
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Efficient Analysis of Caching Strategies under Dynamic Content Popularity / M., Garetto; Leonardi, Emilio; Traverso,
Stefano. - ELETTRONICO. - (2015), pp. 2263-2271. (Intervento presentato al  convegno Infocom 2015 tenutosi a Hong
Kong nel April 2015) [10.1109/INFOCOM.2015.7218613].

Original

Efficient Analysis of Caching Strategies under Dynamic Content Popularity

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/INFOCOM.2015.7218613

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2583366 since: 2015-08-28T10:26:29Z

IEEE



ar
X

iv
:1

41
1.

72
24

v1
  [

cs
.P

F
]  

26
 N

ov
 2

01
4

Efficient analysis of caching strategies under
dynamic content popularity
Michele Garetto†, Emilio Leonardi∗, Stefano Traverso(∗)

∗ Dipartimento di Elettronica, Politecnico di Torino, Torino, Italy
† Dipartimento di Informatica, Università di Torino, Torino, Italy

Abstract—In this paper we develop a novel technique to
analyze both isolated and interconnected caches operatingun-
der different caching strategies and realistic traffic conditions.
The main strength of our approach is the ability to consider
dynamic contents which are constantly added into the system
catalogue, and whose popularity evolves over time according to
desired profiles. We do so while preserving the simplicity and
computational efficiency of models developed under stationary
popularity conditions, which are needed to analyze several
caching strategies. Our main achievement is to show that the
impact of content popularity dynamics on cache performance
can be effectively captured into an analytical model based on a
fixed content catalogue (i.e., a catalogue whose size and objects’
popularity do not change over time).

I. I NTRODUCTION

In the last few years the performance of caching systems
has attracted a renewed interest, especially in the networking
community. One reason for this revival can be attributed to
the crucial role played by caching in new content distribution
systems emerging in the Internet. Thanks to an an impressive
proliferation of cache servers, Content Delivery Networks
(CDN) represent today the standard solution adopted by con-
tent providers to serve large populations of geographically
spread users [1]. By caching contents close to users, we jointly
reduce network traffic and improve user-perceived experience.

Another reason is the fundamental change of communica-
tion paradigm that is gradually taking place in the Internet,
from the traditional host-to-host communication model to the
new host-to-content paradigm. Indeed, a novel Information
Centric Network (ICN) architecture has been proposed for
the future Internet to better respond to the today and fu-
ture (according to predictions) traffic characteristics [2]. In
this architecture, caching becomes an ubiquitous functionality
available at each router.

For these reasons it is of paramount importance to develop
efficient tools for the performance analysis of large-scale
systems of interconnected caches for content distribution.
Unfortunately, an exact analysis of cache performance is
notoriously a difficult task, considering that the computational
cost to exactly analyse just a single LRU (Least Recently
Used) cache, grows exponentially with both the cache size
and the number of contents [3], [4].

Many recent analytical efforts to evaluate the performance
of both single and interconnected caches leverage a simple
yet powerful approximation technique known in the literature
as Che’s approximation, which was originally proposed in

the seminal paper [5]. This approximation, which has been
recognized by many authors to be very accurate [6], [7], [8],
[9], has opened the door to a flurry of new research efforts,
which have extended the application of this approximation to
a larger set of caching systems and traffic assumptions than
those in which it was originally proposed.

In this paper, we put ourselves in the above research stream,
addressing one fundamental issue that still needs to be properly
taken into account in the performance evaluation of caching
systems, namely, the fact that contents to be cached can
be extremely dynamic over time: new contents are steadily
introduced in the set of available objects (think of YouTube),
while their popularity can exhibit a variety of patterns: for
example, the popularity of some contents vanishes after a few
days (e.g., sport news) while others (e.g., songs or movies)
attract requests for prolonged time [10]. In general, the number
of requests attracted by the contents can vary dramaticallyover
time, and this can occur on time scales which are comparable
to the churn time of caches, making caching systems very
challenging to analyze.

The effects of dynamic contents has only recently being
addressed in just a few studies (see Section III). The large
body of existing literature on cache systems simply ignores
these effects, assuming a stationary traffic model produced
by a fixed catalogue of contents. However, stationary traffic
models are reasonable only when the cache churn time is
small compared to the popularity dynamics of contents. This
assumption may no longer be considered acceptable in modern
content distribution systems. Indeed, the increasing availability
of inexpensive storage capacity allows to store incredible
amount of data in individual caches [11]. As consequence, the
time-scale of cache dynamics becomes comparable or even
larger than the lifetime of many objects, making unfeasible
the assumption of constant object popularity.

The main contribution of this paper is a novel technique to
capture the impact of dynamic contents on cache performance,
while preserving the simplicity and accuracy of existing mod-
els based on the Che’s approximation. In particular, our main
achievement is to show that it is possible to accurately capture
the behavior of caching systems under dynamic content popu-
larity (i.e., contents whose popularity evolves with time)into
a finite population analytical model (i.e. a model based on a
fixed catalogue of contents), at the cost, however, of sacrificing
one of the key properties of traditional models: the fact that
request processes at different caches are independent.

http://arxiv.org/abs/1411.7224v1
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Our modeling approach preserves many nice properties of
stationary models (in particular, the possibility to analyze at
low computational cost many different caching strategies for
both single and interconnected caches), while allowing at the
same time to consider the crucial role played by content
popularity dynamics.

