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Abstract: Plug-in hybrid electric vehicles (pHEVs) could represent the stepping stone to 

move towards a more sustainable mobility and combine the benefits of electric powertrains 

with the high range capability of conventional vehicles. Nevertheless, despite the huge 

potential in terms of CO2 emissions reduction, the performance of such vehicles has to be 

deeply investigated in real world driving conditions considering also the CO2 production 

related to battery recharge which, on the contrary, is currently only partially considered 

by the European regulation to foster the diffusion of pHEVs. Therefore, this paper aims 

to assess, through numerical simulation, the real performance of a test case pHEV, the 

energy management system (EMS) of which is targeted to the minimization of its overall 

CO2 emissions. The paper highlights, at the same time, the relevance of the CO2 production 

related to the battery recharge from the power grid. Different technologies mixes used to 

produce the electricity required for the battery recharge are also taken into account in order 

to assess the influence of this parameter on the vehicle CO2 emissions. Finally, since the 

operating cost still represents the main driver in orienting the customer’s choice, an alternative 

approach for the EMS, targeted to the minimization of this variable, is also analyzed. 

Keywords: plug-in hybrid electric vehicle (pHEV); CO2 emissions; energy cost; real world 

driving cycles 
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1. Introduction 

In 2010, the United Nations Intergovernmental Panel on Climate Change (IPCC) concluded that a 

reduction of at least 50% in global CO2 emissions, compared to 2000 levels, had to be achieved by 2050, 

in order to limit the long-term rise of the global average temperature due to the greenhouse gas effect [1]. 

Although this target has been set for all sources of CO2 emissions, the transportation sector, which is 

responsible for 33% of carbon dioxide emissions [2], unlike most of the other sectors, has shown an 

increase in total greenhouse gas emissions, which have been predicted to grow further in the coming 

years [3], due to the expansion of the global vehicle fleet. 

In this framework, electric vehicles (EVs) could pave the way toward a more sustainable mobility 

since they do not generate pollutant emissions locally and can potentially rely on energy from a 

selection of renewable sources. 

Nevertheless, since the range capability and long recharging time still limit the market penetration 

of EVs [4], nowadays plug-in hybrid electric vehicles (pHEVs) seem to be the most promising 

solution to bridge the gap between the desirable features of an electric powertrain and the range of 

conventional vehicles. In a pHEV, the presence of an additional energy reservoir (i.e., an electric battery) 

shifts a portion of the emissions burden, during the automobile travel, from on-road fossil fuel combustion 

to electricity generation from stationary power plants improving the efficiency of the powertrain. 

Although the European regulation only partially takes into account the CO2 production related to 

battery recharge in order to foster the diffusion of such vehicles, the impact of this shift on the overall 

CO2 emissions depends on the average efficiency of the internal combustion engine (ICE), and on the 

amount of the electricity required from the grid. It has been shown from different impact studies 

(for example, [5]) that emissions caused by electrical power generation, used for charging EV batteries, 

may vary significantly according to the combination of several factors, among which the period of the 

day used for charging and the energy demand daily profiles [6,7], the generation portfolio, and the 

amount of installed ―green‖ power. Hence possible further reductions of CO2 emissions related to the 

charging from the grid phases strongly depend on factors on which governments have no direct control 

in a liberalized market framework. A possible way to avoid this uncertainty could be tailor-made 

contracts between vehicle’s owners and energy suppliers, in order to drive the choices of the pHEVs 

owners towards lower CO2 emissions recharging patterns. 

Moreover, not only CO2 emissions, but also the operating cost of the vehicle should be taken into 

account in the definition of the vehicle targets since it is one of the main drivers in orienting the 

customer’s choice and it depends to a greater extent on both fuel and electricity costs. 

Although similar approaches have already been applied in literature for relatively simple hybrid 

architectures [8], the optimization and the full exploitation of the potentials of complex plug-in hybrids 

such as the one analyzed in this work still represent a quite challenging issue, which is worth to be 

addressed more in depth. Moreover, the assessment of the CO2 emissions reduction potential of 

complex plug-in hybrids along driving patterns representative of real world operation, including significant 

altitude variations, which have been traditionally representing the Achille’s heel of energy management 

strategies of hybrid powertrains, is also of paramount importance. 

