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Skew Incidence Plane-Wave Scattering From 2-D
Dielectric Periodic Structures. Analysis by the

Mortar-Element Method.
Alberto Tibaldi, Graduate Student Member, IEEE, Renato Orta, Senior Member, IEEE,

Oscar Antonio Peverini, Member, IEEE, Giuseppe Addamo, Giuseppe Virone
and Riccardo Tascone, Member, IEEE

Abstract—A full-wave simulator of 2-D dielectric periodic
structures under skew plane wave incidence is presented in this
paper. A differential formulation is used and the boundary value
problem is solved by means of a multi-domain spectral method.
Suitable mappings allow the efficient analysis of dielectric ele-
ments with rounded corner cross sections. A comparison with
the results obtained by the method of moments and with a
commercial simulator is presented for an array of dielectric rods
and for a surface-relief diffraction grating.

Index Terms—Spectral methods, mortar-matching, periodic
structures, dielectric structures, surface-relief diffraction grat-
ings.

I. INTRODUCTION

PERIODIC structures have been extensively used as mod-
els in optics and electromagnetics. For this reason, in

recent years many efforts have been made aiming to develop
fast and accurate electromagnetic simulators for several prob-
lems that involve periodicity. The characterization of reflection
gratings has been performed by introducing problem-matched
basis functions used to approximate the solution of an integral
equation with the method of moments (MoM) [1], and with the
mode-matching technique [2]. The frequency response of pho-
tonic crystals has been evaluated with a hybrid finite elements
method (FEM) exploiting a Floquet mode representation of the
electromagnetic field [3] [4]. The two-dimensional scattering
of a plane wave from a periodic array of composite dielectric
cylinders has been studied with the MoM accelerated by means
of a multigrid method [5], or with the aggregate T-matrix
method for cylindrical structures [6]. Frequency-selective sur-
faces have been analyzed by determining numerically the
Green’s function of a screen perforated by multiply connected
apertures [7]. Dielectric frequency-selective surfaces have been
analyzed using a vectorial modal method [8]. The boundary
integral-resonant mode expansion method (BI-RME) has been
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used to study electromagnetic band-gap structures [9]. The
finite-difference time-domain method (FDTD) has been used
to analyze the guided-wave characteristics of substrate inte-
grated nonradiative dielectric waveguides [10].

The application of spectral methods in the framework of
computational electromagnetics is very interesting. These tech-
niques derive from the method of weighted residuals, where
the solution of the differential problem is approximated by
a linear combination of basis functions defined on a parent
domain and mapped to the physical one. The flexibility in
the description of the geometry can be enhanced by apply-
ing a domain decomposition strategy, giving rise to multi-
domain spectral methods, widely applied to computational
fluid-dynamics problems [11] [12], and to electromagnetic
problems in both frequency and time domains [13], [14], [15].
Then, they have been accelerated and applied to the design of
several E-plane and H-plane devices in rectangular waveguide
with sharp metallic edges by augmenting the set of basis
functions with the asymptotic behavior of the electromagnetic
field at metallic corners [16], [17]. Then, a simulator of 2-
D dielectric periodic structures has been recently developed
starting from [16] and applied to the study of an infinite array
of rectangular dielectric rods excited by plane waves with E-
plane and H-plane incidence [18], and with skew incidence
[19]. This is based on the mortar-element method (MEM),
that is a multi-domain spectral method where the continuity
conditions between patches are enforced in weak form, ac-
cording to the mortar-matching technique [12]. The domain
decomposition strategy is based on defining patches filled with
homogeneous dielectric; by this way, a proper representation
of the electromagnetic field in the internal problem can be
obtained using a small number of basis functions.

In this paper, the method presented in [19] is further
extended to analyze dielectric periodic structures with rounded
corners; this feature is used to model the non-idealities caused
by manufacturing processes. Subsection II-A describes the
decomposition of the original problem into two sub-problems
by means of the equivalence theorem: in the first one the
field is represented in terms of Floquet modes; the second
one consists of a boundary-value differential problem that is
solved by means of the MEM, as described in Subsection
II-B; this provides the approximate Green’s function of the
internal problem. In Subsection II-C the two sub-problems are
connected through the continuity conditions of the tangential
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fields at the access ports. In Section III this numerical scheme
is validated by comparison with a MoM code and with the CST
Microwave Studio code; then, it is applied to the analysis of
a realistic model of a surface-relief diffraction grating.

