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Interference-Aware Downlink and

Uplink Resource Allocation in HetNets

with D2D Support

Francesco Malandrino, Member, IEEE, Zana Limani, Claudio

Casetti, Member, IEEE, Carla-Fabiana Chiasserini, Senior Member, IEEE

Abstract

We address the resource allocation problem in an LTE-based, 2-tier heterogeneous network where in-

band D2D communications are supported under network control. The different communication paradigms

share the same radio resources, thus they may interfere. We devise a dynamic programming approach to

efficiently schedule download and upload traffic, by (i) efficiently matching communicating endpoints

and (ii) assigning radio resources in an interference-aware manner while accounting for the characteristics

of the content to be delivered. To this end, we develop an accurate model of the system and apply

approximate dynamic programming to solve it. Our solution allows us to deal with realistic, large-scale

scenarios. In such scenarios, we compare our approach to today’s networks where eICIC techniques and

proportional fairness scheduling are implemented. Results highlight that our solution increases the system

throughput while greatly reducing energy consumption. We also show that D2D mode, established either

in the downlink or uplink, can effectively support delivery of highly popular content without significantly

harming macrocell or microcell traffic, leading to increased system capacity. Interestingly, we find that

D2D mode can also be a low-cost alternative to microcells.
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I. INTRODUCTION

The rapid increase in cellular data traffic due to the proliferation of wireless gadgets and

evolution of smartphones is posing a serious challenge to today’s mobile cellular networks. The

key question remains: will next-generation cellular networks be ready to rise to the occasion?

It is clear that there is a limit to what today’s networks with the current cellular infrastructure

can achieve both in terms of capacity and coverage. Indeed, they are not flexible enough for the

ever-changing behaviour of users who now have access to a diverse range of applications on their

smartphones and tablets, and who are ultimately more demanding in terms of user experience.

A cost-effective way to overcome these challenges is the deployment of Heterogeneous Net-

works (HetNets), i.e., adding low-cost base stations across the coverage area of the traditional

cellular infrastructure. This results in a multi-tier network with smaller cells such as micro, pico

and femtocells overlaying the traditional macrocells. Such a strategy promises to improve both

capacity and coverage by closing the gap between the access network and the user.

Another expected feature of future networks will be the support of direct device-to-device

(D2D) communication between users that are in proximity of each other [1]–[3]. Such D2D

links will most likely be established under operator control, as foreseen by the 3GPP ProSe

group working on Release 12 [4].

This feature also opens up a range of opportunities for improving spectrum efficiency and

achieving higher data rates, at virtually no cost for the operator. Another very appealing trait

of these solutions is that they operate at significantly lower power, making them much more

energy-efficient.

A major issue in these types of complex networks is interference management, both between

different tiers within the heterogeneous architecture and between infrastructure-to-device and

device-to-device communication. To achieve high spectrum utilization and exploit the opportu-

nities offered by D2D and HetNets, these solutions must coexist in harmony between each other

and the traditional cellular network, while sharing the same frequency spectrum.

Techniques to mitigate cross-layer interference in HetNets are already available, e.g., ICIC

(Inter-Cell Interference Coordination). However, intelligent resource allocation techniques must

be developed to fully reap the benefits offered by HetNets and D2D support.

In this paper, we address these challenges and propose an interference-aware resource schedul-

ing algorithm for an LTE-based, two-tier HetNet with D2D support. We consider that D2D will
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take place within the LTE bands, in what is often called “in-band underlay” mode [5], where

D2D opportunistically accesses the same spectrum resources used by the other nodes in the

cellular network. Indeed, as shown in [5], the in-band underlay D2D mode outperforms the

overlay mode in terms of achieved throughput. In principle, D2D communications can take

place in either the uplink or the downlink resources. Currently, it is widely accepted that uplink

resources should be used [6], since, at present, traffic is significantly heavier in downlink than

in uplink. However, it is expected that in the future traffic will be much less asymmetric,

then the use of downlink resources will represent a viable option. In both scenarios, D2D can

cause significant interference to normal infrastructure-to-device communications, either to nearby

receiving UEs when implemented in the downlink bands, or to nearby receiving base stations

(BSs) when deployed in the uplink bands. Without proper management of this interference, D2D

communication may easily end up doing more harm than good.

We therefore address and compare both D2D scenarios, and propose a resource allocation

procedure based on approximate dynamic-programming. The procedure itself is adaptable to

both downlink and uplink D2D scenarios, it is updated every subframe and is efficient enough

to be applied to large-scale scenarios. The performance of our approach is numerically evaluated

and compared to standard resource scheduling algorithms adopted in today’s cellular networks,

employing interference mitigation techniques. Results highlight that the proposed approach is

apt at fully exploiting the potential of both the heterogeneity of the network and D2D support,

while consuming far less energy. Results further reveal that D2D interactions act inherently as an

additional layer in the heterogeneous network, thereby potentially reducing the need for deploying

more microcells. Finally, while the uplink and downlink scenarios provide similar performance

in current traffic load conditions, the downlink will become preferable as the upload and the

download traffic tend to even out.

In summary, our key contributions are as follows:

• We provide a realistic network model for a HetNet with in-band underlay D2D support,

which captures the relationship between the different tiers of the HetNet, as well as the

relationship between base stations, users and users’ traffic requests. A realistic model is

used to obtain an accurate representation of the inter-tier and inter-cell interference.

• We formulate the resource allocation problem in such a HetNet using a Dynamic Program-

ming model and solve it using Approximate Dynamic Programming (ADP) techniques. The
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algorithm we propose solves this very hard problem efficiently enough so that it can be

run in real time. Furthermore, our algorithm provides a solution that takes into account the

interference caused between the different tiers and the nodes in the network, as well as the

nature and type of the data traffic demanded by the users.

• We evaluate two distinct scenarios depending on whether D2D communications are allowed

to use the downlink or uplink resources, and then solve the resource allocation problem for

both directions of data traffic, namely upload and download, by jointly scheduling the

downlink and uplink resources.

• Finally, using numerical evaluation, we show that our approach significantly outperforms the

de facto standard approach, the proportional fair scheduling (PF). In particular, our results

highlight the gain in performance due to D2D, especially in the presence of viral traffic,

namely content items that experience a sudden surge in demand in a short period of time.

The remainder of this paper is organized as follows: after discussing related work in Sec. II,

we introduce the system under study and formulate our problem in Sec. III. The network model

is presented in Sec. III-B. Sec. IV outlines the dynamic programming approach and our ADP

solution. Results derived in a realistic scenario are shown in Sec. V. Finally, we draw our

conclusions in Sec. VI.

