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Abstract  
So called under-platform dampers are widely used as a source of friction damping to mitigate 
resonance in gas turbine blades and avoid service failures.  
Due to the high computational cost of performing dynamic analysis of structures constrained through 
frictional contacts, ad hoc numerical codes have been developed in the frequency domain. Whatever 
the numerical model, it requires knowledge of contact-friction parameters, which are established either 
through single contact frictional measurements, or by tuning the damper parameters though 
comparison of the experimental response of damped blade against its computed response or, else, by 
fine tuning the damper parameters by comparing the measured v. the calculated hysteresis cycle.  The 
last one is these authors’ choice. Equipment and method are described accordingly. 

  

Keywords:  friction damping; under-platform dampers; turbo-machines; hysteresis; experimental; 
numerical  
 
 
1. INTRODUCTION  
 
The starting point in the forced response calculation of a mechanical system with friction contacts is 
the development of the finite element (FE) model of the system (i.e. blade pairs). In order to reduce 
the calculation time typical of numerical integration of non-linear systems, the harmonic balance 
method (HBM) can be used to compute the steady-state response of the system [1-3]. In detail, due to 
the periodicity of the external excitation, also the displacements and the non-linear forces are 
periodical at steady-state, hence the displacement and friction forces can be approximated by the first 
terms of their Fourier series.  
When dealing with underplatform friction dampers, due to the dual nature of the contact, two different 
approaches can be found in technical literature. Some authors [4–9], among which Yang and Menq, 
have developed a separate routine in order to compute contact forces as a function of input 
displacements. This approach requires the determination of the damper contact kinematics and a 
reasonable assumption such as the approximation of the damper as a rigid body with tangential and 
normal contact stiffness.  Others [10-12] have decided to include the damper in the FE model of the 
bladed array, in order to avoid any assumption about either the damper kinematics or the influence of 
UPD bulk stiffness on the damper dynamics. Including the damper in the FE element model of the 
system, however, increases the computational time and does not solve the problem related to the 
estimation of the contact areas.  
In the authors’ opinion, the first approach is preferable, since it is more effective in capturing those 
finer details which are essential to an appropriate description of damper behaviour. Moreover being 
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able to investigate the damper behaviour offline (without involving the FE model of the whole system) 
considerably shortens any damper optimization process.  
The dedicated routine developed by the AERMEC group combines numerical simulation with a 
trustworthy experimental approach for these reasons: 

• the experimental observations can be used as a benchmark to draw the appropriate values of 
contact parameters (local friction coefficients and contact stiffness) to be used as input to a 
numerical model which represents the dynamics of the damper between the two platforms (i.e. 
the dedicated routine),  

• the validated routine becomes a design tool.  
Experimental observations involve: 

• a test rig capable of measuring the damper relevant quantities; 
• error estimation on the measured and derived quantities to produce trustworthy results; 
• results interpretation and estimation of friction contact parameters. 

The numerical model requires: 
• modeling the damper : the non-conforming contact on the curved damper side is modelled 

with one contact point, the conforming contact on the flat damper side is modelled with two 
contact points, whose position is determined according to the wear traces on the damper used 
in the test rig; 

• modeling the test rig, in order to compare the simulated results with the experimental ones;  
• identifying a suitable integration scheme and an iteration criteria; 
• identifying a suitable contact model to represent the non-linear contact interface behaviour. 

Once the validation of the numerical model has been achieved, the simulation of the platforms’ 
behaviour can be removed from the routine. The routine will therefore be able to, given the relative 
motion of two points (nodes) on the platforms’ surface, substitute the non-linear friction forces with 
their HBM equivalent. In other words the presence of the damper will be substituted with a set of 
estimated real and imaginary stiffness (as shown in Fig. 1), whose values depend on the platforms’ 
relative motion.   
The results here presented were obtained from a particular type of cylindrical-flat damper, shown in 
Fig. 1, which is used in practice, slightly adapted to laboratory conditions. 
 

