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Abstract: Advancements in input device and sensor technologies led to the evolution of
the traditional human-machine interaction paradigm based on the mouse and keyboard.
Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications
running on consumer devices (e.g., gaming consoles and smartphones). However, to allow
existing applications running on desktop computers to utilize natural interaction, significant
re-design and re-coding efforts may be required. In this paper, a framework designed to
transparently add multi-modal interaction capabilities to applications to which users are
accustomed is presented. Experimental observations confirmed the effectiveness of the
proposed framework and led to a classification of those applications that could benefit more
from the availability of natural interaction modalities.
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1. Introduction

Gestures and sound play a key role in human-to-human communications, because they enable a
direct expression of mental concepts [1,2]. A large number of human-computer interaction (HCI)
paradigms based on such interaction means have been developed since the 1980s [3,4]. Interfaces based
on these paradigms are generally referred to as natural user interfaces (NUIs). There is evidence to
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support the use of hand and body gestures over traditional methods in many applications, including the
navigation of 3D scenes, the browsing of multimedia data, the control of robotic systems and home
appliances, etc. [5–10].

Indeed, the design of ever more pervasive and natural interaction mechanisms will play an important
role in the future of HCI. This trend is today witnessed by the mass-market diffusion of a number of
consumer products integrating components generally used to build NUIs, such as touch sensors and
depth cameras.

However, although touch/multi-touch interaction is exploited today in a variety of software products
and devices, the development of general purpose applications endowed with gestures and voice control
capabilities is still in an embryonic phase or has been only partially accepted by end-users. On the
one hand, manufacturers and vendors are developing their NUI-based hardware and software, e.g., for
controlling television sets, playing video games, interacting with in-car infotainment systems, etc., and,
on the other hand, HCI researchers are trying to find new strategies for bringing out the best of such
solutions [11–13].

It is reasonable to expect that a further diffusion of such technologies in everyday generic
applications will be favored by the growing availability of ever more affordable and powerful sensors,
by improvements in gesture and speech recognition technologies, etc. Moreover, the release of ever
more comprehensive software development frameworks and the evolution of open standards in the
field of NUIs will probably contribute to easing the necessary implementation steps and fostering a
broader adoption.

Nonetheless, at the present time, a seamless integration of NUI-based interaction in common
applications or in the application development workflow is often difficult to observe or achieve. What is
missing is a type of flexible software layer able to “augment” the interaction possibilities for (possibly
existing) applications, while at the same time limiting (or even avoiding) significant re-design and
re-coding efforts, as well as enabling users to re-define their own interaction schemes. This type of
flexibility, which should be expected from next generation NUI-based interaction solutions, has been
tested in several research prototypes, aimed at showing how to transform the graphical interface of
desktop applications into gesture- and/or voice-enabled user interfaces [14–17].

In some cases, the above prototypes can actually work as “pluggable” frameworks, thus easing the
integration steps. They generally gather user’s interactions via consumer (often gaming) sensors and
devices and transform them into suitable (in some cases, also configurable) commands that can be
understood by a given application, thus allowing users to control devices in new ways that had not
been initially foreseen.

Unfortunately, these solutions are still characterized by a number of constraints. For instance, some
solutions set out specific requirements on the characteristics of the application’s original graphical user
interface (GUI), thus reducing the range of applicability of the underlying approach. Other solutions
focus only on a specific type of interaction, e.g., hand gesture-based, body gesture-based, etc., or, for a
given interaction, only manage limited and pre-defined sets of poses, gestures or voice inputs. In some
approaches, a particular type of sensor is needed, and there are situations where the proposed technique
requires more than one sensor. Finally, in some cases, flexibility is achieved by moving the complexity
into the software layer that the developer is supposed to use to write his/her own NUI-based application.
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Although, in principle, it could be possible to design a natural interface for any type of application, an
important coding step might be required.

In this work, a framework that allows existing applications to be enriched with NUI-based control
possibilities without any code re-writing is presented. To reach this goal, the devised framework relies
on a description of the selected application’s GUI, containing a structured overview of its constituting
graphical elements. Such a description can either be made available in the application development
phase, obtained by ad hoc image processing-based techniques or even generated manually. Customizable
mapping rules can then be defined to link a given user’s pose, gesture or voice command (or a sequence
of them) to one or more specific operating system event, which will then be applied to a particular
graphical component of the considered interface to activate it.

The effectiveness of the devised approach has been evaluated by working with a set of poses, gestures
and voice inputs captured by the sensors provided by the Microsoft Kinect [18], but the developed
framework has been designed to be extended to cover other configurations (for instance, works are
currently in progress to integrate the Leap Motion 3D Controller [19]). In this work, experimental
tests have been carried out to measure the performances of the recognition modules integrated in the
framework, as well as to evaluate the benefits and drawbacks associated with adding new interaction
possibilities to existing interfaces. In this way, the classes of applications that could benefit more from
the integration of NUI-based interaction capabilities are also identified, and some guidelines for NUI
integration are defined.

The remainder of the paper is organized as follows. In Section 2, a brief summary of related works
is provided, and key aspects of the technologies exploited in implementing the proposed framework are
outlined. In Section 3, the basic idea is presented, and the various elements contributing to the overall
architecture are discussed in detail. In Sections 4 and 5, the outcomes of experimental tests that have
been carried out to assess system functionality and measure its performances are discussed. Finally, in
Section 6, conclusions are drawn, and possible directions for future research in the field are examined.

2. Background and Related Technologies

To replace the traditional mouse-keyboard HCI paradigm or to improve its effectiveness, alternative
or complementary interaction means able to support the development of possibly more natural
human-computer communication protocols may have to be identified. In recent years, many sensing
technologies and approaches have been experimented with, including face, eye and gaze recognition
and tracking [20,21], marker-less/marker-based tracking [22], voice and touch commands [23], mental
stimuli [24], etc.

In some cases, the above techniques are exploited for controlling particular applications or specific
platforms. This is the case, for instance, of handheld or head-mounted devices used in immersive virtual
reality environments [25,26]. In other cases, they are embedded into the particular device (as happens
with touch/multi-touch input on smartphones, tablets, etc.), and specific support is natively provided by
the platform development kit. Lastly, there are cases where a new technology is exploited for controlling
various types of consumer products [27].
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However, further complexity is introduced when the goal is to extend the reach of such advanced
interaction techniques to include common applications running on desktop computers. In this case,
when the application has been created by resorting to multi-modal-aware development kits, users can
take control of its interface elements, e.g., via embedded accessibility and/or automation callbacks.
Unfortunately, when this type of support has not been originally foreseen for the application, integrating
natural interaction means could be a task that is hard to accomplish. Important advancements in such
directions have been made with the introduction of ad hoc development toolkits and the release of
standardized interfaces to available sensors, which allow researchers to focus on the more relevant
integration and interaction goals.

Thus, a solution allowing users to control existing desktop applications using multi-touch devices was
introduced by Paravati et al. [14]. A comparable solution, called the Flexible Action and Articulated
Skeleton Toolkit (FAAST), tailored to body gestures was proposed by Suma et al. [15]. FAAST
has been designed to add gesture-based control possibilities to 3D graphics applications and video
games running on personal computers. FAAST can interface with RGB-D cameras and extract users’
skeleton joint locations and orientations. Pose information can then be used to control virtual avatars
in specific 3D environments, play first-person games, etc. Moreover, an integrated input emulator is
able to translate recognized gestures into mouse and keyboard commands, which can then be exploited
to control existing desktop applications (usually other types of 3D graphics software programs, such
as virtual reality-based tools). Despite its incredible flexibility, a limitation of such a framework is
that applications that the user may want to control need to be designed to support this type of input.
Unfortunately, although mouse-based interaction is commonly available in most desktop applications,
keyboard shortcuts are not always implemented. In these cases, the FAAST toolkit alone would be of
little or no help. Moreover, though gesture translations to operating system events can be customized,
with FAAST, the user continues to access applications with the previous paradigm: the presence of
a mouse and a keyboard is simply hidden. However, more sophisticated (and possibly more natural)
interaction approaches could be originated by totally re-thinking the interaction paradigm and eventually
getting rid of such traditional input devices.