II. RELATED WORK

The deployment of a multi-tier network where cells use the same radio resources is highly

beneficial since it allows traffic offloading from macrocells to smaller cells [7]. However, such

scenario imposes the adoption of ICIC techniques, for which a good survey can be found in

[8]. Additionally, eICIC specifications in 3GPP Rel. 10 [9] foresee the use of the Cell Range

Expansion (CRE) in LTE systems. Such a technique involves adding a positive range expansion

bias to the pilot downlink signal strength received from microcells so that more users connect

to them. Then, in order to mitigate the interference between overlaying macro- and microcells,

macrocells may periodically mute their downlink transmissions in certain subframes (called

almost blank subframes - ABSs). By using ABSs for edge users, microcells can significantly

improve their performance [10]. In our work, we do not focus on eICIC techniques; rather,

we take a scenario implementing them as our term of comparison. Unlike the above mentioned

works, we assume the presence of an area controller that issues resource allocation and scheduling
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instructions to BSs, through high-speed optical fiber connectivity [11], [12]. Also, we assume

both I2D and D2D communication paradigms in all cells.

The integration of D2D communication in cellular networks and its applications are investi-

gated in [13]. This work presents a conceptual framework for the formulation of problems such

as peer discovery, scheduling, and resource allocation. Another good survey on D2D proximity

services as foreseen by 3GPP can be found in [1]. This work provides a comprehensive overview

on some of the key functionalities of D2D communication and design challenges concerning the

integration of such communication within cellular networks. The authors of [1] focus on two

main use cases of D2D, as envisioned by 3GPP, namely for public safety and traffic offloading.

In the latter use case, which is the one we also focus on in our work, it is expected that D2D will

be established with support from infrastructure nodes, simplifying tasks such as synchronization

and discovery, and enabling dynamic resource allocation for D2D links [14].

The problem of resource allocation is also studied in [15]–[17], although only macrocells and

D2D mode are considered therein. Additionally, in [15] the D2D pairs wishing to exchange data

are given at the outset (i.e., unlike our work, [15] does not address the endpoint association prob-

lem). In [16] the authors seek an optimal resource allocation scheme for cellular networks with

D2D support, comparing orthogonal and non-orthogonal resource sharing modes. As numerical

results show, D2D coupled with non-orthogonal resource sharing mode ensures the highest gains

in terms of sum rate and per-cell throughput. Authors of [15], [17] formulate resource allocation

as a mixed integer optimization problem, which is notoriously hard to solve, with [15] also

presenting a greedy heuristic.

The work in [5] further compounds the problem by investigating the selection of the most

suitable communication mode, still in a single-tier scenario with D2D. There, an analytical model

is proposed, based on the assumption that the positions of BSs and users can be modeled as a

Poisson point process. In [18], we address the resource allocation problem in a network scenario

similar to the one presented in this paper, however only downlink resources are considered in the

allocation procedure. In contrast, here we jointly address the uplink/downlink resource scheduling

and, furthermore, we consider separate scenarios for D2D operating in the downlink and uplink

resources. Preliminary results of our work, considering the resource scheduling problem for both

upload and download traffic are presented in [19]. Beside the different methodology and scope

of the studies above, we stress that our work addresses HetNets including macrocells, microcells
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and D2D. While [5] derives an optimal factor of spectrum partition between cellular and D2D

communication, we aim at determining the endpoint that should serve each user and an efficient

data scheduling on a single radio resource basis.

III. PROBLEM FORMULATION

Resource scheduling management in LTE networks is an important function that aims at

efficiently allocating downlink and uplink channel resources to UEs, in order to meet as many

of their expectations while optimizing network performance. According to the LTE specifica-

tions [20], the minimum resource scheduling unit is referred to as a resource block (RB). One

RB consists of 12 subcarriers (each 15 kHz wide) in the frequency domain and one subframe

(1-ms long) in the time domain. Radio resource allocation is updated every subframe.

We consider the resource allocation problem in a two-tier LTE heterogeneous network com-

prising several microcells nested within the traditional larger macrocells deployed in an urban

setting. The macro and microcells are served by BSs, referred to as macroBSs and microBS,

respectively. In LTE, a macroBS is often referred to as eNode B. It has been shown that the

resource allocation problem in LTE-based networks is NP-hard [15], [17]. The problem is further

exacerbated when introducing additional infrastructure layers in the heterogeneous architecture

and enabling D2D. In such a complex scenario the resource scheduling strategy needs to address

not only the problem of which resources to allocate to which UE, but also which potential

endpoint among the various choices (macroBS, microBS or another UE) should serve a UE.

A. Scenario and assumptions

In this subsection we detail the system scenario and any assumptions we make about the

D2D-enabled HetNet under study. As was previously mentioned, the network model that we use

is based on a two-tier architecture. The network is made up of a set of first tier macroBSs that

control the macrocells and a set of microBSs deployed within their coverage area that control

the second tier microcells. We define the coverage of a BS (either macroBS or microBS), as the

area where the received strength of the BS pilot signal is higher than a given threshold, namely

-70 dBm in our case [21]. A UE under the coverage of both a macroBS and a microBS can be

served by either of them.
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Fig. 1. An example scenario. UEs are denoted by z1, . . . , z6, macroBSs by M1,M2 and microBSs by m1,m2,m3. Solid lines

denote coverage areas. Dotted lines correspond to RBs used by a pair of endpoints.

In general, we assume that our HetNet supports Frequency Division Duplexing (FDD), with

uplink and downlink using two different portions of the spectrum, however our formulation can

be easily extended to the Time Division Duplexing (TDD) case. Radio resource allocation is

performed and updated every subframe by the Area Controller (AC) in the core network, which

assists BSs in radio resource allocation and traffic scheduling. The AC collects information on

the channel quality from the BSs and on content items that users wish to upload/download.

Thus, BSs are only concerned with propagation and spectrum aspects, while they are oblivious

to higher-layer demands. From the collected information, the AC determines (i) which endpoint

(among the possible ones: macroBS, microBS, or UE) should serve each user, and (ii) which

RB(s) to employ for such communication. Decisions taken by the AC are issued to BSs, which

forward them to UEs. The fact that the AC performs the resource allocation task in a centralised

manner is in contrast with the distributed schemes that are adopted in today’s cellular networks,

where eNodes B are in charge of resource scheduling. However, given the expected complexity

of future cellular networks, it is widely anticipated that a more centralised structure will be

adopted [22]. An example scenario of such a network is shown in Fig. 1, while Fig. 2 shows

the roles of ACs, BSs, and users.

We assume that BSs have optical fiber connectivity to the core network, as envisioned by

operators and network manufacturers [11], [12]. This assumption is reasonable given the new,

complex tasks and the ever-increasing amount of traffic that the cellular infrastructure is expected

to handle.

As envisioned by recent trends and standardization activities, we consider network-controlled
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Fig. 2. The role of the area controller in our system model, in the case of content download. Users register with BSs, as in

current LTE networks. Content requests, however, are directed to the AC, which makes content-aware scheduling decisions.

Such decisions are pushed to BSs, which are then in charge of enacting them.

D2D communication [4], [14], [16]. This implies that, not only can synchronization and security

issues be easily solved, but also UE pairs can be efficiently scheduled so as to use cellular

resources even at high traffic load.

We assume in-band, underlay, deployment of D2D communication, that is, spectrum resources

are shared between devices using the D2D communication paradigm and the cellular infrastruc-

ture. However, we consider two possible scenarios: one in which D2D interactions leverage the

downlink radio resources (downlink scenario), and the other in which D2D takes place in the

uplink spectrum (uplink scenario). To this end, and in order to ensure efficient allocation of all

radio resources, in either scenario, we consider both download and upload traffic scheduling.

