univelrsité
Paris Quest
| B

Nanterre La Défense

Leme

Laboealcre

Doctoral thesis
in structural mechanics

presented by

Dipl. Ing. Christian Wenzel

subject:
Local FEM Analysis of Composite Beams and Plates: Free-Edgeffect
and Incompatible Kinematics Coupling

sujet:
Analyse locale parélements finis de poutres et plagues composites:
effets de bord libre et couplages de ciematiques incompatibles

ALEXIS BEAKOU Université Clermont Ferrand Président
ALBERTO MILAZZO Universita di Palermo Rapporteur
HELENE DUMONTET  Universita di Palermo Examinateur
SERGIO DE ROSA Universita degli Studi di Napoli Examinateur
OLIVIER PoLIT Université Paris Ouest Directeur
ERASMO CARRERA Politecnico di Torino Co-Directeur
MICHELE D’OTTAVIO Université Paris Ouest Examinateur
PHILIPPE VIDAL Université Paris Ouest Examinateur

Laboratoire Energétique Mécanique ElectromagnétisbhtieME
Ecole doctorale 139 : Connaissance, langage, modélisatio

Politecnico di Torino
Scuola di Dottorato
Dipartimento di Ingegneria Meccanica e Aerospaziale






Acknowledgements

This thesis was accomplished in co- tutoring between theotaibire Energétique
Mécanigue Electromagnétisme of Université Paris Oudkinterre La Défense and
the Dipartimento di Ingegneria Meccanica e AerospazialBaitecnico di Torino.
As every work of this extend, it would not have been possikithaut the guidance
and support of other people. Therefore | would like to ackedge it here.

Every idea starts with a discussion and some questions. Ithi&a to thank Olivier
Polit therefore. | also like to thank for his kind receptiontihe laboratory, the guid-
ance and the support. Also | would like to thank Erasmo Carfer posing the
right sequence of questions at the right time and for passiagnspirations, not
only throughout my time in Turin. Besides | was lucky to préfitm the continuous
support of Michele D’Ottavio and Philippe Vidal. It was thgresence and advice,
which clarified many questions right from the start. Yourtecitnution was a precious
piece of this work.

It is a pleasant working atmosphere, which creates mosedhpirations. This was
provided by my colleagues and friends in my offices, whiclkeé lio thank in alpha-
betic order, as their order of importance is difficult to megagdue to different scales:
Astrid, Axel, Eric, Fabio, Fadhilla, Hubert, José, MarcwldMarco, Markus, Mehdi,
Mirella, Nicolas, Olivier, Quan, Shahram, Simone, SilWalentina and Zhaoyi.

At the end there is always a fundament underneath every wartuld like to thank
my family for their support regardless of the distance, ¢guand time. You were
there when support was needed. Thank you!



Abstract

The use of composite laminated structures helped in thevi@stiecades to reduce
overall weight of transportation structures. As a conseqgedhe energy needed to
power those transportation means is reduced and hencendiehanetary resources
are economized and emissions are reduced. Especially thepaee sector has a
high need of a favourable weight to power ratio. Orthotrdaminated structures are
able to provide a higher stiffness combined with a lower dgr®mpared to mono-
lithic isotropic materials used in the past. It seems hetig, they are perfect for
the use in even a wider spectrum of applications. Howeveutyit the assembly of
differently layers, it is more difficult to model and predtbe structures mechanical
response to outer loadings. In the recent past differenpatational methods were
developed. Most of them under the scope of being capablelii@dgery detailed
results of the global behaviour of the structure but alsdchefihteraction between
the different layers of the laminate. As a major drawbacketaited result comes
with high computational costs. Hence a need for a good comigebetween costs
and accuracy has to be found. This benefits especially frenfeitt that stress con-
centrations in composites occur mainly in local domainsefdtructure. The use of
detailed models only in those local domains of interest semarefore straightfor-
ward.

Examples for such local domains with stress concentratiwadaminates with
free edges. At the interface between two layers with diffeedastic properties the
stresses have singular behaviour in the immediate vicaiitiie free edge, assuming
linear elastic material behaviour. This is due to the maltetiscontinuity and the
resulting mismatch of the elastic properties at the interfaf the layers, the condition
of traction-free edges and the equilibrium between thertaydherefore they are
critical to promote delamination.

An adequate analysis method for this would be the use of ghide-dimensional
analysis model. However it's computational cost is sigaiftc Composites are often
rather thin planar structures, allowing the use of reduéettdsional models, which
are also more attractive through their reduced computaltioost. Therefore differ-
ent reduced models with their appropriate hypotheses ithibkness direction are
under consideration in this work. Via different thicknespansion functions suit-
able kinematical theories, are expressed. The Carrerafeedi-ormulation (CUF)
is used to have a common base to build the models with thereliffekinematical
theories. The CUF allowing not only purely displacementeldasiodels using the
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Principle of Virtual Displacements (PVD), but also mixedess and displacement
based models with the Reissner’s Mixed Variational Theof@MVT).

In the first part of this work, the reduced dimensional madglapproaches are
compared. Two main class are presented: Equivalent SireyerL(ESL) models
treating the layered structure like one homogenous plagégwél mechanical proper-
ties, and the Layer Wise approach, treating each layer evdgntly. Subsequently
their capabilities to capture the appearing singulardiescompared. In order to have
a comparable measurement of those singularities, thenalotatress distributions
will be expressed via a power law function, which has a paosingular behaviour.
Only two parameters fully describe therefore the singulisgss components in the
vicinity of the free edge. With the help of these two parameetet only the differ-
ent models capabilities will be compared, but also the fageeeffect itself will be
measured and compared for different symmetrical laminaitelsthe case of exten-
sional and uniform bending load. The results for all lam@satnder both load cases
confirm the before stated need for rather complex modelseavittinity of the free
edge. However far from the free edges, in the compositegptantre, no significant
difference can be noted for rather simple models.

The second part of this work is therefore dedicated to thelauy of kinemati-
cally incompatible models. The use of costly expensive dernmodels is restricted
to local domains of interest, while economic simple modealsmodel the global do-
main. The Extended Variational Formulation (XVF) is idéietl as the most suitable
way to couple the kinematically heterogenous but dimemdibmmogenous mod-
els. As it uses a configuration with one common interface auttdomain overlap,
the additional efforts for establishing the coupling amited. Further the XVF of-
fers the possibility to adapt the conditions imposed at tierface using a single
scalar parameter. It will be shown that for the homogenousedsional problem
under consideration only two different conditions can bpased by this parameter.
One matching the strong conditions imposed by the claskloéti Point Constrains
(MPC) and a second one providing a weak condition. The lastisrshown to
provide the possibility to reduce further the domain usimg ¢complex kinematical
model, without the loss of local precision. As this is thetfagplication of the XVF
towards composite structures, the need for a new coupliegatgr was identified. A
new form is proposed, tested and its robustness will be atedu



Resune

L'utilisation de structures stratifiees composites a pgdr réduire le poids d’ensemble
de structures de transport au cours des deux dernieresmés. En conséquence,
I'eénergie nécessaire pour alimenter ces moyens de toansept réduite et donc les
ressources monétaires et en combustibles sont écomesnet” les émissions sont
réduites. En particulier, le secteur de I'aérospatialfrand besoin d’'un poids fa-
vorable au rapport de puissance. Des structures stratifiébotropes sont capa-
bles de fournir une rigidité plus élevée au cas ou eltm® sombinées avec une
plus faible densité par rapport aux matériaux isotropesdtithiques utilisés dans le
passé. Ainsi semble-t-il qu’elles soient parfaites pautilisation méme dans un plus
large éventail d’applications. Toutefois, grace adamblage de couches differentes,
il est plus difficile & modéliser et prédire la reponseaanique des structures a des
charges externes. Dans les dernieres années, dit#graréithodes de calcul ont été
développées. La plupart d’'entre elles ont été déteges sous la prémisse d'étre
capable de fournir des résultats tres détailles du astement global de la struc-
ture, mais aussi de l'interaction entre les differentescbes du stratifie. Comme
inconvénient majeur, un résultat détaille est autdguaiment lié aux colts infor-
matiques €élevés. Par conséquent, un bon compromis lestits et la précision
doit étre trouvé. Ce compromis profite surtout du fait geeedoncentrations de con-
traintes dans les matériaux composites se produisentipalement dans les do-
maines locaux de la structure. L'utilisation de modéletailles seulement pour les
domaines d'intérét locaux semble donc simple.

Des exemples de ces domaines locaux possédant des catiocestrde con-
traintes sont stratifies avec des bords libres. A l'inteefantre deux couches ayant
des propriétés élastiques differentes contraintes,dernieres ont un comportement
singulier a proximité immédiate du bord libre en suppsgue le comportement
du matériau élastique soit linéaire. Cela est di adadtitinuité de la matiere et la
non-concordance qui résulte des propriétés élagtiquénterface entre les couches,
la condition de bords libres sans traction et de I'equlilentre les couches. Par
conséquent, ils sont essentiels pour le délaminage. Wathade d’analyse appro-
priee serait l'utilisation d’'un modeéle complet d’anadytridimensionnelle. Toute-
fois, le temps de calcul est important. Les composites smnent des structures
planes et plutdt minces, permettant I'utilisation de rled réduits tridimensionnels,
qui sont eux aussi beaucoup plus attrayant grace a lautrdm Talcul minimisé.
Par conséquent, differents modeéles réduits avec leypstheses appropriees dans
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le sens de I'épaisseur sont étudiés dans ce travail.ofis données par differentes
fonctions d’extension de I'épaisseur théories cinéguats appropriées . Lieormu-
lation unifiée de Carrera (CUFgst utilisée pour avoir une base commune permettant
de construire des modeles avec les differentes théoinésnatiques. La CUF rend
non seulement possible le développement des modelesemimment des inconnus
de déplacement en utilisant le principe des déplacenvinitels (PVD), mais aussi
des modeles mixtes avec des inconnus de contrainte epticdent sur la base de
théoréeme variationelle mixte de Reissner (dit RMVT).

Dans la premiere partie de ce travail, les approches delisatdon dimension-
nelle réduites sont comparées. Deux classes principatéprésentées : des modeles
a couche équivalente (ESL) qui traitent le stratifié camuime plague homogene de
propriétés mécaniques égales, et I'approche de laheoegplicite (LW) qui traite
chaque couche indépendamment. Par la suite, leurs dapacsisir les singularités
apparentes sont comparées. Afin d’avoir une mesure cobilipate ces singularités,
les distributions de contraintes obtenues seront exgsnpar une fonction de loi de
puissance décroissante, qui présente a priori un cosrpertt singulier. Seuls deux
parametres décrivent donc entierement les composdatesntraintes singuliéres au
voisinage du bord libre. Grace a ces deux parameétregliffiésents capacités des
modeéles seront comparés, mais aussi I'effet de bord Bbra mesuré et comparé
pour differents stratifies symétriques dans le cas dalragge uniforme de flexion ou
extension. Tous les résultats des stratifiés pour les dasixle charge confirment la
nécessité d'appliquer des modeéles d’ordre supérians de voisinage du bord libre.
Cependant, aucune difference significative ne peut @tigerpour les modeles plutdt
simples loin des bords libres au centre des plaques coraposit

La deuxieme partie de ce travail est donc dédiée au cgapla modeles cinematiques
incompatibles. Lutilisation de modéles complexes afteakx est limitée aux do-
maines d’intérét locaux tandis que les modeles écogoes simples seront appliqués
aux domaines globaux. LEormulation variationnelleétendue (XVFgst identifiee
comme le moyen le plus approprié pour coupler les modédadirdensionnalité ho-
mogenes mais cinématiquement hétérogenes. Comnidisewne configuration
avec une interface commune sans recouvrement des donameforts supplémentaires
pour établir le couplage sont limités. En outre, le XVFeffa possibilite d’adapter
les conditions imposées a l'interface en utilisant urigent un parameétre scalaire.
Il sera demontré que pour le probleme de dimensiomnhbihogéne a I'étude, deux
conditions differentes peuvent étre imposées par canpetre dont la premiere aux
conditions fortes est appliquée de la méme facon ersatitila méthode dddulti
Point Constraints (MPCgt dont la seconde impose les conditions faibles a I'iatarf
Les conditions faibles aident a réduire la taille des doesmbasés sur le modele de
la cinématique complexe tout en gardant leur précisicalla Comme il s’agit de
la premiere application de la XVF aux structures compesitbesoin d’'un nouvel
opérateur de couplage a été identifie. Un nouveau faimuést proposé et testé. Sa
robustesse sera évaluée.
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Riassunto

L'utilizzo di strutture laminate fatte di composti, ha aitd negli ultimi due de-
cenni a ridurre la massa totale delle strutture di traspolt® conseguenza e stata
la riduzione dell'impiego dell’energia neccesaria peoaare questi mezzi e quindi
anche la riduzione del costo, della quantita di carburardelle emmisioni. In par-
ticolar modo, il settore aerospaziale necessita di un rapgavorevole di peso per
potenza. Le strutture laminate ortotropiche, rispetto aiemali monolitici isotropici
utilizzati in passato, riescono a fornire un’elevata rigice una bassa densita. Sem-
bra che esse possano essere utilizzate per moltissimeagphi. Tuttavia, a causa
dellassemblaggio dei differenti strati & piu difficileltheare e pronosticare la loro
risposta a degli sforzi esterni. Negli ultimi tempi, di#eti metodi computerizzati
sono stati svilluppati. Tra questi la maggior parte rifepiso dei risultati dettagliati
del comportamento globale della struttura, ma anche dedfazione tra gli strati del
laminato. Uno svantaggio considerevole di questi metoche hanno bisogno di
costi elevati di computerizzazione. Per questo € imptetaovare un buon compro-
Messo tra costi e precisione. Il compromesso € perseguieiché le concentrazioni
elevate nei compositi si riducono a delle zone locali detattura e quindi I'utilizzo
di modelli di calcolo dettagliati € necessario solo in qae®ne d’interesse locale.
Un esempio di zone locali con delle concentrazioni elevasfaizo sono i lam-
inati con dei bordi liberi. Nell'interfaccia di due stratbie delle proprieta elastiche
diverse, gli sforzi hanno un comportamento singolare inaftiediata contiguita coi
bordi liberi, guando come base si utilizza un comportamareate elastico del mate-
riale. Cid & dovuto alla discontinuita del materialel'tekerfaccia e alla conseguente
differenza tra le proprieta elastiche degli strati, altmdizione dei bordi liberi e
all'equilibrio tra gli strati. Di conseguenza essi possapportare delaminazione.
Un metodo adeguato per analizzare tutto questo e I'ubildiznodelli tridimen-
sionali, ma il loro costo di computerizzazione € comunqaesierabile. Per il
fatto che i compositi sono nella maggior parte dei casi datetture sottili e piane,
I'applicazione dei modelli di dimensionalita ridotta @gsible per i bassi costi di com-
puterizzazione. Di conseguenza sono stati presi in corasitme in questo lavoro
diversi modelli ridotti con le loro proprie ipotesi nellarezione trasversale. Queste
ipotesi esprimono una teoria cinematica conveniente igzaihdo diverse funzioni di
espansione, diverse ipotesi cinematiche posso essereratlpEsse sono formulate
su una funzione di espansione nella direzione transversal€arrera’s Unified For-
mulation (CUF) & utilizzata per avere una base unica parenmmodelli attraverso le
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diverse teorie cinematiche. La CUF non permette solo lotapganto dei modelli di
base che usano il principio degli spostamenti virtuali (AMba anche una combi-
nazione di sforzi e spostamenti di modelli di base, attswvdrteorema variazionale
mixed di Reissner (RMVT).

Nella prima parte di questo lavoro, sono confrontati gliragpi di modellazione
di dimensionalita ridotta. Sono presentate due clasecyali: la prima presenta i
modelli di un strato unico equivalente (ESL) che trattanstiattura come un materi-
ale omogeneo di un singolo strato con delle proprietaielsstequivalenti; la seconda
riguarda i modelli Layer-Wise che trattano ogni strato ieiginente con un modello
di comportamento indipendente. In seguito sono messe aotwafle loro capacita
di riprodurre le singolarita che appaiono sui bordi libeli fine di avere una misura
comparabile di queste forze singolari gli sforzi nell'imdieta contiguita ai bordi
liberi sono espressi sotto forma di una funzione esponkndiecrescente. La fun-
zione a priori ha un comportamento singolare. Solamentpdugmetri descrivono in
modo completo questa curva e il comportamento degli sfoegipn considerazione.
Con l'aiuto di questi due parametri, non solo sono confribmt@diversi modelli e le
loro capacita, ma anche I'effetto dei bordi liberi per 8gedta misurabile. In questo
modo & anche possibile confrontare I'effetto per le dieestsatificazioni esposto ai
carichi di trazione e flessione. | risultati per le stratificai sotto i due carichi con-
siderati confermano il bisogno di modelli complessi ai lditgbri. Tuttavia, lontano
dai bordi liberi, nella parte centrale dei laminati, nonaiano differenze tra i modelli
complessi e i modelli semplici.

La seconda parte di questo lavoro & dedicata, conseguenterai precedenti
risultati, all'accoppiamento dei modelli cinematici imapatibili. L’ utilizzo di cos-
tosi modelli complessi € ridotto a delle zone locali, mernitrresto della struttura
viene modellizzato con dei modelli semplici ed economidipdanto di vista dei costi
di computerizzazione. La eXtended Variational Formulati¥VF) & stata identi-
ficata come I'approccio migliore per I'accoppiamento deidelt cinematicamente
eterogenei, ma dimensionalmente omogenei. Per il fattdab@/F usa una con-
figurazione senza sovrapposizione delle diverse zonei legbbali, gli sforzi ad-
dizionali per creare I' accoppiamento sono limitati. Inelta XVF offre la possi-
bilita di addattare le condizioni imposte all'interfaadia le zone utilizzando un sin-
golo parametro scalare. Si dimostera quindi che, per ilproa di dimensionalita
omogenea, solo due condizioni possono essere imposte deoq@aametro. Una
€ in accordo con le condizioni rigorose imposte dai claddidti Point Constraints
(MPC) e la seconda & creata da condizioni delsldimostrato in particolar modo
che l'ultima permette di ridurre la zona usando dei mod@linplessi senza perdere
la precisione locale. Essendo la prima applicazione ditguesmulazione per dei
problemi compositi, & stato identificato il bisogno di urowo operatore di accopi-
amento.E proposta quindi una nuova formula che viene testata e leobuistezza
sara valutata.
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Chapter 1

Local Effects in Composite
Structures

First in this chapter, the general interest of the use of itayéired structures will
be outlined first in this chapter. It is followed by introdngi the additional efforts
needed for modeling these types of structures, in speardang the effects oc-
curring at free edges. This chapter will be concluded by iding an overview on
existing semi-analytical and discrete techniques in ora@redict their mechanical
behaviour at those free edges due to different loads, ed|yelsending.