A different solution relying on hand gestures was proposed by Wang et al. [16]. A technique
to perform hand tracking on color images captured by a pair of webcams is used. The approach
is designed to track the six degrees of freedom (DOFs) of two hands moving simultaneously in the
cameras’ field of view. A basic pinch pose is recognized and used as a proxy of various types of user
interactions (pointing, selection, etc.). The solution proposed is integrated with a dedicated tool for
computer-aided design (CAD). The authors continued to work on the original idea by adding other types
of sensors (e.g., depth-based) and releasing a software library to be used to endow other applications
with pinch-based interaction capabilities. Such a solution is meant to build another layer over vendor-
and manufacturer-specific software development kits, with the aim of further easing the deployment of
NUI-based applications. Nonetheless, it still requires the developer to make changes to the code of the
application that the user may want to control with gestures. Moreover, the possibility to add other poses
and gestures and allocate them to specific interaction tasks is not considered.

A preliminary solution designed to partially cope with the above limitations was presented by
Lamberti et al. [17]. Such a solution starts by considering that, to reach the needed degree of integration
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and flexibility, a coding-free way for linking elements constituting desktop interfaces to gesture-based
commands has to be developed. A possible way to achieve the above goal is to exploit some type
of reverse engineering-like technique, capable of making explicit the inner structure of applications’
GUIs [28,29]. In particular, in the work described in [17], an approach originally designed to migrate
a desktop-based application onto a mobile device is re-used to augment the interaction means available
for controlling an existing application natively endowed only with traditional input capabilities [29].
The limit of [17] is that it is designed to handle only body gestures and, more importantly, that interaction
is gathered by means of FAAST. Hence, the drawbacks regarding the method in [15] still apply.

Despite such efforts, a definitive integration layer capable of fully supporting the achievement of the
above goals appears to be still unavailable. Thus, in this paper, a pluggable solution for improving
the multi-modality of existing applications by adding personalized gesture- and voice-based control
capabilities is presented.

In particular, the paper extends the work in [17] by removing the dependency on the mouse- and
keyboard-mediated interaction of FAAST and by allowing the user to create a fully customizable library
of poses, gestures and voice commands, thus effectively taking into account the needs that have been
indicated among those possibly threatening or delaying a wider adoption of NUI solutions.

3. Designed Framework

The architecture of the designed framework is illustrated in Figure 1. Three conceptual blocks are
proposed, dealing (from left to right) with the management of the application to be endowed with
NUI-based interaction capabilities, the mapping of user’s poses, gestures, tracking data and voice
commands onto desktop-oriented commands tailored to such applications and, lastly, the extraction of
hand and/or body tracking and speech data feeding the overall process.
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Figure 1. Overall architecture of the designed framework. The application “wrapper”
communicates with the GUI parser/wizard manager to produce a description of the
application’s interface. The natural user interface (NUI)-based interface controller manages
incoming poses, gestures, tracking data and voice commands transmitted by the NUI
streaming server and, by acting as a state machine, translates them into control commands
that are put into the events queue. The application interface is finally updated by the
operating system to let the user appreciate the effect of his or her natural interaction.
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In the following, the three blocks will be examined in detail. The discussion will consider first the
desktop application management and the tracking blocks and will close by focusing on the mapping
block, which actually plays a central role in the integration of the overall architecture.

3.1. Desktop Application Management

In the depicted schema, the management of the desktop application passes through the application
“wrapper” component. The application wrapper is a type of “proxy” of the desktop application to be
controlled. In a preparatory stage, it is responsible for generating the description of the application’s
GUI by means of the reverse engineering approach in [29]. In particular, this component can be used
either to automatically extract a detailed description of the graphical elements constituting the interface
or to support the users in the manual creation of such a description.

In automatic mode, the application wrapper moves the mouse (through operating system calls)
over imaginary horizontal lines spanning the entire interface, hence simulating a mouse-based user
interaction. Interface elements react by changing their appearance or by forcing mouse pointer updates.
The application wrapper continuously grabs the graphical content of the frame buffer just before and
after the update. Differences identified by performing an exclusive OR between the captured images
indicate the exact position of each particular interface element. As a matter of example, the application
of the various steps of the above process on the part of the GUI for a common tool for viewing and
editing .pdf files is illustrated in Figure 2.

Then, by means of suitable template matching rules, the application wrapper is able to classify each of
the elements found as one of the interface components supported by the designed framework (including
combo boxes, menus, sub-menus, menu items, buttons, text boxes and text areas, sliders, check boxes,
scroll bars and other custom controls). As a matter of example, classification results obtained on the
interface elements in Figure 2 are shown in Figure 3.

Figure 2. Steps of the process designed to identify and extract the elements constituting
the application’s GUI: (a) the portion of the interface before user interaction; (b) the
appearance of the interface right after user interaction (mouse over the “select” button and
the highlighting effect); (c) the difference image; and (d) the button identified.
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Figure 3. Graphical elements classified in the considered GUI (including menus, sub-menus,
menu items, buttons, combo boxes, etc.).

Once the graphical elements identified have been classified, a description of the interface is generated
and stored in XUL (XML User Interface Language) format [30], a particular User Interface Description
Language (UIDL) used to describe the visual appearance of a graphical interface as a set of structured
elements. A video showing the overall process is available in [31].

In manual mode, the application wrapper provides the user with a set of wizards (which can also
be used in automatic mode to improve element identification and classification accuracy) that let the
user manually locate interface elements and assign them to a particular class. The XUL description
file can also be extended/edited, e.g., to add hidden interaction commands that cannot be identified
by automatic or wizard-based analysis. An excerpt of the XUL-based interface description for the
considered application is provided in Figure 4.

 

 
 

Fig. 3.  Graphics elements classified in the considered GUI (including menus, sub-menus, menu items, buttons, combo boxes, etc.). 
 

Once the graphics elements found have been classified, a description of the interface is generated and stored into the XUL 
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describe the visual appearance of a graphics interface as a set of structured elements.  

In manual mode, the Application wrapper provides the user with a set of wizards (which can be used also in automatic mode 
to improve element identification and classification accuracy) that let him or her to manually locate interface elements and assign 
them to a particular class. It is worth observing that the XUL description file can also be extended/edited, e.g., to add hidden 
interaction commands which cannot be identified by automatic or wizard-based analysis. An excerpt of the XUL-based interface 
description for the considered application is reported in Fig. \ref{fig4}.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
       <?xml version="1.0"?> 
       <!-- Interface description file: pdf.xml – Format: XML-based User Interface Language, XUL 1.0 --> 
       <window id="pdf-window" title="pdf" orient="horizontal" width="868" height="616"> 
        <toolbox id="menus"> 
         <menubar> 
          <menu id="5" left="24" top="30" width="27" height="18" label="File"/> 
          <menu id="6" left="52" top="30" width="29" height="18" label="Edit"/> 
          <menu id="7" left="82" top="30" width="33" height="18" label="View"/> 
          <menu id="8" left="116" top="30" width="59" height="18" label="Document"> 
           <menupopup> 
            <menuitem id="40" label="Attach a File..."/> 
            <menuitem id="41" label="Add Headers and Footers..."/> 
            <menuitem id="42" label="Add Watermark and Background"/> 
           </menupopup> 
          </menu> 
         </menubar> 
        </toolbox> 
        <hbox id="buttons"> 
         <button id="27" left="14" top="89" width="29" height="22" img="sel27.jpg"/> 
         <button id="28" left="45" top="85" width="59" height="26" img=" sel28.jpg" label "Select"/> 
         <button id="29" left="105" top="85" width="31" height="27" img=" sel29.jpg"/> 
        </hbox> 
        <hbox id="combo_boxes"> 
         <button type="menu" id="14" left="13" top="53" width="96" height="27" img="14.jpg" label="Create PDF"> 
          <menupopup> 
           <menuitem id="120" label="From File"/> 
           <menuitem id="121" label="From Multiple Files"/> 
          </menupopup> 
         </button> 
        </hbox> 
       </window> 
 
 
 
 
 
 

Figure 4. Portion of the XML User Interface Language (XUL)-based description for
the considered GUI. For each element, the size and relative location in the desktop interface
are reported.
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3.2. Hand Pose/Gesture Tracking and Speech Recognition

The preparatory tasks described above have to be carried out just once for each application to
be controlled. In fact, during normal operation, the application wrapper is designed to monitor and
re-analyze the appearance of the application’s interface to automatically identify dynamic changes that
possibly occur during user interaction (opening of a dialog window, element switching from enabled to
disabled, from visible to invisible, and vice versa, etc.).

