IMF2 

FD 1.9124 ± 0.0565 1.9139 ± 0.0446 0.9380 

HE 0.2547 ± 0.1066 0.2920 ± 0.1431 0.4025 

SE 2.1613 ± 0.1387 2.2011 ± 0.0744 0.1419 

IMF3 

FD 1.5229 ± 0.1363 1.4921 ± 0.1328 0.5683 

HE 0.5372 ± 0.1397 0.5019 ± 0.1817 0.5301 

SE 2.1025 ± 0.1443 2.1469 ± 0.1430 0.4273 

 

  



Table 3.b – EMD derived features for diabetic subjects who performed fit walking during baseline. 

Fit Walking Baseline 

Signal IMF Features Pre Post p-Value 

O2Hb 

IMF1 

FD 2.0402 ± 0.0143 2.0402 ± 0.0414 0.9972 

HE 0.2749 ± 0.0982 0.2465 ± 0.1008 0.3178 

SE 2.1427 ± 0.1422 2.1475 ± 0.0776 0.9175 

IMF2 

FD 1.8881 ± 0.0410 1.9025 ± 0.0541 0.4829 

HE 0.2501 ± 0.1889 0.3321 ± 0.1189 0.1780 

SE 2.0415 ± 0.2602 2.1225 ± 0.1409 0.2974 

IMF3 

FD 1.3927 ± 0.1337 1.4599 ± 0.1958 0.2958 

HE 0.4407 ± 0.1692 0.5637 ± 0.1633 0.0379* 

SE 1.7584 ± 0.4826 2.0715 ± 0.2233 0.0467* 

HHb 

IMF1 

FD 2.0469 ± 0.0178 2.0460 ± 0.0265 0.9183 

HE 0.3432 ± 0.1026 0.2165 ± 0.1460 0.0012* 

SE 2.1363 ± 0.1707 2.0821 ± 0.1528 0.4156 

IMF2 

FD 1.8821 ± 0.0563 1.9094 ± 0.0422 0.0835 

HE 0.2189 ± 0.1623 0.1481 ± 0.1633 0.2928 

SE 1.9822 ± 0.3059 2.0209 ± 0.2558 0.7317 

IMF3 

FD 1.4126 ± 0.0957 1.4837 ± 0.1596 0.1290 

HE 0.3934 ± 0.1557 0.5106 ± 0.2004 0.1405 



SE 1.8099 ± 0.4221 1.9513 ± 0.3532 0.2786 

THI 

IMF1 

FD 2.0470 ± 0.0152 2.0420 ± 0.0321 0.6023 

HE 0.2784 ± 0.0955 0.2320 ± 0.1174 0.1960 

SE 2.1831 ± 0.0289 2.1429 ± 0.0836 0.0870* 

IMF2 

FD 1.8855 ± 0.0331 1.8668 ± 0.0662 0.3018 

HE 0.3169 ± 0.1106 0.3153 ± 0.1415 0.9672 

SE 2.1558 ± 0.0693 2.1070 ± 0.1722 0.2871 

IMF3 

FD 1.4654 ± 0.0983 1.4294 ± 0.1263 0.3206 

HE 0.3986 ± 0.1276 0.5339 ± 0.1706 0.0045* 

SE 2.0846 ± 0.1394 2.0409 ± 0.2720 0.4677 

TOI 

IMF1 

FD 2.0467 ± 0.0189 2.0488 ± 0.0252 0.8316 

HE 0.2994 ± 0.0768 0.2264 ± 0.0909 0.0353* 

SE 2.1709 ± 0.0371 2.1811 ± 0.0574 0.5963 

IMF2 

FD 1.8872 ± 0.0335 1.8922 ± 0.0462 0.7303 

HE 0.2623 ± 0.1462 0.3091 ± 0.1194 0.2806 

SE 2.1665 ± 0.0615 2.2020 ± 0.0561 0.0871* 

IMF3 

FD 1.4802 ± 0.0925 1.4952 ± 0.1291 0.7048 

HE 0.4149 ± 0.1192 0.4980 ± 0.0946 0.0538* 

SE 2.1358 ± 0.1363 2.1786 ± 0.0615 0.2538 

 

  



Table 3.c – EMD derived features for diabetic subjects who performed adapted physical therapy during 

baseline. 