εr

ε0

PSW

b

x

y z

k(inc)

a

ϑ

Ld

Wd

εr

R

b

ϕ
e−jφ

Ω

εr

εr

εr

PSW

Fig. 1. Left: sketch of the geometry of the structure; right: unit cell.
The horizontal solid lines are phase-shift walls (PSW) with phase shift
φ = k

(inc)
x a; the vertical dashed lines define the access ports; the parameter

a is the period; Ld and Wd are the dimensions of the dielectric rod; R is
the radius of curvature of the rounded corners.

II. THEORY

The present technique can be applied to the analysis of 2-
D periodic structures excited by a plane wave with arbitrary
incidence. This is used to compute the generalized scattering
matrix in the Floquet modes basis. The geometry sketched in
Fig. 1 is used as reference for the description of the formu-
lation; the structure consists of a periodic array of infinitely
long dielectric rods with relative permittivity εr, surrounded
by vacuum. The permittivity is assumed to be complex, to
account for possible dielectric losses. The periodicity direction
is x and rods are parallel to y. The period of the structure is
a, each bar has dimensions Ld and Wd, and the corners are
rounded with radius of curvature R. The wavevector of the
incident plane wave is

k(inc) = k0 (sinϑ cosϕ, sinϑ sinϕ, cosϑ) =

= (k(inc)
x , k(inc)

y , k(inc)
z ),

where k0 is the free-space wave number. The unit cell consists
of a phase-shift wall waveguide with a dielectric obstacle; the
pseudo-periodicity boundary conditions for the electric and
magnetic fields E and H are

{
E(z, a) = E(z, 0)e−jφ

H(z, a) = H(z, 0)e−jφ,

where φ = k
(inc)
x a is the phase shift originated by the incident

wave and indicated in Fig. 1.

A. Decomposition of the problem

The original problem is decomposed into two sub-problems:
the external one, where the electromagnetic field is non-zero
only in the access waveguides, and the internal one, where
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Fig. 2. Top: definition of the two sub-problems; bottom: equivalent multi-
modal circuit of the external sub-problem, where only one mode contribution
is shown.

the field is non-zero only in the region Ω that contains the
dielectric scatterer. In the former, the electromagnetic field is
represented by a modal expansion

E
(k)
t (x, y, z) '

Nm∑

n=1

V (k)
n (z) en(x, y)

H
(k)
t (x, y, z) '

Nm∑

n=1

I(k)
n (z)hn(x, y),

(1)

where Nm is the number of Floquet modes (en,hn) used at
each port. The equivalence theorem is applied two times for
each access port and then two couples of electric and magnetic
current densities are introduced on the two sides of the surface
Σ

(k)
eq located at the k-th access port. Let Ê

(k)
t , Ĥ(k)

t , (Ẽ(k)
t ,

H̃
(k)
t ) be the transverse electric and magnetic fields on the

outer (inner) side of Σ
(k)
eq . Then,

J(k) = n̂(k) × Ĥ
(k)
t , M(k) = Ê

(k)
t × n̂(k), (2)

where n̂(k) is the normal unit vector to Σ
(k)
eq directed towards

the free-space region; the application of the equivalence the-
orem is described in the top part of Fig. 2. It is remarked
that the equivalent currents J(k) and M(k) give rise to Ê

(k)
t ,

Ĥ
(k)
t and to a null field inside the region Ω, while −J(k) and
−M(k) radiate the fields Ẽ(k)

t and H̃
(k)
t . The current densities

are represented by a modal expansion

J(k) '
N(k)

m∑

n=1

i̊(k)
n en, M(k) '

N(k)
m∑

n=1

v̊(k)
n hn, (3)

The position of the access ports is chosen by trading-off the
number of the evanescent modes excited by the dielectric
obstacle and the number of basis functions that have to be
used to represent the solution of the internal problem.