The framework discussed in this paper needs to be fed with natural user interaction commands, which
will be translated into desktop GUI events.

In [17], the interaction was based on FAAST and on a pre-defined set of body gestures, while
movement in 3D space was used to control the mouse cursor position in the application’s 2D space.

In this paper, a more general framework is designed, which is meant to let one or more NUI solutions
to be used to enrich the interaction possibilities of desktop applications. In the following, attention will
be specifically focused on hand poses/gestures and voice inputs. In particular, the Microsoft Kinect
RGB-D sensor is used to develop a software component that is able to recognize different hand poses
and gestures, as well as to provide continuous hand location and rotation information. At the same time,
the Microsoft Kinect microphone is used to implement a speech recognizer. However, the framework has
been designed by adopting a modular approach, which is expected to be capable of easing the integration
of different hardware and/or software components tailored to other types of NUI-based interactions.

The designed hand tracking approach builds upon an extremely interesting pose estimation technique
proposed by Oikonomidis et al. [32]. In the above work, the goal is to perform continuous finger
tracking. Hence, the algorithm is designed to determine the angular position of every articulation in
the hand skeleton for all of the possible hand movements at the cost of high computational complexity
(the authors demonstrated their ability to work at nearly interactive frame rates only with a massively
parallel implementation on a 1.581 GFlop GPU with 512 cores). Furthermore, the tracking method is
not endowed with hand gesture recognition capabilities.

To relax hardware requirements and integrate missing functionalities, a number of optimizations are
adopted in this paper by taking into account the specific role of the tracking system in the economy of
the overall architecture proposed. A description of the inner details of the tracking system is out of the
scope of this paper. Only the key modifications with respect to the work in [32] will be discussed.

A key role in the optimization process is played by the newly introduced pose database, which
contains reference hand poses to be recognized in visual data captured by the sensor during the
interaction. These are “virtual” poses, because they are generated offline, starting from the 3D hand
model displayed in Figure 5. Virtual poses are computed at system startup based on the dimensions of
actual user’s hands.

The model is characterized by 27 DOFs. After having defined the poses that the user wants to exploit
for interacting with the applications and the possible movement ranges for each DOF, the pose database is
populated with depth maps computed by rendering the model in all of the configurations required. While,
in [32], all of the possible hand and finger configurations are configured online, in the optimized approach
presented in this paper, the hand model is set up by adjusting all of the DOFs until just the set of possible
poses and orientations of interest have been covered (some examples are reported in Figure 5). Moreover,
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in [32], poses are computed in real time starting from the previously-recognized hand configuration,
whereas, in the proposed method, poses are generated at initialization and stored in the database. In the
experimental tests that have been carried out, approximately 700 different configurations were generated
for each basic pose (by applying rotations in steps of four to 15 degrees), resulting in thousands of depth
maps stored in the database. A further optimization (simplification) consisted of down-sampling depth
maps with the aim of reducing the number of points to be compared for pose recognition.

 

� � �
 

Fig. 5.  3D hand model used for generating the reference poses (three configurations are shown, obtained by working on a subset of the possible DOFs).  
 
The input of the hand tracking module is a 320�240 pixels wide depth image. As illustrated in Fig. 6, depth segmentation is 

used to isolate the hand in 3D. Only the pixels that lie into a defined depth range are kept, whereas the others are ignored. The 
largest region found is selected for further processing. In particular, to refine the outcome of the segmentation step, all the depth 
pixels that are more than 10 cm far from the previously determined palm center are discarded. 
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Fig. 6.  Hand segmentation, computation of the palm center and generation of the re-coded depth map to be used for querying the pose database: (a) 
image observed by the sensor, (b) segmented depth map, and (c) 40�40 pixels re-coded map.  

 
To compute a precise palm center, which is needed both to provide tracking data about hand location and to carry out the 

above down-sampling, possible holes produced in the considered region need to be avoided. Hence, the region is first dilated by 
using a circular mask. Then, a rough evaluation of the area where the palm center is supposed to be is computed in order to speed 
up the process. Finally, the center is precisely identified through an accurate search within this reduced area.  

By resorting on the knowledge about the position of the user’s hand, the initial image is recoded into a 40�40 pixels depth 
map by cutting out all the pixels without information and by scaling the hand region based on the real distance from the depth 
sensor. These steps guarantee that, independent of the position of the user’s hand in the tracking space, consistent data for the 
pose estimation step are obtained. 
 

As shown in Fig. 7, at each frame, the 40�40 pixels wide recoded map is used to query the pose database with the goal of 
finding out the 3D rendered pose that is more similar to the current user’s hand configuration. An evaluation function compares 
two depth maps by considering individual pixel values, and returns a score that describes the distance between them. If the 
depths of two points are too different or one of the points is missing (depth value equal to zero), the function penalizes the score. 
Otherwise, it assigns a score that is proportional to the similarity of the depth values. Once the best-matching depth map has been 
found, associated parameters that were used for setting up the 3D model and generating the corresponding rendering immediately 
provide a complete description of user’s hand configuration.  

 

 
Fig. 7.  Hand pose estimation. The recoded map containing user’s hand is compared against the pose database with an evaluation function working on 
depth distances. The configuration which is more similar is assumed as the estimate of user’s hand pose and related parameters are extracted. 

 
 
With the above process it is also possible to determine hand location and orientation in the currently processed frame. Starting 
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Figure 5. 3D hand model used for generating the reference poses (three configurations are
shown, obtained by working on a subset of the possible DOFs).

The optimized technique presented in this paper was proven to be able to carry out one thousand
comparisons in nearly 20 milliseconds on a 3.2 GHz CPU.

The input of the hand-tracking module is a 320 × 240 pixel depth image. As illustrated in Figure 6,
depth segmentation is used to isolate the hand in 3D. Only the pixels that lie in a defined depth range
are kept, whereas the others are ignored. The largest region found is selected for further processing. In
particular, to refine the outcomes of the segmentation step, depth pixels that are more than 10 cm from
the previously determined palm center are discarded.

To compute a precise palm center, which is needed both to provide tracking data about the hand
location and to carry out the above down-sampling, possible holes produced in the considered region
need to be avoided. Hence, the region is first dilated by using a circular mask. Then, a rough evaluation
of the area where the palm center is supposed to be is computed to speed up the process. Finally, the
center is precisely identified through an accurate search within this reduced area. By resorting to the
knowledge about the position of the user’s hand, the initial image is re-coded into a 40× 40 pixel depth
map by cutting out all of the pixels without information and by scaling the hand region based on the real
distance from the depth sensor. These steps guarantee that, independent of the position of the user’s hand
in the tracking space, consistent data for the pose estimation step is obtained.

 

� � �
 

Fig. 5.  3D hand model used for generating the reference poses (three configurations are shown, obtained by working on a subset of the possible DOFs).  
 
The input of the hand tracking module is a 320�240 pixels wide depth image. As illustrated in Fig. 6, depth segmentation is 

used to isolate the hand in 3D. Only the pixels that lie into a defined depth range are kept, whereas the others are ignored. The 
largest region found is selected for further processing. In particular, to refine the outcome of the segmentation step, all the depth 
pixels that are more than 10 cm far from the previously determined palm center are discarded. 

 
 

� � �
(a) (b) (c) 

 

Fig. 6.  Hand segmentation, computation of the palm center and generation of the re-coded depth map to be used for querying the pose database: (a) 
image observed by the sensor, (b) segmented depth map, and (c) 40�40 pixels re-coded map.  

 
To compute a precise palm center, which is needed both to provide tracking data about hand location and to carry out the 

above down-sampling, possible holes produced in the considered region need to be avoided. Hence, the region is first dilated by 
using a circular mask. Then, a rough evaluation of the area where the palm center is supposed to be is computed in order to speed 
up the process. Finally, the center is precisely identified through an accurate search within this reduced area.  

By resorting on the knowledge about the position of the user’s hand, the initial image is recoded into a 40�40 pixels depth 
map by cutting out all the pixels without information and by scaling the hand region based on the real distance from the depth 
sensor. These steps guarantee that, independent of the position of the user’s hand in the tracking space, consistent data for the 
pose estimation step are obtained. 
 