1.1 Framework of the present work

The objective of saving energy did affect the design of fpanstion means in recent
years, as the main objective was to reduce the overall weighe structure. While
reducing the weight, the energy needed to move or power tihetste is minimized.
As a consequence less powerful motors are needed and a biggrgy efficiency is
possible: the energy consumption is reduced and subséyjtlenemissions into the
environment. Two main approaches are possible to reducedigit: the first one is
simple reducing the weight of the single components, whitgesecond approach is to
include different components into one by including thesigsed functions into one
single component with less weight then all the different ponents together. Both
approaches have been addressed through the use of muétdasteuctures in the last
decades. The most common representatives are compositsaraawich structures.
Through their nature as being an inhomogen structure,rdiffenechanical effects
occur compared to monolithic homogeny materials. Thisvderin one part from
the assembly of the different layers, but also from the matirthe materials used,
which might also be inhomogen. Especially the use of arapaty in many cases
orthotropic materials, having a predominant characterfseéx. stiffness, damping
coefficient or thermal conductivity into one direction camdd with a relatively low
mass) is interesting. Though the orientation of this diogcthe structure can be
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adapted to the outer loadings. By the adaption of severatsayach layer can be
assigned a specific function.

The function integration is normally carried out at the stawal part level via the
use of multilayered structures. Often relatively thin plastructures are obtained.
This allows to use dimensional reduced models, like twoedisional models, in or-
der to predict the three-dimensional behaviour. Via theaisgimensional reduced
models, the time and the assignhed cost needed to calcudaselilition of mathemat-
ical models representing the problem is reduced, too. Blasvery attractive factor
in the design process.

In order to reliably introduce several function into a maitered structure and
reducing the overall weight at the same time, the state esstintroduced by the
outer loadings and the inner reactions of the part have tonbavi. Together with
the design limits of the used materials, ie. fracture limitgximal operating tem-
perature or admissible deformations, they provide thegdesnvelope for the part.
In most cases, these design limits are only reached in loceszthrough high stress
concentrations for example. Hence these local zones hawe teliably predicted
and the concentrations have to be quantified. Accordingedipothesis imposed
to reduce the dimensionality, the model might not be ablaltg &nd reliably render
those local zones. For this type of structures, one of the priigal concentrations
are the interlaminar stresses.

1.2 Heterogenous Structures

This preliminary chapter will introduce composite struesi and describe one of
those additionally mechanical effects, namely the fregeesffect. This chapter will

conclude with a comparison of methods available to caleudaid evaluate the free-
edge effect in bending. Heterogenous structures are useadags in a wide spec-
trum of applications. The most common representativesaarévgich structures and
laminates. Both may consist of a stacking of different laydtach of the layers is
included into the structure to fulfill a certain function. dge layers might be made
of different isotropic materials, like sheet metal. Oneenthossibility is to use the

same material with oriented properties, the orthotropiteni@s. In the case of the
sandwich structures, these orthotropic materials arelynaged in the core, where
honeycomb hexagons, foams or folded papers are used. Téelaygrs might be

metals or other orthotropic materials. The most frequemslyd materials nhowadays
are fibre reinforced plastics, like carbon fibre reinforcéabktics (CFRP) and glass
fibre reinforced plastics (GFRP). Especially laminates enaitthe last two materi-

als have gained an interest in the last decades. Throughatidrsgy of the layers it

is possible to include the adequate layer at the neededquosit orientation in the

layup to properly respond or adapt to those outer influen@ésough their nature

as combination of different mechanical characteristighefsingle layers, additional
mechanical effects occur compared with a structure madesoigie homogenous
material.
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In Figure[1.1, an example of a multilayered structure ismiva general a compound
consists of a number of layeré;, from k = 1, ..., Nz.. For the purpose of modelling,
they are assumed here to have the same dimensions in lerdyih andth but the
thicknessh, might differ. The middle plane is used as reference to desdtie
stacking of the compound. The mechanical properties departtie local orienta-
tion of the layer. Therefore they have to be transformed timosystem of reference,
in order to include its contribution to the assembly of thenptete compound. Its
orientation with respect to the reference system is giverthbyrotation angle)y.
The material axes will be described by a Cartesian coorgisytem, denoted by the
1, 2 and3-axis. As the orientation varies around thaxis, the locaB-axis will be
identical with the globak-axis.

Figure 1.1: Layer stacking order and orientation

Figure 1.2 gives a reference for the notation, regardingtiieking sequence into
the z-direction. In order to indicate the top surface of a layeiit will be denoted by
the subscript, while subscript denotes the bottom surface of the layer.

A further assumption is that all layers are perfectly bonttegbther. Therefore,
the local displacementa at the top and the bottom of two adjacent layers, have to
be continuous:

uf(m,y, zK) = uf“(m,y, zp) for k=1,...,Np—1 1.2)

The stress components can be split into two parts: the imeptaomponents,
which will be denoted by a subscript and the transverse stresses, denoted by the
subscriptn. They areio), = (044, 0yy, 0zy) @ANAT, = (042,042, 022).

Regarding the transverse stresses, a continuity of its coergs has to be satis-
fied at the layers interface for equilibrium reason:

Ufmt:o-ijl;l for 1=1,....,Np—1 (12)

3
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‘A

Lk+1

top of layer k
=

y=b

Figure 1.2: Interface of two adjacent layers

The in-plane components are not affected, they can be irdfacbntinuous at
the layers interface. They depend on the local in-plandieitysof each layer, which
in the global reference system is only influenced by its daigon .
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1.3 The Free Edge Problem in Bending

Figure[Lb represents a cross-ply laminate consistingwfleyyers having the same
material and the same thickness per laygrConsider §0/90], cross-ply laminate,
where the dark grey layers represent the oQteegree layers, with fibres aligned
in the globalz-direction. In order to bend the laminate around the glapakis,

it is loaded at the top by a constant pressure lgaend is simply supported at its
short edges, as shown in Figuke {1.4). Due to the uniformspredoad, a uniform
curvaturex, is applied along the length axis, theaxis.

X

2b

Figure 1.3: Configuration of a symmetric laminated plate

In the following, the plate is considered to be sufficientlyge in length and
width, in order to have stress distributions undisturbedh®yboundary conditions.
Through the orientation dd and90 degrees, the different Poisson’s ratios of each
layer will provoke a different deformation behaviour in bdayer. However, at the
free edges of the composite plate, at any point through védththickness, a tension
free stress state is present, for which it can be statedangfiorm:

oyy(@,y = £b,2) = ogy(x,y = £b,2) = 0y (x,y = £b,2) =0 (1.3)

Assuming layers which are not perfectly bounded will prav@k deformation
behaviour in accordance to the orientation of the layers Thshown in Figurg115,
where the outermost layers, thelegree layers, extend more in the direction of the
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Jo

centering

Figure 1.4: Bending of a simply-supported plate under a undiform pressure load

z-axis, while the inneP0 degree layers would extend more in the direction of the
y-axis.

As stated in Equatiori_(1.1), the displacement at the layaesfaces has to be
equal due to the perfect bonding. Regarding the free edgasymaal stressr,,
close to the edges itself is needed inside the layers toessarcontinuity of the
displacement componeny, at the interface between the differently orientated layers
Before it was stated that at the free edge itself, it has téstaout also due to the
symmetry of the configuration, it has to vanish at the platestre. Therefore the
situation at the bimaterial interface has to be considereddre detail. The Poisson’s
ratio mismatch at the bimaterial interface influences thplame stress components,
and the propagation of the transverse shear component&ciilyp the transverse
shear components determine the local stress state in tvacedilayers. Figure
[1.8 shows the situation for a cut through the lay-up at twaeljt layers, with the
upper layer in thé degree orientation and the lower in th@édegree orientation. In
the Figure, both layers are shown independently. This isghlight the role of the
transverse stresses and their continuity, as given in Egu@L2). The in-plane stress
o,y is induced through a non vanishing interfacial transveheisstress, . which
is assuring the actual connection between the two layetsedbimaterial interface.
The transverse shear stress has to be present at the lageface close to the free
edge, which is pictured in the left half of Figuire]l.6.

The transverse shear stress is vanishing at the free edge and due to symmetry

6
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Figure 1.5: Deformation behaviour of unbounded plies @f,80], cross-ply lami-

nate under uniform pressure load

VRV Y

PEEEAEEAEATEA LA
Gz

g

Figure 1.6: Compatibility condition at the interface betémeéwo layers

conditions it has to vanish also at the plate’s middle. Tioeesit has to be non-zero

at some portion of the width close to the free edge. A presef@n interlami-

nar transverse shear stress leads to an imbalance in moaneutsl the length-axis.
Therefore the transverse normal stress have to balance the gradients occurring
in the transverse shear stress. This is shown in the righbh&igure[1.6. A typi-

cal distribution of both stresses across the width is giveRigure[1.V. A localized
strong gradient can be identified in the zone close to theddege. As described,
the transverse shear stregs is bounded at the free edge. However, the transverse
normal stresg ., is unbounded as pictured and is expected to adopt to a ratbegs
gradient. This rise is rather sharp with the tendency tosiargpeak value. With a
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refinement of the mesh used for FE calculations, the maximaioreg of the trans-
verse normal stress is expected to rise. If they do not cgevier a finite value with

the refinement of the mesh, a stress singularity is presdnis.iF expected to be the
case of the laminates under consideration.

1

022/0 2 man
o
o
T
1

0.2 | | | | |
. y/b . .

0.5r

Oyz/ Oy zman

-05 I I I I I
0 0.2 0.4 0.6 0.8 1

y/b

Figure 1.7: Stress distribution from the plates middle tasahe free edge
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1.4 Estimation based on the Classical Lamination Plate
Theory

Herakovich [29] as well as Mittelstedt and BecKer|[49] gandtaee steps approach
to determine the mechanical effects occurring. Both asduar@anar state of stress
away from the free edge, so the Classical Laminated Plateryh€LPT) holds
true. The CLPT does predict only the in-plane components ¢,, ando,,. The
remaining three transverse components are neglected dihe wimple kinematic
hypothesis it is based on and have to be recovered via thibeguin equations. Via
the CLPT a first estimate can be done for the occurring inrfertefintroduced by
the free-edge effect.

In order to solve the system of unknowns, the stresses aedliwith the defor-
mation, ie. the strain, via Hooke's law. The stiffness mbd]’.j} are used to describe
the orientated stiffness components of a single layer irldbal material reference
system:

[74] &
J]iy e’iy
=t | F (1.4)
O-IL'Z EIL'Z
Uliz e’iz
L Oy ] L€y ]

where the stiffness matrix reads for an arbritarily oriéedeorthotropic material:

21 22 23 26
[Ck} _|Ch Ch Ch o0 0 Cf

10 o0 o0 ¢k ok 0
0o 0 o0 Ck ck o
Cly C% Cg 0 0 Cl

(1.5)

Note thatC}; = Ck; = Ck; = C}, = CF, = 0 for an orthotropic material in the
local material reference system.

According to the orientation angtg., the stiffness coefficients of each layer can
be transferred into the global reference system. They willénoted a€". Further,
by the assumptions of a planar state of stress, the matéfiaess coefficients are
the reduced stiffness coefficier@, which are according to Herakovich [29] :

- . CkCk
Qij = Cf — %k 2 with (i, = 1,2,6) (1.6)
33

The compact Hooke’s law for the planar state of stress is
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Due to the planar state of stress, while using the CLPT, #mestrerse compo-
nents have to be recovered from the in-plane componentheiategration of the
equilibrium equations.

In Figure[1.6 the appearance of the transverse shear stjesgas introduced.
The effort excerpted by this stress component can be exqutesa a force per unit
length, the shear forcg, . (z*). This shear forcé’, . (z*) has to balance the occurring
inner distributions of the in-plane stress compongpt It can be stated for a given
position in the laminate™ :

:
FyZ(Z*) = / Uyz(Z*) dy = _/ Uyy(y*) dz = _Fyy(y*) (1.8)
y z

* *

The component,, is nonzero over at least some portionlok y < b and far
from the plate’s centre. Through the thickness, linearsstuistributions ofr,, ()
are defined by the CLPT per layer from Equatibnl(1.8). Thisldem a quadratic
force distribution through the thickness of each layer. aih de stated for a given
position at the interface* = z;:

2 2

b . 25 — 254
F,.(z") = /0 oy (2") dy = Ejy:lk ( {y%%) (1.9)

Further to the balance of the inner forces, a balance of tierimoments has to
be given. The moment about theaxis, exerted by the in-plane stresg,, has to be
balanced by a transverse normal stress

b h
/ 0..(2")ydy = — /2 Oyy (2 —2%) dz (1.10)
0 z*

Due to the quadratic shear force distribution per layer,kdaconoment distribu-
tion is present at each layer:

Q19kz 3 —z 5 (1.12)

For other laminate orientations, like angle-piy/ — 45, laminate, the effects
are similar, but the magnitudes occurring are differenttduke coupled behaviour in
thex andy-axis. The in-plane shear,, will become important and disturbs the use
of symmetry conditions. The before stated equilibrium ¢bors from Equations
(1.8) to [1.10) of the cross-ply laminates are expanded &wtditional influence of
the in-plane shear through their link via the transverseaishemponents. A more
pronounced free-edge effect is hence expected. For otirendées and loads the

* N,
M. (z") = Ej:lk

10
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same phenomena will occur.

As shown, while using the CLPT, the computation of the imgarttransverse
stresses is based on the equilibrium equations. Only amdéate of stress is assumed
by the CLPT directly. Through this mathematical couplingneplane and transverse
stresses, the CLPT does generally underestimate theestressurring next to the
free edge, as different authors showedlinl [18] [49]. dfoee other methods
being capable of predicting inter- and intralaminar stsswith high gradients in
local areas are needed.

1.5 Modelling Methods for Free-Edge Problems

Two different classes of methods can be identified for desaiand quantifying the
free-edge effect in composites. These methods are baseshtinuwm mechanics,
which will deliver a closed form analytical solution as wad discrete solutions pro-
vided for example by the Finite Element Method. Some of thetrimoportant works
will be described hereafter and a final comparison of thoshoals about their com-
mon aspects and differences will be given in Tablé 1.1.
For all methods described here, the general modelling apprs stated. The ap-
proach often depends on the specific problem treated, wiitilglithe authors equally
considered the same loading. Another very important agpelce representation of
the geometry. For a sufficiently long plate, the free-edd@eces become independent
from the longitudinal coordinate. This is valid in extension, but not for all types of
bending. This helps therefore to reduce the effort for modgbf only some prob-
lems. Therefore several authors reduced the three-dioraigbroblem to a quasi-
3D dimensional, using just a representation of the axialigised cross section of
the lay-up. Another common approach to reduce the dimealipnis the type of
the description of the mechanical behaviour of the compourte mechanical be-
haviour can be described in a rather global way in order te trascalculation efforts
or, on the contrary, a detailed modelling of the behaviouafirurate local response.
The first aspect of easing the calculation effort is coverethb so-called Equivalent
Single Layer (ESL) techniques. To reduce the overall unkrsand hence the calcu-
lation efforts, the lay-up is considered as a single layavjrig equivalent properties.
In contrast to this technique, Layer-wise (LW) approachesg@heach layer indepen-
dently and hence the number of unknowns increases. Theaseia the demand for
resources is justified by the capacity of this method to lggaiovide very accurate
intralaminar results. The last common aspect is about thei@o types. In order to
ease the complexity of the solution of the three dimensibonahdary value problem,
different kinematical hypothesis are assumed. Accordinipeé modeling approach,
they are expressed via different unknowns. They will be «desd, irrespectively of
how the solution is achieved. The solution itself is caltedaeither in iterative steps,
which improve the overall solution, or as a direct solutiorone single step.

Pipes and Paganio [57] were the first to describe the naturecandrence of free-

11
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edge effects in tension. Only a two dimensional geometrywsasl, representing the
cross section of the lay-up. The solution was gained viareiscmaterial points

in a finite difference scheme assuming bilinear approxiomadif the displacements.
Since this pioneering work, significant scientific attentisas put into the accurate
calculation and prediction of the stress singularitiebafitee edge. A good overview
about the works concerning free-edge effects in extensias given by Mittelstedt

and Becker[[49]. Therefore, in this overview the focus ismhaconcentrated on

free-edge effects in bending.

1.5.1 Semi-Analytical Methods

Kassapoglou [37] provided a generalized approach of someaqus works done by
Saeger and Lagace [46] as well as Kassapoglou and Ldgac¢3d9B]His approach
is capable to treat problems under in-plane loads like sidenas well as problems
under out-of-plane loads like symmetrical bending momehie stress is described
per layer in order to solve two coupled differential equasio The results are de-
scribed independently from the composites length, whi@rettore provides only
results in the central cross section.

M. Cho and H.S. Kim[[13] were the only authors to use an iteeatechnique
for solving the system of equations. They were considerkigrsion, symmetrical
bending, twisting and uniform thermal loadings of a compogiate. As Kassa-
poglou, they described the stress state in each layer thrthegsection separately.
In a first solution step, the stresses along the in-planectitire are predicted. The
second step improves the transverse stresses. Successii®ms for the in-plane
and the transverse stresses are computed until both arergedv

T. Kim and Atluri [41] studied the effects under shear loaginTherefore, a full
three dimensional stress field is assumed with the sameplésciof the stresses per
layer as used by Kassapoglou. For the stress unknowns idategsgdength, a linear
variation is assumed. In a second article [42], higher-ostiess distributions across
the thickness have been introduced: this permitted to densiomplex loading as
thermo-mechanical problems and bending problems. Sindl#ine extension load
case, where a constant strain is applied at both short edghe composite, they
imposed a uniform curvatureto the composite plate to enable a bending state.