The formulation of the external problem is completed by
matching the phase-shift wall waveguides. Then, the equiva-
lent multi-modal circuit shown in the bottom part of Fig. 2 for
the n-th mode is derived [20, Chap. 2]; here, the coefficients
i̊
(k)
n and v̊

(k)
n have the circuit interpretation of current and

voltage sources and Z(k)
∞,n is the modal impedance. This circuit

describes, in modal terms, the radiation of the equivalent
currents in the external sub-problem.
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B. Formulation of the Internal Problem

The boundary-value problem defined in the internal region
Ω is derivated from the Maxwell’s curl equations, written in
cartesian coordinates and in absence of sources. Since the
structure is invariant with respect to y, each field component
has the same e−jkyy dependence of the incident field. Hence,
it is possible to use Ey , Hy as Hertz potentials from which
the remaining components are obtained:

Ex = − j

k2 − k2
y

(
ky
∂Ey
∂x
− kZ ∂Hy

∂z

)

Ez = − j

k2 − k2
y

(
ky
∂Ey
∂z

+ kZ
∂Hy

∂x

)

Hx = − j

k2 − k2
y

(
ky
∂Hy

∂x
+ kY

∂Ey
∂z

)

Hz = − j

k2 − k2
y

(
ky
∂Hy

∂z
− kY ∂Ey

∂x

)
,

(4)

where k = k0 or k = k0
√
εr, depending on the medium, Z =

Z0 or Z = Z0/
√
εr, where Z0 is the free-space impedance,

and Y = Z−1. In the skew incidence case, i.e. ϕ 6= 0, each
field component depends on both Ey and Hy , which are the
unknowns of the vector differential problem. If the plane wave
is incident in the zx plane (i.e. ϕ = 0), the problem splits
up into independent E-polarization and H-polarization scalar
ones, already studied in [18]. The unknowns of the problem
are expanded as

Ey '
Nf∑

c=1

c(e)
c uc(z, x)

Hy '
Nf∑

c=1

c(h)
c uc(z, x),

(5)

where the expansion functions uc(z, x) belong to the function
space V of continuous functions with integrable derivatives
satisfying the pseudo-periodicity condition

uc(z, a) = uc(z, 0)e−jφ z ∈ [0, L] ∀c = 1...Nf . (6)

The synthesis of these basis functions is performed according
to the mortar-element method, which consists in decomposing
the region Ω into patches that are mapped to a square parent
domain by means of blending mappings. The Gordon-Hall
formula is used to obtain the mappings from the parent domain
to a generic quadrilateral with either rounded or straight edges
[12, Sect. 8.8.4]; this is a generalization of the bilinear map-
ping used in [18], [19]. A set of local basis functions is defined
on the parent domain for each patch, and then these functions
are specialized to satisfy the essential boundary conditions,
that involve the continuity between adjacent patches and the
pseudo-periodicity. The procedure used to synthesize the basis
functions is extensively discussed in [16].

Equations (4) are obtained from the x and z components of
the curl Maxwell’s equations. The y components are cast in
weak form by projecting them onto a set of test functions vr =
ur chosen according to the Galerkin version of the method of
weighted residuals

〈
∂Ex
∂z
− ∂Ez

∂x
, vr

〉
= −jkZ 〈Hy, vr〉

〈
∂Hx

∂z
− ∂Hz

∂x
, vr

〉
= 〈 jkY Ey, vr〉 .

Then, integration by parts by means of Stokes theorem is
performed and the following equations are obtained:

(LHS)
(e)
r = (RHS)

(e)
r ∀r = 1...Nf (7)

(LHS)
(h)
r = (RHS)

(h)
r ∀r = 1...Nf , (8)

where

(LHS)
(e)
r = j

∫∫

Ω

kY Eyv
∗
rdxdz+

+

∫∫

Ω

[
Hx

∂v∗r
∂z
−Hz

∂v∗r
∂x

]
dxdz (9)

(RHS)
(e)
r =

∮

γ

(H
(y)
t v∗r ) · ds (10)

(LHS)
(h)
r =− jkZ

∫∫

Ω

Hyv
∗
rdx dz+

+

∫∫

Ω

[
Ex

∂v∗r
∂z
− Ez

∂v∗r
∂x

]
dxdz (11)