We mainly focus on unicast data transfers and assume that UEs can be served download

traffic by only one endpoint at a time, and similarly they can transmit upload data to only one

endpoint at a time. Considering the most popular types of terminals, we also assume UEs to

be half-duplex, i.e., they cannot transmit and receive at the same time. This implies that, e.g.,

in the downlink scenario a UE receiving information from the cellular infrastructure cannot

simultaneously serve another UE.

In Sec. V we compare the performance of the proposed system to a distributed scenario

reflecting today’s networks, where D2D is not supported and UEs are always served according

to the proportional fairness algorithm, by the BS whose received signal is the strongest.
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B. Network Model

We denote the collective set of BSs by B and the specific sets of macroBSs and microBSs

by BM and Bm, respectively. The BSs serve a number of users with mobile equipment that are

within the service coverage area. We refer to these users shortly as UEs and denote the total set

of UEs by Z .

1) Interactions and requests: Within the network the following interactions are supported:

interactions between BSs and UEs and vice-versa, and interactions between two UEs or D2D

communications.

BSs and UEs interact with each other using assigned radio resources. RBs allocated to each

interaction can be selected from two distinct sets of RBs: the set of downlink radio resources

Rd, and the set of uplink resources Ru. The RB allocation is valid for one subframe, therefore

the time is divided into a set K of 1 ms time steps.

The goal of the interactions is to transfer the content requested by the UEs. The content

requests may be made in both directions: upload or download. In fact, a UE can make a download

request for a specific content item from a finite download content set denoted as Cd. One of the

BSs, or, when D2D is enabled, a UE caching the requested content item, can serve the request.

Similarly, a UE may wish to upload a specific content item to the Internet, through the cellular

infrastructure (i.e., macroBSs or microBSs). We denote by Cu the set of content items that UEs

may wish to upload.

The allocation of RBs depends on the type of the communicating endpoints since the different

RB sets may be used only for specific types of interactions. Namely, BS-UE interactions may be

allocated RBs only from the Rd set, while UE-BS interactions may be allocated RBs only from

the Ru set. For D2D communications, the RB set to be used shall depend on whether D2D is

established in the uplink or downlink band. Indeed, since we assume that D2D links are used

for download traffic offloading, i.e., they may serve to provide UEs with requested content items

if available in the vicinity, the choice of the RB set is constrained by the traffic direction.

We define the time step at which a UE becomes interested in downloading/uploading a specific

content item as an input parameter called want-time and denote it as wc(z) ∈ K. Furthermore,

each content item c ∈ Cd∪Cu is characterized by a certain size lc and a maximum delay Dc with

which it should be delivered to its destination. These parameters are known to the scheduler and

are used as input parameters to the scheduling algorithm.
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During each interaction a certain amount of data is transferred between the two communicating

endpoints. We define the variable χk
c (e1, e2) to indicate the amount of content c transferred

between e1 and e2 at time step k. Then, for each content item c ∈ Cd∪Cu a user is interested in,

we define a variable hk
c (z), which denotes the total amount of content c downloaded/uploaded

by user z until time step k. Note that hk
c (z) is a non-decreasing quantity bounded by the size

of the content item, i.e., 0 ≤ hk
c (z) ≤ hk+1

c (z) ≤ lc, ∀k ≥ 0, ∀c ∈ Cd ∪ Cu.

The relationship between the two quantities is the following:

hk+1
c (z)← hk

c (z) +
∑

e∈B∪Z

χk
c (e, z), ∀c ∈ Cd

hk+1
c (z)← hk

c (z) +
∑

e∈B

χk
c (z, e), ∀c ∈ Cu . (III.1)

A list of symbols and definitions used throughout the paper can be found in Table I.

2) Propagation and interference model: For each interaction, we denote the power with which

endpoint e1 ∈ B ∪ Z transmits to endpoint e2 by P (e1, e2). For BS-UE transmissions, the

value of such parameter is fixed and depends only on whether e1 is a macroBS or a microBS,

i.e., P (e1, e2) = P (e1) [20]. Conversely, we assume that the transmit power of an UE, both when

transmitting to a BS or another UE, is subject to a power control scheme, so that its value may

depend on such factors as propagation conditions and positions of either endpoints. Specifically,

we use the following power control formula, from [23], to calculate the power of a transmitting

UE e1 towards endpoint e2, which can be another UE or a BS, at each time step k:

P (e1, e2)|dB = min{Pmax|dB, 10 log10(M) + P0|dB + ρ · PL(e1, e2)|dB +∆TF + f(k)} .

Pmax indicates the maximum power at which a UE can transmit, while M indicates the number

of RBs allocated to e1 at time step k. P0, ρ, ∆TF and f(k) are cell and user specific configura-

tion parameters, indicating respectively the spectral power density required at the receiver, the

path-loss compensation factor, a UE-specific parameter depending on the applied Modulation

Coding Scheme (MCS) and a higher-layer closed-loop command to increase/decrease power

level. PL(e1, e2) indicates the path loss experienced between the two endpoints. In general,

it depends on the distance between the two endpoints, on the Line of Sight (LoS) conditions

between them as well as on the transmitting and receiving antenna heights. It is calculated

according to specific propagation models as detailed below.
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TABLE I

LIST OF THE MAIN SYMBOLS USED IN THE SYSTEM MODEL

Symbol Description

B Set of BSs

Cd, Cu Set of download and upload content items

Rd,Ru Set of downlink and uplink radio resources (RBs)

Z Set of users

lc Size of content c

Dc Maximum delivery delay of content c

K Set of time steps

wc(z) Time step at which user z becomes interested in downloading or uploading content c

hk
c (z) Cumulative amount of data of content c that requester z has downloaded or uploaded until the

beginning of time step k

δkr (e1, e2) Amount of data that can be sent from e1 to e2 on RB r at time step k

yk
r,c(e1, e2) Amount of data of content c transferred from e1 to e2 at time step k over RB r

χk
c (e1, e2) Amount of data of content c transferred from e1 to e2 at time step k (over any possible RB)

P (e1, e2) Power with which endpoint e1 transmits to e2

A(e1, e2) Attenuation of the link between e1 and e2

Ikr (e2) Interference experienced by endpoint e2 on RB r

SINRk
r (e1, e2) Signal to interference and noise ratio experienced by e2 when receiving from e1

PL(e1, e2) Path loss between e1 and e2

N Noise power (W)

In order to model as accurately as possible the power and interference in our scenario, we

denote the total attenuation experienced by the signal between two endpoints as A(e1, e2). To

precalculate these values, we use the urban propagation models specified in [21] and [24].

Specifically, for macroBS-UE links, the attenuation is given by the following expression:

A(e1, e2) =
PL(e1, e2)

GTAP (θe1,e2)
e1 ∈ BM , e2 ∈ Z

where GT is the antenna gain of macroBS e1, and AP (θe1,e2) is the antenna pattern factor,

which depends on the angle θ(e1, e2) between the maximum radiation direction of e1 antenna

and the direction between the antenna and UE e2. PL(e1, e2) is the path loss as defined above.