 
Figure 1 : Damper substitution with a set of complex springs 

 
2. THE TEST RIG 
 

The test rig, developed over the years by the AERMEC laboratory, focuses its attention on the UPD 
kinematics and damping capability to the purpose of measuring the relationship between the blade 
platforms relative displacements and the transmitted contact forces. 

In order to achieve this goal the test rig is composed of three main parts: 
• a moving part representing the left blade platform, which serves as input motion to the system; 
• a fixed part representing the right blade platform, connected, by means of a tripod, to two 

force sensors which measure the contact forces transmitted between the platforms, through the 
damper; 

• the interposed underplatform damper, held in contact with the platforms by means of a set of 
wires and pulleys, to reproduce the effect of the centrifugal force. 
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In-plane periodic displacements are imposed to the left platform by means of two perpendicular 
piezoelectric actuators; this configuration virtually allows the reproduction of any in-plane trajectory, 
however in this paper only In-Phase (I-P) and Out-of-Phase (O-o-P) motions (see Fig. 2) shall be 
investigated. 
A deeper understanding of the damper behavior is achieved by investigating its kinematics. By 
employing a differential laser vibrometer system with Polytec OFV-3001 controller and OFV-512 
sensor head, it is possible to record the damper radial displacement and its rotation angle (the system 
output kinematical quantities). 
Moreover the laser allows to precisely record the input motion (left platform movement relative to the 
right platform), a necessary precaution because the lack of closed loop control of the piezoelectric 
actuators, which have a non-negligible compliance, makes displacements dependent on transmitted 
forces. A complete description of the test rig components and calibration procedures can be found in 
Gola et. al [13,14]. 
 

 
Figure 2 : Overview of the main functional blocks of the test rig. The platforms are red-contoured with 

dashed lines and the damper is green contoured with solid lines 
 
 
3. MEASURED AND DERIVED QUANTITIES 
 
3.1 Measured force components 
 
  The readings of the load cells mentioned in the previous section give only the varying components of 
the right contact force. The zero references of the right contact force components are estimated 
through a load removal procedure. The procedure simply involves hand lifting the weight connected to 
the pulling wires through which the cell preloads are applied, and measuring the signal drop as 
described in [14].  
 
3.2 Derived force components 
 
   Once the complete components of the right contact force (NR and TR) are known, the damper static 
equilibrium is reconstructed by neglecting damper inertia (at frequencies where this is correct) and 
therefore assuming contact and centrifugal forces to pass through one point, as described in [14] and 
shown in Fig. 3a. In this way NL, TL and their point of application on the damper are determined. 
 
3.3 Measured kinematical quantities 
 
   The in-plane kinematics of the damper is reconstructed from measured data:  

• the damper rotation β is measured by means of a laser differential measurement wA0AR 

between points A0 and AR (Fig. 4a); 
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• damper displacement along radial direction wA0 ; this measurement is obtained by closing the 
reference eye of the laser, while keeping the beam pointed on A0 open (Fig. 4b); it is 
subsequently numerically corrected to make it relative to the right platform, whose load is 
measured and the spring constant is known. 

 
3.4 Derived kinematical quantities 
 
The right damper contact point displacement with respect to the right platform is decomposed, with 
reference to Fig. 3b, 

 
• in a rolling component 
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This reconstruction, carefully described in [15] was based on the assumption (justified by the force 
signal) that the right surface of the damper never loses contact with the right platform. The model used 
in the kinematic reconstruction presents a simplifying assumption: displacement is computed with 
respect to physical points (A1 and A2) instead of the ones actually struck by the laser (A’ 1 and A’2) as 
shown in Fig. 3b. As was proven in [15], this assumption leads to errors whose magnitude is at least 
10 times lower than the uncertainty coming from the measured quantities; therefore the simplified 
model was used in order to easily perform the analytical error propagation. 