(RHS)
(h)
r =

∮

γ

(E
(y)
t v∗r ) · ds, (12)

and γ = γPSW∪γ(1)
wg∪γ(2)

wg is the boundary of Ω, E(y)
t and H

(y)
t

are the electric and magnetic fields transverse to y. The top
and bottom contributions (on γPSW) to the RHS integrals are
set equal to zero to enforce the pseudo-periodicity of Ex, Ez ,
Hx, Hz as natural boundary conditions [21, Chap. 3]. Then,
the two remaining contributions (on γ(k)

wg ) are used to account
for the effect of the equivalent currents as non-homogeneous
boundary conditions. By observing that E(y)

t · ds = Ẽ
(k)
t · ds

and H
(y)
t · ds = H̃

(k)
t · ds,

(RHS)
(e)
r = b(e,1)

r + b(e,2)
r

(RHS)
(h)
r = b(h,1)

r + b(h,2)
r ,

(13)

where, according to (2) and enforcing the field continuity:

b(e,k)
r =

∫

γ
(k)
wg

(H̃
(k)
t v∗r ) · ds =

∫

γ
(k)
wg

(J(k) × n̂(k)v(e)∗
r ) · ds

b(h,k)
r =

∫

γ
(k)
wg

(Ẽ
(k)
t v∗r ) · ds =

∫

γ
(k)
wg

(n̂(k) ×M(k)v(h)∗
r ) · ds.

(14)

By substituting (4) and (5) in (9) and (11) the following system
of matrix equations is obtained:

{
A(e,e)c(e) + A(e,h)c(h) = b(e,2) + b(e,1)

A(h,e)c(e) + A(h,h)c(h) = b(h,2) + b(h,1),
(15)

being c(e) and c(h) the vectors obtained collecting the expan-
sion coefficients defined in (5). The vectors b(e,k) and b(h,k)
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contain the line integrals defined in (13) and are expressed in
terms of the source coefficients i(k) and v(k) by using (3),

b(e,k) = B(e,k) i̊(k)

b(h,k) = B(h,k) v̊(k).
(16)

This leads to the definition of the matrix equation

Ac = Bx,

where

c =

[
c(e)

c(h)

]
, x =




i̊(1)

v̊(1)

i̊(2)

v̊(2)


 . (17)

By inverting this expression it is obtained

c = Gx. (18)

This equation provides a relationship between the current
densities defined at each access port and the field that they
radiate in the region Ω; for this reason, the matrix G = A−1B
can be interpreted a representation of the Green’s function of
the internal problem.

C. Continuity equations at the access ports

The formulation of the method is completed by coupling
the internal and external sub-problems through the continuity
conditions of the transverse fields at the access ports. The
transverse field continuity at the k-th port is enforced by
projection on the mode functions

{
〈Ẽ(k)

t , e(k)
q 〉 = 〈Ê(k)

t , e(k)
q 〉 ∀q = 1...Nm

〈H̃(k)
t ,h(k)

q 〉 = 〈Ĥ(k)
t ,h(k)

q 〉 ∀q = 1...Nm.
(19)

The fields Ê
(k)
t , Ĥ

(k)
t are represented in terms of Floquet

modes, while Ẽ
(k)
t and H̃

(k)
t using the MEM basis functions

restricted to the k-th port. By recalling (1), this equation is
written in matrix form

{
T

(e,e)
k c(e) + T

(e,h)
k c(h) = V̂(k)

T
(h,e)
k c(e) + T

(h,h)
k c(h) = Î(k)

, (20)

where the matrices T
(.,.)
k contain the projections of the MEM

basis functions on the k-th waveguide modes. By expressing
the right-hand sides of the previous equations in terms of
the generators and the incident fields (see Appendix A), the
following matrix equation is obtained,

Tc = Dx + KV(inc). (21)

Then, by substituting (18) in (21),

x = [TG−D]
−1

KV(inc). (22)

The expressions of all the matrix elements are reported in
Appendix A. Once x is known, it is possible to compute the

b
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y z
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5
Lref Lref

b
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b

b
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b

b

Fig. 3. Domain decomposition approach applied to the structure of Fig. 1;
the dashed lines and the numbers identify the patches and the dots identify
their vertexes. The distance from the access ports if Lref . The patch 1 is filled
with dielectric εr = n2.

generalized scattering matrix S of the structure and to use (18)
to evaluate the electromagnetic field in the device, as reported
in Appendix B.