II. SYSTEM ASSUMPTIONS

We start introducing some notation and assumptions. In the
simplest case, there is only one cache, whose size, expressed
in number of ‘objects’, is denoted byC.

The cache is fed by an exogenous arrival process of objects’
requests generated by users. Requests which find the object in
the cache are said to produce ahit, whereas requests that do
not find the object in the cache are said to produce amiss.
The main performance metric of interest is thehit probability,
which is the fraction of requests producing a hit.

In the case of cache networks, themiss streamof a cache,
i.e., the process of requests which are not locally satisfiedby
the cache, is forwarded to one or more caches (deterministi-
cally or at random), or to a common repository storing entire
object catalogue. Eventually, all requests hit the target,and it is
common in the modelling literature to neglect all propagation
delays, including the delays necessary to possibly insert the
object in one or more caches not storing it, in response to a
miss.

Cache systems and their analysis can be distinguished on
the basis of three main ingredients: i) the traffic model, i.e., the
stochastic characterization of the request process generated by
users; ii) the cache policy, i.e., how an individual cache reacts
to a given object request; iii) the replication strategy, i.e., how
the entire cache network reacts to an object request, deciding
in particular in which caches objects get replicated back after
a request hits the target. We separately discuss each of the
above ingredients in the next sections.

A. Traffic models

We first recall the so-called Independent Reference Model
(IRM), which is de-facto the standard approach adopted in
the literature to characterize the pattern of object requests
arriving at a cache [12]. The IRM is based on the following
fundamental assumptions: i) users request items from a fixed
catalogue ofM object; ii) the process of requests of a given
object is modeled by a homogeneous Poisson process of
intensityλm = Λpm.

The IRM is commonly used in combination with a Zipf-like
law of probability pm, which is the typical object popular-
ity distribution observed in traffic measurements and widely
adopted in performance evaluation studies [13], [7].

By definition, the IRM completely ignores all temporal
correlations in the sequence of requests. In particular, itdoes
not take into account a key feature of real traffic usually
referred to astemporal locality, i.e., the fact that, if an object
is requested at a given point in time, then it is more likely that
the same object will be requested again in the near future. Itis
well known that traffic locality has a beneficial effect on cache

performance (i.e., it increases the hit probability) [12] and
several extensions of IRM have been proposed to incorporate
it into a traffic model. Existing approaches [12], [14], [8]
typically assume that the request process for each object is
stationary (i.e., either a renewal process or a Markov- or semi-
Markov-modulated Poisson process).

One simple way to incorporate traffic locality in the traffic
is the following. Instead of a standard Poisson process (which
produces an IRM sequence, as already said), the request
process for a certain content at an ingress cache is described
by an independent renewal process with given inter-request
time distribution. LetFR(m, t) be the cdf of the inter-request
time t for objectm. The average request rateλm for content
m, which can be expressed byλm = 1/

∫

∞

0 (1−FR(m, t)) dt,
matches the desired average rateλm = Λpm. In the following,
we will refer to the above traffic model asrenewaltraffic. As
we will later see, these assumptions are not really appropriate
to capture the kind of temporal locality usually encountered in
Video-on-Demand traffic, because they cannot easily capture
macroscopic, intrinsically non-stationary effects related to
content popularity dynamics.

Recently [15] a new traffic model, named Shot Noise Model
(SNM) has been proposed as a viable alternative to traditional
traffic models to capture macroscopic effects related to content
popularity dynamics. The basic idea of the SNM is to represent
the overall request process as the superposition of many
independent processes (shots), each referring to an individual
content. Specifically, the arrival process of requests for agiven
content m at a cache is described by an inhomogeneous
Poisson process of intensityVmh(t− tm), whereVm denotes
the average number of requests attracted by the content,tm is
the time instant at which the content enters the system (i.e.,
it becomes available to the users), andh() is the (normalized)
“popularity profile” of contentm.

SNM has been shown in [15] to provide a simple, flex-
ible and accurate approach to describing the temporal and
geographical locality found in Video-on-Demand traffic. An
interesting finding in [15] is that the particular shape of the
“popularity profile” h() has very little impact on the cache
performance, which essentially depends only on the average
content life-spanL. This property actually plays a crucial role
in our analytical methodology, as we will see.

To illustrate these facts, Figure 1 reports the cache size
needed to achieve a desired hitting probability in a LRU cache
fed by a real trace of YouTube video requests, which was
kindly provided to us by the authors of [15]. The trace was
fitted by a multiclass SNM traffic model with 4 classes, all of
them sharing the same shape for the “popularity profile” (but
with different average life-span). Results in Fig. 1 show that
rather different shapes for the SNM (e.g., uniform vs power-
law) produce very similar curves, both in good agreement
with results derived under the original Youtube trace. The
curve labelled ON-OFF, also very close to the trace, can
be obtained by adopting the methodology described in this
paper, as explained later. The plot contains also a curve
labelled ’Naive IRM’, corresponding to the cache performance
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Fig. 1. Hit probability vs cache size, resulting from feeding an LRU cache
by: the original YouTube trace, a fitted multi-class SNM, ourON-OFF traffic
model, and a reshuffled trace analogous to a naive application of the IRM
model.

observed after the application of a random permutation to
the requests contained in the original trace: by so doing, the
temporal locality present in the original trace is washed out,
allowing us to assess the prediction error that one would get
by following a naive IRM approach.