To precalculate the path loss for these types of links, the Urban Macro (UMa) propagation model

in [21] is used. For microBS-UE links, assuming omnidirectional antennas with unitary gain,

the attenuation between two endpoints depends solely on the path loss value, i.e., A(e1, e2) =
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PL(e1, e2), which is precomputed using the Urban Micro (UMi) propagation model in [21]. For

UE-BS, the path loss is calculated using the respective reversed propagation model used in the

downlink. For D2D links, path loss is modeled using the UMi propagation model specified in

[24] and a correction factor that compensates for the low antenna height of the transmitter.

In general, we see that the attenuation of the signal depends on the type and position of

communicating antennas, as well as their propagation conditions (LoS). However, since both

power and attenuation values are simply input values to our problem formulation, the propagation

and power control models can be easily extended to accommodate additional assumptions, while

obtaining a remarkable level of realism.

Given the transmit power and the attenuation factor, the useful power received at e2 from

source e1 is P (e1, e2)/A(e1, e2). Similarly, every other node pair (e, z) communicating on the

same RB where e2 is receiving, causes a certain amount of interference to e2 given by P (e, z)/A(e, e2).

Thus, the total amount of interference experienced by e2 on RB r is:

Ikr (e2) =
∑

(e,z) use r at k∧

e:A(e,e2)>0

P (e, z)/A(e, e2) ,

while the signal to noise plus interference ratio (SINR) is yielded by

SINRk
r(e1, e2) =

P (e1, e2)/A(e1, e2)

N + Ikr (e2)
. (III.2)

where N denotes the noise power. We can finally map the SINR onto the amount of data that

can be transferred from e1 to e2 using RB r during step k. We indicate this amount by δkr (e1, e2),

and we determine its value based on experimental measurements [25].

Clearly, the value δkr (e1, e2) places a strict limitation on the amount of data that can be

transferred between the two endpoints, which we defined earlier as χk
c (e1, e2). The relationship

between the two can be described by the following inequality:

∑

c∈Cd∪Cu

χk
c (e1, e2) ≤

∑

r∈Rd∪Ru

δkr (e1, e2). (III.3)

In (III.3), strict inequality holds when e1 is a serving UE and the total amount of data it is

caching for e2 is smaller than what could be transferred over the link between the two nodes.

Additionally, we define the intermediary variable ykr,c(e1, e2) to indicate the amount of content

c transferred between e1 and e2 over RB r. For ykr,c(e1, e2), a similar inequality holds:

ykr,c(e1, e2) ≤ δkr (e1, e2) ∀c ∈ Cd ∪ Cu . (III.4)
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IV. A DYNAMIC PROGRAMMING APPROACH TO RESOURCE ALLOCATION

We now present the model we develop using standard dynamic programming methodology, in

order to tackle the resource allocation problem formulated in the previous section. As shown by

previous work [15], [17], the problem of radio resource allocation in LTE-based systems is NP-

hard, even when less complex scenarios than ours are considered. Thus, we resort to approximate

dynamic programming in order to solve the model in realistic, large-scale scenarios.

A. The dynamic programming model

Dynamic programming is an optimization technique based on breaking a complex problem

into simpler, typically time-related, subproblems. Since scheduling in LTE systems occurs every

subframe, we solve the resource allocation problem every time step k. A dynamic programming

model consists of the following elements (denoted by bold-face Latin letters) [26]:

• the state variable, sk, which describes the state of the system at time k;

• the action set, Ak = {ak}, i.e., all possible decisions that can be taken at time k;

• an exogenous (and potentially stochastic) information process, accounting for information

on the system becoming available at time k;

• the cost of an action, C(sk, ak), i.e., the immediate cost due to the selected action, given

the current state;

• the value, V(sk, ak), of ending up at a new state s
k+1, determined by the current state and

action; such value is given by the cost associated with the optimal system evolution from

s
k+1.

Table II summarizes these quantities, their meaning in our system and the symbols we use for

them. Fig. 3 shows how each of them is used in the model.

In particular, in our case the system state at generic time k is given by the set of duplets:

s
k = {hk

c (z), wc(z)}u,c. Each duplet refers to a different UE-content pair, z and c, and includes

(i) the amount hk
c (z) of the content transferred to or by the UE and (ii) the want-time wc(z).

Clearly, at time k we only know those want-times wc(z) ≤ k.

An action is a set of triplets, each defining which endpoint e1 should transmit to which other

receiving endpoint e2 and using which RB r, i.e., ak = {(e1, e2, r)}. In simpler terms, an action

is a realization of resource allocation. Note that, since we are considering both download and

upload traffic, e1, e2 ∈ B ∪ Z .
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TABLE II

LIST OF SYMBOLS USED IN THE DYNAMIC PROGRAMMING MODEL

Quantity and symbol Description

Current state s
k Set of duplets, each referring to a different UE-content

pair. A duplet includes the amount of content c already

transferred to/by z, hk
c (z), and the want-time wc(z) if no

greater than k

Action to take a
k Set of triplets indicating which pairs of endpoints (e1, e2)

should communicate on which RB, i.e., (e1, e2, r)

Exogenous information Want-times wc(z)

Cost C(sk,ak) Ratio of the amount of content still to be retrieved to the

remaining time before the deadline for content delivery

expires

Value V(sk,ak) Total (expected) costs due to the system future evolution

Ã
k Auxiliary action space, i.e., set of values expressing the

level of preference associated to each type of endpoint

The dynamic programming model works as shown in Fig. 3 (a): for each time step we

enumerate and evaluate the possible actions, select (and enact) the best one, and move to the next

time step. At this point, we become aware of which content items have been recently requested,

hence we can determine the next system state.

Fig. 3 (b) offers a more detailed view. The starting point is given by the current state s
k and

the set of actions describing the possible resource allocations (steps 1 and 2 in the figure). The

latter step is further elaborated in the next section. For each action, we compute the potential (δ)

and, then, the actual (χ) amount of data that can be transferred between every pair of endpoints

(steps 3–4), using the algorithms we provide below. Given the variables χ, we can update the

total amount of data that each requesting UE z can download/upload by the beginning of the

next time step using (III.1).