Problems under tension and uniform transverse load, faephaith symmetric
and asymmetric lay-ups were investigated by Tahani andeX¢g2], [73]. A full
three-dimensional displacement field is established per laith a linear variation
in the transverse direction per layer. Mathematical lageesintroduced to increase
the accuracy of the model. For the in-plane direction, a &lajipe solution is used,
which is coupled with the transverse direction through adand moment balance.

H.Y. Sarvestani and M. Y. Sarvestahi [70] also used a dispient based LW
modelling. They compared the classical LW theory with lnegpansion in trans-
verse direction of each layer to an improved first-order shieformation theory.
Both displacement fields were formulated as fully three disienal. Their work
consideres combined bending, extension and torsion.

12
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1.5.2 Finite Element Methods

The determination of the local interlaminar stress singfigs is quite demanding
for finite element analysis in terms of computational resesr Therefore, the first
publications concerning free-edge effects were publidigudificantly after the first
paper of Pipes and Pagano.

Among the first works considering finite element analysised®ang and Cross-
man [78]. Even if they investigated free-edge effects ireesion, it will be stated
as a reference in order to compare the modelling approadioeagduce the compu-
tational effort, they modelled only the central lay-upsss:@ection. The mesh was
made up by two-dimensional triangular generalized plarsérselements. The mesh
was refined towards the free edge in a stepwise rather thanawdbntinuous spac-
ing ratio. As the three node elements are displacement pasgda constant strain
per element is recovered. Through suitable symmetry conditdifferent laminates
were considered.

In contrast to Wang and Crossmann, a continuous refinemémt efement spac-
ing was used by Ye [80]. He also used a two dimensional gegmejresentation
of the central cross-section. Free-edge effects undensixieal and uniform cur-
vature bending loadings were studied. A displacement basadratic quadrilateral
elements was used together with a non-linear constitusiwe |

Yi [81] investigated the free-edge effect under bendingeblaon a geometrical
description of the cross-section of the lay-up. While Yeoacted for non-linear ma-
terial elasto-plastic behaviour, Yi enabled his formwalatto account for non-linear
viscoelastic behaviour, including thermal and hygroscafiects. In contrast to Ye,
not a continuous refinement of the element spacing was usédather a stepwise
refined mesh, which was comparatively more refined than tbed by Wang and
Crossmann. The mesh was made of quadratic quadrilaterakats with displace-
ments as unknowns. Yi used only two elements through th&ribis of each layer.

Another class of approach is the enrichment of the intralamiegion. While
equally considering only the cross-shape of the laminateodeling is including
the behaviour of the resin rich region. Haboussi, DumontdtBilloet [28] and [27]
proposed two different models: a first model consideringgtiaeled property change
and a second model using interface laws on the materialcastaaving no physical
thickness. Both models provide finite stress values at teedidge.

Problems in traction as well as in bending were investighieBeddy and Rob-
bins [68] using a superposition of local LW elements on a gldSL model. Both
element types are using only displacement unknowns. Wintles before mentioned
approaches, the elements were lying in the cross sectiomtle elements lie in the
mid-plane of the plate. Since in the centre of the plate, th& & known to be valid,
simple ESL elements provide a sufficient accuracy in thisoregClose to the free
edge in local regions of interest an additional mesh of LWhelets is superposed on
the global ESL mesh. Only linear variation of the displacetis used for the dis-
placement components in the LW elements. However, ReddyRatbins applied
several mathematical layers per physical layer in orderrtwige more adequate
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shapes of the transverse stress through the thicknessrajla kyer.

Caron et all[52] also used LW elements with linear variatimoaigh thickness.
In contrast to Reddy and Robbins however no overlay was usedvercome the
limitation of the linear variation through thickness, Sdie&ab and Caron [69] ap-
plied several mathematical layers per physical layer, whie refined in an irregular
manner towards the physical layers interfaces. The raguytiiecewise linear combi-
nation was shown to be capable to provide a satisfying reptason of the singular
stresses.

Gruttmann and Wagner [25] also used LW elements in a mesb Igithe lam-
inate’s reference plane. While Reddy and Robbins had arlwvesation of the dis-
placements in thickness direction, Gruttmann and Wagrest pslynomials up to the
third order for the displacements. Besides problems imesioa, a curved leaf spring
under constant pressure load was considered. The mesh mtagicaisly refined to-
wards the edge and consisted of quadrilateral shell elemeapable to account for
geometrical nonlinearity. No overlay of ESL and LW elemestssed, Gruttmann
and Wagner rather used entirely LW elements. Through thd massisting only of
LW elements, a higher number of unknowns is present, cordpar¢he approach
by Reddy and Robbins. However, Gruttmann and Wagner shdveedhe LW tech-
nigue is capable to produce accurate results. Furthersth@yed that the number of
unknowns is nevertheless lower compared to a mesh comgadtihree-dimensional
elements.

A similar modeling approach as the one of Gruttmann and Wagné Reddy
and Robbins is followed by Carrera et al [9]: the Unified Folattion provides dif-
ferent two dimensional LW and ESL plate and shell models.yTdre available as
displacement based or mixed formulations using displaoéimed transverse stress
variables. The Unified Formulation will be used inside thiwrkvto assess free-edge
effects in composites subjected to extension and bending.

Finally, investigations done by Mistou and Kararnal [47] atibe edge effects in
sandwich structures under bending will be mentioned. Theymared two displacement-
based methods, an analytical one-dimensional model usengduratier Sinus kine-
matics, and the commercial FE code Ansys with displacemased quadratic shell
elements. Those results were finally checked for the agneewiéh experimental
results gained by photo-elasticity. A good accordance éetwhe two modeling
methods with the experimental results was demonstrated.

1.5.3 Comparison of Extension and Bending

Two works are addressed that proposed a quantitative cisopdretween the free-
edge effect originated by extension and bending loads. Boghbased on Finite
Element models. The first study was published by Murthy andni@if [51]. They

accounted for problems in extension, in- and out of planaliogn as well as in-

plane shear, twisting, uniform temperature and moistuiectsf assuming different
layer orientations and plate widths. They considered tleeathcomposite as a three-
dimensional model and displacement-based cubic brickexiesnwvere used. In the
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areas of interest where the maximum stresses were expecieatding to the dif-
ferent load cases, a local refinement via global-local ammhlyas applied. For the
global model, they used only one element through thicknessfaer the interlam-
inar resin-rich layer region between two layers one elenti@ough thickness was
used. They stated that the smallest magnitude of interkanfiiee-edge stresses was
obtained for the axial tension case.

The second work was presented by Bar-Yoseph and Ben-DajidTHey in-
vestigated the difference of free-edge effects betweeensiin and bending and
between symmetric and unsymmetrical angle-ply laminabesontrast to Murthy
and Chamis, they used a two-dimensional mixed-hybrid ehtnvéh linear approxi-
mations for displacement and stress. The mesh is distdbate logarithmic manner
in the cross section, refined towards the free edges. Thémoluas gained assum-
ing an a priori equilibrated stress field in the cross seatibthe free edge. Their
results showed that the free-edge effects are higher imgte than in bending.
This is the contrary of the findings by Murthy and Chamis. RkertBar-Yoseph and
Ben-David found that free-edge effects are more pronounteymmetric than in
unsymmetrical angle-ply laminates.

1.5.4 Comparison of Methods

All the methods reviewed before are compared in Table 1.&. ufiper half lists the
semi-analytical methods, the lower half the discrete néghmainly Finite Element
methods. Through comparing the common aspects, the cotigmaieefforts needed
to solve the different systems of equation describing tlublem can be estimated.
An important factor is how the unknowns are describing timeit@te. A common
interest is to minimize the computational effort withoubding any accuracy to pre-
dict the free-edge effects. Therefore, the question grisbikh approach provides
the most suitable compromise between computational effattaccuracy. Many au-
thors tried to reduce the dimensionality of the problem @nethe description of the
lay-up using for example ESL models. Others used ratherlsimpdels with few
unknowns but used iterative techniques to improve theisolyrovided by the lower
number of unknowns. From Talle 1.1, it becomes evident teavast majority of
the methods described here based their modelling appreachaVN modelling using
a two dimensional geometry. Hence, it seems to be the moguatke compromise
between computational effort and accuracy.

1.6 Scope of this Work

In order to asses the capabilities of dimensional reducedeito reproduce local
interlaminar stress concentrations, the free-edge affextnsidered. Different types
of loadings lead to high gradients localized at the interiatedvicinity of the free
edges. In chaptéd 1 an introduction into the effects and xisieg modeling tech-
niques is given. In chaptét 2 an overview of for different mloty approaches for
two-dimensional multilayered structures is given. An spleemphasis is here done
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Table 1.1: Techniques used to calculate free-edge effects

primary unknown solution model ordert lay-up description
Name| u | o | direct | iterative | ESL| LW

Kassapoglou X X 2D (y, 2) X
Cho and H. S. Kim X X 2D (y, 2) X
T. Kim and Atluri X X 3D X
Tahani and Nosier x X 3D X
Sarvestani and Sarvestanix X 2D (z,y) X X
Pipes and Paganp x X 2D (y, 2) X
Wang and Crossmapn x X 2D (y, 2) X
Bar-Yoseph and Ben-David x X X 2D (y, 2) X
Ye | x X 2D (y, 2) X
Yi | X X 2D (y, 2) X
Reddy and Robbing x X 2D (z,y) X X
Gruttmann and Wagner x X 2D (z,y) X
Unified Formulation| x X X 2D (z,y) X X
LS1 by Caron et al x X 2D (z,y) X
Murthy an Chamis x X 3D X
Mistou and Karamg x X 1D /2D (z,y) X

sainonns aysodwo) ul S109)3 [e20 T Jaideyd



Chapter 1. Local Effects in Composite Structures

on the Carrera’s Unified Formulation (CUF), as unified todhtpose different kine-
matical hypothesis for the dimensional reduced models.

The free-edge effect is assessed for extension and bemdihgptef B. Therefore
the different kinematical models available in the CUF aredus hey are compare in
order to find the best compromise between their computdtemsh and accuracy. As
the high stress gradients at the free-edge tend to havewasitmgphaviour it is further
assessed, which of the CUF models also provides the mostaaeaendition of the
singularity. The measurement of the singular behavioeifits done via Power law
fitting, based on the results of the different models. It &thie use of the parameters
obtained from the fitting, that further comparison can beedofhey are about the
extend of the free-edge effects for the different laminateder consideration and
about the amount of extend due to the different types of fgadi

One finding is that higher order models are needed in the zohbigh stress
gradients, but no difference is present in other zones. Alaoy of models with
the same dimensionality but different kinematics seemsatde in order to further
reduce the computational cost. Chajter 4 deals with thiscasfocusing for the
sake of simplification on one-dimensional structures. Hbeeso-called extended
Variational Formulation (XVF) is used to couple the differ&inematically models.
It will be demonstrated that XVF includes several other camrtechniques used to
establish a coupling of different kinematical models. Th@k is closed with some
final conclusion and an outlook on further future invesiigyat.
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Chapter 2

Boundary Value Problems and
their Numerical Approaches

A brief overview of two fundamental variational statemeni be given in the first
section of this chapter. In a second section, different @ggres to model the me-
chanical behaviour are given. Special attention is givefayered structures, by
presenting their additional requirements and the regpitiodelling approaches. The
kinematical theories presented here can be employed tolmoeeimensional beam
and two-dimensional plate structures. An all-encompassimvelope for many the-
ories is the Carrera Unified Formulation (CUF). The chametlosed by the used
Finite Element (FE) approximations for one-dimensionabpems of beams and
two-dimensional problems of plates. The beam approximatiill be used in chap-
ter[4.5 and appendix]C, while the plate approximations wellstudied in chapter
B

2.1 Boundary Value Problem

Assume a general continuum body, occupying the dorfaidescribed in a carthe-
sian system. The body is loaded by volumetric forfesind external traction forces
t. Those forces will create a deformation of continuum. Fotaticsproblem, the
deformation will create an inner state stress, represdmtdte stresgr. The stress
state has to equilibrate those volumetric forces:

00zx aO'zy 00z2 —
ox + dy + 0z + fvz =0
00y Ooyy

0oy
oz +88y + 8; +fU.U:0 (2'1)
G+ Gyt o =0

At the outer boundary' the inner stress state has to be in an equilibrium with
the outer forces acting dny:

18



Chapter 2. Boundary Value Problems and their Numerical 8agnes

OpxNg + OgyNy + OzzNy = ty
OpyNg + OyyNy + 0y =t (2.2)
OpzNg + OyzNy + 02N, = t,

Further at the same boundary conditions about the displkactesnmight be given:

Uy = UT'y,
Uy = uFNZ

The above stated equations describe the static equilibasimell the boundary
conditions. In order to solve the system further relatiorsreeeded. The unknown
stresses have to be expressed, as well as the displaceméatsiooke’s law in
Equation [(T.14), the constitutive law of the material is givéinking stresses with
strains. Via the kinematics the strains be linked with tlepldicements:

Oug

Exx aum

__ Ouy
Cyy = By
€. — ou,
zZZ

_ b 0wy (2.4)
€xy = a@y + ox

_ Ouy | Oug
v
€xz = g + Br

This partial differential equation is hard to fulfill in theéased strong form for
any body, any type of load and any type of boundary conditiopased. In order to
find a suitable form for the unknows, e andu, the equations will be hereafter only
fulfilled in an integral weak sense sense. Therefore twaatianal statements will
be proposed.

2.2 Variational Statements

2.2.1 Principle of Virtual Displacements

Consider a static mechanical problem in the donfair R? with its boundary de-
composed in a Dirichlet and Neumann boundary I'p UT n, such thal'p NIy =

0. By using a matrix notation with a variational formulatioftloe displacements, one
can state for the balance between inner and outer energy:

Findw € % such that:
/ o(u)l de(u) dQ = / Frou dQ + / tloudl  Vouec o (2.5)
Q Q 'n

where:
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U = {uec H(Q); ur, = u} (2.6)

ando7 is the space of the admissible virtual displacements. Rdsethe refer-
ence configurationy is the stress tensof,, are volume forces antlare tractions on
the Neumann boundaiyy .

For further convenience, the straimnd the stress are split in their normal and
in-plane parts. Hence we have:

€E=€, Tt €,

oc=0,+0, (2.7)
with:
T T
Op :{ Ozz Oyy Ouxy } » €p :{ €xx  Cxy Cay }T (2.8)
Un:{ Ozz Oyz Ozz } ) en:{ €xz Cyz €zz }
The Principle of Virtual Displacements (PVD) finally reads:
T T _
/ op(u)’ dey(u) + o, (u) dey(u) dQ2 =
(2.9)

9]
Fr5u dQ + / tToudl  Vou € 5%
Q 'y

The inner and outer work can be identified as :

6T (w, du) = /Q (o) (u) dey(u) + o) (u) de(u)) d2 (2.10)

Oy (6u) = / Flou dO + / t" 6w dl (2.11)
Q r

N

Constitutive Law For the Principle of virtual Displacement we link the stesss
with the strains according to the split in normal and in-pl@omponents. Hooke’s
law (1.4) takes thus the form :

op(u) = Cpp €y(u) + Cpy €n(u)
Un(u) = Cnp Ep(u) + Chnn En(u) (2.12)

The strain is calculated as a derivative of the displacement

ep(u) = Dyu en(u) = (Dyp+ Dy2)u (2.13)

Where the explicit form of the differential operatd,, D,,, andD,,, adapts to
the following forms due to the split:
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0 o) 0

% 00 00 % # 00
Dy=|0 4 O Dupy=|0 0 5| Dp=|0 Z 0

2 £ o0 00 0 0 0 2

Finally the stiffness matrice€,,,, C,, C,, andC,,, from the Equation[({2.12)
are ordered due to the split in the following form:

Cin Ci2 Cie 0 0 Ci3
Cp=| Cia Cyon Oy |; CanCZn 0 0 Co3 |;
Cis Co Cep 0 0 Csg (2.14)
Cy Ci5 0
Cuim=1|Cs Cs5 0
0 0 Cge

It gets visible from the constitutive law, Equatidn (2.1&jat all stress, through
its identification of Hooke’s law, depend on the stiffnessapaeters of each layer.
They are hence generally discontinuous at the layers ateiif the strain is contin-
uous. This limits the capabilities of the PVD regarding thedeling of multilayered
structures. In order to fulfill the ICs from Equatidn_(1.2)idétional efforts for the
transverse stresses at the layers interfaces are need@&lmativates other varia-
tional formulations, delivering continuous transversesses.

2.2.2 Reissner’'s Mixed Variational Theorem

Reissner’s Mixed Variational Theorem (RMVT), [64]|65] isdgo improve the trans-
verse stress behaviour of composite structures by allovdarexactly fulfill the in-
terlaminar continuity obr,,. This mixed formulation permits to simultaneously and
independently vary the in-plane straias(u) as well as the transverse stress.
Therefore the transverse streseeg, will be introduced as independent variables in
each layer, in addition to the independently formulategldisementu.

Reissners Mixed Variational Theorem can be stated in thewioilg form:

/ 565@ OpH + 565@ Tt + 001y, (€nc — €npr) dQ =
Q

/fféude—/ tTou d or
Q 00N

Note that the straim,,; = is calculated by geometrical relations and is denoted
with the subscriptz, while the straine,, ; is calculated via Hooke’s law as empha-
sized by the subscrigh .

Therefore, in the additional tertwr,, s (€, — €,1), the transverse streés , y/
serves as Lagrange Multiplier to minimize the differencéwaen the transverse
strains calculated by Hooke’s law and those defined by thenge@ relations, given

in Equation [(Z.IB)

(2.15)
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We can define the following forms for the inner and outer work:

5HintRMVT (’LL, OnM, 6“7 60.11]\/[) -

d€pc OpH + 0€nc Opm + 00 p0r (€Eng — €pmr) dS2
9 (2.16)

5H€xtRMVT (5'”) = / f 0w dQ + / t-oud o)
Q 0N

It is interesting to note that the external virtual work hias same expression as
in the PVD.

The independent field variables of the RMVT aggu) = €, ando 5/, So that
the Hooke’s law has to be reformulated in the following miean:

OpH = C;p €pG + C;n OnM
ent = Chp, €6+ Cryy on (2.17)

2.3 Reduced Models for Composite Plates

Hereafter, the formulation of two-dimensional plate madslll be discussed. The
reference coordinate system for a plate is given in Figulle Bvo-dimensional mod-
els are formulated by postulating a given behaviour in thegverse direction: the
integrals in the transverse direction appearing in theatianal statements can then
be exactly computed. This leaves only unknown functions degend on the in-
plane coordinates, y.