 

 
Figure 3 : (a) Damper force equilibrium (b) Damper motion reconstruction 

 
4. MEASUREMENT UNCERTAINTIES  
 
The experimental results have been assigned, in order to be correctly evaluated and significant, a 
degree of trust expressed by the uncertainty of the measured and calculated values. Conclusions are: 

• the force signal has a linearity uncertainty given by the load cells specifications of 1% of the 
used range 

• in the case of our load removal procedure, the difference between the measured voltage drop 
for the given force drop and the one predicted by the calibration factor according to 
specifications is below 2% 

• the error on the position of the left contact force, obtained through an error propagation 
procedure, is found to be at max 0.6 mm 

• the error on the magnitude of the left contact force has been obtained through an error 
propagation procedure, typical values are σNL=0.7 N σTL=0.9 (i.e. 3-5%) 

• the uncertainty of laser measured displacement (without further processing) is given by the 
laser resolution, 0.08 µm 

• the uncertainty of kinematical quantities related to damper motion which are processed and 
manipulated through mathematical formulas starting from experimental data (β, dr and ds) are 



43° CONVEGNO NAZIONALE – RIMINI, 9-12 SETTEMBRE 2014 

 

obtained through an error propagation procedure i.e. the maximum standard deviation on 
damper rotation is 0.6 •10-4 rad vs. a total damper rotation at 12 • 10-4 rad, then 5 %, in the O-
o-P most unfavourable case. This corresponds to a standard deviation of damper-platform 
relative tangential motion (σs) at max 0.5 µm against a total traveled distance of 30 µm in the 
O-o-P case i.e. again 5 %. 

 
Recently, improvements on damper kinematics estimate have been introduced. In details, an 
improvement in the estimate of damper rotation and of relative tangential motion at the contact 
between the damper’s cylindrical side and the corresponding platform has recently been obtained 
thanks to a photographic method.  
The main sources of uncertainty in the estimation of  dr   and  ds  come from the precision with which 
the geometrical position of the laser projection points, A0O0 and A0AR, on the damper surface is 
known. The uncertainty was minimized by taking a macro, under-exposed (to avoid over-bright laser 
points) high quality picture (see Fig. 4). The distances are found in pixel coordinates through graphical 
software and then converted using the damper diameter as a conversion key. The damper diameter can 
be easily measured by means of a caliper. Given the high precision of the SW-based measuring tool, 
the main source of uncertainty comes from the human capacity of estimating the correct measuring 
position. At high magnification the damper displays blurred edges and the laser dots are not perfectly 
round (difficulty in locating their center). To take into account these sources of uncertainty a statistical 
approach is used: for each set of tests, one picture is chosen and 5 independent measurements are 
carried out. The uncertainty on each quantity is estimated through its standard deviation. 
 
 
5. NUMERICAL MODEL  
 
The interpretation of experimental results is quite complex because it requires relating the behaviour 
of forces and motions in order to assess the working mode in each part of the hysteresis cycle. A 
numerical model is then necessary to analyze each tract of the hysteresis cycle by precisely identifying 
stick or slip conditions and the related exchanged forces.  
 

 
Figure 5: Numerical model scheme  

 
5.1 Modelling the damper and the test rig 
 
The non-conforming contact on the curved damper side is modelled with one contact point, the 
conforming contact on the flat damper side is modelled with two contact points, whose position is 
determined by looking at the wear traces on the damper used in the test rig. Stiffness, damping and 
mass distribution of the test rig are introduced and used to write its dynamic equilibrium equations.   
A scheme of the simulated test rig is reported in Fig. 5. The stiffness of structures such as the tripod 
and the piezoelectric actuators system have been experimentally measured using the procedure 
described in [14]: compressing a rubber spring between the platforms and thus generating a 
measurable force, relative displacements have been measured in order to determine all the constants of 
the spring model. The damping factors of actuator system and tripod mechanisms have all been set 
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equal and a wide range of values (0-100kg/s) has been explored under different working conditions. 
The influence of the parameter c was found to be negligible both on the experimental-numerical 
matching of results and on the numerical stability of the model. Therefore it was decided to set the 
parameter c to 0 kg/s. 
A rotational hysteretic damping source, not represented in Fig. 5, is included to account for the 
presence of the wires connected to the deadweight simulating the centrifugal force. This damping is 
produced by the bending of the wires together with the contact of the wires when passing through the 
damper; a precise physical description is considered here not practical, hence the definition of a global 
rotational damping. It was found through an exploration of experimental data collected at various 
frequencies ([15]) that the most appropriate assumption was hysteretic damping, and that the best fit 

value was 
�.�

��

 ∙!
"#$ where %& is the working frequency measured in Hz. This value guarantees a close 

match of experimental and numerical results for all examined cases. 
 