This paper therefore aims to assess, through numerical simulation, the real performance of a test 

case pHEV the energy management system (EMS) of which is targeted towards the minimization of its 
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overall CO2 emissions, and to highlight, at the same time, the main differences with respect to the 

regulatory European test procedure. Different technology mixes used to produce the electricity required 

for the battery recharge are also taken into account in order to assess the influence of this parameter on 

the vehicle CO2 emissions. Finally, since the operating cost still represents the main driver orienting 

the customer’s choice, an alternative approach for the EMS, targeted to the minimization of this variable, 

is also analyzed. 

After a brief description of the methodology (Section 2), the paper presents the main features of the 

case study hybrid architecture (Section 3) and the reference performance achieved with a control 

strategy focused on the minimization of the overall CO2 emissions (Section 4.1). The main findings of 

the sensitivity analysis, performed on the technology mixes used to produce electricity to recharge 

batteries are then presented (Section 4.2). Finally, the main differences between CO2 minimization and 

cost minimization strategies are pointed out (Section 4.3). 

2. Methodology 

The most noticeable feature of using a hybrid electric vehicle (HEV) is the additional degrees of 

freedom that can be obtained due to the presence of an additional energy reservoir—the electric 

battery—besides the fuel tank [9]. Indeed at each instant of time the power requested by the driver can 

be provided by either one of these sources or by a combination of the two. The choice among all the 

available powersplit strongly depends on the objective of the specific application: in most cases, it tends 

to minimize the fuel consumption of the vehicle, but it could also include the minimization of pollutant 

emissions, the maximization of power delivery, or a compromise among all these goals [10]. 

In general, the design of the EMS of a hybrid vehicle is an implementation of optimal control [11] 

and it can usually be addressed through several methodologies which can differ in performance, 

computational requirements and computational efforts [12,13]. Since the main focus of this paper is 

not the definition of the EMS, a global optimization algorithm, the dynamic programming (DP) [14,15], 

has been used to set the ideal performance of the case study hybrid architecture and to highlight the 

effects of some parameters on vehicle performance. The DP generates a numerical solution for an 

optimal control problem and it gives sufficient conditions for the global optimality. It is based on 

Bellman’s principle of optimality [11] and is able to manage dynamic models of the system; since DP 

is commonly used to solve time-continuous control problems, the model has to be discretized in a 

sequence of time steps for which DP is capable of determining the optimal control laws. Even though 

the need for a backward procedure means that the solution can be obtained only offline, for a driving 

cycle known a priori, and therefore it is not implementable on a real vehicle, the optimal control law 

can be used to gather information for the development of simpler and implementable strategies and to 

benchmark their performance [16,17]. 

All the analyses presented in this paper were carried out through numerical simulation performed on 

a vehicle model developed in Matlab environment. It relies on a kinematic approach [18], based on a 

backward methodology where the input variables are the speed of the vehicle and the grade angle of 

the road. From these variables, the powertrain output speed and the traction force that should be 

provided to the wheels can be easily determined [19]. Both the ICE and the electric machines are 

represented through performance maps that were experimentally measured under steady state 
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operating conditions. Despite the simple approach, other works proved good agreement [20] in the 

calculation of the instantaneous fuel consumption over the most common regulatory driving cycles. 

The consistent number of control/state variables, coupled with long mission profiles, requires high 

computational power and leads to huge amount of processing data. Therefore, in order to avoid 

unacceptable computational time, the high performance computer (HPC) provided by the Department 

of Control and Computer Engineering of the Politecnico di Torino was exploited [21]. 

3. Case Study 

The case study selected for this study is a pHEV featuring a complex architecture integrated in a 

mid-size European passenger car, the main specifications of which are represented in Table 1. 

Table 1. Basic specifications of the plug-in hybrid electric vehicle (pHEV).  

EM: electric motor; and ICE: internal combustion engine. 