Special attention will be paid towards the description efitiechanical behaviour
of multilayered structures. Two different descriptionheifjues will be presented.
The first one is ESL, where the description is given with respmea reference surface
for the whole plate. From this reference surface, the smiuis expanded into the
homogenized structure, along the thickness direction. dther alternative is the
so-called Layer-Wise (LW) one, in which the mechanical béha of every single
layer is explicitly described. Both will be discussed inaleaind the adoption of
different kinematical models used for both description & given.

2.3.1 Unified Formulation for Two Dimensional Plate Structues

The CUF, developed by Erasmo Carrera for plates and shéllss[@n all encom-
passing way to formulate two-dimensional models for may#red structures on the
basis of PVD and RMVT. Itis referring to both, ESL and LW destions. The Uni-
fied Formulation consist in an abstract, compact index motahat is partuculary
suited for the numerical implementation. For two-dimenaioplate models based
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Figure 2.1: Coordinate system of a plate structure

on the PVD the unknown field variables= (u.,u,,u.) are expressed in a generic
manner as:

N

U(I,y, Z) = [um(x>y> Z) uy(mu% Z) uz(x>y> Z)]T = Z FT(Z)UT(xay) (218)
7=0

When referring to RMVT, the formally same expression is usethe transverse
stress fieldsr,, = (042,0y2,0:2):

N
on(z,y,2) = [0w(2,y,2) 0y=(2, Y, 2) 022(2, Y, z)]T = Z F (z)on +(z,9)
= (2.19)

Different functionsF; (z) can be chosen depending on the description used at the
multilayered level (ESL or LW). The most frequent functiosed is a polynomial.
The orderNof its expansion is a free parameter of the formulation. smG@arrera’s
Unified Formulation, the same ordé&f is used for all components of the unknown
field variables. An augmented flexibility can be achievedrbgting separately each
component: this is the so-called Generalized Unified Foatiart (GUF) by Demasi
[15]

Both, analytical solutions as well as the implementatido FE approximations
do profit from the CUF capabilities. In the present impleradoh of the CUF,
mainly polynomials up to the forth order are used. Neveesebther rational func-
tions can be adapted, as recently shown by Carrera, FilimpZappino[[11] through
the use of sinus and exponential functions. It is worth nogiig that the compact
index notation upon which the CUF relies, can be employeéctlir to multi field
problems like electromagnetic, thermo-mechanic and relébermo-mechanic sys-
tems.
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2.3.1.1 Equivalent Single Layer Models

The displacement field is here described in the global reéerglane for the whole
laminate. The kinematical assumptions are expressed &ifutittionsF’ (=) that
are defined over the global thickness coordinate [, 2]:

(2.20)

N
u(w,y,z) =Y Fr(z) ur(e,y) withz e {—h- h}
7=0

2’2
The functionF’-(z) is defined in terms of the global coordinateand is repre-
sented by a Taylor series expansion through the thickngsde®oting the coordinate

2o, providing the position of the reference surfatg ¢, the approximating functions
are defined as:

Fr(2) = (z — %) (2.21)

The lowest order expansion is the first order one, wNth= 1. Here two con-
tributions are present, a constant tefipnand a linearF;. Therefore they represent
for each displacement component the membrgp@and its rotation:;;. To keep the
uniform and modular spirit of the CUF, hereafter the layexcsfic coordinate:;, will
be used, which leads to a simple coordinate change:

. hi h
FT(Zk) = (Zk + 20k — ZO)T with 2k € [—;; 7k:| (2.22)
Wherez, is the coordinate of the reference surfaftfgf of the k" layer. Ac-
cording to this, the values of the functions are the follayyiregarding also higher

order terms, denoted b,

F()(Zk) = 1
Fi(zx) = (21 + 2ok — 20) (2.23)
Fr(zk) = (Zk—i-ZQk—Zo)T, r=2,...,N

The ESL description with Taylor series expansion leads tsplatement field
that isC'Y continuous, which violates the slope discontinuity regdiat the inter-
laminar interfaces. A very simple manner to overcome thiessive continuity is
the adoption of Murakami’s Zig-Zag functions (MZZF)] [8]50

Q(Zk — ZOk)
Py
The unknownu,, associated td”,,(z;) allows hence to introduce in an ESL
manner a slope discontinuity at each interface thanks teettme (—1)*. By intro-
ducing the non-dimensional layer-specific coordingte

Fo(z) = (1) (2.24)

G = Q(Zkhi_zo’“) (2.25)
k
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the MZZF can be written simply as:

Foo(Cr) = (—1)%¢ (2.26)

An example for the resulting displacements and transveresssfields for the
second order expansion are displayed in Figure 2.2: thecimgahtation of ESL the-
ories in the PVD in(a), its extension with MZZF in(b) and the implementation
into RMVT in (¢). For all ESL models, the continuous displacement field bet th
discontinuous transverse stress are visible.

| i
(8

(©)

Figure 2.2: Displacement and transverse stresseg for (a) and ED2, (b) EDz2
and (c) EM2 model

2.3.1.2 Layer Wise Theories

In LW descriptions, the same expression (2.18) is formafigd) where now the
layer-specific coordinaté; (z) is used:

(2.27)

Kz, y, 2 ZF 2k) ,y)  with 2z, € [—hk'hk]

22
The same formallsm applles to the transverse stress diglgd in the RMVT
formulation:

. hi h
0' (r,y,2 ZF 2k) nMT x,y) with z; € [——k' —k] (2.28)

272
Remind that regardless of the multilayer description, thedverse stresses in
the RMVT statement are always formulated Layer Wise. Inwusk, the thickness
functions are constituted from Legrendre polynomials #evi:
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F(¢) = Fo(Ck) — PO(Ck);Pl(Ck)
Fy(G) = Fi () = Dl hs) (2.29)
Fo(G) = Pr(G) — Pr—2(Ck) r=2...,N

where the Legendre polynomials are the following:

Po(Ck) =1 Pi(C) = G

Poi1(Cr) = (2n+1)CkP"(,§i)fn Poill)  forp=1,...,N -1

(2.30)

(b)

Figure 2.3: Dlsplacement and transverse stresses for (a) and LD2, (b) LM2
model

Note that for the first two terms, related to the linear appnation, coincide
with the Lagrange interpolation functions. When these fapecific interpolations
are assembled at multilayer level, the resulting approtionds automatically only
of the classC? at the interfaces between adjacent layers. Figure 2.3 gesvan
illustration for the LD2(a) and LM2 (b) models, illustrating the continuous and
layer-dependent displacements fields.

Further details about the mechanical behaviour as well agetgence studies
can be found in[9],[17] and 24].

A summary of the different characteristics as well as cdpiaisi of the CUF
models is given in Table 2.1 as a function of the variationailesnent used, the lay-
up description used and the expansion ortfer Based on the different modeling
techniques and the number of layéys the total number of unknown¥ DOF' can
be calculated.
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Table 2.1: Capabilities and characteristics of the difiel@UF models

N=1-4]zZ IC NDOF
EDN | - - 3(N+1)
PVD | EDzN | - 3(N +1)
LDN | v - | B3(NMN+1)
EMN | - | 6+3N(N, +1)
RMVT | EMzN | / /| 64+3N(N, +1)
LMN | v | 6HNN+1)

2.4 FE Approximations for CUF Plate Models

The solution for the in-plane distribution of each displaest component., is
given through the following FE approximation:

ur(z,y) = F-N(z,9)q,.
5“’8('%'7 y) = FSN('%'7 y) 5(]5 e (231)
The indexr is used for the actual unknown and the index used for the virtual
variation. In the case of the RMVT, the same approach is usetthé stress compo-
nentso .. Regarding the FE implementation of the CUF models, fourenaitinear
(4 plate elements are used for the in-plane discretisatior.nlimerical integration
is done with classic Gauss point integration|[10]. Sheakifazcan be handled via
different reduced integration schemes, but is not an igstids work.
Isoparametric bilinear four-node CUF elements have be@heimented into the
commercial FE code ABAQUS. A complete study of their beharifor general
multilayered structures is given by D’Ottavio [17].

2.4.1 FE Approximations for the PVD case

As stated before in Equatioh_(2]13) the strain is split imiglian and normal com-
ponents. From the Equation (2131) the strain can be exmgtessa function of the
independent nodal displacemept

ep(2,y,2) = Fr(2) (Dp N(2,9)) - (2.32)

en(x,y, Z) = FT(Z) (an N(I’,y)) qT + FT(Z) (Dnz N(x,y)) qT (233)

2.4.2 FE Approximations for the RMVT case

For the RMVT elements both, the displacements and the teass\stress unknowns
use the samé&™ bilinear approximation. For the stress unknowns the imtetipn
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of the stress fields is done in the same manner as to displateimahe PVD case,
see Equatiori{Z.31). Here the nodal stress values are deataty,, ..:

OJ;LT(:UayaZ) :FT(Z) N(I,y) g];:LT (2 34)
ol (2,y,2) = Fs(z) N(z,y) ogr, , '

In the RMVT case, due to the two unknowns, pure displacenamg, K.,
pure stress termK ., and the coupling term#&’,,, and K ,,,. The resulting linear

system is as follows:
Kuu Kua q| _ F
sl @39

Note that here the coupling matrices are symmetriéa), = K.

2.4.3 Assembling Strategy

After the FEM matrices are obtained for each lajesf the laminate, an assembly
is required to build the matrices for the whole multilayeheTunknowns are either
global for the overall compound in the ESL case or local pgedan the LW case.
Hence different assembly strategies are needed for theasescregardless whether
the variational statement is PVD or RMVT.

2.4.3.1 Equivalent Single Layer Assembly

Thanks to the global defined unknowns, which are indepenifdent the layers, it
can be stated:

ui:l :ulj=2 = .. = u, (2.36)
Jub=l = suh=2 = ... = §u, (2.37)

Concerning only displacement based elements, the ovéiffiless per element
in the ESL case is simply the sum of the stiffness contrilmstiof each layer. For the
stress unknown however in the RMVT applications, the unkioare always layer
wise, as given by Equatioh (Z2]28). This leads hence to thenseassembly strategy.

2.4.3.2 Layerwise Assembly

As the unknowns are defined per layer, the strategy for adsegritW descriptions

is different. The Interlaminar Continuity in Equatidn_(Lilnposes the identity of
only the top and bottom unknowns of two interfacing layerberefore, only these
will be adding their stiffness contributions. For displamnt variables this leads to:
k wht!

Uz -

T 2.38
6u’§t = 6ufJg1 ( )

The same procedure is appliedd(j if RMVT is used.

28



Chapter 2. Boundary Value Problems and their Numerical 8agnes

N

top

/

X
\
/
X
\
y

v

\

N\ 7

N7 N|7 N

N\ 7\ 7/

NI\ 7
A
\ 7

bottom
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Chapter 3

Free Edge Effects of Composites
In Plate Structures

This chapter discusses the free-edge effects in compasitiey two different types
of loading: extension and bending. The aim is to comparedfiect in different
laminates and to estimate under which loading the effegsstionger. Therefore
different two-dimensional plate models of the CUF will beeds They have been
implemented as user elements in the commercial FE prograAQAES, as described
in Appendix(E. The capability of these CUF plate models ta@dpce very sharp
gradients in the transverse stresses in the intermedieitétyiof free edges for the
different laminates will be compared. Those gradients apeeted to rise with the
mesh refinement, in such an extend, that they do not convefhese appearing
gradients are hence stress singularities. Hence the slisgbutions provided by
each model at the free edges will be investigated.

3.1 Free Edge Effects due to Extension

3.1.1 Validation of the Models

In order to validate the accuracy of the CUF models, a reteréest case from Wang
and Crossmari [78] is considered. The composite plate isdiogoto Figure 15,
while the geometric relations are= 2b = 8h. Two cross-ply lay-ups were consid-
ered,[0,90]; and[90, 0],, as well as the angle-ply lay-yp-45]s. Further, two eight-
layer quasi-isotropic lay-ug90, 0, £45|; and[+45, 0, 90|, are compared, where the
thickness of each layer is now half of that of the four-lay@ninates, keeping the
ratio a/h constant. Each layer has the same material propertied list€able[3.1.
A uniform axial strain is applied via a prescribed displaeainon each of the plates
short edges at = +a. If not stated otherwise, all stress results are give@ ifu.

The original numerical results by Wang and Crossman weredas a quasi
three-dimensional plane strain model. They took advantdgbe symmetries of
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the problem, as three symmetry planes exist, thanks to thengyric lay-ups used.
Wang and Crossman considered therefore only a quarter afrtiss section of the
laminate,y € [0,b = 4h] z € [0, 2h]. For the application of the CUF however, plate
elements are considered. As shown by D’Ottavio €t al [18btal tength ofa = 8h
is sufficient to provide a constant strain state along thgtlemisex axis in order to
avoid disturbing effects of the load introduction at thersledges. In addition to the
results by Wang and Crossman, values calculated with a-tlireensional model
using the commercial code Ansys are given. The mesh usedg@D Ansys model
has the same in-plane pattern as that employed for the 2D CagielnThis mesh
consists oB0 x 30 elements that become smaller as the plate céntre 0) and the
free edggy = +b) are approached. In the three-dimensional model, six elenaea
used per layer in the thickness direction for the Quasiégit laminates and twelve
for the four-ply laminates. Quadratic brick elements aredum Ansys while the
in-plane mesh for the CUF is based on bilinear quad elemE&imally, the results of
Wang and Crossman have been validated by other authorsgaimem Tahani and
Nosier [73], Spilker and Chol_[71], Robbins and Reddy [67\vad as Mittelstedt
and Becker[[48].

Table 3.1: Single Layer Material properties

Ey = 137900 M Pa
E2 = E3 = 14480 M Pa
G12 = G13 = G23 = 5860 M Pa
V19 = V13 = V93 = 0.21

3.1.1.1 Cross-Ply Laminates

Figured 3.1l and 3.3 report the through-thickness distahudf o ., for the two layups
[0,90], and [90,0]s respectively. In each figure, RMVT on the left and PVD on
the right, as well as ESL and LW models are compared along Muvitsys three-
dimensional as well as with Wang and Crossman referencéégeBuom the first cri-
terion, the superiority of the LW description is visible. eltlistributions through the
thickness for both laminates are in good accordance witbetlhy Wang and Cross-
man and the three-dimensional results from Ansys. For the d&Scription, the
distributions through the thickness show that a kind of aimedue is achieved. The
mixed RMVT elements do generally deliver better resultsr the PVD statement
a discontinuity of the transverse stress at the layersfatteris visible, as has been
pointed out in Table2]1. FigurésB.1 dnd]|3.3 indicate gfeidwdt low-order expan-
sions generally do not match the reference result. It aggeat using a lower order
expansion in combination with LW description yield a bettesult than a higher-
order ESL descriptions.

The distributions along the width at the bilateral intedfdmetween two differ-
ently orientated layers of the cross-ply laminates, arevehia Figured 3.2 and 3.4.
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For the PVD models, the stresses have been taken from the layes. The given
results indicate as well a superiority of the Layerwise ni@d&specially the steep
gradients close to the free edge are in perfect match witthtee-dimensional solu-
tions of Ansys. It is remarkable to see a twice occurring sigange for thg90, 0],
lay-up. The ESL models are not able to achieve the same maxistinesses. In the
width distributions, for the PVD statement it can be obsérbeat from the free edge
towards the plate’s centre no vanishing transverse nortredssis achieved, while
the RMVT provides it perfectly. This effect is more pronoaddor the ESL models
than for the LW models, as the LW descriptions helps to miméthe occurring dif-
ference. It has been shown in[17], that one can overcomendueniplete fulfilment
of the ICs for the PVD based models by simply adding severdhemaatical layers
per physical layer. Concerning the order of expansion ntaastated, that the higher
the order, the higher the maximum stress achieved at theflge. Two last aspects
about the ESL models are notable: while the ED4 and EDz3 niualed the same
number of DOFs, the Figures indicate that higher order esiparis more important
than the inclusion of the discontinuity at the interfacenfrtihe Zig-Zag model. That
the inclusion of the Zig-Zag itself is not the best choicetf@ modeling of free-edge
effects is also indicated by the comparison of the EM2 and EMndel. The addi-
tional Zig-Zag DOF in the EMz2 model does provide a worse biela compared
to the EM2 model.

A last remark is about the different phenomenons occurrorgttie presented
cross-ply laminates: As thiiedegree layer is at the top and the bottom of the laminate,
a compressive behaviour is provoked by the Poisson’s dfiemtigh the thickness by
the uniform extension. The contrary is the case ifdbelegree layer is at the top and
bottom layer as the load is applied normal to the fibre dioecti
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3.1.1.2 Angle-Ply Laminates

The results for angle-ply laminatfe-45]; are given in Figuré 3]5. The Poisson’s
ratio mismatch is not present any more. Due to the in-plaearstoupling the role
of the transverse sheatr,, is more important than for the cross-ply laminates. The
gradients of this stress component is more pronounced aewhga the cross-ply
laminates. The distribution through the thickness showsrfept match of both LW
models, regardless of the variational statement used.elodke of PVD, a different
behaviour at the interface is visible. As the shear stifesf the adjacent layers are
equal through thickness, the transverse shear comporanitiauous throughout the
thickness. This leads to a disappearance of the jump of #ms\verse stress levels
at the interface. ESL models still fail to predict the locaximum, for both PVD
and RMVT, and provide only a mean value. For the angle-plyinate the influence
of the expansion order is as before: the higher the ordemitifger the maximum
stress. Summing up those aspects, only the forth order L\ete@dle able to match
the results by Wang and Crosman and the three-dimensionaddtiis.