5.2 System equilibrium equations 
 
Displacements uvol and wvol are imposed to the left platform by the piezoelectric actuators. Platform 
rotations are negligible, and then only translational motions are taken into account. 
The damper has three degrees of freedom including rotation. A general coordinate system (u-w) 
centered at the damper mass center is used to write the system equilibrium equations, while two local 
coordinate systems (tL-nL and tR-nR) are used to describe the contact interfaces between damper surface 
and corresponding platforms. By looking at Fig.6, it is possible to write the system equilibrium 
equations as follows: 
 
'()*+, - + '/)*+0 - + '1)2+3 = '4)25&3 + 2563			                (3) 

 
Where 2+3 = 28$, :$ , �$ , 8;<, :;< , 8=< , :=<3> is the displacement vector and 2563 = 20, /5, 0, @A; ∙
8BCD , @	; ∙ :BCD , 0,03> is the vector of components of external forces where CF is the centrifugal force. 
25&3 = 2E= , F= , E;�, F;�, E;�, F;�3> is the vector of components of all contact forces and '4)	 is a 
geometry matrix necessary to express the contact forces vectors, aligned with the local coordinate 
systems, in terms of the general one. The mass matrix '(),	damping matrix '/)	 and stiffness matrix 
'1)	 are: 
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where @=�� = @�= ∙ NU��V + @W= ∙ �GX�V, @=�� = @=�� = (@W= − @�=) ∙ �GXV ∙ NU�V,  @=�� = @�= ∙
�GX�V + @W= ∙ NU��V with V= = V; = V. 
The stiffness matrix '1) is not diagonal because of the presence of the springs connected to the right 
platform oriented along the right local coordinate system’s axis. It should be noted that the springs 
representing contact stiffness, that would couple dampers and platforms equations of motion, do not 
directly enter the equilibrium equations, but rather they are enclosed in the contact model routine. 
 
5.3 Contact model  
 
The contact model is used to describe the interface between two non-conforming surfaces. The contact 
can be simplified as a slider connected with both normal and tangential springs (see Fig. 5). Its input 
parameters are the relative displacement between surfaces, slider displacement and relevant contact 
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parameters (contact stiffness and friction coefficient). The output variables are the contact forces and 
the updated slider displacement. 
 
5.4 Numerical solver 
In this work the Newmark method is adopted to numerically solve the system equilibrium equations 
by assuming the initial state variables. The state variables are inter-dependent on friction force; 
therefore an iteration scheme is necessary to find the nonlinear equilibrium point. A displacement 
based Newton-Raphson iteration scheme was chosen. The complete formulation is reported in [15]. 
 
 
6. RESULTS INTERPRETATION AND ESTIMATION OF FRICTION CONTACT 
PARAMETERS 
 
The diagrams representing the experimental results together with their numerical match are: 

• Hysteresis Loop (Fig. 6a): i.e. the force transfer between platforms. In the Out-of-Phase case 
here shown the horizontal component of the contact force is plotted as a function of the 
measured horizontal relative displacement between platforms (axis x, Fig. 2). The 
superimposed dotted cycles are the results of the numerical. Reference points on the hysteresis 
loop have been marked by a symbol and a number, repeated on the corresponding points on 
other diagrams: they are useful to guide the analysis of the cycle by cross-comparison.  
The force represented in these hysteresis loops is the one obtained after the load-removal 
process described in Sect. III, i.e., they are the total force values. On the contrary, relative 
displacement between platforms is given directly as measured by the laser, i.e. relative to the 
mean displacement. 