B. Cache policies

In this work we will focus on the following strategies
controlling the behavior of an individual cache:

• LRU : upon arrival of a request, an object not already
stored in the cache is inserted into it. If the cache is
full, to make room for a new object theLeast Recently
Useditem is evicted, i.e., the object which has not been
requested for the longest time.

• q-LRU : it differs from LRU for the insertion policy: upon
arrival of a request, an object not already stored in the
cache is inserted into it with probabilityq.

• RANDOM : it differs from LRU for the eviction policy:
to make room for a new object, a random item stored in
the cache is evicted.

• 2-LRU: this strategy, proposed in [9], is based on an
effective, self-tuning insertion policy working as follows:
before arriving at the physical cache (storing actual
objects), requests have to traverse a virtual LRU cache put
in front of it, which stores just object ID’s. Only requests
for objects whose ID is found in the virtual cache are
forwarded to the physical cache. The eviction policy at
both caches, which for simplicity are assumed to be of
the same size (expressed either in terms of objects or
ID’s) is like LRU.

C. Replication strategies for cache networks

In a system of interconnected caches, we need to specify
what happens along the route traversed by a request, after the
request eventually hits the target (in the worst case, ending up
at the repository containing all objects).

We will consider the following mechanisms:
• leave-copy-everywhere (LCE): the object is put into all

caches of the backward path.
• leave-copy-probabilistically (LCP): the object is put

with probability q into each cache of the backward path.
An important property is the following: if we combine the LCP
replication strategy with standard LRU policy at all caches, we

obtain a cache system analogous to the one in which we adopt
LCE replication in combination with q-LRU at all caches.
Hence, developing a model of q-LRU for individual caches
permits analysing LCP in a straightforward way.

We will not analyse in this work the leave-copy-down
(LCD) replication strategy, according to which the object is
replicated only in the cache preceding the one in which it
is found (if this is not an ingress cache). This would be an
interesting direction of future research, in light of the excellent
performance exhibited by this policy, which is however more
complex to analyze [16].

III. PREVIOUS WORK AND DISUSSION

Many recent efforts in modelling the performance of both
isolated and interconnected caches leverage the Che’s approx-
imation originally proposed in [5], extending it along several
directions. In [6] authors provide a theoretical justification to
Che’s approximation, showing that, asymptotically for large
cache sizes, the cache eviction timeTC satisfies a Central
Limit principle. Papers [6], [17], [8], [9] have extended Che’s
approximation to policies different from LRU, considering
in particular RANDOM, FIFO, q-LRU, 2-LRU. The above
caching policies have been analyzed in [17], [8], [9] also
under more general traffic models than IRM, considering in
particular therenewal traffic model introduced in II-A, that
allows capturing temporal locality in the traffic. In all cases
the application of Che’s approximation provides a powerful
technique to decouple the behavior of different contents,
essentially reducing cache dynamics to those of a simple single
server queuing system under Poisson/renewal arrivals. All
papers above, however, do not easily capture intrinsicallynon-
stationary macroscopic effects related to content popularity
dynamics.

As already mentioned, in [15] authors have proposed a
Shot Noise Model (SNM) to natively describe the popularity
evolution of new contents which are introduced into the
catalogue. Moreover, accurate analytical models still resorting
on the Che’s approximation can be developed for LRU caches
(and networks) under SNM traffic.

Unfortunately, the SNM proposed in [15] has some dis-
advantages. In particular, the analysis of non-LRU policies
under SNM traffic turns out to be very difficult. The reason
for this is a bit technical, but it is worth explaining it
here so that the reader can better appreciate the contribu-
tion of our work. Under LRU, it is possible to write an
explicit expression of the contentm hit-probability at time
t as 1 − Pr{no requests for contentm arrive in [t− TC , t]},
which can be easily computed also under time-varying (inho-
mogeneous) Poisson processes.

However, under different caching policies such as RAN-
DOM, q-LRU or 2-LRU, an expression of the hit probability
can be easily obtained only in the case of stationary (homoge-
neous) arrival process of content requests. For example, under
Che’s approximation, dynamics of a RANDOM cache are
reduced to those of a G/M/1/0 queue, being the contentm hit-
probability equal to the probability of finding the server ofthis
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Fig. 2. ON-OFF modulated Poisson process describing the arrival of requests
for a given contentm.

queueing system busy upon arrival. An explicit expression of
this probability can be derived only under stationary conditions
(i.e., at steady-state), whereas under non-stationary (transient)
conditions the hit probability can only be expressed as a
solution of a system of differential equations, making the
computation excessively complicated.

In this paper we propose a viable alternative to the SNM
proposed in [15] to capture the impact of dynamic contents
on cache performance, which allows us to consider non-
LRU policies at low computational complexity. We emphasize
that, in the case of a single cache, our approach reduces to
the application of existing techniques developed for renewal
traffic. However, in the case of cache networks, our method-
ology departs completely form existing approaches, in thatit
assumes request processes arriving at different caches to be
strongly correlated, in contrast to the standard independence
assumption adopted in previous work.

IV. M ODELLING DYNAMIC CONTENTS

We start describing our approach in the case of single cache.
The basic idea is to capture the impact of dynamic contents
(i.e., contents which start to be available in the system at a
given point in time, and whose popularity evolves accordingto
a certain profile), by using a stationary, ON-OFF traffic model
associated to a properly chosen, fixed content catalogue of size
M .