Adapted Physical Therapy baseline 

Signal IMF Features Pre Post p-Value 

O2Hb 

IMF1 

FD 2.0464 ± 0.0204 2.0411 ± 0.0222 0.5074 

HE 0.2550 ± 0.0706 0.1646 ± 0.1516 0.0221* 

SE 2.1201 ± 0.0928 2.1304 ± 0.1386 0.8058 

IMF2 

FD 1.8770 ± 0.0629 1.8998 ± 0.0576 0.1990 

HE 0.2986 ± 0.1532 0.2517 ± 0.1394 0.3590 

SE 1.9940 ± 0.2991 2.0929 ± 0.1933 0.1782 

IMF3 

FD 1.4647 ± 0.0960 1.4648 ± 0.1103 0.9969 

HE 0.4475 ± 0.1913 0.5148 ± 0.1401 0.2178 

SE 1.8484 ± 0.4088 2.0090 ± 0.3052 0.2542 

HHb 

IMF1 

FD 2.0413 ± 0.0212 2.0341 ± 0.0267 0.4408 

HE 0.2644 ± 0.0944 0.1750 ± 0.1105 0.0106* 

SE 2.1131 ± 0.1409 2.0813 ± 0.1570 0.5405 

IMF2 

FD 1.8965 ± 0.0478 1.8930 ± 0.0563 0.8295 

HE 0.2571 ± 0.1085 0.2553 ± 0.1962 0.9680 

SE 2.0413 ± 0.2771 2.0906 ± 0.2070 0.4647 

IMF3 

FD 1.4641 ± 0.1005 1.4617 ± 0.1320 0.9416 

HE 0.4313 ± 0.1202 0.5413 ± 0.2080 0.0404* 



SE 2.0441 ± 0.2864 2.0478 ± 0.2077 0.9626 

THI 

IMF1 

FD 2.0332 ± 0.0438 2.0453 ± 0.0198 0.2621 

HE 0.2578 ± 0.1074 0.2025 ± 0.1021 0.0913* 

SE 2.0542 ± 0.3087 2.1634 ± 0.1212 0.1571 

IMF2 

FD 1.8700 ± 0.0670 1.8815 ± 0.0388 0.4296 

HE 0.2502 ± 0.1427 0.2928 ± 0.1360 0.2516 

SE 2.0493 ± 0.1925 2.1349 ± 0.1254 0.1343 

IMF3 

FD 1.4634 ± 0.0924 1.4507 ± 0.1098 0.6559 

HE 0.4860 ± 0.1690 0.5453 ± 0.1681 0.3544 

SE 2.0658 ± 0.1703 2.0473 ± 0.2638 0.7678 

TOI 

IMF1 

FD 2.0391 ± 0.0436 2.0520 ± 0.0281 0.3381 

HE 0.2579 ± 0.0983 0.2152 ± 0.1278 0.2968 

SE 2.0916 ± 0.3955 2.1754 ± 0.0557 0.3644 

IMF2 

FD 1.8877 ± 0.0906 1.9020 ± 0.0395 0.4954 

HE 0.2476 ± 0.1237 0.3041 ± 0.1037 0.1195 

SE 2.1799 ± 0.0721 2.1904 ± 0.0622 0.6609 

IMF3 

FD 1.4686 ± 0.0860 1.4524 ± 0.0902 0.5839 

HE 0.4603 ± 0.1281 0.5437 ± 0.1576 0.0586* 

SE 2.0963 ± 0.1273 2.1751 ± 0.1061 0.0240* 

 

  



Table 4.  

Five most discriminant variables among groups in the different conditions, as obtained by MANOVA. Each 

variable is uniquely indicated by a signal (O2Hb, HHb, or TOI), number of the IMF, and feature. 

(FD –Fractal Dimension; HE – Hurst Exponent; SE – Sample Entropy) 

 

Before training 

(baseline) 

After training 

(baseline) 

Before training 

(exercise) 

After training 

(exercise) 

HHb IMF1 FD HHb IMF1 FD HHb IMF1 FD HHb IMF1 FD 

HHb IMF1 HE HHb IMF2 FD HHb IMF1 HE HHb IMF1 HE 

TOI IMF2 SE TOI IMF2 FD HHb IMF1 SE HHb IMF1 SE 

TOI IMF3 SE TOI IMF3 SE HHb IMF2 FD HHb IMF2 HE 

TOI IMF3 HE TOI IMF3 HE O2Hb IMF2 FD TOI IMF3 HE 

 

  



FIGURES 

Figure 1  

O2Hb signal (red line) and HHb (blue line) of a subject performing the exercise. During the contraction the 

local concentration of O2Hb decreases whereas that of HHb increases. 

 

  



 

Figure 2 

MANOVA analysis during baseline: (left panel) before physical training; (right panel) after physical 

training. Black diamonds indicate healthy controls, white circles the diabetic subjects who performed fit 

walking, and the gray squares the diabetic subjects who performed the adapted physical therapy. The groups 

distance is reduced after training and the dimension of the sample decreased from 2 to 1. 

 

 

 

 

 

  



Figure 3 

MANOVA analysis during exercise: (left panel) before physical training; (right panel) after physical 

training. Black diamonds indicate healthy controls, white circles the diabetic subjects who performed fit 

walking, and the gray squares the diabetic subjects who performed the adapted physical therapy. The groups 

distance is reduced after training and the dimension of the sample decreased from 1 to 0. 

 

 