As shown in Fig. 7, at each frame, the 40�40 pixels wide recoded map is used to query the pose database with the goal of 
finding out the 3D rendered pose that is more similar to the current user’s hand configuration. An evaluation function compares 
two depth maps by considering individual pixel values, and returns a score that describes the distance between them. If the 
depths of two points are too different or one of the points is missing (depth value equal to zero), the function penalizes the score. 
Otherwise, it assigns a score that is proportional to the similarity of the depth values. Once the best-matching depth map has been 
found, associated parameters that were used for setting up the 3D model and generating the corresponding rendering immediately 
provide a complete description of user’s hand configuration.  

 

 
Fig. 7.  Hand pose estimation. The recoded map containing user’s hand is compared against the pose database with an evaluation function working on 
depth distances. The configuration which is more similar is assumed as the estimate of user’s hand pose and related parameters are extracted. 

 
 
With the above process it is also possible to determine hand location and orientation in the currently processed frame. Starting 

��������
�
��

	��������
������
��

������
������
��

����!�
�������
�����

�����

�
�
���

��
��
����
"�������#�

�
�
�
���
�������

�
�������
�
�
�������
"��������
��

��
������
�
#�

Figure 6. Hand segmentation, computation of the palm center and generation of the re-coded
depth map to be used for querying the pose database: (a) image observed by the sensor;
(b) segmented depth map; and (c) 40× 40 pixel re-coded map.

As shown in Figure 7, for each frame, the 40 × 40 pixel re-coded map is used to query the pose
database with the goal of finding out the 3D rendered pose that is most similar to the current user’s hand
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configuration. An evaluation function compares two depth maps by considering individual pixel values
and returns a score that describes the distance between them. If the depths of two points are too different
or one of the points is missing (depth value equal to zero), the function penalizes the score. Otherwise, it
assigns a score that is proportional to the similarity of the depth values. Once the best-matching depth
map has been found, associated parameters that were used for setting up the 3D model and generating the
corresponding rendering immediately provide a complete description of the user’s hand configuration.
With the above process, it is also possible to track hand location and orientation in the current frame.

 

� � �
 

Fig. 5.  3D hand model used for generating the reference poses (three configurations are shown, obtained by working on a subset of the possible DOFs).  
 
The input of the hand tracking module is a 320�240 pixels wide depth image. As illustrated in Fig. 6, depth segmentation is 

used to isolate the hand in 3D. Only the pixels that lie into a defined depth range are kept, whereas the others are ignored. The 
largest region found is selected for further processing. In particular, to refine the outcome of the segmentation step, all the depth 
pixels that are more than 10 cm far from the previously determined palm center are discarded. 
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Fig. 6.  Hand segmentation, computation of the palm center and generation of the re-coded depth map to be used for querying the pose database: (a) 
image observed by the sensor, (b) segmented depth map, and (c) 40�40 pixels re-coded map.  
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Figure 7. Hand pose estimation. The re-coded map containing the user’s hand is
compared against the pose database with an evaluation function working on depth distances.
The configuration that is most similar is assumed as the estimate of the user’s hand pose, and
related parameters are extracted.

Starting from this information, previously processed frames are reconsidered to recognize the user’s
gestures. A simple filter is used to smooth rapid variations caused by possible errors in estimated poses.
Recognition is then achieved by processing tracking information by means of a gesture descriptor-based
classifier relying on the dynamic time warping (DTW) technique [33]. The DTW libraries for Microsoft
Kinect were used [34]. The system is designed to recognize gestures, such as press, swipe, rotate, etc.,
independently of the actual hand pose. Gestures are described in a 15-frame time window in terms of
hand translations and rotations relative to the starting position and orientation. Recognition is performed
on a 30-frame window, to manage gestures performed much more slowly than the reference ones. In the
library, two thresholds are set on DTW-ed location data, one for activating gesture recognition and the
second to actually recognize the gesture. The first threshold (for the maximum difference of the final
hand position) was experimentally set to 8 cm. The second threshold (for the average difference of hand
position throughout the gesture) was set to 5 cm. The use of rather strict thresholds reduced the number
of false recognitions, making the classifier particularly robust. Recognition performances are studied in
Section 4.

Pose and gesture recognition mechanisms are activated as soon as the hand calibration step has
been performed (where the 3D model configuration to be later used for generating the pose database is
determined by changing the dimensions of all of the hand parts and by computing the best match with the
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same evaluation function used in the recognition phase). Each time a frame is processed, the hand pose,
location and rotation are determined. Moreover, for each frame, a gesture can additionally be identified.

Lastly, during hand tracking and pose/gesture recognition, a voice command can eventually be
identified by the speech recognition module, which has been implemented using the Microsoft Kinect
SDK and integrated into the overall architecture.

Pose, gesture, tracking data and voice commands are made available by means of a streaming server.
The server can be accessed over a network socket. Communication is based on a simple application-layer
protocol built upon plain text messages. Each message can contain information about hand location and
orientation, current pose, recognized gesture or voice command. In the devised architecture, streamed
data are transmitted to the NUI-based interface controller, where it is mapped to the user’s customized
commands for controlling the application’s GUI. It is worth observing that, thanks to the use of a
streaming server, the machine hosting the sensors and running the tracking and recognition software
does not necessarily have to be the same machine that is running the application to be controlled.

3.3. NUI Mapping

The responsibility for the integration of the desktop application management module and the
recognition and tracking block is on the NUI-based interface controller, which is in charge of translating
pose, gesture and voice commands into GUI events.

Thus, when the user selects the particular application to interact with, the application wrapper delivers
the corresponding interface description to the NUI-based interface controller, which allows the user
to specify a mapping between poses/gestures/voice inputs and control commands targeted to specific
interface items. The mapping for the given user/application is stored for possible re-use at a later time.
Once a mapping has been defined, the NUI-based interface controller connects to the NUI streaming
server and maps incoming messages onto the corresponding control commands. Such information
is delivered to the application wrapper module, which is responsible for translating it into suitable
instructions to be inserted into the events queue. Events will be then processed by the operating system
and will produce the expected effect on the application, thus closing the overall control loop.

At present, a protocol based on raw text is used (although work is in progress to switch to a
JSON-based one to improve extendability). Messages delivered by the steaming server are separated by
a newline character. The space character is used to tokenize elements on any given line. Each message
begins with a code describing the message type. When a frame is processed, the server sends a POSE
message describing the position and orientation of the user’s hand in the format:

POSE name x_pos y_pos z_pos x_rot y_rot z_rot

where the x_pos, y_pos and z_pos values represent the spatial (world) coordinates in meters,
x_rot, y_rot and z_rot are the rotation angles along the three axes and name is the name of
the basic pose recognized. In the experiments performed, the six basic poses reported in Figure 8 were
considered: opened, closed, pinch, one, two and three (fingers).
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Fig. 8.  User’s poses (RGB data) corresponding to those some of the depth maps recorded in the pose database.  
 

As said, the above gestures are independent of the particular pose. That is, the user could make the press gesture both with his 
or her hand opened or closed. Nonetheless, in order to simplify the implementation of the Gesture-based interface controller, 
several higher-level gestures corresponding to a switch from a pose to another have been implemented. For instance, the system 
recognizes an opening gesture when the user opens his or her hand (similarly for the closing gesture), a pointing gesture when 
the pose is changed to one (corresponding to the index finger) to indicate something in the scene, etc. 

The user is allowed to setup one-to-one mappings, by assigning tracking information contained in the above messages to a 
particular graphics element. Thus, for instance, hand location information could be used to move the mouse pointer over a 
particular button of the interface. Then, a press gesture could be used to activate it. This would enable a trivial translation from a 
mouse-based interaction paradigm to a hand gesture-based one.  

However, there are situations where one-to-many mappings are needed. In fact, the real advantages associated with the 
adoption of gesture-based interaction may be fully appreciated when the basic paradigm is replaced, or at least accompanied, by 
a new approach where a given task hard to accomplish in the traditional way (e.g., because it requires many mouse-keyboard 
interactions) can be carried out by means of a simple and customizable gesture. This is the case, for instance, of an application 
functionality activated by the selection of a sub-menu item. With the one-to-many mapping functionality supported by the 
designed framework, the action of moving the mouse over the menu, making click on it, waiting for its expansion, scrolling sub-
menu items and finally making click on the entry of interest could be replaced by a single gesture.  It will be the task of the 
Application to translate it into separate events to be pushed in the operating system queue. 