The rationale of our approach can be clarified with the
help of Figure 2, which shows an ON-OFF modulated, ho-
mogeneous Poisson process describing the arrival process of
requests for a given contentm of our fixed catalogue. We
assume that both ON and OFF periods are exponentially
distributed with mean durationTON andTOFF , respectively.
During an ON period, requests arrive with constant intensity
λm, which depends on the specific contentm. It follows that
the average number of requests arriving during an ON period
is given by:Vm = λmTON .

Suppose thatTOFF is set much larger than the cache
eviction time TC (TOFF is a free parameter of our traffic
model, hence it can always be set much larger than the
maximum eviction time in the system). Then, at the end of
the OFF period, the probability that the cache stills contains
a copy of objectm is negligible. Therefore, during the next
ON period, contentm will produce an impact on the cache
(in terms of hit probability) which is exactly the same as if it
was a totally new content made available in the system at the
beginning of the subsequent ON period. It follows that an ON
period plays exactly the same role as a (rectangular) shot in
the SNM proposed in [15].

Indeed, let us consider, for simplicity, a SNM in which all
contents have the same temporal profile, although they can at-

tract a different average number of requestsVm (heterogeneous
objects in terms of popularity profile are handled by a multi-
class approach, as done in [15]. We exploit the observation
made in [15] that the detailed shape of the popularity profileis
not really important, while what really matters is its ‘effective
duration’L (called content life-span in [15]). This means that
we can well adopt a rectangular shape for the ON period,
whose durationTON = L is set equal to the first moment
of the SNM profile. Then, having chosen an arbitrarily large
value ofTOFF ≫ TC , we properly set the content catalogue
M so that the average number of ‘active’ contents is the same
under both the SNM model and the ON-OFF model. To do
so, denoting byγ the arrival rate of new contents in the SNM
model, we impose that

γL = M
TON

TON + TOFF

(1)

from which we can derive the proper catalogue sizeM . Note
that the number of active contents is Poisson-distributed in
the SNM model, whereas it is binomially distributed under
the ON-OFF model. However, it is well known that the above
two distributions are almost indistinguishable provided that the
mean number of active contents is large enough (say larger
than a few tens), which is largely satisfied in all content
distribution systems of interest, where the number of available
contents is in the order of thousands or millions.

At last, the values ofλm associated to contents of the fixed
catalogue are chosen so that the average number of requests
produced during an ON period, which isVm = λm · TON ,
has the same distribution as the number of requests produced
by the shots in the SNM. Again, the catalogue size is usually
large enough that we can consider the system ergodic, even if
λm remains the same for all ON periods associated to content
m.

As a proof of concept, we derived an equivalent ON-
OFF traffic model for each of the four SNM classes in the
experiment of Figure 1, using the parameters reported in [15].
Even in this complex scenario, we observe a good agreement
between the fitted SNM and the equivalent ON-OFF traffic
model.

In the next Section we will show that our ON-OFF modu-
lated Poisson traffic can be described by a standardrenewal
traffic model, which permits reusing existing techniques to
modeling the performance of various caching policies.

However, in our discussion so far we have considered just
the simple case of one cache. We still need to specify how
to model the arrival processes of requests arriving at the
different ingress points of a cache networks. This raises a
subtle important point that marks a fundamental difference
between our approach and existing models in the literature.

Previous models of cache networks under renewal traffic
[17], [8], [9] assume that request processes at different ingress
caches are independent. We argue that this assumption is not
appropriate in our case, because it would make ON periods
related to the same object of the catalogue totally uncorrelated
from one ingress point to another, washing out most of the
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Fig. 3. Illustration of possible cases of inter-request time for a given content
produced by the ON-OFF model.

temporal locality produced by content popularity dynamics
that we are trying to capture in our model.

We therefore adopt exactly the opposite assumption, consid-
ering ON periods associated to the same object to beperfectly
synchronized among all ingress points. This is reasonable,
since new objects usually start to be available in the entire
system at the same time. This means that there exists a unique
ON-OFF process for each object of the catalogue, whose
generated requests are split independently at random among
the ingress caches of the system (in proportion to the traffic
volume arriving at each ingress cache).

To show the dramatic difference in cache performance
obtained under the above two assumptions (i.e., independent
vs perfectly synchronized ON periods), Fig. 4 reports the
global hit probability in a network of LRU caches having a
binary-tree topology with four layers (15 caches). The ON-
OFF traffic is characterized by catalogue sizeM = 3.5 · 106,
TON = 7, TOFF = 63, while Vm is Pareto-distributed with
mean10 (at each ingress cache), and scale-exponentβ = 2.5.
The hit probability under the assumption of synchronized ON
periods is about 4-times larger than under the assumption of
independent ON periods!

We conclude that our model based on synchronized ON-
OFF processes is dramatically different from existing models
based on independent renewal traffic at the ingress caches.

V. M ODELING ON-OFFTRAFFIC AS A STANDARD

RENEWAL PROCESS

We now show how previously defined ON-OFF process gen-
erates, for a given content of the fixed catalogue, a sequence
of requests which can be equivalently described by a standard
renewal model.