III. RESULTS

In this section the mortar-element method is validated
through a comparison with results obtained with a MoM
code and with the CST Microwave Studio frequency domain
solver (CST-MS). In all the following examples, the dielectric
losses are neglected. The integrals involved in the evaluation
of the matrix elements are calculated with a Gauss-Legendre
quadrature rule with Nquad = 32 nodes.

A. Array of dielectric rods

The first benchmark case is the array of dielectric rods
shown in Fig. 1. The domain decomposition approach applied
to this structure is described in Fig. 3, where five patches have
been adopted. It is convenient to choose the vertexes of the
patches in such a way that the angles between their edges
are as close to 90◦ as possible, to have regular mappings
to the parent domain; in this case, the best possibility is to
choose the center of the arcs. It has to be remarked that, at the
interfaces between different dielectrics, some field derivatives
are discontinuous; for this reason, it is convenient to divide
the domain Ω in patches where the dielectric is homogeneous,
to avoid Gibbs phenomena.

The geometry of the structure is defined by: a = 100 µm,
Ld = 40 µm, Wd = 30 µm. The access ports are located
Lref = 55 µm from each vertical dielectric interface, the
refractive index in the patch 1 is n = 2.21.

In Figs. 4 and 5 the TE0-TE0 reflection coefficient is
reported versus frequency and incidence angle ϑ. In both
analyses, Nm = 8 modes have been used to represent the
electromagnetic field at each access port and Nf = 84 entire-
domain basis functions (generated by means of fifth-degree
polynomials) are used to represent Ey and Hy . In Fig. 4,
ϑ = 55◦, ϕ = 20◦; in Fig. 5, f = 1.2 THz. The reference
solution has been obtained by an in-house MoM code where
Nm,MoM = 50 modes are used to approximate the Green’s
function [22], [23]. This choice ensures the convergence of
the scattering parameter. Good agreement between the curves
can be observed even if in the available MoM code the corners
are assumed to be sharp, whereas in the MEM code they are
rounded with R = Ld/40.
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Fig. 4. Magnitude and phase of the TE0 mode reflection coefficient of the
array of dielectric rods of Fig. 3, with R = Ld/40. The solid and dotted
curves refer to the MEM and with MoM simulations.
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Fig. 5. Magnitude of the TE0-TE0 mode reflection coefficient for the array of
dielectric rods of Fig. 3, with R = Ld/40, f = 1.2 THz. The solid, dashed
and dash-dotted lines refer to results obtained with ϕ = 20◦, 40◦, 60◦ with
the MEM technique. The brighter, dotted lines refer to the results obtained
with MoM.

In Fig. 6 a comparison between the TE0-TE0 reflection
coefficient simulated with the MEM code and with CST-MS
is shown for the same structure with radii of curvature of the
corners changed to R = Ld/4, for a plane wave with incidence
angles ϑ = 55◦, ϕ = 20◦; a remarkable agreement is achieved
also in this case.

In Fig. 7 the TE0-TE0 reflection coefficient obtained with
the MEM for several values of the curvature radius R is
reported. The main effect of the R variation is a small shift
of the reflection zero.

Figure 8 shows the convergence study of the 2-norm rela-
tive error of the TE0-TE0 transmission coefficient versus the
number of functions Nf for R = Ld/4. The dot refers to the
MEM simulation shown in Fig. 6 for which an accuracy better
than 1% is achieved. It is shown that the scheme exhibits the
typical exponentially-convergent behavior of spectral methods.