IV. EXPERIMENTAL RESULTS 

A preliminary evaluation of the proposed framework has been carried out by focusing on two perspectives, namely tracking 
performance and application control functionality. The first perspective deals with the algorithmic aspects of the devised 
approach, and considers, in particular, the robustness and computational cost of the hand tracking module. The second 
perspective pertains the actual feasibility of replacing (although in some contexts the interest could be solely on complementing) 
the mouse-keyboard interaction paradigm with a gesture-based one. Experimental tests encompassed both preparatory 
experiments and a user study, which enabled for the collection of both subjective and objective measures. Tests were performed 
on two particular applications (though the validity of the overall approach was qualitatively verified in a broader set of 
configurations), which were selected based on the richness of the graphics interface, the variety of interaction possibilities and 
the complexity of tasks that could be accomplished. 

 
 
 

A. Configuration 
 
The two applications selected were Cortona3D Viewer (http://www.cortona3d.com/) and Google Picasa 

(http://picasa.google.com). Cortona3D Viewer can natively be used to load and navigate VRML-based virtual scenes by using 
simple mouse and/or keyboard commands, whereas Google Picasa allows users to organize, view, edit and share photos on the 
Web. Two screenshots showing user interaction with the above applications are reported in Fig. 9 and Fig. 10.  
 

 

Figure 8. The six users’ poses (RGB data) considered in the experimental tests.

If, at a certain frame, a gesture is also recognized, the server sends out a GESTURE message, whose
format is:

GESTURE name

where name indicates the gesture found. At the present time, the designed tracking system has been
endowed with descriptors for recognizing the following gestures: press, scroll, rotate_cw,
rotate_ccw, left_swipe, right_swipe, up_swipe and down_swipe. Given the modular
approach pursued, it would be quite easy to extend the current set of basic poses and gesture descriptors
to embed technologies and algorithms capable of recognizing a larger set of interaction commands
(e.g., gathered by a different device, such as the Leap Motion 3D Controller).

The above gestures are described independently of the particular pose. That is, the user could
make the press gesture both with his or her hand opened or closed. Nonetheless, to simplify
the implementation of the NUI-based interface controller, several higher-level gestures corresponding
to a switch from one pose to another have been implemented. For instance, the system recognizes
an opening gesture when the user opens his or her hand (similarly for the closing gesture), a
pointing gesture when the pose is changed to one (corresponding to the index finger) to indicate
something in the scene, etc.

Lastly, when a voice command is recognized, the server generates a VOICE message, with the same
format of the GESTURE message. In this case, name indicates the input recognized.

Other interaction commands, e.g., collected by other sensors, could be added, by re-using the above
messages or defining new ones.

The user is allowed to setup basic one-to-one mappings by assigning tracking information contained
in the above messages to a particular graphical element. Thus, for instance, hand location information
could be used to move the mouse pointer over a particular button of the interface. Then, a press gesture
or a “press” voice command could be used to activate it. This would enable a trivial translation from a
mouse-based interaction paradigm to a NUI-based one.
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However, there are situations where one-to-many combined mappings might be needed [35]. In fact,
the real advantages associated with the adoption of the NUI-based interaction may be fully appreciated
when the basic paradigm is replaced, or at least accompanied, by a new approach, where a given task that
is hard to accomplish in the traditional way (e.g., because it requires many mouse-keyboard interactions)
can be carried out by means of a simple and customizable command. This is the case, for instance,
of an application functionality activated by the selection of a sub-menu item. With the one-to-many
mapping functionality introduced in the designed framework, the action of moving the mouse over the
menu, performing a click on it, waiting for its expansion, scrolling through sub-menu items and finally
performing a click on the entry of interest could be replaced by (combined into) a single pose, gesture or
voice command. It will then be the task of the application wrapper to translate it into separate events to
be pushed in the operating system queue.

4. Evaluation of Performances

Experimental evaluation has been carried out by focusing on three perspectives. Firstly, tests
were performed to measure the performances of the pose and gesture recognition systems.
Secondly, experiments were carried out to analyze how the framework illustrated in this paper could
be configured to add new interaction possibilities to existing applications. Thirdly, the study served to
carry out a preliminary evaluation of the advantages that could be obtained with (and the drawbacks that
could result from) the introduction of natural interaction into desktop applications. The results for the
first perspective will be presented below. Findings for the other two perspectives will be discussed in
Section 5.

4.1. Performances of Hand Pose Recognition

The pose recognition system used in this paper has been developed starting from the technique in [32],
which was not meant to perform such tasks and required a GPU to work at nearly interactive frame
rates. Hence, in the following, a characterization of the robustness and computational complexity of the
adapted algorithm (as discussed in Section 3.2) is presented.

Robustness has been evaluated by measuring the probability of a pose to be confused with other poses.
Tests were performed on a 3.2-GHz CPU, with a pose database generated starting from the basic poses
illustrated in Figure 8, i.e., opened, closed, pinch, one, two and three. In each test session,
the user was asked to perform the calibration step and then move and rotate his or her hand in all of
the possible directions while keeping a single pose. Translation and rotation data along the three axes
were recorded for over 1000 frames. The test was performed for all of the poses in the set and repeated
by five subjects (four male and one female researchers in the 25–30 age range working in the Graphics
and Intelligent Systems/Ubiquitous Computing Lab at Politecnico di Torino). The results obtained are
displayed in the confusion matrix reported in Table 1.
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Table 1. Confusion matrix for the pose dataset in Figure 8.

Open Closed Pinch One Two Three

open. 95.7 2.8 0.0 0.0 0.0 1.5
closed 0.0 94.6 0.0 5.4 0.0 0.0
pinch 7.8 6.4 85.8 0.0 0.0 0.0
one 0.0 21.3 0.0 71.9 6.8 0.0
two 0.0 2.5 0.0 19.8 77.7 0.0
three 0.0 0.0 0.0 9.5 6.3 84.2

It is worth observing that, in the scenarios of interest for this paper, the number of poses required
may change from one application to another. Hence, the tests above were repeated by changing the
configuration of the pose database, i.e., by varying the number and types of poses to be recognized
(e.g., from {opened, closed}, to {opened, pinch}, {opened, pinch, closed}, etc.). For the
sake of compactness, the results are illustrated in Table 2 in terms of correct recognition rates. The first
column reports the number of basic poses used to generate the virtual depth maps stored in the database.
The next columns report correct recognition percentages obtained when the particular pose indicated in
the column header was included in the set (for the various set sizes considered). Starting with a set of
two poses, the various combinations of the six basic poses have been studied. The last column reports
the average results.

Table 2. Recognition rates (percentages) obtained for pose set sizes from two to six by
changing poses in the set.

Pose Set Size Open Closed Pinch One Two Three all

2 98.9 96.8 96.4 93.7 95.5 96.6 96.3
3 97.4 95.9 93.0 86.5 89.9 92.8 92.6
4 96.7 95.2 90.2 80.1 84.0 90.5 89.5
5 96.1 94.9 87.3 75.8 80.2 87.7 87.0
6 95.7 94.6 85.8 71.9 77.7 84.2 85.0

It can be observed that the overall recognition rate decreases with the size of the set. By augmenting
the number of poses in the set, the error rate grows, primarily because of the presence of poses that differ
slightly from one another (e.g., poses one and two). It is easy to see that, in a set with two poses, the
choice guaranteeing the highest robustness would be {opened, closed}. In a set of three poses, it
would be preferable to choose {opened, closed, pinch}.

Regarding computational complexity, each depth map produced by the sensor took nearly
50 milliseconds to be processed. Hence, the optimized pose recognition algorithm is able to guarantee
an average tracking speed of roughly 20 frames per second on the CPU selected in this paper.
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4.2. Performances of Hand Gesture Recognition

An approach similar to the one adopted to characterize the pose recognition algorithm was pursued
to measure the robustness of the gesture recognition system. In this case, the five subjects involved
in the first test sessions were requested to repeat each gesture 100 times while keeping the same pose
(specifically, the opened one). Robustness was evaluated by measuring the probability of a gesture to
be confused with other gestures and by determining, for each gesture, the overall and correct recognition
rates. The sample size was determined by setting a confidence level of 95% and a margin of error of 5%
for recognition results. The results are reported in Tables 3 and 4, respectively.