Under the assumption that ON times are exponential dis-
tributed with meanTON , the number of requests generated
during an ON period turns out to be geometrically distributed
with parameterp = λm/(λm + 1/TON ) (starting from zero)
and averageVm = λmTON .

Indeed, by construction, the arrival process of requests
follows patterns in which geometrically distributed sequences
of short inter-request times (with parameterp), taking place
during ON periods, are interleaved by sequences oflong inter-
request times (again geometrically distributed with parameter
1− p) occurring when the modulating process visits the OFF
state. Figure 3 illustrates the possible cases that can occur in
the generated sequence of requests. Note that when no requests
are generated during an ON period we get a combined longer
inter-request time. When just one request is generated during
an ON period, twolong inter-request times occur in sequence.

Observe thatshort inter-request times are exponentially
distributed with parameterλm+1/TON . An exact computation
of long inter-request times is more involved, since it requires to

evaluate the distribution of the interval between the last request
occurring during an ON period and the next time at which a
request is generated (which may incorporate ON periods in
which no requests are generated) (see Figure 3). Under the
additional assumption that also OFF periods are exponentially
distributed with meanTOFF , an exact characterization oflong
inter-request times can be carried out by exploiting standard
moment generating function techniques (in this caselong inter-
request times are phase-type distributed). However, this effort
turns out to be unnecessary for our purposes, since, as long
as the mean duration of the OFF period is much larger than
TC , the detailed shape of the distribution oflong inter-request
times has essentially no impact on cache performance. For
this reason, we approximatelong inter-request times by an
exponential distribution matching only the first moment of the
actual distribution oflong inter-request times.

To describe the process of requests arriving at non-ingress
caches (in tree-like networks, caches which are not leaves of
the tree), we first need to characterize the miss stream going
out of previous caches. To do so, we adapted to our context
techniques already presented in [17], [8]. As shown in [17],
under Che’s approximation the miss stream of a cache fed
by renewal traffic is again a renewal process. Indeed, the
inter-miss distribution can be exactly characterized for alarge
class of cache policies, employing standard cycle-analysis of
renewal processes.

In our case, we describe the miss stream of a cache as an
ON-OFF process having the same values ofTON andTOFF

as the input process. By so doing we can characterize again
the miss stream as a renewal process whose inter-arrival times
are partitioned into two classes ofshort and long inter-miss
times, inheriting the same semantic as before.

In particular,short inter-miss times (i.e., inter-miss times
conditioned to the fact that the process keeps in ON) can
be in principle exactly characterized following the approach
in [17]. In our model, however, to limit the computational
complexity of the numerical solution, we prefer to adopt a
second-order approximation, by selecting a priori a class of
inter-miss distributions having two free parameters, which are
set so as to match the first two moments of the exactshort
inter-miss time distribution.

For LRU and RANDOM we consider the class of distribu-
tions given by ashifted exponential, i.e.,

Fshort(m, t) =

{

1 t ≤ Tm

e−γm(t−Tm) t > Tm
(2)

For q-LRU we instead adopt a mixture of an exponential
distribution (with weightq, and keeping the same parameter
λm of the inter-request distribution) and a shifted exponential
distribution (with weight1− q), i.e.,

Fshort(m, t) =

{

(1− q) + qe−λm(t) t ≤ Tm

qe−λm(t) + (1− q)e−γm(t−Tm) t > Tm

(3)
Observe that in both classes aboveγm and Tm are the two
parameters to be matched.
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In cache networks with linear topology (i.e., tandem net-
works) the miss stream of a cache immediately provides the
request stream to the following cache along the chain. In tree-
like topologies, instead, the request process arriving at anon-
leaf cache is given by the superposition of the miss streams
produced by children caches. The inter-request distribution
at non-leaf caches can be exactly characterized according
to Theorem 4.1 in [18]; however, we emphasize that the
superposition of independent renewal process is not in general
a renewal process [18]. Adapting the approach proposed in
[17], we approximately characterize the inter-request process
at a non-leaf cache by an ON-OFF process whoseshort inter-
request times are computed exploiting Theorem 4.1 in [18].

For example, for LRU and RANDOM, in the case of a cache
havingK identical children whose miss streams are described
by class (2) (with parametersγm andTm), we get:

Fshort(t) =











1−
(

γm

γmTm+1

)K−1

(Tm + 1
γm

− t)K−1 t ≤ Tm

1−
(

1
γmTm+1

)K−1

e−Kλ(t−Tm) t > Tm

A similar expression (not reported here for the sake of brevity)
is obtained for the class of inter-miss distribution (3) adopted
for the q-LRU policy.

VI. EVALUATION OF THE CACHE HIT PROBABILITY

For completeness, we report here, for all caching policies
considered in this paper, the formulas to compute the hit
probability phit(m) of an arriving request for objectm, and
the time-average probabilitypin(m) that objectm is found in
the cache, although these formulas have been already derived
elsewhere [5], [17], [9]. The overall hit probabilityphit of a
cache can be computed by de-conditioning with respect to the
content (Section VI-E).

A. LRU

Under LRU we exploit the fact that objectm is found in
the cache at timet by an arriving request if and only if the
previous request arrived in[t− TC , t): phit(m) = FR(m,TC).
The expression ofpin(m) can be obtained exploiting the
same argument, but this time using the pdfF̂R(TC) of the
age associated to object-m inter-request time distribution:
pin(m) = F̂R(m,TC).