•    T/N force ratios (Fig.6b): it represents the ratio of the total tangential and normal force 
components on the left and right contact surfaces plotted as a function of time. The flat 
portions of each line may indicate a slip phase - subject to cross-confirmation by the 
numerical model - on an interface: in such case the ratio T/N will represent a friction 
coefficient. 

• Contact forces diagram (Fig. 6c): it represents -) the vectors of forces transmitted between the 
platforms -) the damper surfaces and -) their points of application. The vectors coming from 
the measured quantities are calculated as illustrated in Sect. III. The contact forces’ 
trajectories of numerical counterpart are shown superposed, in black.  

 

• Kinematic reconstruction (Fig.7): it represents the damper motion reconstructed from 
experimental data by combining laser measurements wA0 and wA0AR as described in Sect. 
III. This operation yields multiple outputs: 

• the graph of the tangential translation (ds, no rolling) of the right damper-to-
platform contact point, relative to the platform against time (Fig. 7a); 

• the graph of damper rotation against time (Fig. 7b); 
• an example of reconstructed damper motion (Fig. 7c). 
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Figure 6: Experimental (solid lines) and numerical (dashed lines) for (a) O-o-P hysteresis cycle (b) 
T/N force ratio. (c) Experimental contact forces diagram and (in black) simulated contact forces’ 

trajectories. 
 

 
Figure 7: Experimental (solid lines) and numerical (dashed lines) kinematical reconstruction: (a) Right 

contact point translational movement with respect to the right platform (b) damper rotation. (c) 
Example of reconstructed damper motion 

 
 

6.1 Estimate of contact parameters 
 

a) Spring stiffness and position: the tangential and normal stiffness at all contact points is here 
obtained from the experimental evidence. 
It has been observed (see [3]) that the slope of the O-o-P hysteresis cycle is equal in all investigated 
cases and constant in time when the platform starts closing, due to the fact that, in this tract, all contact 
points are in stick condition, e.g. in the 5-6 O-o-P stage of Fig.6a): 

• the position of the resultant left contact force is in the middle of the flat surface, therefore 
it is assumed that both contact points are in contact (this implies a reduced rotation, Fig. 
7b); 

• Fig. 6b signals a stick state for both interfaces given the varying Tangential/Normal force 
ratios; 

• the slope used keeps substantially constant throughout the duration of a test (see [3]). 

This interpretation of experimental evidence is later confirmed by the numerical simulation. 
The cycle slope now under investigation is a composite effect of normal and tangential stiffness values 
at all contacts. The assumption made here, according to [3], is that all contact points have the same 
normal and tangential stiffness values. The proportion kn=3/2kt is initially assumed referring to [13]. 
The same slope for tract 5-6 can be obtained for any proportion, provided kn is given an appropriate 
value, i.e. it is the linear combination value which counts. However it has been observed that the 
rotation signal (Fig. 7b) is better approximated by the initial assumption, which is therefore here 
employed. The contact stiffness values thus obtained are kn =84 N/mm and kt =56 N/mm, and have 
been used for the I-P cases as well. 
Secondly the position and number of the contact points has to be set. In this case the right side poses 
no problem since the number and position of the contact points can be determined through the 
geometry of the damper. The two contact points position on the left surface were instead derived by 
looking at the wear traces on the damper flat surface: the final position was then fine-tuned in order to 
obtain a rotation magnitude as similar as possible to the experimental one. The rotation is particularly 
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sensitive to this parameter, especially in the O-o-P case, given its low magnitude. The final position 
was set to 0.5 mm away from the edges for both contact points. This choice was later confirmed by the 
comparison between the numerical and experimental contact forces distribution diagrams. During the 
upper left contact point lift-off state, the left contact force is, in the numerical counterpart, coincident 
with the lower left contact point. The difference between experimental and numerical positions was 
less than 0.1 mm. 
 

b) Friction Coefficient Values: The friction coefficients can be estimated by looking at the ratio 
of tangential and normal component of the contact forces in the experimental diagrams (Fig. 6b). The 
right T/N ratio poses no problem since there is only one contact point on that side of the damper. The 
ratio referring to the left surface is, on the other hand, the result of the combination of the two contact 
points. When having to estimate the left friction coefficients the following procedure is carried out. 