The distribution along the width towards the free edge iegiin Figurd_3.6 for
the uppert45 interface. The higher order LW models further confirm thajpevior-
ity. Higher order PVD or RMVT models achieve higher stressigs ESL description
fails to have a good agreement close to the free edge witthtee-tlimensional FE
results and the results by Wang and Crossman.
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Figure 3.5: Extensiory,, at(x = 0,y = b, z) for [+45]; using RMVT & PVD
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3.1.1.3 Quasi-Isotropic Laminates

Two quasi-isotropic laminates, i@, 0, 45|, and[+45, 0, 90] s, are presented here,
which include the before stated angle-ply and cross-pBriates, plus one interface
of only 45 degree difference between the layers. Results for thesedses are also
provided by Wang and Crossman. Their results distributibnsugh the thickness
of the CUF models are given in Figure 3.7. For the first langinghe thickness
distribution of o, shows a perfect accordance with the previous findings. Ttrou
the multiple interfaces, all of the before mentioned efeaxftthe cross- and angle-ply
lay-ups are present. The performance of the different LWE®H descriptions, the
remarks on PVD and RMVT statements and the expansion ordarsgated before.
The higher order PVD and RMVT LW models perfectly match theutes obtained
with the commercial three-dimensional code Ansys and theli® given by Wang
and Crossman. The same applies for the thickness distibofi the[+45, 0, 90|,
lay-up, which is not shown for the sake of brevity. An exangdla distribution along
the width is given in Figure 318, whetg., is reported for the uppet45 interface.

For the cross-ply and angle-ply laminates it was statedhiesESL models have a
good accordance with the three-dimensional results anefeeence results far from
the free edge. This does also hold true for the quasi-isiatiaminates. For both,
PVD and RMVT models, with rising order of the polynomial, {h@int though width
up to which the distributions are in good accordance withréference is reaching
further out.
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Figure 3.7: Extensions,, at (xr = —a,y = b, z)for [90, 0, +45]; using RMVT &
PVD
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3.1.2 Mesh Sensitivity

In the previous sections, the sharp gradients for the diffetaminates have been
shown for a fixed FE mesh. Here the sensitivity of those grasdlieo different FE
meshes is discussed. Only the moat accurate LM4 and LD4 sodébe consid-
ered.

All meshes used before are refined in a regular manner, usspgaeing ratio
towards the plate’s center along the plate’s length andrdsvéhe free edges across
its half-width, see Figure_3.9. The spacing of the elementshibsen so that the
smallest element lies at the free edge= +b) and atr = 0 and that it has a square
shape. Starting with a rather raw mesh of}46L6 elements, the mesh is stepwise
refined up to 72< 72 elements. This mesh will be called hereafter mgsh

Figure[3.1D gives a zoom on the bimaterial interface of{#h5], laminate. For
different meshes the distributions through thickness,gfare given. With refining
the mesh, slightly higher stresses are obtained. Howeeatlifference is seen to be
quite low for the angle-ply laminate. A different picturenclae seen for théd, 90|,
cross-ply laminate in Figufe 311, concerning. Here a zoom towards the free edge
for the width distribution is given for the same meshes andei® The stress values
are taken at the nodes of the meshes. It can be noticed tleastré#ss is increasing
with a refined mesh. Comparing the effect of the refinememtsrss-ply and angle-
ply laminates leads to the conclusion that the stress isergsamore pronounced in
the cross-ply laminates.

Figure 3.9: Principle of the regularly and continuouslymeé in-plane mest/)
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Figure 3.10: Extension: sensitivity of regular meshes gfat (x = 0,y = b, z) for
[£45]5 using LM4 & LD4

While the regular refinement revealed only a small incredsheostresses, in
a second step, an irregularly mesh refinement is used, dadlezhfter meski/ 7).
This is done in order to have a high number of elements in tmeddiate vicinity of
the free edge. For this region, it is tested whether a regylacing or an irregular
refinement towards the free edge does visibly affect thesirgensity. Hence, two
different zones for the spacing ratios are defined along thte$ width, in order
to mesh the plate’s borders along the free edges separ&teither, a significantly
higher number of elements in the width directigns used, compared to the plate
length in thex-direction, with very small elements close to the free edge.has
been shown by D’Ottavid [17], only few elements are needethénc-direction in
the extension case, to match the conditior,gf = 1 and in order to have congruent
results with the references. Hence only 8 elements are ndeddth direction, while
a finer discretization wittﬂ\fgg = 30 elements is applied in width. The border region,
which has a width of).1h;, contains now additionaNny = 15 or 30 elements in
width. A scheme of the employed meshing strategy is illtistran Figure3.12.
Figure[3.IB shows for the separated meshing, that no visitpact of the regular
or irregular spacing appears as long as only one matherhktiea is applied per
physical layer. Comparing with the maximum stress levelfigure[3.11, higher
maximum stresses are obtained.
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3.1.3 Influence of through the thickness refinement

In Figure[3.1B, the stress level does significantly riseHerapplication of two math-
ematical layers per physical layer. Therefore the use ofrabeu of mathematical
layers N,,; > 1 per physical layer is investigated here. The use of several-r
lar distributed mathematical layers per physical layerdiesady been suggested by
D’Ottavio [17] to reduce the incomplete fulfilment of thed@n of the LD models
and further to provide a better distribution across the kitlose to the free edge.
A further investigation by Sab et al. [69] for a similar clafswo-dimensional ele-
ments with a suitable thickness expansion highlighted ther@tages of using sev-
eral mathematical layers per physical layer. Further thghlighted the advantage
of having an irregular distribution of the mathematicaldes/through the thickness of
one physical layer, with the thickneas,;, of the mathematical layers getting smaller
towards the interface of the physical layer.

The application of mathematical layers per physical lagduither studied for
the [+45], angle-ply laminate, where for more than two mathematiogbis an ir-
regular distribution is applied. The irregular distribditenathematical layers are as
follows:

o for Ny = 3 huns, = [0.25,0.5,0.25]
o for Ny = 41 huny, = [0.075,0.425, 0.425, 0.075] by
o for Ny = 5 huni, = [0.05,0.2,0.5, 0.2, 0.05]hy,

Figure[3.14 reports the results for the LD4 model, indigainsignificant rise
with the increase olV,,,; per physical layer. For the case of three irregular disteitu
mathematical layers, the stress levels achieved are htgharfor the four regular
distributed mathematical layers. For medh, the important increase in the stress
levels at the free edge was not visible in the same manner #sfeeparated refine-
ments in meskIT). This is shown in Figure=3.15 for the irregular refinementshwi
N,y = 2 and the regular refinement with only one mathematical lagemppysical
layer.

Concerning the sensitivity of the different models to rejrece the stress singu-
larities, it is hard to judge this aspect based on the diffiedistributions provided
in the earlier sections and here. Both rise and seem to hdte eqpmparable be-
haviour. Another criterion has to be used therefore, in ora@rovide a significant
comparison. In order to do so, the mesh with the separatateneéints will be used.

The effects of the refinement in thickness direction wasieddid by a generalized
plane strain model in Ansys for the cross-ply lamin@teéo],, representing only the
cross-section of the laminate. For the mesh, made of quadiaments, the same
spacing could be applied through width as illustrated inuFéB.12. Here the spacing
of the elements through the thickness of the physical lasyehanged. The form of
the last element at the free edge and at the layers interfacieainged through the
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Figure 3.14: Extension: sensitivity @f,,; for 0., at(z = 0,y,z = %) for [£45]s
using LM4 & LD4

refinements from a rectangular towards a quadratic fornure@. 17 states the stress
at the bimaterial interface along the width for the zone eltusthe free edge. Three
curves, differing in the size of the last element at the bémalt interface are given.
They reveal that while having a rectangular form of 12 tinfeswidth, the transverse
normal stresses, ., of the last elements before the free edge are not the inoggasi
but sinking. While refining, the spacing of the elements tolsahe interfaces, up to
the the quadratic element a monotonous rise is provided.
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Figure 3.15: Extension: Confrontation of regular and inlag refined meshes;. .,
at(z =0,y,z = 2) for [0,90], using LM4 & LD4
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Figure 3.16: Extension: Confrontation of regular and ialag refined meshest.,
at(z =0,y = b, z) for [0,90]s using LM4 & LD4
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Figure 3.17: Extension: mesh sensitivity ®f, at (x = 0,y,z = %) for [0,90]s
using a generalized plain strain model within Ansys
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3.1.4 Assessment of the Order of Singularity
3.1.4.1 Power Law Representation

It has been shown, that the transverse stress componehtsimmnediate vicinity of
the free edge showed a monotonous rise towards the edge. ohmgonents of the
transverse stresses are unbounded through the tractéoodnelition at the free edge:
the transverse normal stresg, at the cross-ply interfaces and the transverse shear
stresso,., at the angle-ply interfaces. The previous section analyzedensitivity
of the peaks of these stresses with respect to the in-plamads an the number of
mathematical layers: this latter refinement appeared tatigranfluence the maxi-
mum value of these stress components at the free edge. dteerdifferent authors
proposed to express these stress components close todlelfre via an exponential
power law which represents the singular behaviour. Usiagékults of the different
FE models, a fitting process derives the parameters of themplaw. Comparing
those parameters provides a measurement of the singedaaitid a tool to compare
the different FE models at the same time. Among the authois pvbposed this
method were Raju and Crews [61], Zwiers, Ting and Spilke}l,[@hiringhelli and
Sala[238] as well as Davi and MilazZo [14]. Similar workss@asing a slightly mod-
ified form of the power law were done by Bar-Yoseph and Avr§&hand Icardi and
Beretto [35], while Mittelstedt and Becker [48] developedpecial formulation in
order to directly compute the order of singularity.

The stress in immediate vicinity to the free edge is supptskdve the following
form, using the powety;; and the strengthA,;| of the singularity:

oij(y) = Ay r(y) "7 with 0 < a5 <1 (3.1)

wherer denotes the distance from the free edge:

r(y) = bh;ky with 7 € ]0; 1] (3.2)

Figure[3.18 shows that the distanceay be defined at any value of the angle
In this work however, only the case gf = 0 will be considered. This amounts to
consider only the singularity occurring at the bimatenérface.

According to Equation[(3]1) infinite values of; are obtained forr — 0. A
convenient way to represent the singularity described bypibwer law is to plot
the function in a double logarithmic scale, which yieldsreeéir dependency on the
distance r:

log(oij(r)) = log(|Aij|) — aujr (3.3)

This way, the power of the singularity,; describes the slope of the singular
trend, while the singularity strengtid;;| is related to the length of the influence of
the singularity itself or equivalently to the finite valuethé stress at a distanee= 1
(i.e. y = b — hy) from the free edge. Therefore low valuescqf correspond with
high values of A;;| and vice versa. This is shown in Figlre 3.19, where for powers
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Figure 3.18: The distanceis measured from the free edge along the plate width and
at the layers interfacé = 0)

a1 < ay two different singularity strengthd; < A, are given. For a lowety;; the
curve has to rise earlier and hendg has to be higher. For the highey; the slope
close to the free edge has a steeper rise.
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Figure 3.19: Stress representation using the power lawgusi; < as, A1 < As

In order to reconstruct the power law from the FE results, raecitting proce-
dure is adopted based on a least squares interpolation @h@trust regain. It is
necessary to have as many stress values as possible in tleiatenvicinity of the
free edge if a reliable determination of the power law patensels seeked. Since
the stress values are sampled at the nodes, a very fine messigaed at the free
edge. Note that if several stress values are taken insidesiogke element, these
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are linearly dependent data points, that do not improverttegpolation process for
obtaining the power law parameters. Therefore the niésh, as introduced be-
fore in sectiorl 3.1]2, is used, as illustrated in Figurel3Qaly the nodes contained
in the narrow region close to the free edge are used for det@mgnthe power law
parameters. It is noted that the selected interval correfgpto that used by Davi
and Milazzo [14]. These authors followed a similar approfahdetermining the
power law parameters, however starting from stress valb&sned by means of a
Boundary Element Method. Their results obtaineddgy singularity occurring in
the angle-ply+45]; laminate loaded in extension will be used as a referencesalu

The in-plane mesh used for the present CUF models employeB&sts in the
regiony € [0,0.9875b] with a spacing ratio of 60, which leads to a smalls element
width of 0.0088%. In the regiony € [0.9875b, b], 30 elements are used with a spac-
ing ratio of 20, which leads to a smallest elemend®02h,. Remind that through
the geometry of the plate = 8h;. The role of increasing the number of mathe-
matical layers is investigated in Figure 3.20. From the Fégtwo regions can be
identified: a first region with a linear rise startingrat= 0.1 and a second region
with a horizontal distribution close to the free edge itséff between a very small
transition zone is present, too. The size of the region withlinear rise does vary
visibly depending on the number of mathematical layers pgsigal layer: the stress
levels show a significant rise and also an increase of theo$ithe zone with the lin-
ear rise. Depending on how many mathematical layers are ttgedegion extends
within 1072 < r < 107!, In an attempt to enlarge this interval upon increasing the
resolution next to the interfaces, Lagrange polynomialerpolated at Chebyshev
nodes [[44] have been used instead of the standard Legeniyreopuals of CUF.
However, no relevant improvement could be remarked for teegmt application.

The convergence behaviour of the via power law fitting exédaoefficients
o, and|A,.| is given in Tablé 3.2. Only the linear rising part of the cueas been
considered, which is in the interval &f 1072 < r < 10~

Table 3.2: Extension: Convergencecf, and|A, .| for the [+45] lay-up

Method/Mesh | Azl Oy
Davi Milazzo 5.0280 0.2630
Ansys 4.9758 0.2884
LM4, N, =1 7.0380 0.1460
LD4,N,,; =1 6.9099 0.1399
LM4, N,,,; =2 6.2170 0.2123
LD4, N,,; = 2 6.3246 0.1979
LD4, N,,; =3 4.9793 0.2894
LD4, N,,; = 4regular | 5.5611 0.2529
LD4, N,,,; = 4 irregular | 4.9186 0.2920
LD4, N,,; = 5irregular | 4.9212 0.2895

|Azz|in [GPa]
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Figure 3.20: Extension: width distribution of..; application of several irregular
distributed mathematical layer per physical layer usingtlf@r the[+45], laminate

From Tabld_3.P it gets further visible, that the use of LM4 \asted up to two
mathematical layers per physical layer. In the followingréfore, two mathematical
layers for each physical layer are used. Even if it is dekdréd have more math-
ematical layers per physical layer, it is limited by the nmaxim main memory of
the CUF implementation into ABAQUS. The calculations weaeried out on a four
core Pentium/V computer with 48 GB of RAM. Having more than two mathemati-
cal layers per physical layer in the most demanding LM4 catdeaumesh of 80*120
elements and four physical layers was not possible. Thigumation needed about
two hours of calculation for the configuration of five mathéice layers using LD4.
In contrast the FE calculations carried out with the threetshsional model in Ansys
needed about four hours.

A last statement concerning the horizontal plateau is d@re might even de-
crease the region of the horizontal plateau even more, ghrthe application of even
a higher number of mathematical layers, decreasing futtieesize of the mathemat-
ical layersh,,,,.. The before stated Figute_3]17, giving the stress for thegdined
plain strain elements, is now also given in a double logarithplot. From Figure
[3.21 a longer region for the horizontal rise can be obserezd With an decreasing
heighth,.

After assuring the convergence trend behaviour as a functidghe number of
mathematical layers, a comparison of the attempted valodste values by the
CUF is done. Due to the computational architecture usedpitbeious LM4 model
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Figure 3.21: Extension: mesh sensitivity ®f, at (z = 0,y,z = %) for [0, 90];
using an Ansys Quasi three-dimensional model

is restricted taN,,;, = 2. Davi and Milazzo’s value, as well as the value obtained
within Ansys are compared with the fitting points as well as fitted curves for
LM4 and LD4 in Figuré 3.22. The mentioned difference in siagty strength A, |
between Davi and Milazzo and LM4 and LD4 are visible, whérm s$lope of all
three curves is identical. However, in the distributiorotigh width, see Figurfe 3.6,
all values showed a good accordance. The identical slopgsther with a good
accordance ofy,, indicates that the FE mesh is sufficiently fine and converged f
the purposes of the assessment of the singularities.
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3.1.4.2 Assessement

With the help of the parameters an assessment of the perfioara the CUF mod-
els to provide the singularities appearing is now possilflmmparing the results
from Table 3.8 with the distribution through width in Fig{Be provides us with two
pieces of information: the first its that for a valuecaf, matching with the reference
and the value computed with the help of Ansys, a proper Higidn is expected. If
the values is in good accordance, it is the provided singylatrength| A,.| which
indicates how critical the appearing singularity accogdio the used model is. It
is again the three criterion of comparison for the CUF moddigh are used here:
the lay-up description used, the variational statementla@éxpansion order. While
using the LW model, values close to the three-dimensionaleSHIts by Ansys are
obtained. ESL models do provide lower values for the singylpower. Comparing
the variational statements it gets especially visiblelierESL description, that while
the RMVT statement is used, a singularity power closer toéthge provided by An-
sys is obtained. Nevertheless, the error is quite high. gkligihted before, it is the
higher order expansions which provide better accordaneesrlorder models are not
able to properly reproduce the overall singular behaviblate that for the singular
fitting, also LD2 is listed, which was not presented beforthmgiven distributions.
This is due to its PVD characteristic, providing only linedresses through thick-
ness per mathematical layer. However, while using two nma#ttieal layers through
thickness, as used here for the fitting, a better accordaitbethe reference solu-
tion is obtained. Summing up all aspects about the CUF mptleld M4 and LD4
model provide the best prediction of the singularity. Ferliest performing models,
in Figure[3.28 the stress is expressed via the power law aeas It illustrates the
good accordance of the higher order LW models with the ratereyiven by Davi’
and Milazzo and the results gained with Ansys.
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Table 3.3: Extension,, and|A4, | towards thgd+45], lay-up

Method/Mesh| |A,.| Qs
Davi Milazzo | 5.0280 0.2630
Ansys 49758 0.2884
LM4 6.2170 0.2123
LM2 7.0658 0.1165
LD4 6.3246 0.1979
LD2 6.6906 0.1077
EM4 46581 0.0522
EM2 2.4543 0.0589
EMz2 7.6374 0.3916
ED4 4.6722 0.0518
EDz3 2.4559 0.0584
ED1 3.1530 0.0496

|Azz|in [GPa]
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Figure 3.23: Assessment of power law fitting parametergsstr, . for the [+£45]
laminate afz = 0,y,2 = 2)

Above it was described that low values|ef;;| correspond with high values of
a;; due to the nature of the fitting process. The forth order ESHetsin Table5 313
have a singularity strengtid, .| close to the value provided by Ansys, but the singu-
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larity powera,., has a large difference. Comparing their distributions agrowidth
in Figure[3.6 showed a modest rise of the stress towardsdbettge, compared with
the higher order LW models and the three-dimensional madsldts. As the values
of the fitting points are based on the stress values at thesn@ds this modest rise
which enforces the fitting process to adapt to a lowgr. By enlarging the interval
of r, a convergence towards higher valueswgfmay be obtained. Before reviewing
the issue of the interaction betwees; a |A;;| in further detail, the results of the
other four layer lay-ups will be compared.