Table 3. Confusion matrix for the gestures recognized by the system as given in Section 2.

Left_Swipe Right_Swipe Up_Swipe Down_Swipe Rotate_cw Rotate_ccw Press

left_swipe 98.6 0.0 0.0 0.0 0.0 0.0 1.4
right_swipe 0.0 99.3 0.0 0.0 0.0 0.0 0.7
up_swipe 0.0 0.0 88.3 0.0 0.0 0.0 11.7
down_swipe 0.0 0.0 0.0 87.0 0.0 0.0 13.0
rotate_cw 0.0 0.0 0.0 0.0 100.0 0.0 0.0
rotate_ccw 0.0 0.0 0.0 0.0 0.0 100.0 0.0

press 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Table 4. Overall recognition rates and correct recognition rates (percentages) for the gestures
reported in Section 2.

Gesture Overall Recognition Correct Recognition

left_swipe 87.2 86.0
right_swipe 85.0 84.4
up_swipe 66.8 59.0
down_swipe 75.4 65.6
rotate_cw 85.2 85.2
rotate_ccw 83.4 83.4

press 66.6 66.6

From Table 3, it can be easily observed that the thresholds used in the DTW made the algorithm
quite robust, at the cost of a rather high number of times for which the system does not recognize any
gesture (second column of Table 4). It is worth observing that, although the system is designed to work
in a pose-independent way, recognition rates may vary based on the actual pose used. Hence, a more
accurate characterization may be required, e.g., to automatically choose gestures to use for controlling a
given application based on robustness criteria.

5. User Study

By leveraging the results obtained in the above experiments, further experimental tests were
carried out with the aim of studying the possible benefits coming from the integration of natural
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interaction modalities with desktop applications natively developed to be operated via the traditional
mouse-keyboard paradigm. The tests were organized into two experiments. The first experiment focused
on the hand pose/gesture-based interaction. Based on the results gathered, a second experiment was
designed to evaluate the effect of multi-modality by adding voice-based interaction possibilities.

Qualitative and quantitative observations were collected by means of a user study that involved
30 volunteers (23 males and seven females) selected among the students and teachers of various
courses for engineering and architecture degrees at Politecnico di Torino. The data collection met the
requirements of the Ethical Framework of the University, and informed consent was obtained by all
individuals. Volunteers were asked to carry out several tasks by working on two particular applications
that were selected based on the richness of the graphical interface, the variety of interaction possibilities
and the complexity of tasks that could be accomplished. Tasks were performed both with the native
and the natural interface to analyze the impact of new interaction possibilities (added by either using the
framework illustrated in this paper or coding/re-coding the application’s interface).

A default mapping between natural inputs and interface control commands (namely, the one ensuring
the highest robustness) was used for all of the volunteers, with the aim of making the results obtained
with the two interaction modalities comparable.

5.1. Applications Selected for the Experiments

The two applications selected were Cortona3D Viewer [36] and Google Picasa [37]. Cortona3D
Viewer can natively be used to load and navigate Virtual Reality Modeling Language (VRML) -based
virtual scenes by means of simple mouse and/or keyboard commands. Google Picasa allows users to
organize, view, edit and share photos on the web. Two screenshots showing user interaction with the
above applications (depicted in the top left) are presented in Figures 9 and 10.

Figure 9. Screenshot of Cortona3D Viewer during experimental tests.

The application wrapper component was first exploited to generate a description of graphical elements
embedded in the interfaces of the two applications. For instance, for the Cortona3D Viewer, the controls
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available are mainly aimed at letting the user move, rotate and scale the models displayed, as well as
move the camera around the scene. By means of the framework illustrated in this paper, the application
interface could be provided with natural control possibilities. For instance, the user might choose to
setup the mapping by exploiting three hand poses, namely opened, closed and one, as well as the
down_swipe gesture. With the opened pose, the mouse could be moved over the screen without
affecting the application’s behavior. With the closed pose, the user could decide to move the camera
or the model. With one, the model could be brought back to its default configuration. By moving the
hand towards the sensor (or retrieving it), a zoom in (or zoom out) could be performed. By making a
down_swipe gesture with the opened pose, the user could switch between translate and rotate modes.
A video showing the interaction with a sample mapping, such as the one described above, is available
in [38].

Figure 10. Screenshot of Google Picasa during experimental tests.

A comparable procedure was applied to the interface of Google Picasa. In this case, multi-modal
inputs might be used, for instance, to navigate a photo gallery, pick a photo out of it and apply a number
of transformations and filters.

5.2. First Experiment: Hand Pose and Gesture-Based Interaction

The first batch of tests was aimed at measuring the effectiveness of application control by means of
hand poses and gestures. Two scenarios were set up to study the possibilities offered by one-to-one and
one-to-many mapping rules.

5.2.1. Setup of the Interaction Scenarios

The first scenario for this experiment consisted of exploring a 3D supermarket environment [39] with
Cortona3D Viewer while searching for five objects placed in as many fixed (but unknown) positions
(Figure 9). The test was considered completed when all of the objects had been collected. The objects
were distributed all around the supermarket, to force the users to interact with the application for
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roughly one to two minutes. Two videos showing mouse-keyboard [40] and the hand pose/gesture-based
interaction are available [41]. In this case, a one-to-one mapping of a very limited set of mouse-keyboard
events onto equivalent hand poses and gestures was tested. In particular, the proposed framework was
configured to map the movement of the closed hand (closed pose) in the user’s 3D space on native
mouse-keyboard commands for exploring the virtual environment.

For the second scenario, the editing of eight photos with Google Picasa was required by picking them
out from a gallery and making modifications (Figure 10). In particular, for six of the photos, users
were requested to set the saturation to zero. For the third and fifth photo, users were asked to cut out
a portion of the scene and apply a color inversion filter to it. A video showing user operation with the
native interface is available in [42]. As can be observed, the user interaction is quite intense, requiring
the user to perform a number of operations to select the right editing tool and use it on the photo. In
this case, a one-to-one mapping was combined with more complex mapping rules by associating given
poses or gestures with a sequence of user interface events. Thus, for instance, the act of pushing the
open hand toward the screen (press gesture and opened pose) was mapped to the photo selection
operation, whereas the horizontal swipe (left_swipe or right_swipe gesture) was used to move
to the next photo. However, the mapping was also configured in such a way that, for instance, by closing
the hand (closed posed) and moving it to the left/right, the color saturation tool was automatically
selected, the actual saturation value was decreased/increased by operating the corresponding slider, and
the modification was applied to the photo by activating the confirm button. Similarly, the cutting tool
was activated by the pinch pose, while the up_swipe gesture allowed the users to directly apply the
color inversion filter. A video showing the hand pose/gesture-based interaction with the above mapping
is available in [43].

5.2.2. Hypotheses

Based on design objectives and rough feedback collected in the performance evaluation steps, the
following hypotheses were formulated for the experimental tests with the two scenarios above.

• H1. The average time needed to explore the supermarket with Cortona3D Viewer by using the
hand pose/gesture-based method is lower than or comparable to that required by using the native
mouse-keyboard interface.

• H2. The average time needed to complete the photo editing task with Google Picasa by
using the hand pose/gesture-based method is lower than that required by using the native
mouse-keyboard interface.

• H3. Intuitiveness in the exploration of the supermarket with Cortona3D Viewer by using
the hand pose/gesture-based method is comparable to that experienced by using the native
mouse-keyboard interface.

• H4. Intuitiveness in performing the photo editing tasks in Google Picasa by using the hand
pose/gesture-based method is comparable to or higher than that experienced by using the native
mouse-keyboard interface.

• H5. Fatigue is higher with the hand pose/gesture-based method than with the native
mouse-keyboard interface for both the Cortona3D Viewer and Google Picasa scenarios.
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On the one hand, when a direct mapping strategy is adopted, hand poses and gestures are basically
used as a straightforward replacement of the mouse and keyboard. Hence, no dramatic savings (in
terms of time) or improvement (in terms of intuitiveness) should be expected. On the other hand,
when combined mapping is used, a higher number of time-consuming operations on the graphical user
interface can be linked to a single pose and/or gesture. Thus, lower completion times and comparable
or even higher intuitiveness could be observed. However, complaints about the higher physical effort
required by hand/arm-activated interfaces are expected, as well.