• A stage during which only one of the left contact points is actually in contact and slipping 
is singled out. The position of the left contact force can be estimated by looking at Fig 6c: 
when the resultant left contact force is markedly close to one of the edges of the flat 
surface, the opposite side is probably in lift-off state. In the example hereby presented 
stages 2-3 was used. 

• The ratio TL/NL relative to that stage is used to estimate the lower left contact point 
friction coefficient µL2. 

• Initially µL1=µL2 is assumed. The result thus obtained is then tuned to match the 
experimental one. 

After the tuning process, the friction coefficients were set, for the case shown in Fig. 6 and 7, to 
µR=0.450, µL1=0.18, µL2=0.199. 
 
6.2 Complex springs 
 
Once the validated numerical model of the damper is able,   given the relative motion of two points 
(nodes) on the platforms’ surface, to produce the transmitted platform forces, it is numerically 
convenient to substitute the damper with its HBM equivalent, i.e., with the real and imaginary stiffness 
of a complex spring.  
By way of example Fig. 8 shows diagrams of these complex spring values for the O-o-P case tuned 
according to data of Fig. 7.    
Finally, it was suggested that accurate hysteresis cycles are the reliable basis to obtain the real and 
imaginary parts of the complex spring which can be introduced, according to the Harmonic Balance 
Method, between all the couples of opposite under-platform points in the context of a dynamic FEM 
model of a blade array.   
 

 
Figure 8: (a) Real and (b)  Imaginary horizontal stiffness values as a function of the relative 
displacement between platforms. Hysteresis cycles are substituted with ellipses with the same area. 
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Two examples are reported: (above) horizontal relative motion of magnitude ±2µm (below) horizontal 
relative motion of magnitude ±25µm. 
 
 
7. CONCLUSIONS 
 
This paper presents a test rig for the direct measurement of damper motion against turbine blade 
under-platforms and of forces transmitted by the damper. It presents also a numerical dynamic model 
for the reconstruction of damper motion and damper forces.  
 
The experimental method and the test rig capabilities which allow the measurement of contact forces 
on one side, and the full reconstruction of all forces transmitted between damper and platforms have 
been illustrated.  The accuracy of the method was demonstrated for on a cylindrical-flat damper used 
in practice slightly adapted to laboratory conditions. Results make these authors confident that the 
reconstruction of damper forces and motion from experimental data is quite reliable and can be safely 
used for cross-comparison with numerical results. 
 
A trustworthy comparison between numerical and experimental results has a double function. On one 
side the numerical simulation offers a deeper insight into the damper behaviour in all those details 
which are not experimentally detectable (e.g. tangential translation ds decomposed in its sliding and 
spring loading contributions, contact conditions on the flat side of the damper, the fine reasons for the 
hysteresis cycle shape). On the other side the experimental results allow to fine tune the contact 
parameters. A sample of results is discussed in order to show, in  practice, the  procedure to estimate 
the contact parameters of the numerical model (both tangential and normal contact stiffness and local 
friction coefficients) starting from the experimental results: the slope of the hysteresis line during a 
generalized stick state is used to estimate the contact stiffness, while the T/N force ratios graphs, 
combined with the contact force distribution diagrams are used to determine the friction coefficients. 
 
It is believed that only an accurate experimental procedure integrated with a numerical prediction tool 
offers concrete prospects of success when optimizing a damper within the complex set of phenomena 
highlighted in this paper. At AERMEC we believe that with this approach the optimization of damper 
mass and geometry will be less a matter of trial and error development and more a matter of 
knowledge of damper dynamics, allowing establishing design criteria.    
 
Finally, it was suggested that accurate hysteresis cycles are the reliable basis to obtain the real and 
imaginary parts of the complex spring which can be introduced, according to the Harmonic Balance 
Method, between all the couples of opposite under-platform points in the context of a dynamic FEM 
model of a blade array. 
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