B. Surface-relief diffraction grating

As a second test case the MEM has been used to analyze
a surface-relief diffraction grating, where the rounded corners
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Fig. 6. Magnitude and phase of the TE0-TE0 mode reflection coefficient for
the array of dielectric rods of Fig. 3, with R = Ld/4. The solid and dotted
curves refer to results obtained with the MEM technique and with CST-MS,
respectively.
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Fig. 7. Magnitude of the TE0-TE0 mode reflection coefficient for the array of
dielectric rods of Fig. 3. The curves from right to left refer to R = Ld/3, R =
Ld/4, R = Ld/6, R = Ld/9, R = Ld/40.
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Fig. 9. Domain decomposition approach applied to the realistic model of a
surface-relief diffraction grating. The patches 4÷ 8 are filled with dielectric
εr = n2, the remaining ones with vacuum; the dots identify the vertexes of
the patches; all the corners are rounded, with radius of curvature R.
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Fig. 10. Magnitude and phase of the TE0-TE0 reflection coefficient for the
surface-relief diffraction grating of Fig. 9, with R = Ld/4. The solid and
dotted curves refer to results obtained with the MEM technique and with
CST-MS, respectively.

take into account the non-idealities associated to the manu-
facturing process. A detailed review of the fabrication issues
occurring in the case of optical applications can be found in
[24, Sect. 1.6]. The geometry of this structure and its patching
are reported in Fig. 9. The period is a = 100 µm, the dielectric
tooth dimensions are Ld = 35 µm and Wd = 40 µm, the
distance of the left port from the dielecric is L1 = 50 µm, the
height of the dielectric substrate is Ls = 25 µm, the distance
of the right port from the substrate is L2 = 25 µm, R = Ld/4,
the refractive index of the dielectric is n = 2.21, the incidence
direction is ϑ = 55◦, ϕ = 20◦.

In Figs. 10, 11 and 12 the comparisons of the TE0-TE0,
TM0-TM0 and TM0-TE0, reflection coefficients simulated
with the MEM code and with CST-MS are reported. Nf = 84
entire domain basis functions (generated by polynomials of
degree 4) and Nm = 4 modes have been used in the MEM
simulations. A remarkable agreement has been achieved also
for very low levels of reflection coefficient.
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Fig. 11. Magnitude and phase of the TM0-TM0 reflection coefficient for
the surface-relief diffraction grating of Fig. 9, with R = Ld/4. The solid
and dotted curves refer to results obtained with the MEM technique and with
CST-MS, respectively.
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Fig. 12. Magnitude and phase of the TM0-TE0 (TE0 incident) reflection
coefficient for the surface-relief diffraction grating of Fig. 9, with R = Ld/4.
The solid and dotted curves refer to results obtained with the MEM technique
and with CST-MS.

IV. CONCLUSION

The formulation of the plane wave scattering problem from
a dielectric periodic structure has been presented; this is based
on decomposing the problem into an external sub-problem
where the field is represented using Floquet modes, and a sub-
problem where the field is found as the solution of a differ-
ential problem with pseudo-periodicity boundary conditions.
This has been solved by means of the mortar-element method.
The results of this technique have been compared to reference
solutions obtained with a MoM code and with a commercial
code. This procedure validated the numerical method.
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APPENDIX A
EXPRESSIONS OF THE MATRIX ELEMENTS

In this appendix the expressions of the elements of the
matrices introduced in Section II are explicitly reported. The
matrix A is defined as

A =



A(e,e) A(e,h)

A(h,e) A(h,h)


 ,

where:

A(e,e) =
jkY

k2 − k2
y

[
(k2 − k2

y)M−N
]

A(e,h) =
jky

k2 − k2
y

L

A(h,e) =
jky

k2 − k2
y

L

A(h,h) = − jkZ

k2 − k2
y

[
(k2 − k2

y)M−N
]

and:

(M)rc =

∫∫

Ω

ucv
∗
r dz dx

(N)rc =

∫∫

Ω

[
∂uc
∂z

∂v∗r
∂z

+
∂uc
∂x

∂v∗r
∂x

]
dz dx

(L)rc =

∫∫

Ω

[
∂uc
∂z

∂v∗r
∂x
− ∂uc

∂x

∂v∗r
∂z

]
dz dx.

The matrix B is defined as

B =



−B(e,1) 0 B(e,2) 0

0 −B(h,1) 0 B(h,2)


 ,

where, for the k-th port:

(B(e,k))rn =

∫ a

0

hx,nv
∗
r

∣∣∣∣
Σ

(k)
eq

dx

(B(h,k))rn =

∫ a

0

ex,nv
∗
r

∣∣∣∣
Σ

(k)
eq

dx.