Complex plug-in hybrid 

Vehicle: mid-size  

European passenger car 

Vehicle mass (kg) 1,760 

Frontal area (m2) 2.3 

Drag coefficient (-) 0.3 

Pdmd@100 km/h (kW) 12.8 

Electric generator:  

permanent magnet 

Max power (kW) 40 

Max torque (N∙m) 100 

Max speed (rpm) 14,000 

τ1 = ωGEN/ωICE 2 

EM: permanent magnet 

Max power (kW) 60 

Max torque (N∙m) 300 

Max speed (rpm) 6,000 

τ1 = ωGEN/ωICE 1 

Battery data: Li-ions Energy 6 kW∙h 

ICE: spark ignition engine 

Displacement (cm3) 2,000 

Max torque (N∙m) 168@5,500 rpm 

Max power (kW) 104@6,500 rpm 

As depicted in Figure 1, the vehicle is equipped with a 6 kW∙h lithium-ion battery connected to a 

60 kW electric motor (EM) which ensure an all-electric range of approximately 30 km in city driving. 

It also features another electric machine, which mainly works as a generator, and a 2.0-L, four-cylinder 

engine, paired with a six-gear manual transmission. 

The two electric machines are connected to the crankshaft with a fixed gear of appropriate ratio to 

fully exploit their operating range. A clutch allows disconnecting the ICE and the generator from the 

EM and from the wheels, so that several operating modes can be selected from the EMS: series mode, 

parallel mode and all electric modes. Moreover, opening the clutch, the engine is not dragged during 

regenerative braking or all electric modes, with significant fuel savings. 
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Figure 1. Vehicle architecture. 

 

Although most of the powertrain control strategies for HEVs aims to reduce the fuel consumption, 

such an approach may not be suitable for plug-in architectures since it neglects the energy 

consumption related to the battery, which is not an energy buffer, like in a charge sustaining HEV [9], 

but an additional energy source that has to be recharged from the power grid. 

Moreover, in order to prove the enhanced emissions performance of HEVs, complete life cycle 

analysis is also often considered in literatures [22,23]. However, the production process of these new 

vehicles cannot be easily compared with processes of conventional cars which have been optimized 

through several decades. Therefore, for this reason and for a fair comparison with the current legislation, 

in the present work equivalent ―tank-to-wheel‖ emissions will be calculated. 

A possible way of taking both the electrical and fuel contributions into account, is to minimize the 

overall CO2 emissions of the vehicle. As shown in Equation (1), besides considering the CO2 produced 

by the engine, a second term related to the battery discharge and to the technology mix used to produce 

the electricity supplied by the grid is also considered: 

  
    

     
              

 

 

 
 

          
                  (1) 

where J is the cost-to-go function; µCO2 and µfuel are the molar mass of CO2 and fuel, respectively; 

ṁf is the instantaneous fuel consumption of the engine; u(t) is the vector of the control variables;  

T is the duration of the vehicle mission; ηchg is the average battery charging efficiency; ηgrid is the 

transmission and distribution efficiency of a typical grid; CO2,pr is the average CO2 emission related to 

the production of the electrical energy that is supplied by the grid to recharge the battery; ΔSOC is the 

variation of the state of charge (SOC) from the beginning to the end of the vehicle mission; and Ebatt is 

the total electrical energy that can be stored in the battery. 

As far as batteries charging and grid efficiencies were concerned, according to the data reported 

in literatures [24,25] grid transmission and distribution losses were estimated to be equal to 6% of the 

generated electrical power, while, for the lithium batteries considered in this work, a charging 

efficiency equal to 86% was considered [26]. 

Moreover, the minimization of the cost function should ideally consider the entire life cycle of 

the vehicle. Nevertheless, in practical cases, the optimization horizon is finite and usually coincides 

with a short trip: according to several studies [27], about 70% of the daily driving distances in Europe 
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do not exceed 50 km, and could therefore be covered by pure EVs. In this study a reference trip length 

of about 70 km was considered with the aim of satisfying most of the customers’ requirements 

(about 90% in Europe). 