B. q-LRU

Under q-LRU, to computephit(m) we exploit the following
reasoning: an objectm is in the cache at timet provided that:
i) the last request arrived atτ ∈ [t − TC , t) and ii) either at
τ− object m was already in the cache, or its insertion was
triggered by the request arriving atτ (with probability q).
We obtain:phit(m) = F (m,TC)[phit(m) + q(1 − phit(m))].
Theagedistribution must be instead used to computepin(m):
pin(m) = F̂ (m,TC)[phit(m) + q(1 − phit(m))]. Once again,
we emphasize that the argument aboverequires the arrival
process of requests to be stationary. As such, it can be hardly
generalized to the case in which the request arrival processis
not stationary (like in SNM).

C. RANDOM

The decoupling principle of Che’s approximation can be
applied to the RANDOM caching policy by reinterpreting
TC as therandomsojourn time of a generic content in the
cache, whose distribution does not depend on the specific
content. The eviction policy of RANDOM naturally leads to
the choice of modelingTC as an exponentially distributed
random variable. Underrenewal traffic, the dynamics of
each objectm in the cache can be described by a G/M/1/0
queuing model. Indeed, the hit probabilityphit(m) can be
easily recognized to be equivalent to the loss probability of
a G/M/1/0 queue. Solving the Markov chain representing
the number of customers in the system at arrival times, we
get: phit(m) = MR(m,−1/E[TC ]), whereMR(m, ·) is the
moment generating function of object-m inter-request time.

Probabilitypin(m) can be obtained exploiting the fact that
the dynamics of a G/M/1/0 system are described by a process
that regenerates at each arrival. On such a process one can
perform a standard cycle analysis [9], obtaining:pin(m) =
λm E[TC ] (1−MR(m,−1/E[TC])).

D. 2-LRU

We assign index 1 and index 2 to the virtual and the physical
cache, respectively. LetT i

C be the the eviction time of cache
i = 1, 2. Cache 1 behaves exactly like a standard LRU cache,
for which we can use previously derived expressions. An
approximate analysis of cache 2 can be performed [9] by the
following argument: objectm is found in cache 2 at timet
if and only if the last request arrived inτ ∈ [t − T 2

C , t) and
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either objectm was already in cache 2 at timeτ− or it was
not in cache 2 at timeτ−, but its ID was already stored in
cache 1. Under the additional approximation that the statesof
cache 1 and cache 2 are independent at timeτ−, we obtain:

phit(m) ≈ FR(m,T 2
C)[phit(m) + FR(λm, T 1

C)(1 − phit(m))]

pin(m) ≈ F̂R(m,T 2
C)[phit(m) + FR(λm, T 1

C)(1 − phit(m))]

E. De-conditioning the hit probability

For all considered cache policies, the final cache hit proba-
bility phit is obtained de-conditioning with respect toλm (i.e.,
Vm)

phit = EV [phit(Vm)] =

∫

phit(v) dFV (v) (4)

where we assume that request volumesVm of different con-
tents are i.i.d. Note that, similarly to the basic IRM case [5],
TC is computed exploiting the fact thatC by construction
equals the sum of thepin(m)’s:

C =
∑

m

pin(m) = M · EV [pin(Vm)] = M

∫

phit(v) dFV (v)

VII. N UMERICAL RESULTS

We now present a selection of numerical results, having two
goals in mind: first, to prove the accuracy of the analytical
approximations developed in previous sections to obtain the
hit probability of individual and interconnected caches, under
different cache policies and replication strategies. We will
achieve these goals comparing analytical predictions for the
hit probability with simulation results obtained from an ad-
hoc, event-driven simulator fed by the same ON-OFF traffic
considered in the analysis. Second, we will exploit the model
to analyse more complex scenarios (too expensive to explore
by simulations) and provide interesting insights into the impact
of dynamic contents on cache performance.

A. Single cache

We start considering the basic case of one cache fed by
a single-class ON-OFF traffic model. We assume that the
average number of requests (Vm) attracted by each content
follows a Pareto distribution:fV (v) = βV β

min/v
1+β, for

v ≥ Vmin
1. The choice of a Pareto distribution forVm is

justified by the following two facts: first, previous work have
already proved that the popularity of several types of contents
(e.g., movies, songs, user-generated videos), i.e., the long-term
number of requests attracted by each content, is well described
by the Zipf’s law [13], [6]; second, a Zipf-like distribution is
obtained when a large number of individual content request
volumes are independently generated according to a Pareto
distribution.

For the experiments presented in this section, we fix the
average number of requests for each content toE[V ] = 10, and
the average OFF period durationTOFF = 9TON . Furthermore
we fix the arrival rate of new contentsγ = 50, 000 and derive
from (1) the correspondent catalogue size (it turns outM =

1Recall that the second moment of the Pareto distribution is finite forβ > 2.

500, 000 · TON ). In our plots, error bars correspond to95%
confidence intervals derived from simulation.

Fig. 5 shows the hit probability achieved by the LRU
policy as function of the cache size, for different values
of the average ON period durationTON (the absolute time
unit is not important, let’s assume it corresponds to 1 day),
and β = 2. We observe an almost perfect match between
simulation results (the vertical error-bars appear as points) and
the model predictions (the lines). Observe, however, that we
could not run simulations for the caseTON = 300 due to
memory constraints. As expected, cache performance is deeply
impacted by the average life-span of contents (L = TON ).
Indeed, for a given cache size, the hit probability is roughly
inversely proportional toTON . This confirms that capturing
temporal locality in the traffic is of paramount importance
while developing analytical models for cache performance.