As for the system (20) associated to the continuity conditions
at the waveguide ports, the matrix T containing the projections
of the MEM basis functions on the Floquet modes is

T =




T
(e,e)
1 T

(e,h)
1

T
(h,e)
1 T

(h,h)
1

T
(e,e)
2 T

(e,h)
2

T
(h,e)
2 T

(h,h)
2




,

where:

(T
(e,e)
k )rc =

∫ a

0

[
uce
∗
y,r −

jky
k2 − k2

y

∂uc
∂x

e∗x,r

]∣∣∣∣
Σ

(k)
eq

dx

(T
(e,h)
k )rc =

∫ a

0

jkZ

k2 − k2
y

∂uc
∂z

e∗x,r

∣∣∣∣
Σ

(k)
eq

dx

(T
(h,e)
k )rc = −

∫ a

0

jkY

k2 − k2
y

∂uc
∂z

h∗x,r

∣∣∣∣
Σ

(k)
eq

dx

(T
(h,h)
k )rc =

∫ a

0

[
uch
∗
y,r −

jky
k2 − k2

y

∂uc
∂x

h∗x,r

]∣∣∣∣
Σ

(k)
eq

dx.

For the circuit shown in Fig. 2, the voltage and current on the
transmission lines are found as:



V̂(1) = V(1,inc) − 1

2
Z(1)
∞ · i̊(1) +

1

2
v̊(1)

Î(1) = Y(1)
∞ ·V(1,inc) +

1

2
i̊(1) − 1

2
Y(1)
∞ · v̊(1)

V̂(2) = V(2,inc) +
1

2
Z(2)
∞ · i̊(2) +

1

2
v̊(2)

Î(2) = −Y(2)
∞ ·V(2,inc) +

1

2
i̊(2) +

1

2
Y(2)
∞ · v̊(2),

(23)

where Z
(k)
∞ and Y

(k)
∞ are the diagonal matrices containing

the modal characteristic impedances and admittances in the
k-th waveguide. Then the matrices D and K are defined by
grouping the right-hand side of (20). The matrix D is

D =




− 1
2Z

(1)
∞

1
2I 0 0

1
2I − 1

2Y
(1)
∞ 0 0

0 0 1
2Z

(2)
∞

1
2I

0 0 1
2I

1
2Y

(2)
∞




,

where I is the identity matrix and 0 is a matrix filled with
zeros. Similarly, the matrix K is

K =




I 0

Y∞ 0

0 I

0 −Y(2)
∞




.

APPENDIX B
COMPUTATION OF THE GENERALIZED SCATTERING MATRIX

In this appendix the computation of the GSM of the device
is described. The modal voltage in the k-th waveguide can be
written as the sum of the incident and the scattered waves

V̂(k) =V̂(inc,k) + V̂(scat,k) =

(Z(k)
∞ )

1
2 (a(k) + b(k)).

By combining this representation with (23), the scattered wave
amplitudes are written as
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b(1) = −1

2
(Z(1)
∞ )

1
2 i̊(1) +

1

2
(Y(1)
∞ )

1
2 v̊(1)

b(2) = +
1

2
(Z(2)
∞ )

1
2 i̊(2) +

1

2
(Y(2)
∞ )

1
2 v̊(2),

(24)

or, more compactly,

b =
1

2
Px,

where:

P =



−(Z

(1)
∞ )

1
2 (Y

(1)
∞ )

1
2 0 0

0 0 (Z
(2)
∞ )

1
2 (Y

(2)
∞ )

1
2




b =



b(1)

b(2)


 .

Then, according to (22), (24) becomes

b =
1

2
P [TG−D]

−1
KQa

because:

V(inc) =



V(inc,1)

V(inc,2)


 = Qa

and

Q =

[
(Z

(1)
∞ )

1
2 0

0 (Z
(2)
∞ )

1
2

]
, a =



a(1)

a(2)


 ,

from which, the expression of the GSM is obtained

S =
1

2
P [TG−D]

−1
KQ.
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