5.2.3. Participants, Procedure and Variables Measured

The user population was composed of 20 volunteers in the age range from 20 to 40 years old.
Given their age and background, almost all of the end-users already knew how to use 3D and graphical
applications, such as the ones selected for the study. In this way, the possibility of having results biased
by the difficulty of learning a new graphical user interface was reduced. All of them were used to carrying
out common digital tasks, such as reading email, surfing the web, etc., by using a touch-based device,
and they were very satisfied with it. Eighteen already used their voice to carry out some tasks, though
their opinions about such interaction means were not particularly positive. Nine had already experienced
body gesture-based interaction, mainly from playing video games on a console, with an intermediate
degree of satisfaction. Only three out of twenty users had experienced hand gesture-based interaction
before the test. As their performances did not stand out, they will be included in the main population in
the following, and their results will be processed together with those of the other end-users.

Each user was individually trained on the execution of the tests. After a brief familiarization with
the applications and the interaction means, each user was requested to complete the two tests, both
with the native interface and with the hand pose/gesture-based one. The tests were submitted in a
random order. Half of the population started the test with the native interface and then switched to the
hand/gesture-based one. The other half started with the hand/gesture-based interface to counterbalance
the experiment. For each test, every user was asked to perform three trials. The time for the completion
of each trial was recorded. After completing the tests, users had to fill out a questionnaire in two parts.

In the first part, for both of the scenarios, the user was asked to confirm the suitability of the mapping
adopted and to rank the intuitiveness of the mouse-keyboard and hand pose/gesture-based interaction
modalities. Intuitiveness was described in terms of familiarity, i.e., as an indication of how comfortable
the user felt with the particular interface after having been briefly instructed on how to use it and having
performed the particular task [44]. The user was also requested to indicate the interaction modality that
was preferred overall (choosing among mouse-keyboard, hand poses/gestures and no preference).

In the second part (based on ISO9241-9 and devoted to device assessment [45]), the user was asked
to answer specific questions about the actuation force required, operation smoothness and speed, mental
and physical effort, accuracy, fatigue and general comfort. No distinction was made between the two
scenarios, and responses for the mouse-keyboard and hand pose/gesture-based interaction were recorded
on a seven-point Likert scale.
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5.2.4. Results

Results pertaining to completion time are reported in the box plots in Figure 11. It can be easily
observed that, for both the tests, average completion time with the hand pose/gesture-based interface is
lower than with the native one.

In particular, in the first scenario (Figure 11a), the average completion time was 61.23 s (σ2 = 8.50)
with the mouse-keyboard and 56.73 s (σ2 = 7.95) with the hand pose/gesture-based interface. As
expected, the difference was even more marked in the second scenario (Figure 11b), with an average
completion time of 85.86 s (σ2 = 16.69) and 70.68 s (σ2 = 12.23) with the mouse-keyboard and the
hand pose/gesture-based interfaces, respectively. The statistical significance of the results was assessed
by using paired t-tests and a level of significance of α = 0.05. Because of the values of p = 0.008 and
p = 0.0002 for the first and second test, respectively, the null hypothesis could be rejected, confirming
the validity of both H1 and H2.

 

  
            (a) Cortona3D Viewer                (b) Google Picasa 
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Fig. 11. Box plots of the completing time by interaction technique in the (a) Cortona3D Viewer and (b) Google Picasa scenarios. 

 
Results obtained from the questionnaire concerning the perceived intuitiveness and preferred interaction modality are reported in 
Fig.~\ref{fig12}. For the first scenario (Fig.~\ref{fig12a}), employing the Kruskal-Wallius h-test we could neither find a 
statistical significance for intuitiveness ($\chi^2 = 1.032$, $p = 0.597$) nor for personal preference ($\chi^2 = 2.36$, $p = 
0.307$). On the contrary, in the second scenario (Fig.~\ref{fig12b}), participants considered the hand gesture-based interface as 
the more intuitive ($\chi^2 = 6.342$, $p = 0.042$), thus validating H4. However, they preferred the mouse/keyboard interaction, 
overall ($\chi^2 = 7.228$, $p = 0.027$). 
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Figure 11. Box plots of completion times by interaction technique in the (a) Cortona3D
Viewer and (b) Google Picasa scenarios.

Results obtained from the questionnaire concerning the perceived intuitiveness and preferred
interaction modality are reported in Figure 12. For the first scenario (Figure 12a), employing the
Kruskal–Wallis h-test, we could not find a statistical significance for intuitiveness (χ2 = 1.032,
p = 0.597) or for personal preference (χ2 = 2.36, p = 0.307). On the contrary, in the second
scenario (Figure 12b), participants considered the hand pose/gesture-based interface as the more intuitive
(χ2 = 6.342, p = 0.042), thus validating H4. However, they preferred the mouse-keyboard interaction
overall (χ2 = 7.228, p = 0.027), though it is easy to observe that the number of times the users preferred
hand poses and gestures or had no preference is comparable to the number of times the mouse-keyboard
interaction modality was chosen.
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Figure 12. Number of times a given interaction techniques has been indicated as the most
intuitive or preferred, overall, in the (a) Cortona3D Viewer and (b) Google Picasa scenarios.

The findings above can be better understood by considering also Figure 13, where the average ratings
assigned to questions based on ISO90241-9 are reported.
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Figure 13. Average ISO90241-9 ratings for the two interaction device on a seven-point
Likert scale (error bars indicate the standard deviation).

Here, no distinction is made between the two scenarios. By focusing on relevant (and statistically
significant) results, it can be observed that the hand pose/gesture-based interface required a higher mental
effort and provided less smoothness. Accurate pointing was much more difficult to achieve with hand
poses and gestures than with the mouse and the keyboard. Moreover, hand poses and gestures resulted
in significantly higher wrist, arm and shoulder fatigue, making the overall comfort much lower than that
of mouse-keyboard-based interaction (thus confirming H5).

Taking into account the scope of ISO90241-9 and that all of the users, but one, confirmed the
adequateness of the mapping strategy adopted, the results above regarding personal preference could
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be reasonably linked to various particular features of the scenarios considered and to the possible
limitations of the interaction device adopted. For instance, mental effort could be due to the complexity
of remembering the (possibly too large) set of poses/gestures chosen to control the application’s behavior,
whereas physical effort is clearly associated with the use of a body sensor for performing hand tracking.
Pointing accuracy is limited by the characteristics of the sensor used, and its impact is particularly critical
for tasks requiring precise point-and-click interaction (such as cutting a photo). Therefore, it is possible
that the time savings obtained in the Google Picasa scenario were not able to counterbalance the poor
usability performances (which, in that scenario, might be particularly critical).

5.3. Second Experiment: Multi-Modal Interaction

From the results obtained with the two scenarios considered in the first experiment, it was evident that
defining a hand pose/gesture-based mapping for all of the commands of a common desktop application
could result in an extremely complex interaction mechanism. As an example, it would be very difficult
to map not only saturation, but all of Google Picasa’s tools for controlling image contrast, brightness,
hue, etc. Indeed, this observation confirms the fact that natural interaction means would probably have
to be considered as a method of enriching existing interaction mechanisms, rather than replacing them.
Nonetheless, part of this complexity may be because hand- and gesture-based interaction alone does not
provide the degree of flexibility that could be achieved in a richer multi-modal scenario.

With the aim of checking the validity of this hypothesis, a way to manage a situation, such as
the one depicted above for Google Picasa, was studied. A possibility could be, for instance, to use
mouse-keyboard and hand poses/gestures together. However, the switch between the two interaction
modalities could be quite hard to manage. It was therefore decided to experiment with pose- and
gesture-based interactions combined with voice commands.