To investigate the impact of the content popularity distri-
bution, i.e., of the number of requests attracted by a content
(Vm), Fig. 6 shows the hit probability achieved by LRU while
varying the value of the Pareto exponentβ, and keeping fixed
E[V ] = 10. In this scenarioTON has been set to7 (days).
We observe again a very good match between analysis and
simulation. Also the distribution of content request volumes
plays an important role on cache performance: the hit proba-
bility increases when the popularity distribution has a heavier
tail (i.e., as we decreaseβ). Note, however, that the impact on
cache performance of the specific value ofβ is rather limited
when β > 2 (i.e. when the variance of the content request
volumes is finite), which is the most common case encountered
in practice (e.g., YouTube videos). This fact marks a significant
difference with respect to the classical IRM model (more in
general, when contents are not dynamic) where the impact of
the power-law exponent of content popularity is always very
large over its entire domain [7].

Fig. 7 compares the performance of different caching poli-
cies, in the case ofTON = 7, β = 2. In particular, we
consider LRU, q-LRU withq = 0.1, RANDOM and 2-
LRU. We observe again a good agreement between analysis
and simulation. We emphasize that, in the case of dynamic
contents, an analytical estimation of the cache hit probability
for policies different from LRU is in general very hard to
obtain. To the best of our knowledge, we are the first to
propose a viable approach to predict the performance of q-
LRU, RANDOM and 2-LRU in the presence of dynamic
contents, with remarkable degree of accuracy, despite the long
list of approximations.

As already observed by other authors in the case of renewal
traffic [8], [9], 2-LRU and q-LRU outperform LRU and
RANDOM when the cache size is small, since these policies
produce the desirable effect of filtering out a significant portion
of unpopular contents, leading to a better exploitation of
the limited cache space. Note, however, that 2-LRU provides
significantly better performance than q-LRU, since its filtering
action is more effective and selective. As we increase the cache
size, the presence of an insertion filter (especially for q-LRU)
becomes at some point counter-productive, as demonstrated
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Fig. 7. Hit probability (in log scale)
vs cache size, for different caching
policies, in the case ofTON = 7,
β = 2.
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Fig. 8. Hit probability (in log scale)
vs cache size, for different caching
policies, under Youtube traffic trace.

by the fact that curves related to both LRU and RANDOM
eventually cross both q-LRU and 2-LRU curves. We also
observe that LRU provides slightly better performance than
RANDOM, although the impact of the eviction policy is
rather small over the entire range of cache sizes. Due to
its simplicity, RANDOM turns out to be a viable alternative
to LRU, especially for the implementation of caches in the
network core. Fig. 8 reports the hit probability achieved bythe
above caching policies under the Youtube traffic trace already
used in Fig-1. Observe that the ranking among the considered
policies is exactly the same as in Fig. 7.

B. Cache networks

We now evaluate the accuracy of our model in cache
networks. In particular, we consider a tree-like topology of
15 caches (plus the repository above the root) arranged as a
binary tree with four layers. Also in this case we set the size
of the content catalogue toM = 10, 000, 000, and we assume
that the number of requests (Vm) attracted by a content at
each of the 8 leaves follows a Pareto distribution with average
E[V ] = 10 andβ = 2. The average duration of the ON period
is set toTON = 7 days (whileTOFF = 63 days). We consider
two scenarios: 1) all caches in the tree have the same size; 2)
the sum of cache sizes on each layer of the tree is the same
(i.e., the size of a parent cache equals the sum of its children
sizes).

Fig. 9 reports the hit probability achieved by LRU, RAN-
DOM and q-LRU (with q = 0.25) in scenario 1. We first
observe that model predictions match very well simulations
results also in the more challenging case of a cache network.
Second, we observe that the gain achieved by q-LRU with
respect to LRU is even more significant than in the case of
a single cache (note that a filtering probabilityq = 0.25
obtains a gain similar to that of Fig. 7, where however we used
q = 0.1). Indeed, recall that assuming a q-LRU policy at each
cache is equivalent to adopting the LCP replication strategy
(leave-copy-probabilistically) in an network of LRU caches.
A probabilistic insertion policy allows a better exploitation of
the aggregate storage capacity of the system, by avoiding the
simultaneous placement of an object in all caches along the
path (note that, usingq = 0.25, we store on average only one
copy along each route, given that the tree has four layers).
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Fig. 9. Hit probability vs leaf cache
size. Caches are all of the same size.
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Fig. 10. Hit probability vs leaf cache
size. The amount of storage at each
layer of the tree is the same.

Class L (days) E[V ] Vmax β Scenario 1 Scenario 2 Scenario 3
0 1000 1.6 10 2.5 4 ·109 4·109 4·109

1 2 83.33 ∞ 2.5 2.5·106 0 0
2 7 75.00 ∞ 2.5 3·106 3·106 0
3 30 66.66 ∞ 2.5 3·106 3·106 3·106

4 100 50.0 ∞ 2.5 3.5·106 3.5·106 3.5·106

5 1000 50.0 ∞ 2.5 15·106 15·106 15·106

TABLE I
CONTENT CLASS PARAMETERS AND THEIR COMPOSITION FOR EACH

MULTI -CLASS SCENARIO.