Finally since the real performance of pHEVs could significantly differ from the one recorded 

through the type approval procedure, the following analysis were performed in different driving 

conditions considering not only typical regulatory driving cycles (such as New European Driving 

Cycle (NEDC), Worldwide harmonized Light vehicles Test Procedures (WLTP) [28], US06, etc.), 

but also taking into account two real world driving schedules, experimentally measured, as representative 

of typical urban driving conditions (Aachen cycle—Figure 2a) and of extra-urban driving conditions 

with significant altitude variations (Arco-Merano cycle—Figure 2b) [29,30]. 

Figure 2. Real world driving cycles considered in the analysis: (a) Aachen cycle and 

(b) Arco-Merano cycle. 

  

(a) (b) 

4. Results and Discussion 

4.1. CO2 Minimization: Reference Case 

The aim of this analysis was to define the optimal control strategy which minimizes the total CO2 

produced by the vehicle, for several driving schedules, which were obtained through the repetition of 

the considered driving cycles until the target trip distance of about 70 km is reached. These tests were 

performed in charge depleting mode, starting from a battery SOC of 66%. This value was arbitrarily 

chosen in place of 100% only to avoid excessive simulation time to reach the minimum SOC of 

about 20%. 

The simulations were performed assuming a value of 326 g/kW∙h for the CO2,pr (Equation (1)) as 

representative of the average for the European countries belonging to the Organization for Economic 

Cooperation and Development (OECD) for the year of 2009 [31]. Taking into account the ηgrid and ηchg 

values previously specified, an overall CO2 production rate of about 400 g/kW∙h is obtained. 

Figure 3, where the operating mode selected by the DP is represented, shows that, despite of the 

relatively low energy capacity of the battery, the vehicle mainly operates in EV mode and the thermal 

engine only supports the propulsion during high demanding phases (i.e., vehicle accelerations or the 

extra-urban drive). Furthermore the DP does not exploit the series mode because of its low efficiency, 
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which is the result of multiple energy conversions between the ICE and the electric machines. On the 

contrary the parallel mode represents the best way to transmit power to the wheels. 

Figure 3. Mode selection—enlargement of the last Worldwide harmonized Light vehicles 

Test Procedures (WLTP) cycle. EV: electric vehicle. 

 

Moreover, the analysis of the powersplit represented in Figure 4 points out the limited contribution 

of the generator due to the efficiency maps of the electric machines and to the kinematic constraints 

imposed by the architecture. Indeed the DP uses the EM for regenerative braking and as an electric booster, 

while the generator (GEN) assists the EM for the electrical generation when the ICE is on (Figure 4). 

Figure 4. Powersplit—enlargement of a section of the WLTP cycles. GEN: generator; 

and DP: dynamic programming. 

 

Globally such a control law mainly intends to keep the engine on its best efficiency region 

(Figure 5a) and to achieve a linear discharge of the battery (Figure 5b) which represents the best 

exploitation of the energy stored in the battery as already highlighted by scientific literature for 

different hybrid architectures [32,33]. As a matter of fact, the CO2 specific emission of the engine 
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(about 650 g/kW∙h on average) is significantly higher in comparison with the average CO2 production 

rate CO2,pr of industrialized countries (Section 2); therefore the DP exploits the battery as much as possible, 

trying to reach the minimum SOC at the end of the trip. 

Figure 5. Effect of the control law defined by the DP on both New European Driving 

Cycle (NEDC) and WLTP driving cycles: (a) engine operating points (BSFC: brake specific 

fuel consumption) and (b) battery state of charge (SOC). 

  

(a) (b) 

The same behavior can be observed on the Aachen cycle (Figure 6a), which represents typical 

real world urban driving conditions, but not on the Arco-Merano cycle (Figure 6b). Its particular 

altitude pattern, with two strong downhills, leads to a SOC evolution which is no more linear with the 

travelled distance. In this case the DP prefers to collect all the CO2 saving coming from the usage of 

the battery during the first half of the cycle (when the powertrain provides power to the wheels) and 

then to recover the kinematic energy of the vehicle during the downhill. 

Figure 6. SOC vs. distance and altitude vs. distance: (a) Aachen cycle and  

(b) Arco-Merano cycle. 