Before passing to the other laminates, a further investigadf the different LW
models is carried out. In order to gain better parameternsa#t described above
that the number of mathematical layels,,; has to be increased. In Table13.4 a
comparison for the LM4 and LM2 as well as the LD4 and the LD2&nts is given.
The sensitivity analysis shows that it is advantageous ptydpice the numbew,,,;
with only half the expansion order. The same test was donth®EM elements,
however they show an insensitivity towards the increas&,gf. In the variational
formulation of RMVT, Equation[(2.15) a term for the minimiza of the difference
between the strains obtained via the displacement unknawtdghe ones obtained
via the stress unknowns is present. As the displacemedtifiehvariant toN,,,; it
prevents the refined stress field to obtain higher values.

Table 3.4: Extension: Sensitivity ef,. and|A..| concerningN,,; of the [+45],
lay-up

Ny =2 Ny =3 Npy =4
Model |Amz| Ay |Amz| (e %F |A:vz| Az
LM4 | 6.2170 0.2123 - - - -
LM2 | 7.0658 0.1165 6.4837 0.1731] 4.9596 0.2437
LD4 | 6.3246 0.1979 4.9793 0.2894 4.9186 0.2920
LD2 | 6.6906 0.1077 6.6135 0.155]] 5.6617 0.2437
Davi Milazzo: |A,.| = 5.0280 . = 0.2630

Ansys: |A..| = 4.9758 g, = 0.2884

|Azz|in [GPa]

Based on the results of ti¢45], laminate, the values of tHe, 90| and[90, 0]
laminates can be verified. Through the comparison of theegatd the singularity
strength|A;;| of all three laminates in Tablés 3.3 ahd]3.5, it gets visibiet the
angle-ply laminate has the highest stress concentratithediee edge.

For the]0, 90]; laminate with its monotonous rise of the transverse nortness
0., towards the free edge, a slightly lower singularity strancan be found, com-
pared to the angle-ply laminate. However for {h@, 0], cross-ply laminate a com-
plete different behaviour is observed and no exploitabdeiltecan be obtained. As
it is visible from the distribution across the width in FiguB.4, the rise is not
monotonous and hence no straight line will be present in thiadizone for the
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[90, 0], cross-ply laminate. This gets visible by the valuesvof, which are out of
its interval definition. In theoretical part in chapfér 1wias shown that the local
stress gradient of ., close to the free edge had to be balanced by a gradient of an-
other transverse stress component. Through the occunilegtion inc ., inside the
interval ofr, also the other stress transverse components are not fabjaiwith the
fitting approach.

From the results of the cross-ply and the angle-ply lams)dtether remarks on
the CUF models can be done, concerning the values of the powand the strength
|A;;|: The higher the order of expansion, the easier it is for thdehto capture the
harsh gradient of the expected singularity. Models of Iathvan the forth order partly
reproduce the singularity. The quality depends on bothaiep description used as
well as the variational statement. As mentioned beforeb#se results are obtained
with LW description and for expansion orders lower than thethf order a further
improvement can be provided by the RMVT statement.

EM2, EMz2 and EDz3 were shown also before to not fully provide same
pronounced singularity. The values given in Tdblé 3.5dgrshown that the mod-
els have however better capabilities than ED1. Except EM®8; have also a still
reasonable value of the singularity strengtly;|. Obviously, EMz2 does not benefit
from the inclusion of Zig-Zag while compared with EM2.

Table 3.5: Extension., and|A. .| for the [0, 90]; and[90, 0], lay-ups

0,90], 90,0],
Model | |A,.| Oss |A..| Oss
Ansys| 1.7581 0.3320 0.1628 3.3100
LM4 | 0.3925 0.4775 0.6943 3.8122
LM2 | 0.6766 0.3229 0.3299 2.0462
LD4 | 0.2776 0.5644 0.2515 2.1387
LD2 | 0.5638 0.4161 0.1292 0.1158
EM4 | 1.0442 0.1069 0.7426 0.0407
EM2 | 1.0212 0.1193 0.7610 0.1027
EMz2 | 0.0002 0.2271 0.0005 1.2899
ED4 | 0.7351 0.1380 0.4200 0.0670
EDz3| 1.0670 0.1174 0.8465 0.0966
ED1 | 0.3145 0.0002 0.3145 0.0005
|A..| in [GPal

In the quasi-isotropic eight layer laminates, through thetiple interfaces, mul-
tiple singularities are present. The interfaces are nuetbepnsecutively for the
upper half, beginning at the reference plane at 0, Figure[3.2%. Their results are
listed in Table§ 316 arld 3.7. For the interfaces of the bottaif the results are the
same due to the symmetry. In order to better compare the foltee dwo transverse
stress components,, ando,,, both are given for the two laminates in the accord-
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ing tables. This permits to identify the most critical compat at the concerned
interface.

90

<—3. Interface —

<«—2. Interface —

0

<—1. Interface —

90

Figure 3.24: Denomination of the interfaces for the qussirbpic laminates

Regarding the transverse shear comporment the positioning of thet45 in-
terface is relatively important for the laminate. The silagity strength values are
rising for the[£45, 0, 90]s from the inner interface towards the outermost interface,
the +45 interface. In thg90, 0, £45]s laminate it is the contrary. The highest sin-
gularity strengths are at the innermost interface. For tathinates however, the
highest singularity strength concerning the transversemabstressr ., is at the in-
nermost laminate, as no transverse normal loads are prastat laminates top and
bottom surface.

For the[90, 0], cross-ply laminate it was shown it was not possible to appdy t
fitting process. The same applies here for the quasi-isdf@), 45|, laminate.
For the same laminate, thel5 interface concerning the transverse normal stsgess
as well as transverse shear stregsare problematic. It is not possible to achieve a
good fitting of this stress component at these interfaces.

Concerning the interfaces of the45, 0, 90]; laminate, it is the transverse normal
stressr ., which is dominant at the first, the 90 interface. The second interface, the
0,45 interface, is dominated by the transverse shear strgssas indicated by the
better congruence of the fitting parameters with the Ansigisa. Finally, the third
interface, thet45 interface, is clearly dominated by the transverse sheesstr,..
Accordingly, for the transverse normal stress the obtained fitting parameters have
a rather large scatter.

While regarding the accordance of the CUF models with the&fBrence solu-
tion, a higher difference is visible for tHe-45, 0, 90|, especially for the transverse
shear stress. Here the higher order LW elements cannot slprayide the before
seen accuracy compared to the 3D reference, especiallyNheléments seem to
slightly overestimate the singularities. In tf#), 0, £45], laminate, the accordance
for the fitting parameters of the transverse shear compsneitih the reference is
higher compared to the-45, 0, 90]; laminate, but still not perfect. For the outermost
interface, it is especially troublesome to reliably predie effects of the transverse
shear component, . as the stress level is relatively low. Also for tf#8), 0, £45],

a slight tendency to overestimate the appearing singiglsuigian be seen for the LM
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elements, increasing with the expansion order. Howeverfitidings for the pro-
vided parameters is as before for the angle-ply and the -plgdaminate: the LW
elements have a significantly better performance as the Epheats, which is for
both increasing with the order of expansion.

Table 3.6: Extensionu,, and|A,.| as well asw,, and|A,,| for the [£45, 0, 90],
laminate

[+45,0, 90],
1. Interface 2. Interface 3. Interface
|V|Ode| |A:L'Z| Oy |A:L'z| Qg z |A$Z| Qg

Ansys| 0.6005 0.2831 1.2005 0.3694 5.5994 0.2573
LM4 | 0.6407 0.1046 1.3617 0.3102 6.9354 0.2009
LM2 | 0.6182 0.1089 1.6759 0.1518 7.8000 0.1700
LD4 | 0.5045 0.0030 1.1662 0.3671 7.0618 0.1883
LD2 | 0.4788 0.0171 1.5932 0.2231 7.6353 0.0999
EM4 | 0.4419 0.1401 1.1717 0.0093 2.6530 0.0523
EM2 | 0.7609 0.0234 1.5219 0.0234 2.2828 0.0234

EMz2 | 0.0001 0.6853 0.0001 0.4132 0.0005 0.0948
ED4 | 0.4439 0.1395 1.1750 0.0097 2.6550 0.0518
EDz3| 0.7620 0.0233 1.5242 0.0233 2.2861 0.0233
ED1| 0.0001 0.2045 0.0002 0.2690 0.0002 0.3043

|Azz|in [GPa]
1. Interface 2. Interface 3. Interface
MOdeI ’Azz’ Az ’Azz‘ (0% ‘Azz‘ Az

Ansys | 8.3451 0.1622 4.7368 0.2117 0.4891 0.6837
LM4 | 9.2643 0.1385 6.2118 0.3263 0.2956 0.7654
LM2 | 9.9990 0.1203 4.7480 0.2546 0.7364 0.5149
LD4 | 8.9696 0.1458 4.5432 0.2399 0.3723 0.6966
LD2 | 9.8183 0.1374 2.7016 0.0177 0.9476 0.4256
EM4 | 1.0301 0.0625 6.2703 0.0257 0.4056 0.4659
EM2 | 8.5240 0.0486 8.0224 0.0515 6.7469 0.0601

EMz2 | 0.0733 0.0002 0.1379 0.0001f 0.0217 0.0001
ED4 | 9.9447 0.0644 6.5130 0.0250 0.4213 0.4592
EDz3 | 8.7451 0.0485 7.3268 0.0540 7.7385 0.0552
ED1 | 0.3940 0.0001 0.3940 0.0001f 0.0002 2.4043

|A..| in |G Pal
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Table 3.7: Extensionu,, and|A,.| as well asaw,, and|A, .| for thef90, 0, +45],
laminate

[90, 0, +45],
1. Interface 2. Interface 3. Interface
|V|Ode| |A:L'Z| Oy |A:L'z| Qg z |A$Z| Az

Ansys | 3.2587 0.2836 1.1086 0.3750 0.5326 0.0062
LM4 | 7.6094 0.2115 1.5241 0.3211 0.6837 0.1206
LM2 | 8.5704 0.1158 1.8734 0.2068 0.6646 0.2004
LD4 | 7.7457 0.1982 1.9959 0.1908 0.5151 0.0095
LD2 | 8.2866 0.1067 1.5848 0.1219 0.5806 0.0606
EM4 | 0.9006 0.0593 1.5489 0.0468 2.0883 0.5558
EM2 | 0.3296 0.0399 0.6591 0.0399 0.9887 0.0399

EMz2 | 0.0008 0.8715 0.0004 0.4314 0.0008 0.5164
ED4 | 1.5459 0.0592 2.0451 0.0467 0.9916 0.5791
EDz3| 0.3279 0.0397] 0.6565 0.0397 0.9842 0.0397
ED1| 0.0001 0.0763 0.0002 0.2072 0.0001 0.1625

|Azz|in [GPa]
1. Interface 2. Interface 3. Interface
MOdel ’Azz’ Az ’Azz‘ Az ‘Azz‘ Az

Ansys | 2.1094 0.1492 1.0527 0.1010 - -
LM4 | 7.7710 0.2034 5.4627 0.1343 - -
LM2 | 9.3987 0.1535 6.3088 0.0921 - -
LD4 | 8.1647 0.1887 4.9513 0.1579 - -
LD2 | 1.0076 0.1271 5.6137 0.1511 - -
EM4 | 1.0803 0.0538 7.1208 0.0372 - -
EM2 | 8.7857 0.0465 8.0082 0.0507 - -

EMz2 | 0.0120 0.0003 0.1044 0.0001] - -
ED4 | 1.0788 0.0541 7.3583 0.0365 - -
EDz3| 9.4209 0.0446 7.1543 0.0541 - -
ED1| 0.0001 4.2736 0.0001 4.2735 - -

|A..| in [GPal
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3.2 Free Edge Effects due to Bending

In this section, a convergence study and model validatidinsispresented, and then
followed by the assessment for the different laminates. Cb& models are com-
pared with results available in literature. At first, theatatination which FE mesh
and model refinement is needed to properly capture the sintigé under bending
loads is presented.

3.2.1 Convergence Study

To validate the different models of the CUF, a bending tegh wiuniform pressure
load was considered. This test was first shown by Tahani argleN{/2]. They
presented the results for a symmetfico0]; and unsymmetrical90s, 0] laminate,
loaded on the top surface with a constant pressure dgachd simply supported at
the two short edges at = +a. Only the results of the forth order LW models are
compared with the results given by Tahani and Nosier. Dfidy from the presented
extension cases, the composite plate’s geometric retatiom herer = 2b = 10h.
Remind thath its the overall thickness and is = 4h,. The changed geometric
relations will change the values of the stress, while thefof the distributions are
fixed by the mechanical behaviour, determined by the lareiaat the loading.

In order to compare the results given in this subsection vegults from litera-
ture, the stress components are normalized using the d&finit Pagand [53]:

h2

(Emmaﬁyyaﬁxy) = (Umma Uyyao':cy) %7 (34)
_ o —_ h
Ozz = qZOZ; (O'mz>o'yz) = (Ummagyyao':vy) qo—a (35)

In order to study the evolution of the results provided by @éF as a function
of the discretization, the same approach was used as SBEcfigh One of the main
goals is to evaluate if the same mesh of the extension testamadd be used, or if
it is necessary to modify the mesh. Before, the assessmenmamnly focused on
achieving a convergence for the power of the singularjtyand its strengthA;;|. As
no reference exists for the power law in the bending casesaheergence study aims
towards obtaining a good congruence with the stress digiitis provided by Tahani
and Nosier and to obtain a good accordance on the calculdtied harameters;;
and its strengthA;;|.

At first, the classical distributions through thickness @venpared with the ref-
erences of Tahani and Nosier. The convergence study beginghe continuous
refined in-plane mest/), having a very small quadratic element at the free edges
centre, while in the inside rather large elements are ptesea Figuré 319. For the
[0,90], laminate, three in-plane meshes for the fourth order LW risodee given
in Figure[3.2b concerning LM4 and in Figure 3.26 concernimytL The maximum
stresses increase for both variational statements as tidiiroé the mesh refinement.
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For the same distribution, a zoom on the upper interfaceadsiged in Figurd_3.27
for LM4 and Figurd_3.28 for LD4. In the solution of Tahani anddier some os-
cillations close to the bimaterial interface, inside théegree layers appear fot ..
Tahani and Nosier identified this as an additional singiylas it grew for an increas-
ing number of subdivisions [72]. In their analytical sotutimethod, this means the
introduction of additional mathematical layers per phgklayer, each having a lin-
ear approximation. Further, they stated, that no proofticr additional singularity
could be provided by the use of approximate theories. Thisddeur is studied also
for the CUF models. If each physical layer is modelled witle omathematical layer
as shown in the left half of each graph, the oscillations wigh a refinement of the
in-plane mesh. In the right half two mathematical layersumed per physical layer.
The oscillations are reduced significantly. This shows tebetwerall fit with the ref-
erence result by Tahani and Nosier. For the LD4 model, it aésps to significantly
reduce the discontinuity af,, at the layers interface. Therefore, as proven by the
CUEF results, there are no additional singularities.

0.5 0.5
0.4+ 0.4f 1
0.3f 0.3- f
0.2f 0.2F f
0.1 0.1f ]

N or N or B
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-0.47 LM4 24 x 24 ] -0.41 24 x 24 N
— Tahani Nosier —— Tahani Nosier
-0.5 : : -0.5 : :
=2 o 2 4 6 =2 0o 2 4 6
Ozz Ozz

Figure 3.25: Bendingz . at (z = 0,y = b, z) for [0,90], using LM4
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Figure 3.27: Bending: oscillations i, at (x =

RMVT
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Figure 3.26: Bendingz .. at (x = 0,y = b, z) for [0, 90], using LD4
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Figure 3.28: Bending: oscillations @, at (z = 0,y = b, z) for [0, 90| using PVD
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Concerning the distributions along the width, the same oisthe maximum
stresses with rising number of elements is found, see F§@® for LM4 and Fig-
ure[3.30 for LD4. The maximum stress rises in while the mesbfined. However,
the distributions withV,,,; = 2 do, regardless of the variational statement used, not
significantly improve the the gradients of the transversasktress close to the free
edge. It is worth noting however, that the rise in stress isensensitive in bending
than in extension for the simple regular in-plane mesh referd. The Figures from
the extension test cage, 3.10 and B.11, required a stroregr rafinement to reach
a notable difference in stresses. For the same LM4 and LD£hiodbending, the
visible stress increase happens already with a moderate mef@sement.

O_-__**——w—x—-x—-—x-x——.,__H_“_*&* i
"5‘\"‘
e ;
y % ~LM4 40 x 40 el
I —0.051 - » - M4 32 x 32 7|
LM4 24 x 24
- - -Tahani Nosier
-0.1 : ‘ l l
0 0.2 0.4 0.6 0.8 1
y/b
0_ _H__.’:__‘n-x‘ ”_***‘5'\ |
’ ""’*M i
8 ~% -2 x LM4 40 x 40 !
o —0.051 - % -2 x LM4 32 x 32 ke
2 xLM4 24 x 24
- - - Tahani Nosier
0.1 : ‘ 1 1
0 0.2 0.4 0.6 0.8 1

y/b
Figure 3.29: Bendingz,. at (z = 0,y, 2z = %) for [0, 90]s using RMVT

In order to test the sensitivity of the stresses for the moefhement in mesh
(I1), the fitting process for the stress singularities was agpbethe Tahani-Nosier
bending test. Here, the transverse normal sfesss concerned as a cross-ply lam-
inate is considered. A mesh with 24 elements along the lgpxgiixis) is used, while
along the widthV, 95 75, = 20 elements are used plié. , 0.1, = 30. A sufficient
congruence with the Tahani Nosier reference results carppeeaated. For one
mathematical layer per physical layer, matching width aridknhess distributions
are obtained as with the 32 32 mesh used before. For this fixed in-plane mesh,
the refinement through the thickness by the introductioreeésal mathematical lay-
ers per physical layer is next studied. The width distritmsi next to the free edge
(0 < r < 1) is given in Figurd-3.31 showing a considerable rise with tieedase
of the number ofV,,,;. When more than two mathematical layers are used per phys-

67



Chapter 3. Free Edge Effects of Composites in Plate Stregtur

OF - = - & o S T R I IR e e

-~1"333_qs¢ H
) K
- % -1D4 40 x 40 b

I

=
lo —0.051 - % - D432 x 32 ]
- % -LD4 24 x 24
- - -Tahani Nosier

0.2 0.4 0.6 0.8 1
y/b

-0.1
0

8 =% -2 x LD4 40 x 40 W\&
I -0.05 - » -2 xLD4 32 x 32 X

- -2xLD424x24
- - - Tahani Nosier
T

0.2 0.4 0.6 0.8 1
y/b

Figure 3.30: Bending,. at(z = 0,y, z = %) for [0, 90], using PVD

ical layer, they are irregularly distributed as in the esten case. The power law
parametersy.. and|A,,| are extracted from these Figures. given in Tablé 3.8.