5.3.1. Setup of the Interaction Scenario

In the second experiment, a third interaction scenario was set up. The test consisted of again editing
eight photos with Google Picasa by repeating some of the operations in the second experiment, but
also working with several editing tools not yet explored. A video showing user operation with the
mouse-keyboard interface is available in [46]. As can be observed, eight different editing tools are
used (e.g., for defocusing the image, cutting it, applying the film grain or posterization effects, etc.),
which are accessed through various tabs of the interface. Once activated, a given tool is controlled by a
number of (repeated) graphical widgets, such as buttons and sliders. To address the issues found during
the previous experiment, pose/gesture-based tool selection was replaced by voice commands. Thus, for
instance, the defocusing effect was activated by issuing the “defocus” or “defocusing” command. In
this way, a larger number of application functionalities could be activated. Then, a limited, intuitive and
(hopefully) easy-to-remember set of hand poses and gestures was mapped onto the above widgets. For
instance, when moved horizontally with the closed pose, the user’s hand controlled the first slider in
the tool panel; when moved vertically, it controlled the second slider, and so on. The pinch pose could
be used to cut a photo, whereas a horizontal swipe was used to change the photo to be edited. A video
showing multi-modal interaction with the above mapping is available in [47].
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5.3.2. Hypotheses

In the third scenario, the goal was to study the effect of complementing hand pose- and gesture-based
interaction with voice commands. Because limitations for the pose- and gesture-based interface, e.g., in
terms of accuracy and physical effort, had already been determined in the previous experiments, the
analysis for the current scenario was focused mainly on operation speed, mental effort and intuitiveness.
In particular, the following hypotheses were formulated.

• H6. The average time needed to complete the photo editing task with Google Picasa by using
hand poses/gestures and voice commands is still lower than that required by using the native
mouse-keyboard interface.

• H7. Mental effort to perform the photo editing tasks with Google Picasa by using hand
poses/gestures and voice commands is now lower than that experienced by using the native
mouse-keyboard interface.

• H8. Intuitiveness to perform the photo editing tasks with Google Picasa by using hand
poses/gestures and voice commands is higher than that experienced by using the native
mouse-keyboard interface.

5.3.3. Participants, Procedure and Variables Measured

For the third scenario, 10 new volunteers were selected, to not have results biased by previous
experience with the framework. Volunteers showed almost the same characteristics of those selected
for the experiments with the first two scenarios. In particular, almost all of them already used their voice
to carry out some tasks. Only two of them had experienced hand pose/gesture-based interaction before
the test. Each user was individually trained on the execution of the task, using both the mouse-keyboard
and the multi-modal interfaces. Then, half of the users were requested to carry out the task with the
mouse-keyboard interface and then to switch to the other interaction method. For the other half, the order
was inverted. For each test, every user was asked to perform two trials. The time for the completion of
each trial was recorded, together with the number of times the user issued a wrong pose/gesture or voice
command. After completing the tests, users had to fill out a questionnaire that was much shorter than
the one used for the first two scenarios. In fact, they were asked to evaluate only the mental effort and
intuitiveness of the two interaction modalities, also by indicating the preferred one.

5.3.4. Results

The results pertaining to completion time confirmed that multi-modal interaction, the same as the
pose- and gesture-based one (alone), can produce a significant speedup over the natural interface
(in this case, due partly to the one-to-many mapping and partly to the use of voice-based “shortcuts”).
In particular, the average completion time was 178.70 s (σ2 = 22.63) with the mouse-keyboard interface
and 145.90 s (σ2 = 26.18) with the multi-modal interface. The statistical significance of the results was
again assessed by using paired t-tests. A value of p = 0.0019 was obtained, rejecting the null hypothesis
and confirming the validity of H6.
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Mental effort was rated as 3.30 (σ2 = 1.16) and 1.61 (σ2 = 0.84) with the mouse-keyboard and the
multi-modal interfaces, respectively. The statistical significance was tested using the Kruskal–Wallis
h-test (χ2 = 8.758, p = 0.0031), validating H7. An additional confirmation of the reduced mental effort
obtained with the multi-modal interaction modality came from the number of times the user issued the
wrong command using any of the interaction modalities available, which was only 1.21 on average.

Regarding intuitiveness, seven (one) users indicated the multi-modal (mouse-keyboard) interface as
the more intuitive, whereas two of them had no preference (χ2 = 8.99, p = 0.011), validating H8.
Moreover, six users indicated the multi-modal interface as the preferred one overall, whereas no one
chose the mouse-keyboard interface and four had no preference (χ2 = 8.12, p = 0.017).

5.4. Considerations and Remarks

The user study confirmed that, in the scenarios considered, the introduction of multi-modal
control possibilities can improve efficiency by reducing interaction time, especially when multi-modal
commands are used to replace a sequence of mouse-keyboard operations. The more frequent and
time-consuming operations are combined via a one-to-many mapping, the higher the time savings
expected could be. The results obtained in the first experiment also showed that, for simple interaction
tasks, a clear preference for a particular interface could not be identified. On the contrary, when dealing
with complex interactions, hand poses and gestures are considered not only more effective, but also
more intuitive than the mouse-keyboard. However, the impact of such advantages could be reduced by
the poorer user experience due to higher physical and mental effort, which are experienced, e.g., when
the hand- and gesture-based interaction is used alone.

In fact, the second experiment showed that, by introducing suitable mechanisms to reduce the
mental effort, e.g., based on voice commands, the intuitiveness of the hand pose- and gesture-based
interaction can be further improved, making it the preferred interface for carrying out the tasks selected
for the experiments.

Hence, several guidelines could be drafted to mitigate the above constraints and foster the exploitation
of natural user interaction modalities in desktop applications. For instance, hand pose- and gesture-based
interaction devices achieving better scores in ISO90241-9 terms should be selected. As a matter of
example, the Leap Motion 3D Controller or the Myo armband by Thalmic Labs [48] could allow
for reduced physical effort. Moreover, mental effort could be addressed by introducing a multi-layer
mapping, such as the one exploited in the last scenario considered. In this case, the first interaction
mechanism was used to activate a given set of application functionalities, whereas the second mechanism
was exploited to define a limited set of commands to be re-used several times for different purposes.
Furthermore, in the definition of the pose/gesture set and mapping rules, robustness considerations
should be accompanied by usability criteria (to make the above set as easy to remember as possible), by
possibly allowing the user to configure the preferred mapping (as could actually be done in the presented
framework, if needed). Lastly, the negative impact of accuracy could be limited by properly separating
application functionalities to be handled by means of natural interaction from those that should continue
to be managed through the native interface.
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6. Conclusions and Future Work

In this paper, a framework aimed at extending the applicability of NUI-based interaction techniques
to existing desktop applications without any code re-writing effort is presented.

The proposed approach exploits ad hoc image processing techniques to unveil (and access) the inner
structure of the application’s GUI. Once the structure of the interface has been identified, user’s poses,
gestures and voice commands can be easily linked to graphical elements found by means of customizable
mapping rules. With respect to other comparable solutions reported in the literature, the devised approach
does not rely on the existence of specific keyboard- or mouse-based control functionalities (or shortcuts)
in the original interface and allows the user to create a library of personalized interaction controls.

The framework has been tested with a dedicated hand-tracking component based on a gaming RGB-D
sensor and with a speech recognition module based on standard libraries, though it has been designed in
a modular way to be easily extended for managing other sensors and recognition solutions. For instance,
at present, work to integrate a module for getting hand/finger tracking data from the Leap Motion 3D
Controller is in progress.

Experimental measures carried out to evaluate both tracking performance, as well as application
control functionalities enabled the identification of several criteria for an effective integration of the
hand pose- and gesture-based interaction into desktop applications. A user study in which 30 volunteers
were asked to test the proposed framework with two selected desktop applications showed that more
relevant time savings and improved intuitiveness can be observed when a single hand pose/gesture-based
interaction is used to control several time-consuming operations on the target interface. The above
benefits are balanced by a higher physical and mental effort required by the hand/arm-activated
interaction, which also results in less smoothness and poorer accuracy. Nonetheless, pose/gesture- and
voice-based multi-modality might help to reduce mental effort, by further boosting time performances
and intuitiveness.

Future works will be aimed at increasing the interaction means supported by the framework, e.g., by
integrating eye gaze tracking techniques, brain stimuli, etc., generally available only as separate features.
Moreover, additional tests will be carried out on an extended set of application by also experimenting
with the system’s personalization features with the aim of defining application- and user-specific
poses, gestures, voice commands and mappings capable of guaranteeing an improved user experience.
Lastly, there are plans for experimenting with the applicability of the proposed framework in other
scenarios, e.g., in the industrial and service robotics fields.
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