  

(a) (b) 

Moreover, it is eye-catching that, at the end of the driving cycle, the battery is no more fully 

depleted. Since a strong downhill occurs just before the end of the trip, the only chance to reach the 

lower limit of the SOC at the end of the mission would have been to push the discharge of the battery 
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below the lower SOC limit before the last downhill, but, since the violation of the minimum SOC limit 

is prohibited, the best the DP can do is to reach the minimum SOC immediately before the last downhill. 

The CO2 emissions results obtained over the repetition of the selected driving cycles are shown in 

Table 2: it can be noticed that the full exploitation of the hybrid powertrain potential in terms of CO2 

emissions reduction achieved by the DP is quite impressive, since, even considering real world 

driving cycles, and taking into account the contribution of the battery recharge, remarkably low CO2 

emissions are reached, all below 100 g/km. 

Table 2. Multiple cycles emissions. 

Driving cycle 
Vehicle CO2 emissions (g/km) 

Engine Battery Total 

NEDC 61 16 77 

WLTP 74 16 90 

Aachen 69 23 92 

Arco-Merano 96 4 100 

From the analysis of Table 2, it is also worth pointing out that, if the contribution of the battery 

recharge phases is taken into account as in the proposed methodology, the overall CO2 emissions of the 

proposed pHEV are significantly higher than the values calculated through the European regulation for 

plug-in hybrid vehicles, which only partially takes into account the CO2 produced by the engine.  

As a matter of fact the European Union (EU) procedure requires two tests [34]: 

• Condition A: which is carried out with a fully charged electrical energy storage device; 

• Condition B: which is carried out with an electrical energy storage device in the minimum SOC 

(maximum discharge of battery capacity). 

Consequently the actual CO2 emissions of the vehicle are represented by the weighted average of 

the data recorded in the previous tests and the weights are the vehicle electric range and the average 

distance between two battery recharges (Equation (2)): 

  
            

      
 (2) 

where M1 and M2 (g/km) are the CO2 emissions recorded in Conditions A and B, respectively; De is the 

electric range of the vehicle (the distance covered in EV mode on the considered cycle or its multiple); 

and Dav is the average distance between two battery recharges (which is assumed to be about 25 km). 

As depicted in Table 3, applying the above-mentioned procedure to the tested pHEV, the benefits 

of the hybridization are emphasized. As a matter of fact, during Condition A, when the battery is 

fully charged, there is no CO2 production since the DP only exploits the EV mode (only on the WLTP 

cycle the capacity of the battery is not enough to perform the entire test, so a small amount of 

emissions is recorded). On the contrary, if the CO2 emissions due to the battery recharge phases 

are taken into account as in the proposed methodology, the pHEV CO2 emissions result to be 

significantly higher, although still remarkably lower than those of a conventional vehicle. 

  



Energies 2014, 7 4563 

 

 

Table 3. Emissions according to type approval European regulation. 

Driving 

cycle 

Condition A Condition B 

Final SOC Dtest1 (km) De (km) M1 (g/km) Final SOC Dtest2 (km) Dav (km) M2 (g/km) 

NEDC 0.68 11 30 0 0.23 11 25 80 

WLTP 0.31 23 21 4 0.22 23 25 93 

Overall results 

  
            

      
 

M (g/km) 

NEDC 36 

WLTP 52 

4.2. Energy Mix Influence: A Parametric Analysis of CO2 Rate 

As it was already pointed out in the previous sections, different technology mixes to produce the 

electricity required for the battery recharge may hugely affect the decisions taken by the DP since they 

change the cost of the electric energy (Equation (1)). 

Statistics data collected by the International Energy Agency (IEA) revealed that the CO2 specific 

emissions related to electricity production depend to a great extent on the considered geographical 

region [31]: the values can vary from 90 g/kW∙h (e.g., for France, where a significant fraction of the 

electrical energy is produced through nuclear power plants), up to about 1000 g/kW∙h in emerging 

countries (Table 4). Therefore in order to emphasize the effects of this parameter on the control law 

defined by the DP and on the vehicle performance, a sensitivity analysis was performed in the range 

from 75 g/kW∙h to 1000 g/kW∙h. Despite some works in literatures (for instance, [1]) report that using 

the average CO2 intensity of electricity generation to estimate the emissions caused by charging EVs 

could lead to imprecise results, the range of emissions here analyzed is so wide to bypass this issue. 