For each action a
k, we can then evaluate the cost C(sk, ak) the system incurs if ak is selected

(step 5 in Fig. 3 (b)). We define such cost as the sum over all requesters and content of the

ratio of the amount of data still to be transferred to the time before the content delivery deadline
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(5) Contribution

(6) State value (Alg. 4)  
(7) Best action a*(8) Potential data (Alg. 1)(9) Actual data (Alg. 2)(10) User reqs.

s
k {ak} δkr (e1, e2)

χk
c (e1, e2)

C(sk,ak)

V(sk,ak)
mina(C+V)δ⋆r (e1, e2)χ⋆

c(e1, e2)wc(z)

k ← k + 1

Ã
k

(b)

Fig. 3. Dynamic programming: (a) Main steps involved; (b) Detailed view. Given the current state (1), the set of possible

actions can be determined (2). For each action, the potential (3) and actual (4) amount of content transferred between the pairs

of endpoints can be computed. These values are further used to compute the cost (5) of an action, and to estimate the value

of the state it leads to (6). The latter two figures are used (7) to select the best action. The resulting data transfers (8-9), along

with the users that just became interested in a content, define the next state. The description of the notations appearing in the

flow diagram can be found in Tables I and II.

expires, i.e.,

C(sk, ak)=
∑

c∈Cd

∑

z∈Z :

wc(z)≤k

lc −
(

hk
c (z) +

∑

e∈B∪Z χk
c (e, z)

)

wc(z) +Dc − k

+
∑

c∈Cu

∑

z∈Z :

wc(z)≤k

lc −
(

hk
c (z) +

∑

e∈B χ
k
c (z, e)

)

wc(z) +Dc − k
.

(IV.1)

By the above definition, a lower cost is therefore obtained for those allocation strategies, ak,

assigning more resources to transfers that are closer to their completion deadline.

The value V(sk, ak) (step 6 in Fig. 3 (b)) is yielded by the sum of the costs C(sk+1, ak+1) +

C(sk+2, ak+2)+ . . .. In other words, it is the cost that will be paid in the future, after the system

has reached state s
k+1. State values do not normally admit a closed-form expression. In standard
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dynamic programming [26, Ch. 3], they are computed by accounting for all possible states and

actions, typically leading to an exceedingly high complexity in non-toy scenarios. We address

such an issue by applying approximate dynamic programming as described in the following

section.

Once C(sk, ak) and V(sk, ak) have been computed for all actions, the action a
∗ minimizing

the cost C(sk, ak)+V(sk, ak) is selected (step 7 in Fig. 3 (b)). Given a
∗, the corresponding actual

amount of transferred data can be calculated (steps 8-9). This, along with fresh information on

user requests (step 10), leads to the next state s
k+1.

Next, we detail how to compute the potential δkr (e1, e2) (Algorithm 1) and actual χk
c (e1, e2)

(Algorithm 2) amount of data, while taking into account the interference due to the spatial reuse

of radio resources. It is worth stressing that, the processes we describe below have a very low

computational complexity, namely O(|Z|), while maintaining a high level of realism.

Algorithm 1 Computing the amount δ of data that can be potentially transferred

Require: a
k

1: Ikr (z)← 0, ∀u ∈ Z , ∀r ∈ Rd ∪ Ru

2: for all (e1, e2, r) ∈ a
k do

3: for all z ∈ Z \ {e1, e2} do

4: Ikr (z)← Ikr (z) + 1A(e1,z)>0P (e1, e2)/A(e1, z)

5: for all (e1, e2, r) ∈ a
k do

6: SINRk
r(e1, e2)←

P (e1,e2)
A(e1,e2)(N+Ikr (e2))

7: δkr (e1, e2)← sinr to delta(SINRk
r(e1, e2))

8: return δkr (e1, e2)

Algorithm 1 is used in steps 3 and 8 in Fig. 3 (b). In line 4, we account for the fact that

every active endpoint pair may create interference at other users on the particular used RB. All

interference values are computed within the first loop. The second loop computes the SINR

(line 6) and maps it onto the amount of data that can be transferred on RB r during time step

k (line 7). We perform such mapping by using the experimental values in [25].

Algorithm 2 instead refers to steps 4 and 9 in Fig. 3 (b). The algorithm takes as input the

action a
k and the amount of data δkr (e1, e2) that can be potentially transferred as a consequence

of this action (computed in the previous step through Algorithm 1). Then, for each triplet in a
k,

it defines the set of potentially transferable content items T in lines 3–6. This is done firstly
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Algorithm 2 Computing the amount χ of data being actually transferred

Require: a
k, δkr (e1, e2)

1: χk
c (e1, e2)← 0, ykr,c(e1, e2)← 0, ∀c, e1, e2, r

2: for all (e1, e2, r) ∈ a
k : δkr (e1, e2) > 0 do

3: if r ∈ Ru ∧ e2 ∈ B then

4: T ← {c ∈ Cu : wc(e1) < k ∧ hk
c (e1) < lc}

5: else

6: T ← {c ∈ Cd : wc(e2) < k ∧ hk
c (e2) < lc}

7: c⋆ ← argminc∈T : wc

8: if c⋆ ∈ Cd then

9: ykr,c⋆(e1, e2) ← min {hk
c⋆(e1)− hk

c⋆(e2), δkr (e1, e2)}

10: else if c⋆ ∈ Cu then

11: ykr,c⋆(e1, e2) ← min {lc⋆ − hk
c⋆(e1), δkr (e1, e2)}

12: χk
c⋆(e1, e2)← χk

c⋆(e1, e2) + ykr,c⋆(e1, e2)

13: return χk
c (e1, e2), y

k
r,c(e1, e2)

to meet the scenario-imposed constraint that UE-BS communication may use only uplink RBs.

Secondly, it satisfies the constraint that a UE can only play one role at a given time step k, either

as an uploader, downloader or a server. As a consequence, download and upload content cannot

be mixed. The content to be transferred is selected in line 7, giving priority to incompletely

transferred content items that were requested first. In particular, in lines 9 and 11, for each

item the amount transferred on RB r, ykr,c⋆(e1, e2), is determined. This amount is given by the

minimum between the amount of data that source e1 still has for destination e2 and the amount

of data that can be accommodated in the RB1. Finally, the χ-value is obtained by summing the

y values over all RBs (line 12).

Notwithstanding the low complexity implied by the computation of the δ and χ quantities,

standard dynamic programming itself is affected by the well-known “curse of dimensional-

ity” [26], which makes it impractical for all but very small scenarios. In our scenario, this

problem is caused mainly by the exceedingly large set of possible actions and the aforementioned

complexity in the evaluation of the future cost V. As an example, consider the set Ak of possible

actions that can be taken at time step k, which includes all possible sets of (e1, e2, r) triplets.

1The computation of this amount assumes that content is downloaded in order, i.e., from the first to the last byte. It does not

hold for p2p applications, however file transfers and multimedia streaming do behave this way.
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There are |B ∪ Z||B ∪ Z||Rd ∪Ru| such tuples and, thus, a total of 2|B∪Z||B∪Z||Rd∪Ru| possible

actions a
k ∈ A

k. Some of these actions can be discarded as meaningless, e.g., allocating RBs

to a UE that has already completed its transfer. Others, e.g., having a UE receive from more

than one endpoint in the same time step, or receiving a content while transmitting, are ruled

out by technology constraints [20]. Furthermore in III-B, we laid down scenario-imposed rules

regarding which links can use which sets of RBs, which also eliminate a great deal of triplet

combinations. However, the very fact that the size of Ak grows exponentially with the number

of UEs, BSs and RBs makes a standard dynamic programming model not scalable. For a similar

reason, the evaluation of V stemming from A
k is exceedingly cumbersome. Indeed, one should

consider all possible system evolutions starting from the current state, by selecting at each future

time step the optimal action. Thus, we resort to ADP and propose the algorithms below so as to

efficiently generate and rank actions, hence find a solution with low computational complexity.