These findings confirm that the conclusion found for the esitencase is also
valid in bending: While only interested in the distributiohthe stresses in order to
locate stress concentrations, a simple in-plane refinemenifficient. However for
the singularity fitting, a refinement through thickness iedesl in order to reliably
capture the stress singularities.

Table 3.8: Bending: Convergence @f, and|A. .| for the [0, 90]; lay-up in Tahani
Nosier test case

Method/Mesh | |A..| Oss

LM4, N,,; =1 | 0.4083 0.3598
LD4, N,,; =1 | 0.4384 0.3335
LM4, N,,; =2 | 0.4828 0.3024
LD4, N,,; =2 | 0.5091 0.2859
LD4, N,,; =3 | 0.5083 0.2925
LD4, N,,; =4 | 0.4881 0.3093
LD4, N,,;, =5 | 0.4872 0.3099

|A..| in |G Pal
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Figure 3.31: Bending: convergence for different mathecaatiayers ofo,, in
[0,90]s laminate using LM4 and LD4
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3.2.2 Validation of Models

As for the extension test case, results are also preseniiegl aishree-dimensional
model in Ansys. Here quadratic brick elements are used,auherin-plane mesh is
equal to that used for the two-dimensional CUF elements.oftrast to the exten-
sional case, 12 elements are applied per layer along thanttss direction.

At first, the results for the symmetri, 90]; laminate are presented for only
the highest order (fourth order) LW and ESL models based ob RWd RMVT
statements. A very good agreement for the results using L\detaas visible in the
distribution through thickness at the free edge in FiquB2 % ..) and Figurd_3.33
(@+»). These results are in perfect match with the results coegpwith the three-
dimensional model as well as the results by Tahani and NoRiegarding the ESL
models, the same kind of adapting towards a mean value EHe/igs in the extension
cases. The distribution @f,, towards the free edge over the width is given in Figure
[B.34. The upper curve corresponds to the mid plane intedaee= 0, while the
lower corresponds to the upper interface: at %. The three-dimensional results as
well as the LW descriptions match the reference. Final\g8L techniques provide
the same tendencies in bending as in traction: the disioifisiire significantly lower
and do not capture the steep gradient at the free edge irahlestnanner.
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Figure 3.32: Bendingz .., at(x = 0,y = b, 2) for [0,90]; using RMVT & PVD
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Hereafter, the situation for the unsymmetrical lamirjagg, 0] is described. The
distributions through thickness fat,, are shown in Figure=3.85 and fat,, in Fig-
ure[3.36. Note that for this laminate.., > 0 are in the tension regime. The LW
description confirms its superiority compared to the ESlcdpon. Regarding the
variational statement used, no significant difference @afobnd, except the failure
to fulfil the interlaminar continuity of the transverse ssavhen the PVD statement
is used. The distribution along the width and towards the #dge of7 .., Figure
331, shows a better performance of the ESL description,peoed to thg0, 90,
laminate. Here, the lower curve is fer= 0 while the upper curves corresponds to
the bimaterial interfaces located at= % Even close to the free edge, the values
are very close to the reference, which again is in perfectimatth the 3D results in
Ansys. Also for the width distributions, no further signéia difference between the

PVD and the RMVT statement can be found for both descriptions
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Figure 3.35: Bendingz,, at(z = —a,y = b, z) for [903, 0] using RMVT & PVD
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Figure 3.36: Bendingz ., at(z = 0,y = b, z) for [903, 0] using RMVT & PVD
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3.2.3 Lay-Up Sensitivity

In this section, the free-edge effects are addressed tleat at different laminates
occurring under bending load. Since in the subsequentosetiie free-edge effects
due to extension and bending will be compared, the followiraglifications to the
bending test case considered in the previous section withége: (1) the geometry
is kept identical to that used in the extension test cgethe uniform pressure load
magnitudey, is defined in such a manner, that the resulting deformatierggrof the
laminate is the same as that of the extension legd= 1). Thereforeg, depends on
the stacking sequence of the laminate. The magnitudes\ane igi Tablé 3.0(3) No
adimmenisionalization is used for the stress componentxe®er, an assessment
of the different CUF models is proposed for the differentilzattes in bending. As
reference, the results calculated via the three-dimeabioodel in Ansys is used.

Table 3.9: Bending: load magnitudg for the different laminates

laminate Qo
[£45]5 5130.060
[0,90] 253.453
[90, 0] 870.315
[£45,0,90]; | 298.798
[90,0, £45]s | 213.531
qo tn [M Pal

3.2.3.1 Angle-Ply Laminates

At first, the[+45], laminate is considered. Figure 3138 reports the trouglkieiss
distribution of o, at the free edgéx = 0,y = b, z) obtained with LW models.
Regardless of the variational statement used, with risigroof the polynomial,
the flexibility is increased, hence the maximum stress. fei@38 indicates that at
least a third order expansion is needed to reliably captuaepsgradients occurring
at the layer interfaces. Lower orders, as LM1 do not delivsr lzenefit while using
only one mathematical layer per physical layer. Besideis ttawback of not fully
satisfying the ICs, PVD models show the same behaviour as lddets. Figure
reports the distribution ef,, at the free edgéxr = 0,y = b, z) obtained with
ESL models. For both variational statements, regardlesheaif expansion order
used, no gradient is present at the bimaterials interfasdoAthe LW models, with
rising order of the polynomial the maximum stress rises. fd=eilts obtained by
Zig-Zag models are finally reported in Figlire 3.40. A gratarthe layers interface
is now present for the distribution through thickness, Hilitthe ESL description
using Zig-Zag is not fully providing the sharp gradientsurting at the interfaces as
shown by Ansys. As before without Zig-Zag, the maximum stessare still lower
in magnitude compared to the stresses provided by the LW Isiodéhese three
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Figures show, that for the angle-ply laminates, it is ratifficult to capture properly
the singularities.
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Figure 3.38: Bendingw .. at(x = 0,y = b, z) for [£45]s using RMVT & PVD LW
models
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Figure 3.40: Bendings,, at(x = 0,y = b, z) for [+45], using RMVT & PVD ESL
Zig-Zag models
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As further comparison, the width distributions @f, at the upper bimaterial
interface are given. Due to the test configuration, the itigions are symmetric
through thickness, therefore only the upper layer intesagill be considered. From
here on, the distributions are limited to the same CUF moctatsidered in the as-
sessment for the extension case.

Figure[3.41 shows that the LW models have the best congrueiticehe three-
dimensional solution computed by Ansys. However, they dofulty match. The
models using the ESL description provide not even half ofntfaimum transverse
shears stress. The RMVT statement helps to improve théhdistms of the models
using the ESL description, while for the models using the L&8atiption no signif-
icant difference is visible between the PVD and RMVT statem&lote that, since
the transverse shear modullis, is actually the same in the45 and the—45 plies,
the interlaminar continuity is assured by the PVD modelse $tiess distributions
through thickness showed that with rising expansion orberrhaximum stress is
rising. The same conclusion can be drawn on the basis of gtebdition along the
width. Moreover, despite their insufficient representatid the step gradients at the
free edge, ESL models with higher-order expansion can geosatisfactory results
far from the free edge.
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Figure 3.41: Bendings,. at(z = 0,y, z = 2) for [£45];using RMVT & PVD
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3.2.3.2 Cross-Ply Laminates

For the case of the two cross-ply laminaf@0], and[90, 0], different phenomena
occur. Due to the different position of the rigidlegree layer, the different laminates
will have different bending behaviour. The highest rigid& expected for thé), 90|
lay-up.

In the two thickness distributions of . in Figured 3.4 and 3.44 both show that
the highest layer is in compression and in the lowest in ¢ensiFurther, for the
[90, 0]s, the neutral axis separating the part from compression @msldn is in the
middle, while in the[0, 90|, lay-up, it is at a slightly lower position. Additionally,
through the Poisson’s mismatch, tf#, 0], lay-up is alternating between tension
and compression at each interface through thickness. €hdslto higher overall
stresses in thE0, 0] lay-up.

Comparing the different CUF models, provides the followiimglings: Only the
LW description provides the gradients between the layerfates, while the ESL
descriptions provide only an averaged transverse normegsstlistribution through
thickness. It is worthwhile to note that for the ESL models tesults are in a
better coherence with the, 90|, lay-up. In contrast to the angle-ply laminates, the
PVD statement does not fulfil the ICs concerning the trarsgvstresses. Only the
RMVT statement provides the continuity at the layers iategs. The higher the
expansion order, the higher the maximum stresses achiexttharefore the better
the congruency with the result of the three-dimensional ehod

Based on the distributions across width, further conchsion the CUF models
behaviour can be made. Figutes 3.43[and]3.45 for the uppaitduiial interface show
that thel0, 90]; laminate is completely in compression, while {he, 0] laminate has
a complete tension state. Regarding the expansion ordefirsh and second order
models have severe difficulties to adapt to the singular\deha The first order
models fail totally. These two Figures show, that for thage low expansion orders
the inclusion of Zig-Zag does not improve the overall bebaxi

Based on the mes{i ) configuration for bending, the values of the power law
parameters where gained. All parameter values for all famihates are given in
Table[3.1D0. They show a very good coherence with the befatedstcharacteris-
tics of the different models for the distributions througidili. High singularity
strength values are obtained for tlie90]s laminate, having also a low singularity
order, which indicates the steepest rise towards infiniteega The[+45], angle-
ply laminate has a higher singularity order and hence a dmeooise. An exception
concerning the fitting is th@0, 0] laminate. The power law for this laminate is not
applicable a%r..(y) is not monotonous in the fitting interval. Therefore, no powe
law parameters can be given for this laminate.
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Figure 3.42: Bendingw ., at(z = 0,y = b, z) for [0,90]s using RMVT & PVD

Table 3.10: Bendingey;; and|A;;| for the[+45], [0, 90], and[90, 0] lay-ups

(=45, 0,901 190, 0],
Model ’Aazz‘ Azz ’Azz‘ Azz ‘Azz’ Ay
Ansys | 0.6868 0.349§ 3.5357 0.1778 - -
LM4 | 1.0953 0.2254 3.1364 0.2014 - -
LM2 | 1.2261 0.1205 3.7038 0.1580 - -
LD4 | 0.7685 0.2507 2.9985 0.2115 - -
LD2 | 0.6931 0.1367 3.5550 0.1871 - -
EM4 | 0.3575 0.0363 4.1739 0.065§ - -
EM2 | 0.2853 0.0019 2.8712 0.0073 - -
EMz2 | 0.3691 0.0336 4.2935 0.0024 - -
ED4 | 1.0959 1.8888 3.9740 0.0680 - -
EDz3| 0.2918 0.0587] 3.3530 0.0619 - -
ED1| 0.0731 0.0393 4.1270 0.0002 - -
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Figure 3.43: Bendingw, at(z = 0,y,z = &) for [0,90]; using RMVT & PVD

81



Chapter 3. Free Edge Effects of Composites in Plate Stregtur

0.5 — 0.5
0.4} “ 1 04
0.3 . 0.3
o+
0.2 . 0.2
0.1} 1 0.1}
N0 4N 0
-0.1 1 -01
~0.2[{— LM4 1 -02}
—LM2 —LD4 1\
-0.3{|—EM4 . -0.3{|—ED4
EM2 ——EDz3
-0.4{{ EMz2 {  -04f—ED1
o+ ANSYS o+ ANSYS
05—+ st
-8-6-4-2 0 2 4 -8-6-4-2 0 2 4
0., (GPa) 0., (GPa)
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3.2.3.3 Quasi-Isotropic Laminates

Thickness distributions of the transverse normal steessfor the quasi-isotropic
laminates, are shown in Figure 346 dnd B.47. The oriemtatfche outer layers
is very important for the rigidity of the overall lay-up. Bdes the singularity in
the +45 layers, the overall stresses are lower than indhe layers. In total, the
[90, 0, £45]s laminate shows a smoother distribution through thicknest) less
sharp changes than tfie45, 0, 90]; laminate. The last has a two times higher maxi-
mum stresses in the tension and compression regime, whedbeated at the inter-
faces of the, 90 layers. Note that arount4 times the load magnitudg is applied
for this laminate, compared to tH@0, 0, £45]s laminate. Equally for the transverse
shear stress,., a factor of nearly five times higher stresses are visible @et
to the [90, 0, 45| laminate. This indicates that the-45, 0, 90|, laminate is more
prone to delamination. Not so in the casg%f, 0, 45|, here, the maximum trans-
verse normal stresses and transverse shear stress aesllatdhe0, 45 interfaces.
Except thet-45 interface, most interfaces posses lower maximum stre$sesindi-
cates further that it is recommended to use4tié layer in the inner of the structure
where normally the maximum shear are expected. Dependitigedoad, the maxi-
mum tensional stresses are expected at the outer layers) wiarefore calls for the
use of0 or 90 degree layers.

The higher number of interfaces and discontinuities thinailickness is reliably
predicted using the LW description. The ESL descriptionoisable to reproduce the
sharp gradient, even if Zig-Zag functions is included. Ngn#icant differences can
be identified between RMVT and PVD models: both model famibiéstributions
provide for the same expansion orders comparable disoimitwvith similar stress
magnitudes.

Concerning the transverse shear stress the results for thé+45, 0, 90]s lam-
inate are given in Figurle 3.8 and for tf$®, 0, +-45]; laminate are given in Figure
[3.:49. The maximum stress intensity is for both present atith® interfaces. For
the first lay-up, having the angle-ply layers at the outeesathe intensity is signif-
icantly lower. For the other layers of both laminates, tlams$wverse shear stress is
nearly zero. A clear difference between LW and ESL desacripbecomes visible.
Regardless of the expansion order and the variationalnsésieused, only the LW
description is able to provide a solution being coherent wie solution provided by
the three-dimensional model. The ESL models completeljtdapredict the local
stress gradients and can only give an approximate indicatithe sign of the stress.

For the sake of brevity, only two stress distributions asne&th are shown for
both laminates. For thet45,0,90], laminate, the distributions of,.. are shown in
Figure[35D at: = % and Figurd_3.31 show the distributionsat= 32. A rather
mild rise is visible at the first interface at= % The LW description is as reliable
as before. For the ESL description, only the forth order agfma provides results
in accordance with the three-dimensional result. This isthe case in the third
interface atz = % where a stronger singularity appears at-tht interface. Here,
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the forth order ESL models do not have the same congruencyoagled for the
interface at: = 4.

For the[90, 0, £45]; laminate, the distributions ef,, are shown in Figure 3.52
for = = 32 and Figurd 3.3 for = 2. In contrast to thg+45, 0, 90], laminate, not
both interfaces have relatively pronounced singular bielavThe non-monotonous
distribution through width is difficult to capture, also thi2 model does not pro-
vide a sufficient response. In contrary the second interfidee= %, the0, 45 inter-
face. It has a more pronounced singularity leading to abpé&dormance of all LW
models and the higher order ESL models.

The other interface width distributions are according ®éffects shown before
and posses the same behaviour for the different modelsestudiurther, the stress
singularities and the performance of the different modelseproduce them can be
extracted as before from the singularity fitting processe ®htained values for the
distributions through width get visible in Tables 3.12 As before, the sin-
gularity fitting results are given for the upper interfacesiating them from the first
interface after the laminates symmetry plane, outwardscoddd be seen before for
the two cross-ply and the angle-ply laminates, certairfiates are more pronounced
with one of the two transverse stress components and sormeapplicable to the
fitting process. As indicated by Figure 3152, this is the das¢he 90, 0 interface of
the [90, 0, £45], laminate. For this quasi-isotropic laminate however, haagood
performance of the fitting is expected by Figlire 8.53. Fofitisg the+45 interface,

a domination of the transverse shear stressis expected. For thét45,0,90],
laminate, Figur€3.51 shows that the poor increase of the\tease shear stress does
not provide a sufficient singular behaviour. Again thé5 interface in Figuré_3.50
indicates a domination of the transverse shear while the fitting process fails for
the transverse normal stress.
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Table 3.11: Bendinge,, and| A, | for the[+45,0, 90| laminate

[£45,0,90],
1. Interface 2. Interface 3. Interface
MOdel ‘Aa:z’ Ay ’Aa:z‘ Ay ‘sz’ Ay

Ansys| 2.2125 1.6220 1.0780 0.1080 8.8947 0.2716
LM4 | 0.2328 0.0413 0.3788 0.2238 1.9842 0.1413
LM2 | 0.2219 0.0100 0.4350 0.1341 1.8369 0.0719
LD4 | 0.5142 0.0154 0.6642 0.1531 1.4928 0.2176
LD2 | 0.5108 0.0168 0.6164 0.1778 1.5475 0.1708
EM4 | 0.2174 0.0624 0.1076 0.0294 0.6518 0.0482
EM2 | 0.1121 0.0004 0.1100 0.0004 0.1079 0.0013

EMz2 | 0.1092 0.0014 0.1099 0.0004 0.1137 0.0050
ED4 | 0.5376 0.0286 0.2138 0.0125 0.3384 0.0804
EDz3| 0.1918 0.0191f 0.1380 0.0424 0.2158 0.0305
ED1| 0.1669 0.0028 0.1669 0.0028 0.1669 0.0028

1. Interface 2. Interface 3. Interface
MOdel ’Azz’ Az ’Azz‘ (7% ‘Azz‘ Az

Ansys | 2.6473 0.1205 0.5975 0.0548 5.7141 0.7968
LM4 | 0.9904 0.1819 0.6639 0.0071 0.0200 1.0523
LM2 | 1.1517 0.1463 0.6113 0.0725 0.0636 0.6217
LD4 | 0.9356 0.2014 0.6082 0.0507 0.0216 1.0379
LD2 | 1.2658 0.1269 0.7572 0.0188 0.1269 0.4763
EM4 | 0.4467 0.0435 0.6857 0.0528 0.6786 0.0739
EM2 | 0.1739 0.0005 0.2544 0.000Z2 0.2526 0.0004