Table 4. CO2 production rate of the main countries in recent years. US: United States; 

and EU: European Union. 

Country 2003 2004 2005 2006 2007 2008 2009 Average of 2007–2009 

World 495 500 500 503 508 504 500 504 

US 571 571 570 542 549 535 508 531 

Japan 444 427 429 418 452 438 415 435 

France 81 79 93 87 90 87 90 89 

Germany 434 436 406 404 468 441 430 447 

Italy 511 459 449 468 440 421 386 416 

The United Kingdom 478 486 485 507 499 490 450 480 

EU 27 374 366 358 362 373 355 339 356 

China 776 804 787 787 758 744 743 748 

India 892 931 923 921 943 954 951 950 

The simulation results showed that, as expected, the higher the CO2 production rate is, the higher 

the energy produced by the ICE will be (Table 5). Nevertheless significant changes in the control 

strategy can be appreciated only if the CO2,pr is about 600 g/kW∙h (the energy provided by the ICE 

figures in Table 5), as shown in Figure 7. Below this threshold the CO2 production rate related to 

the battery recharge is lower than the average specific emission of the engine (about 650 g/kW ∙h), 
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so the DP exploits the energy stored in the battery, while above 600 g/kW∙h the use of the engine is 

more convenient. 

Table 5. Main findings of the sensitivity analysis on the CO2,pr (test performed on three 

repetitions of the WLTP). 

Final SOC (-) 0.22 0.22 0.24 0.62 0.88 0.89 0.89 

Energy provided by the ICE (kW∙h) 7.2 7.2 7.3 9.2 11 11 11 

Total CO2 Emission (battery + engine) (g/km) 76 90 93 96 108 108 108 

Figure 7. SOC trends obtained by changing the CO2 production rate. 

 

Globally if the CO2 production rate is higher, also the overall CO2 emissions increase since the 

reduction of the battery contribution is not able to balance the increase of the engine usage. 

4.3. Customer Perspective: The Operating Cost Approach 

Although nowadays customers are more and more aware of environmental issues, from their 

perspective HEVs primarily represent a way to reduce fuel expenditure. Therefore, the performance of 

the EMS, described in the previous sections, will be compared with an alternative methodology aiming 

to minimize the energy cost (Equation (3)): 

  
     

     
              

 

 

                  (3) 

As for the CO2 emissions, the cost function is composed of two parts: the first is related to the 

fuel cost, while the second is related to the electrical energy cost. Cfuel and Celec represent fuel and 

electricity costs, respectively, and they were assumed to be equal to the 2011 European average [35,36]. 

In order to highlight possible differences in the effects of this new EMS, a comparison between the 

operating modes chosen in this case with the operating modes of the reference case (targeted to the 

CO2 minimization) can be analyzed as shown for instance in Figure 8. 
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Figure 8. Enlargement of the last WLTP repetition. 

 

The analysis of Figure 8 does not reveal any significant differences in the control law defined by the 

DP if the optimization is targeted to the minimization of the energy cost instead of the CO2 emissions. 

As a result, these approaches almost attain the same performance, as depicted in Table 6. 

Table 6. Comparison of CO2 emissions and energy costs for different driving cycles for 

two different optimization strategies. 

Driving 

cycle 

End user cost (€) CO2 emission (g/km) End user cost (€) CO2 emission (g/km) 

Fuel 

cost 

Electricity 

cost 

Total 

cost 

CO2 

engine 

CO2 

grid 

Total 

CO2 

Fuel 

cost 

Electricity 

cost 

Total 

cost 

CO2 

engine 

CO2 

grid 

Total 

CO2 

NEDC 2.48 0.48 2.96 61 15 76 2.48 0.48 2.96 61 16 77 

WLTP 3.07 0.49 3.56 74 16 90 3.07 0.49 3.56 74 16 90 

Aachen 2.31 0.49 2.8 69 23 92 2.31 0.49 2.8 69 23 92 

Arco-Merano 11.4 0.29 11.71 96 4 100 11.4 0.29 11.71 96 4 100 

This lack of difference is a consequence of the huge difference between the specific cost of the fuel 

(0.42 €/kW∙h) and the specific cost of the electricity (0.184 €/kW∙h), as in the CO2 optimization. 