B. The ADP solution

Recall that the immediate cost C of each action can be evaluated with very low complexity,

thanks to Algorithms 1 and 2. Thus, in order to ensure scalability, it is sufficient to act along

two directions: (i) making the number of actions to be evaluated at each time step smaller and

independent of the number of UEs and BSs, and (ii) reducing the complexity of evaluating the

future cost V of an action. Of course, it is not possible to achieve such a result while keeping

the optimality guarantee. However, such an approach has been shown to be very effective [26,

Ch. 1], as also confirmed by our performance evaluation in Sec. V. Below, we describe how we

tackle the two issues.

1) Reducing the action space: The procedure described here is performed in the second step

of the dynamic programming model in Fig. 3 (b), where we define the set of all possible actions

A
k. Considering that the subsequent steps in the model have to be performed for every action

a
k in the set, reducing this set implies reduction in the complexity of the procedure as a whole.

To do so, we define an auxiliary action space Ã
k, whose size is much smaller than the original

action space A
k and, more importantly, does not grow with the number of UEs or BSs. Then,

we show a deterministic (and computationally efficient) way to map an action ã
k ∈ Ã

k of the

auxiliary action space into an action a
k ∈ A

k. It follows that the actions we evaluate (steps 5–7

in Fig. 3 (b)) are only those a
k ∈ A

k that have a correspondence in Ã
k.
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Algorithm 3 Mapping α-triplets into actions

Require: ã
k = (αM , αm, αD)

1: W ← {z ∈ Z s.t. ∃c ∈ Cd ∪ Cu : wc(z) < k ∧ hk
c (z) < lc}

2: sort W by wc(z)
3: for all z ∈ W do

4: for all e, r do

5: compute ykr,c(e, z), ∀c ∈ Cd

6: compute ykr,c(z, e), ∀c ∈ Cu (Algorithm 2)

7: if e ∈ B then

8: if r ∈ Rd then

9: e1 ← e, e2 ← z
10: σ(e1, e2, r)←

∑

c∈Cd
ykr,c(e1, e2)

11: if r ∈ Ru then

12: e1 ← z, e2 ← e
13: σ(e1, e2, r)←

∑

c∈Cu
ykr,c(e1, e2)

14: if e ∈ BM then

15: σ(e1, e2, r)← σ(e1, e2, r) · αM

16: if e ∈ Bm then

17: σ(e1, e2, r)← σ(e1, e2, r) · αm

18: if e ∈ Z then

19: e1 ← e, e2 ← z
20: if r ∈ Ru then

21: σ(e1, e2, r)←
∑

c∈Cd
ykr,c(e1, e2)

22: else

23: σ(e1, e2, r)← 0

24: σ(e1, e2, r)← σ(e1, e2, r) · αD

25: e⋆1, e
⋆
2 ← argmaxe1,e2

∑

r σ(e1, e2, r)

26: r⋆ ← argmaxr σ(e
⋆
1, e

⋆
2, r)

27: tcurr ← 0, tnew ← 0
28: for all (et, er, ρ) ∈ a

k and c ∈ Cd ∪ Cu do

29: compute δkρ(et, er) and ykρ,c(et, er) (Algorithms 1-2)

30: tcurr ← tcurr + ykρ,c(et, er)

31: for all (et, er, ρ) ∈ a
k ∪ (e⋆1, e

⋆
2, r

⋆) and c ∈ Cd ∪ Cu do

32: compute δkρ(e1, e2) and ykρ,c(et, er) (Algorithms 1-2)

33: tnew ← tnew + ykρ,c(et, er)

34: if tnew > tcurr then

35: a
k ← a ∪ (e⋆1, e

⋆
2, r

⋆)

36: return a
k
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To determine the auxiliary action space, we proceed as follows: we ask ourselves what kind

of choice has the highest relevance in a system such as ours. The most significant one is to rank

transfer paradigms, i.e., using macroBSs, microBSs or D2D – and test which combination of them

yields the highest throughput and carries the least interference. We thus rank the “importance”

of each paradigm by a triplet of real values αM , αm, αD ∈ [0, 1]. These values indicate which

endpoints should be preferably used, as shown in Algorithm 3, and each triplet represents an

auxiliary action ã
k. For the set of auxiliary actions to be manageable, we need to discretize

each value in the α triplet. The set Ãk is thus finite and we can control its size by choosing the

granularity of each α. This is our tuning knob for scalability purposes.

Algorithm 3 takes as input an action ã
k and maps it onto an action a

k (line 36). Its logic is

straightforward: we serve requesting users, starting from the neediest ones, selecting the most

effective endpoint.

More specifically, in line 1, we identify the set W ⊆ Z of active requesting users, i.e., users

with an incomplete transfer. This set is sorted (line 2) by the want-time wc(z), so the earliest

requests are given higher priority. Then, for each user z ∈ W , we loop over the potential

endpoints e and RBs r that e and z may use to transfer content (line 4), and asses all potential

combinations of z, e and r that make sense and are allowed in the scenario. Note that we have

explicitly reflected all the scenario-imposed constraints in lines 7–20. Most importantly in line

20, we set the constraint on which set of RBs may be used for D2D communications. Namely,

since we consider two different scenarios, this can be either the uplink (Ru) or the downlink

(Rd) RB set. We can switch between the two scenarios by simply changing this line in the

algorithm.

Next, for each combination we define the transmitting endpoint e1 and the receiving endpoint

e2, which depend on the traffic direction. For each triplet (e1, e2, r), we compute a score σ, which

is initialized to the amount of data (computed by Algorithm 2) that e1 may transfer to e2. Each

score σ is then weighted by the α-coefficient corresponding to the type of endpoint e, setting

priorities over the different possible data transfer paradigms. As an example, the α-coefficients

give us leverage to encourage D2D transfers by setting a high value for αD, or to limit the usage

of macroBSs to users that have no other means to be served by setting αM to a low value. In

line 25, we select the pair (e1, e2) corresponding to the highest sum of scores over all possibles

RBs. Notice that by selecting only one pair in line 25, we honor the technology constraint by
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which each user can either download, upload or serve data from at most one source and to

at most one destination in a given time step. In the following line, we assign to the endpoint

pair (e⋆1, e
⋆
2) the RB that maximizes their σ score. However, before conclusively including the

selected triplet (e⋆1, e
⋆
2, r

⋆) in the allocation strategy yielded by a
k, we check whether it increases

the total amount of data transferred in the network or not (lines 28–34). While verifying that,

we resort again to the interference-aware Algorithms 1 and 2 to compute the δ and y values. If

the amount of data grows, the triplet is added to action a
k (line 35). In conclusion, we stress

that the size of the auxiliary action space Ã is small and it is independent of the number of UEs

and BSs. Thus, we have achieved our scalability goal.