Quite surprisingly, we observe that even the adoption of the
RANDOM policy provides better performance than LRU, in
contrast to what we observed in the case of a single cache.
The superior performance of RANDOM with respect to LRU
(assuming LCE replication) was already shown in [19] for a
tandem network, and it is confirmed here in the more general
case of a tree-like network.

Fig. 10 complements previous analysis reporting the results
obtained in scenario 2, where the size of a cache is set equal
to the sum of the capacities of its children. Considerations
analogous to those of scenario 1 can be drawn here. As ex-
pected, for the same leaf cache size the overall hit probability
in scenario 2 is higher, thanks to the larger size of caches
encountered going up along the tree.

C. A realistic scenario

Having validated the single-class model for both isolated
and interconnected caches, we now consider the same binary-
tree network examined in Section VII-B, this time fed by a
more realistic multi-class traffic, showing how our approach
can be effectively employed for system design and opti-
mization. We will only report analytical results here, since
simulation results were too expensive to obtain in this more
complex scenario (this fact further strengthens the usefulness
of our methodology). Our goal is to better understand the
impact on cache performance of a mixture of highly heteroge-
neous contents characterized by different degrees of temporal
locality. This is indeed the typical traffic observed in real
networks [15].

In particular, we consider a mix of6 classes of contents,
whose parameters, listed in Table I, have been chosen to
reasonably represent the content heterogeneity produced by
the popular YouTube platform, according to measurements
reported in [15]. Class 0 collects unpopular contents having
request volumes smaller than 10. Classes1–5 correspond to
popular contents having different degree of temporal locality,
with average life-span (L) ranging from a few days (Class 1)
to several years (Class 5).
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In order to understand the impact of different traffic mixes,
we consider 3 traffic scenarios in which we vary the proportion
of each class of contents. This is equivalently obtained by
varying the catalog size of contents belonging to the various
classes, as reported in the last3 columns of Table I. Note that
Class 1 is missing in bothScenario 2andScenario 3, whereas
Class 2 is missing only inScenario 3. The presence or not of
these two classes has been altered on purpose, since, having
the smallest value of content life-timeL, they are expected to
have the major impact on the overall hit probability (i.e., to
be the more ‘cacheable’ classes of the mix).

Fig. 11 shows the performance of q-LRU (withq = 0.25)
for the three considered scenarios, either in the case of caches
all of the same size (curves labelled ‘equal caches) or in the
case of caches of size equal to the sum of their children
(curved labelled ‘big caches’). We observe thatthe presence
of just a small fraction of highly cacheable contents(e.g., in
Scenario 1) has a significant beneficial impact on the overall
hit probability, especially with small caches.Even for medium-
size caches the gain is very significant: for example, in the
case ofC = 20000, the hit probability observed inScenario
1 (around 0.1) is about twice the hit probability observed in
Scenario 3.

We now focus onScenario 1(where all classes are present),
considering the case in which all caches have the same size.
This time, we assume that the system is able to restrict the
access to the caches only to contents belonging to a specific
set of classes. Notice that this requires the ability to classify
objects’ requests according to an a-priori knowledge of the
popularity class they belong to. This scenario is differentfrom
the one considered in Fig. 11, because this time requests for
contents whose access into the cache is denied, deterministi-
cally produce a miss (whereas in the experiment in Fig. 11
some classes simply where not present in the arrival stream of
requests). Now we are interested to see what happens when
contents that are either unpopular (class0) or popular but long-
lived (class5) are not allowed to be cached.

Fig 12 compares the performance of LRU, RANDOM and
q-LRU (q = 0.25) (without any class restriction) against
the performance of q-LRU-0 and q-LRU-(0+5), where q-LRU
does not cache contents of class0 and of both classes0 and
5, respectively.

First, notice that q-LRU significantly outperforms both LRU
and RANDOM (whose hit probability is nearly the same)
also in this more realistic scenario. Second, we observe that,
when the cache size is limited, a significant performance
improvement is achieved by filtering out contents that are
either unpopular (class 0) or popular but long-lived (class
5). For example, the adoption of q-LRU-(0+5) leads to a
reduction of almost one order of magnitude (i.e., a factor of
10) in the cache size that is needed to achievephit = 0.1, with
respect to q-LRU without access restrictions.

As expected, filtering out contents when the cache size
increases must at some point become deleterious, since filtered
contents lead to a miss in the cache. This is confirmed by the
intersection between the curves in Fig 12.

The practical implementation of filters to detect unpopu-
lar/long lived contents raises issues that go beyond the scope
of this paper.

VIII. C ONCLUSIONS

We presented a general, accurate, and computationally
efficient approximate methodology for the analysis of large
distributed systems of interconnected caches under dynamic
contents. Our methodology can be successfully applied to a
large class of caching strategies that includes LRU, RANDOM
q-LRU and 2-LRU, while maintaining the amenable property
of representing request processes of individual contents with
stationary processes. This is accomplished by modeling there-
quests arriving at different ingress caches with “synchronized”
ON-OFF processes. We can then adapt and extend existing
approaches based on the Che’s approximation, inheriting all
the nice properties of such approaches in terms of both
accuracy and scalability.
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