Hence, since the ratio between these costs (2.27) is quite close to the ratio between the specific CO2 

emissions of the engine and the CO2 production rate (1.6), also the path defined by the DP to minimize 

the cost function is almost the same. 

Therefore, it can be stated that an EMS aiming to minimize the CO2 emissions of the vehicle will 

also achieve the minimum of the energy expenditure. Nevertheless, since these results could 

significantly change depending on the future trends of fuel and electricity costs, additional 

scenarios for these parameters were analyzed in order to point out their effects on the powertrain 

control strategy. Two parameter sweeps, for electricity and fuel costs respectively, were performed 

keeping fixed all the other parameter values. The fuel cost was varied in the range 1.25–2 €/L while 

the electricity cost in the range 0.1–0.25 €/kW∙h. 

The comparison of the SOC profiles, represented in Figure 9, points out that the control law defined 

by the DP is not affected by these sensitivity sweeps since, in each scenario, the cost of the fuel is 

significantly higher than the electricity cost in each considered case. The battery discharge is always 

the preferred option of the EMS, even if the total cost of the trip will increase. 
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Figure 9. Variation of the SOC profile obtained through a sensitivity analysis: (a) on the 

fuel cost and (b) on the electricity cost. 

  

(a) (b) 

5. Conclusions 

This work analyzed, through a global optimization algorithm, the real benefit of a plug-in hybrid 

architecture integrated into a mid-size European passenger car. The optimal powertrain control strategy 

was primarily obtained in different driving conditions with the goal of minimizing the overall CO2 

emissions of the vehicle. The analysis of the DP results showed that a linear discharge of the battery 

over the travelled distance represents the optimal strategy only for vehicle missions without 

altitude variations. The relevance of the CO2 related to battery recharge from the grid was also 

highlighted comparing the real emission of the vehicle with the values attained through the European 

regulation which neglects the contribution of the battery recharge. 

Furthermore, the proposed methodology based on the minimization of the CO2 emissions was also 

proved to be able to minimize the energy cost which is the most important parameter from the 

customer perspective. In both cases, the use of the engine was in fact shown to be significantly more 

expensive than the battery discharge. This finding was also strengthened by the sensitivity analysis on 

the CO2 production rate, which showed negligible effects on the control law defined by DP when 

typical data from industrialized countries such as the US, EU and Japan, were used (appreciable effects 

could only be observed for very high CO2 production rates, which are typical of China and India). 
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Definitions/Abbreviations 

BSFC Brake Specific Fuel Consumption 

DP Dynamic Programming 

EMS Energy Management System 

EU European Union 

EV Electric Vehicle 

HEV Hybrid Electric Vehicle 

HPC High Performance Computer 

ICE Internal Combustion Engine 

IEA International Energy Agency 

IPCC Intergovernmental Panel on Climate Change 

NEDC New European Driving Cycle 

OECD Organization for Economic Cooperation and Development 

pHEV Plug-in Hybrid Electric Vehicle 

SOC State of Charge 

US United States 

WLTP Worldwide Harmonized Light vehicles Test Procedure 

Symbols 

Celec Electricity cost 

Cfuel Fuel cost 

CO2 Carbon dioxide 

CO2,pr CO2 production rate 

Dav Average distance between two battery recharges 

De Electric range 

Ebatt Energy of the battery 

J Cost Function 

    Fuel mass flow rate 

M1 CO2 emissions calculated through the Condition A of the European regulation 

M2 CO2 emissions calculated through the Condition B of the European regulation 

T Trip duration 

t Time 

u(t) Control vector 

ΔSOC State of charge variation 

ηchg Average battery charging efficiency 

ηgrid Transmission and distribution efficiency 

μCO2 CO2 molar mass 

μfuel Fuel molar mass 
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