Algorithm 4 Estimating the value of a state

Require: s
k, ak, {ak+1, . . . , aK}

1: v ← 0
2: for q = k + 1→ K do

3: for all (e1, e2, r) ∈ a
q do

4: compute δqr(e1, e2) using Algorithm 1

5: for all (e1, e2) : ∃ δ
q
r(e1, e2) > 0 do

6: for all c ∈ Cd ∪ Cu : wc(z) ≤ k ∧ hq
c(z) < lc do

7: compute χq
c(e1, e2) using Algorithm 2

8: ĥq+1
c (e2)← ĥq

c(e2) + χq
c(e1, e2), ∀c ∈ Cd

9: ĥq+1
c (e1)← ĥq

c(e1) + χq
c(e1, e2), ∀c ∈ Cu

10: compute C(sq, aq)
11: v ← v +C(sq, aq)

12: return V(sk, ak) = v

2) Evaluating the state values: To evaluate an action, it is important to compute the value

of the state s
k+1 the action leads to. As already stated, the value of a state corresponds to the

sum of the costs we will pay due to future actions, if these are chosen optimally. Clearly, if

we set V(sk, ak) = 0 for all actions, i.e., we select the action that seems more profitable at the

current step, we end up adopting a greedy strategy. However, in network scenarios where D2D

is allowed, accounting for future actions may be of particular relevance: e.g., transmitting to

some users at a faster pace, so that they can act as serving UEs later, may be beneficial to the

whole network.

It follows that we need to compute the value function V accurately enough, while keeping the
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complexity low. To do so, we resort to the methodology typically used in ADP. Such methodology

[26, Ch. 9] implies that, at each step k, we fix the sequence of future actions, starting from state

s
k+1. We apply this procedure to our problem as described in Algorithm 4.

The algorithm takes as input: (i) the current state s
k and the current action to be evaluated a

k

(i.e., the two elements determining next step s
k+1), and (ii) the future actions that we expect will

be taken. In order to compute the latter, we start by assuming that the conditions experienced

by a user do not change during the transfer time. This is a fair assumption since, as shown by

Figs. 4(b),(c) and 5(b),(c) in Sec. V, users complete their transfer in hundreds of ms, hence the

movement of pedestrian users during content transfer is negligible. Also, note that the procedure

for computing the value function V is repeated at every time step k. We feed such information

to a machine learning model, so as to compute future actions {ak+1, . . . , aK} [26, Ch. 9].

Next, we exploit the estimated information on the system to compute, at each future time step

q > k, the δ and χ values for each communication foreseen by action a
q (lines 4 and 7) using

the algorithms presented in Sec. IV-A.

In lines 8 and 9, for each step q > k, given the previous state and the χ values, we apply

(III.1) and update the amount of data of content c, hq
c , that each downloader/uploader can

retrieve/transfer until step q. Then, we use the quantities χ and h to evaluate the cost of action

a
q . Note that we cannot predict future user requests, however, due to the short time span before

a transfer completion, their number is limited. Additionally, their deadline will be further away

in time,2 hence their impact is minimal (see (IV.1)). At last, V(sk, ak) is calculated by summing

all future cost contributions (line 12).

C. Solution complexity

As mentioned before, to meet the scalability requirements, the algorithms must be of sufficient

low-complexity. Applying ADP, this requirement is indeed met. With reference to Fig. 3 (b), and

assuming that the dominant factor is the number of users, the complexity is as follows: step (2),

O(2|Z|) with plain dynamic programming, which reduces to O(|Z|) using Algorithm 3. Steps

(3) and (4), O(|Z|). Step (5), O(1). Step (6), O(|A|k) with plain dynamic programming, which

reduces to O(|Z|) with Algorithm 4.

2Recall that Algorithm 4 is repeated at every time step k.
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V. RESULTS

We evaluate the performance of our approach in the two-tier scenario that is typically used

within 3GPP for LTE network evaluation [27]. The scenario comprises a service network area of

12.34 km2, covered by 57 macrocells and, unless otherwise specified, 228 microcells. Macrocells

are controlled by 19 three-sector BSs; the macroBSs inter-site distance is set to 500 m. MicroBSs

are deployed over the network area, so that there are 4 non-overlapping microcells per macrocell.

A total of 3420 users are present in the area. In particular, in order to have a higher user

density where microcells are deployed, 10 users are uniformly distributed within 50 m from

each microBS. The rest of the users are uniformly distributed over the remaining network area.

Users move according to the cave-man model [28], with average speed of 1 m/s.

In line with [21], [27], [29] we assume a transmitting power of 43 dBm for macroBSs,

and 30 dBm for microBSs, and antenna height values of 25 m and 10 m, respectively. For the

macroBS antenna we further assume the antenna gain to be 14 dBi and the maximum attenuation

20 dB, while the microBS antennas are omnidirectional with 0 dBi gain. UE transmitting power is

controlled, using the following values for the cell and user configuration parameters: Pmax|dB =

23 dBm, Po|dB = −70 dBm, ρ = 0.7 and ∆TF = 0. Closed loop control is disabled. We assume

the antenna height of the UE to be 1.5 m.

All network nodes operate over a 10 MHz band at 2.6 GHz for downlink and at 2.5 GHz for

uplink, hence we have |Rd| = |Ru| = 50 RBs.

As already mentioned, the signal propagation for BS-UE links is modelled according to ITU

specifications for urban environment [21] and for D2D according to the specifications in [24],

while the SINR is mapped onto per-RB throughput values using the experimental measurements

in [25]. The noise power level is set at -174 dBm/Hz, according to [21]. The energy consumption

of the network nodes is instead computed according to [29].

Users may require content for download or upload from a set of 21 different items, belonging

to three categories: e-books (10 items), videos (10 items), or viral content (1 item). Their

characteristics and intervals between user requests are summarized in Table III. We highlight

that video and viral items have stricter constraints on delivery time. Content items from the

e-book and video category may be requested either for download or upload. The viral content

item, on the other hand, is modeled as being in high demand during a narrow time interval to
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TABLE III

CONTENT TYPES

Feature eBook Video Viral

Dowload request rate [items/s] 1e− 3 1e− 3 5e− 2

Upload request rate [items/s] 0.5e − 3 0.5e − 3 –

Size [Mbit] 12 3 3

Deadline [steps] 4000 1000 1000

Request interval [steps] 1–1000 1–1000 41–60

mimic content becoming suddenly popular, hence users may request it only for download. We

consider the traffic load to be asymmetric with upload traffic being half the download one.

The scheduling decisions issued by the AC are valid for one subframe, therefore the resource

allocation algorithm is performed every 1 ms. While applying our ADP approach, we consider

that the values of the αM , αm, αD parameters, are discretized as {0.1, 0.2, . . . , 1}. Additional

experiments with values exhibiting finer granularity have shown negligible improvement.

We will additionally consider two different D2D deployment scenarios, depending on which

of the two RB sets (downlink or uplink) D2D communications are allowed to share with the

cellular infrastructure. We shall refer to them as the DL scenario, when D2D operates in the

downlink portion of the spectrum, and the UL scenario when it operates in the uplink portion.

We compare our approach against a system implementing the 3GPP eICIC with a microcell

bias of 15 dB and the ABS model where macroBSs are silent in 1 out of every 2 subframes [30].

In the latter, D2D mode is not supported and UEs connect to the BS from which they receive

the strongest pilot signal. At the BSs, traffic is scheduled according to the proportional fairness

(PF) algorithm, which is standard in today’s LTE networks [20]. In the following, we will refer

to this benchmark scenario as PF.

The comparison between ADP and PF for both scenarios is shown in Figs. 4–6. In particular,

Fig. 4(a) and Fig. 5(a) show that ADP allows the transfer of more data than the state-of-the-art

(around 7%), while using over 40% less energy. Such a gain can be attributed to the lower usage

of macrocells (characterized by very high transmit power), in favour of microcells and D2D. In

the plot, the possible endpoints are differentiated by using different colors: black for macroBSs,

gray for microBSs and red for UEs. Note that the energy consumption due to D2D mode is
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Fig. 4. DL scenario. ADP vs. PF: (a) total amount of transferred data and consumed energy, (b) CDF of the download completion

time, (c) CDF of the upload completion time, (d) failed transfers.

negligible and can be barely seen in the plot. Also, under both ADP and PF, transmissions from

microBSs are more efficient than those from macroBSs, as the former carry a higher amount of

data at a much lower energy cost.

Figs. 4(b)–(c) and Figs. 5(b)–(c) depict the CDF of the completion time of successful down-

loads (b) and uploads (c), for the different content categories (differentiated by the different

colors). A download/upload is successful if it can be completed by the corresponding deadline.

Comparing ADP (solid lines) to PF (dotted lines), we notice that in general ADP outperforms

PF in terms of ensuring faster content delivery both for uploads and downloads, regardless of the

D2D scenario. This is especially true for viral and video content, which have stricter deadlines.

Indeed, in ADP, the cost C in (IV.1) accounts for content deadlines, giving higher priority

to those content transfers that are closer to their completion deadline. In particular, for video

content, ADP is able to provide a far lower completion time for at least 90% of the successful
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Fig. 5. UL scenario. ADP vs. PF: (a) total amount of transferred data and consumed energy, (b) CDF of the download completion

time, (c) CDF of the upload completion time, (d) failed transfers.

downloads, than PF. These results are closely related to the percentage of failed transfers shown

in Fig. 4(d) and Fig. 5(d), where the performance of ADP and PF are differentiated by using the

orange and blue color, respectively. Clearly, ADP guarantees higher success rates than PF for

all content categories and in both traffic directions, but the contrast is most dramatic for viral

content. This can also be attributed to the fact that D2D is heavily used by ADP to deliver this

type of content.

Fig. 6 highlights the improvement that ADP offers in terms of usage of radio resources, both

downlink and uplink, compared to PF. Observe that, on average, in downlink ADP can transmit

much more data per RB than PF. We observe a gain of around 35-40% in RB usage efficiency

for macrocells and around 50% gain for microcells. The reason for such behavior is that our

interference-aware approach is far more efficient in matching potential endpoints than the PF

based system. In other words, ADP scheduling yields higher values of SINR at the receiving
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Fig. 6. RB usage: (a) DL scenario, (b) UL scenario.

endpoints, hence higher data rates per RB. In the DL scenario, the amount of data per RB is

especially high for D2D links, which is remarkable considering that UEs transmit at significantly

lower power than microBSs or macroBSs.

By looking at Figs. 4–6, we also notice the differences in performance between the DL and

UL scenario. In terms of RB usage, the values of data transferred per RB are in general higher

in the DL scenario than in the UL scenario. This is mainly due to the fact that the overall

achievable data rates for a certain value of SINR are higher in the downlink than the uplink,

according to the experimental measurements used in our evaluation. Nonetheless, D2D in the

UL scenario is significantly more efficient in using RBs compared to UE-macroBS links, and

comparable to UE-microBS links. This impacts also the overall amount of data that ADP is able

to transfer through D2D in the UL scenario compared to the DL scenario, as can be noticed

by comparing Fig. 4(a) and Fig. 5(a). While the overall amount of transferred data is similar in

both scenarios, the amount transferred by D2D is slightly higher in the DL. In the UL scenario,

the slack is picked up by microcells, which causes a slight increase in energy consumption.

We therefore conclude that the UL and DL scenarios provide similar performance in current

traffic load conditions, however the DL scenario will become preferable as the upload and the

download traffic tend to even.

In the same scenarios as above, we now halve the number of microcells from 228 to 114, i.e.,

2 microcells per macrocell. The most noticeable effect is that, with ADP, D2D communication

steps up to compensate for the missing microBSs, as shown in Figs. 7(a) and (b). Instead, PF falls
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Fig. 7. Halving the number of microcells: amount of transferred data and consumed energy, in the DL scenario (a), and in the

UL scenario (b); amount of transferred data by ADP, in the DL scenario (c), and in the UL scenario (d).

considerably short of providing the same throughput as before. Indeed, comparing these plots to

Figs. 4(a) and 5(a), ADP exhibits a mere 10% drop in transferred data in the DL scenario, and

around 6% drop in the UL scenario, with respect to 28% for PF. Energy consumption increases

for both approaches, achieving similar levels for both. As expected, ADP tends to favour content

with stricter time constraints (viral and video), at the expense of e-books. For sake of brevity,

we omit plots comparing other metrics, which however confirm the above observations.

Summary. Thanks to a lesser usage of macrocells, our proposed scheme enables the transfer

of 7% more data than PF, at an energy cost that is reduced by over 40%. ADP also provides a

completion time that is significantly lower than PF, for most of the data transfers. Particularly

striking is the success rate of viral content delivery: thanks to D2D communications, ADP

exhibits 0-2% failures versus 18% of PF. As for the efficiency in RB usage, the interference-aware

scheduling performed by ADP leads to an improvement of 35-40% over PF for macrocells and
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of around 50% for microcells. Another interesting finding is the advantage of accommodating

D2D communications in the uplink or in the downlink bandwidth. Under current traffic load

conditions, the two options are equally effective. However, as upload and download traffic tend

to even out, using the downlink bandwidth will be preferable. Finally, D2D is found to be an

effective, low-energy and low-cost replacement for microcell deployment.

VI. CONCLUSIONS

We considered a 2-tier, LTE-based network, supporting D2D communication. We devised an

interference-aware solution to the problem of uplink and downlink radio resource allocation,

to efficiently accommodate the download and upload traffic in such a complex network. For

each traffic request, our algorithm selects which endpoint should serve a user, and allocates the

radio resources for such communication, in an energy-aware and spectrum-efficient manner. In

particular, we presented approximate dynamic programming algorithms to generate and rank

possible resource allocation decisions. This way, we obtained a low-complexity solution that can

deal with realistic, large-scale scenarios. In addition, we evaluate two possible approaches to in-

band, network-controlled D2D implementation, and assess the performance of our solution for

both cases. Results show that our solution combined with D2D outperforms the state-of-the-art

used in today’s networks both in terms of overall throughput and user experience. Furthermore,

we highlight that D2D mode can be a valid, low-cost alternative to microcells in supporting

traffic with little energy consumption.
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