EMz2 | 0.3179 0.0164 0.3072 0.0198 0.5512 0.0081
ED4 | 0.4137 0.0458 0.7369 0.0489 0.6720 0.0724
EDz3 | 0.2608 0.0401f 0.2757 0.0235 0.4168 0.0474
ED1| 0.2082 0.0002 0.4516 0.0008 0.4720 0.0007

|A;j]in [GPal
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Table 3.12: Bendinge,. and|A. .| for the[90, 0, £45], laminate

[90, 0, £45]
1. Interface 2. Interface 3. Interface

Model ’Aa:z’ Ay ’Aa:z‘ &7 ‘sz’ Ay
Ansys| 1.5812 0.2370 0.9994 0.2474 - -
LM4 | 2.0250 0.1260 0.9824 0.2068 - -
LM2 | 1.9268 0.0563 1.0123 0.117§ - -
LD4 | 1.4123 0.1488 1.6038 0.0925 - -
LD2 | 0.9742 0.0678 1.1351 0.0588 - -
EM4 | 0.8296 0.0189 0.4194 0.0048 - -
EM2 | 0.6311 0.0230 0.6295 0.0229 - -
EMz2 | 0.6335 0.0232 0.6387 0.0343 - -
ED4 | 0.2257 0.0599 0.1796 0.0119 - -
EDz3| 0.2062 0.0790 0.5906 0.1119 - -
ED1| 0.0616 0.1544 0.0616 0.1543 - -
1. Interface 2. Interface 3. Interface
Model ’Azz’ Qyy ’Azz‘ Oy ‘AZZ’ Ay
Ansys| 1.0664 0.1726 1.1189 0.1648 - -
LM4 | 1.4543 0.2249 15713 0.2141 - -
LM2 | 1.7511 0.1509 1.8487 0.1514 - -
LD4 | 1.4501 0.2223 1.3635 0.2655 - -
LD2 | 1.9078 0.1207 2.1250 0.1379 - -
EM4 | 0.6782 0.1150 1.2807 0.1169 - -
EM2 | 0.6420 0.0009 0.8018 0.0011 - -
EMz2 | 0.4856 0.0012 2.0339 0.001§ - -
ED4 | 0.6283 0.1205 1.3026 0.1151f - -
EDz3| 0.5234 0.0282 0.7859 0.012§ - -
ED1| 1.2362 0.0002 1.9038 0.0004 - -
|A;j]in [GPal
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3.3 On the Difference between Bending and Extension

As criterion for the confrontation of the free-edge effedt® to bending or exten-
sional load, the same total deformation energy is imposad.uhiform bending load

was applied with a magnitude, producing for the same laraitiet same deformation
energy as in the extension case. Evidently this varies quiiké for the laminates in

consideration in the bending compared to the extension ¢aghe extension case,
the uniform load is equally distributed to all the layers lo¢ taminate. Therefore,
the order of the layers orientations in the laminate showileportance compared to
bending.

For the two cross-ply laminatef), 90]s and[90, 0]s, a similar behaviour in ex-
tension is observed, while in bending t0e90]; is more than three times stiffer than
the[90, 05 laminate. This originates from the outer layers, havingr theedominant
stiffness orientated into the highest stress directione $&me considerations hold
for the quasi-isotropic laminates. In extension, they haveomparable, but only
slightly lower stiffness as both cross-ply laminates. Hegvein bending both are
quite different: thg90, 0, 45|, has thed degree layers further outwards compared
to the other quasi-isotropic laminate, plus thé5 layers in the centre, where the
maximal shear stress can be found. This makes it in compatisthe[+45, 0, 90] s
laminate about 50 % stiffer. ThHe-45]; angle-ply laminate is a special case in both,
bending and extension. Through its layers orientationstiffaess in the direction of
the extension drops significantly, which makes it the welagkall five laminates in
extension. In bending, a similar observation can be fourdse the stiffness in the
outer layers is comparatively low to that provided by @egree layer. Also, through
its strong in-plane coupling an additional shear deforomai$ present.

The rigidity alone is not a decisive factor for the companisi the free-edge
effect. Here, two factors were introduced to measure thgusanities. The order
of singularity ;;, providing the slope, and the singularity strength;|, providing
the magnitude in a distance of= 1 of the fitted curve. Its magnitude gives at the
same time an indirect measurement for the length of influefuge to the nature
of a monotonous rise, a higher value |ef;;| is linked to a longer length of influ-
ence of the singularity. With other words, the length shiareugh width of elevated
stress levels is higher, as the rise towards the singulaavMilr starts at an earlier
point in the distribution across width. Hence the decisikieda for a comparison
is first the singularity strengt/;;| and afterwards the order of singularity;. This
rise in width is influenced by load type and stacking orderm@aring the singular-
ity strength for the two cross-ply laminates in extensiormables 3.B and 315 and
for bending in Tabl€3.10, generally a more pronounced $amigy can be found in
extension. An exception is th@, 90]s, which has a higher singularity strength in
bending. From the graphs, Figure]3.2 for extension and E{§#3 for bending,
a similar behaviour of the transverse normal stress candie $even if the calcu-
lated magnitudes seem comparable, the predicted rise &ethedge itself is more
pronounced in bending. This leads to the conclusion thaemding, the free-edge
effect is more pronounced compared to extension. As the ayters0 degree layers
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have a higher rigidity as the inn86 degree layers, they are capable of introducing
higher stress in the bending case. Therefore, they providgher strength and or-
der of singularity, compared to the other cross-ply lan@naith the inverse stacking
sequence.

In the case of the angle-ply laminate, a higher gap in-batvike singularity
strength provided by Ansys and by the CUF elements can be seeablé_3]3 for
extension and the first two columns of Table 3.10 for bendifige computation of
angle-ply laminates was found to be quite challenging fer@JF elements. This
applies equally to bending and extension. Regardless taiffexence of Ansys
and CUF models, the results achieved are comparable. Theitgtise values are
of the same orders in the obtained distributions, and thdetery for the different
elements are the same as in the cross-ply laminates. Fomtie-ply laminate,
higher singularity strength values are present than foctbss-ply laminates. Also,
as stated before, generally for extension higher valueachieved as for the angle-
ply laminate in bending.

The singularity strengthA,;| was identified as being equally influenced by the
length of influence of the singularity. The distributionsatigh the width confirm the
findings of higher singularity strength in extension. Fa #ingle-ply laminate the
begin of the singular behaviour starts at a width ratig af = 0.6, shown in Figure
[3.8, and for the cross-ply laminates it starts at ahoit= 0.8, see Figures 3.2 and
[B.4. In bending the rise towards the singularity starts lier angle-ply laminate in
Figure[3.41 as well as for tHe0, 0] cross-ply laminate in Figures ahd 3.45 at about
y/b = 0.9. An exception is the before statéil 90|, laminate, rising from the same
starting point up to the same maxima values, as shown in Elgu43.

As an exception for both load cases, {h@, 0], laminate has to be stated. Due to
its sharp in flexion close to the free edge, it has a non mooo®stress distribution
in the interval used for the fitting. Another fitting approduds to be applied to this
case.

The same difference in singularity strength between bendird extension pur-
sues for the quasi-isotropic laminates. Compared betwe@msion in Tableg 317
as well ag 3J6, and bendirlg, 3112 as wellasl3.11, the regudiigularity strength
is always lower for bending. The decay for the singularityshewn in Figuré_3]8
for the extension case startsiath = 0.8 while in bending in Figuré 3.50 the decay
can be found at aroungl/b = 0.9. This concerns the interface in-between thés
layers, which has the highest, respectively the most pnocea singularity of all the
interfaces in the lay-up. Hence also for the quasi-isotr¢gininates, the free-edge
effects are stronger in extension.

In the introduction of the singularity fitting, a link betwethe strengthA;;| and
the order of singularityy;; was given. Having a low singularity order;; results
in a higher singularity strength. A lower order means havansfeeper rise in the
immediate vicinity of the free edge towards the maximumsstré&urther, this results
as well in comparatively stronger rise before= 1. This is equally shown by the
width distributions: through this earlier rise towards siagularity in extension,
lower values for the singularity order;; are obtained and hence higher singularity
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strength| 4;;| in extension.

By using the fitting parameters, the assessment of theatrititerface for each
laminate under both loading is possible. This is displayadtlie quasi-isotropic
laminates hereafter, as they contain all of the cross-piyeaugle-ply interfaces stated
before. For both quasi-isotropic laminates only the usabless components,.,
ando,, are given using the LD4 model. From Figlre 3.54 for extengéiom the
[£45,0,90], laminates ther ., at the0, 90 interface is identified as the most critical
one, through its high stress values across the whole fittitegval ofr. For bending,
stated in Figuré_3.55, the stress compongntat the+45 interface has the highest
values. For thg90, 0, +45]s laminates in Figure-3.56 for extension,. at the+45
interface has the highest stress values, while Figure 8/37einding identifies ., at
the0, 45 interface as the most likely interface to initiate delirtidga.
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Figure 3.54: Extension: fitted transverse stresses clogbetdree edge of the
[£45,0,90]; using LD4
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Figure 3.55: Bending: fitted transverse stresses close dofrde edge of the

[£45,0,90]; using LD4
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Figure 3.56: Extension: fitted transverse stresses
[90, 0, £45], using LD4
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Figure 3.57: Bending: fitted transverse stresses close dofre edge of the
[90, 0, £45], using LD4
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3.4 Conclusion

Three class of symmetric laminates were addressed witleces$p the free-edge
effects: the angle-ply laminafe-45];, two cross-ply laminatef), 90]s and[90, 0],
and two quasi-isotropic laminaté¥0, 0, 45|, and[+45, 0, 90]s. Moreover, the free
edge response of each laminate has been considered foradindoconfiguration:
in-plane extension and out-of-plane bending under unifpressure load. In angle-
ply laminates the singularities occur essentially dueedthnsverse sheat,,, which
is the predominant stress. The cross-ply laminates arergaed by the Poisson’s
ratio mismatch, which makes the transverse normal stresstist remarkable stress
component.

The quasi-isotropic laminates include both effects, whicbur to different ex-
tents, depending on the stacking sequence. In order to eetthieccomputational
cost associated to a full three-dimensional FEM analysig, application of two-
dimensional plate elements may be interesting. Compahiegcomputed three-
dimensional results in Ansys, as well as the presentedtsekoim literature with
the performance of the different CUF models, the followirtmpadusions could be
made:

e Generally modelling the free-edge effects with the LW medef at least
second order provide results close to those obtained by evoiah three-
dimensional codes.

e Using a simple in-plane mesh refinement is a very economic twagsses
the behaviour of a laminate. Refining through the thicknggsugh the in-
troduction of several mathematical layers per physicatiagrovides further
information about the singular behaviour.

e LW models provide the most accurate results for free-edfgetst

e ESL models are able to provide satisfactory results far filoenfree edge: in
these regions these models may represent a good comproetigeen com-
putational cost and accuracy. However, in the free-edgemegSL models
only approximate the steep stress gradients.

e The inclusion of Zig-Zag for ESL based models does only inaprslightly
their comparatively poor performance concerning the &edge effect.

e RMVT models fulfill the ICs a priori and provide better resuttompared to
PVD bases models of the same expansion order.

e The higher the expansion order, the better the congruertbethve reference

While applying LW models with higher expansion orders toftlee-edge effect
in extension and bending, the results provide the follovdagclusions:
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e The Power Law fitting is a reliable way to measure the singbéraviour of
the stress components.

e The Power Law parameters provide an intuitive way to comgéferent lam-
inates.

e The strongest singularities appear for both, bending atahsion, in angle-ply
laminates.

e The stacking sequence has a higher influence on the freeeffdgtin bending
compared to extension.

¢ With the exception of th@, 90] , laminate, the singularities are lower in strength
while comparing bending to extension.

In the following an estimate of the computational cost of -mensional CUF
models and three-dimensional models is discussed. Thiaie pliscretization of the
plate surface is the same in the three-dimensional modelshentwo-dimensional
CUF models: mesti/) has 32x 32 elements. However, bilinear approximations
are used in the CUF elements, while quadratic brick elemamsused in Ansys.
This results in only 1089 nodes in total for the CUF models) 8801 nodes for
the three-dimensional model in the in-plane direction. $hme mesh of a total
of 48 elements in thickness is used in the three-dimensimesh for the four layer
configurations. Inthe CUF we have for the LW elements a degrerydon the number
of layers additionally to the dependency on the order of liekhess function. The
total number of unknowns are listed in Table 3.13. Note thet.tM4 model has still
a lower number of total unknowns than the three-dimensiomadiel. For the four
layer configurations, half the unknowns are needed to aehley same results and
only a quarter if the LD4 model is used. Compared with the E®idats, even more
than six times less unknowns were used for EM4 and aboutta¢hith for the ED4
model.

Table 3.13: Total number of unknowns for the four layer |aates

Model | total Unknowns
Ansys 217156
LM4 111078
LM2 58806
LD4 55539
EM4 32670
EM2 19602
EMz2 26136
ED4 16335
EDz3 16335
ED1 6534
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Chapter 4

System Reduction via Model
Coupling

In the previous chapter, different kinematical models Hasen applied to problems
having very strong stress gradients in a small local regibcould be seen, that far
from the free-edge, the stress gradients are rather sniwerice simple kinematical
models deliver accurate results. On the contrary, refinedetscare needed in the
vicinity of the free-edge. This Chapter therefore dealshwite methods how to
couple models with different kinematics but same dimeraign The main issue
consists in saving computational time. In fact, only thenedi higher-order model is
used in the localized domain of interest, while the remgromerall global domain
will be using a lower order kinematical model. In this way ttomputational effort is
focused only in a small domain. In order to properly connbose different models
in their different domains, several techniques will be caned from a theoretical
point of view as well as their implementation into the FE Mwth

In this first overview the concepts of how the different donsadan be arranged
and how the connection can be established is presentedcissded. From this
global overview of different concepts, it will be the eXteadVariational Formula-
tion (XVF), which shows to be the most suitable one. Oridinalwas designed for
coupling models with different dimensionality. Hence itkoption to couple models
with the same dimensionality but different kinematics Wil presented. The chapter
is concluded by a numerical study on the XVF. For the sakenopbtity, the studies
are carried out on one-dimensional structures. Homogeandsandwich materials
are adressed.

4.1 Literature Overview

4.1.1 Differentiation of Techniques

In the past, different modeling approaches have been des@lovhich have been
often motivated by a multi physics context. Mainly domaingwiheterogenous di-
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mensionality but homogenous kinematical description liw@en taken into account,
or domains of homogenous dimensionality with heterogekmematics. Heteroge-
nous dimensionality means that local domains of interestnaondeled in a higher
dimensionality, often three-dimensional models. Consatjy the global domains
are made of models of lower dimensionality, like one-din@msl beam or two-

dimensional plate or shell models. In the context of thiskivoio dimensional het-
erogeneity is used. This work focuses on the use of diffddmematics for each sub
region of the structure. Therefore, at least two differeitt egions can be identified:
one containing a rather complex kinematics, named compexath hereafter, and
the global domain, using a simple kinematics, which is cqueatly the simple do-
main.

Regardless of the aspect of the geometric order of the twadanthree possible
configurations can be distinguished in order to combine aptexnwith a simple
domain. They are displayed in Figurel4.1. (ln) no overlap between the simple
domain€); and the complex mechanic8). is shownQ; N Q. = T'; (b) shows a
partial overlap between both domaifts and(2. such a€2; N Q. = Q,; in (¢) Q. IS
fully overlaid to the simple domaif,.

e o, Jros e o, ] 9 BES
@ (b) ©

Figure 4.1: Domain arrangement: no (a), partial (b) or catgpbverlap (c)

The decision of how the domains are arranged is mainly infleérby the way
the problem is treated. Having an overlapping arrangemikatin (b) and (c) is
of advantageous especially for techniques using heteeagsndimensional models.
However also some techniques considering homogenous diomatity considered
this type of arrangement. This is due to a rather strongréiffee in the kinematical
models used.

4.1.1.1 Non Overlapping Techniques

A classical method to link kinematical heterogeneous nwdethe Lagrange Mul-
tiplier Technique. To the mathematical formulation of theaimanical problem an
interface constraint function is added in order to minimilze difference between
the domains containing the different kinematics. Prages tha first to propose an
interface potential for a physical discontinuity throughimagle Lagrange multiplier
field, in the context of variational formulation in elastatts [59]. On the basis of
this classical two-fields formulation a method to combingalade kinematical beam
models in the context of the CUF was developed [12]. They idensd different

classical as well as higher order kinematical models by dofe§eries Expansion
from the neutral fibre of the beam structure. A chosen numiétacation of points

were used to set up a Lagrange Multiplier field to establighcthupling at the com-
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mon Interface. Different homogenous material structurigh somplex geometries
were considered, providing results of the kinematical togeneous model close to
the kinematical homogenous model.

Extensive studies have been done to give a flexible fornmuaif the Lagrange
Multipliers used for the connection at the interfaces betlecal and global domain.
Aminpour, Ransom and Cleary investigated the possibilftglicectly connecting
two completely different, non matching meshes in one siongleulation [[1]. There-
fore they used a spline method to model the common borderdeetthe domains,
as illustrated in Figuré_4.2. Three independently handiekhawns are present:
unknowns in the subdomains, the unknowns at the commorfaots and the un-
known representing the interaction at the interfaces. ‘e dnes are mainly the
Interface forces. All the three sets of unknowns are tregependently. This type
of technique is regarded as Three-field formulation. Ransguanded this technique
by a general approach using different solution technigliles finite differences, fi-
nite elements and finite volumes, which have favourableattaristics for each do-
main [62]. Therefore, he showed how the interface conditioave to be formulated
to pass from one solution method in one domain to the methed sthe opposing
domain. This is shown in Figuie 4.2 through the additionéérmediate Interface

Pintermediate-

rintermediate

Figure 4.2: Continuous spline formulation based on an iaddpnt discretization to
pass between incompatible domain repartitions

Different efforts by a series of authors have been done tfy uhe three-field
method in the context of coupling independently modellechdims . The most no-
table one was done by K. C. Park and Felippa [55]. Here thepmigently modelled
domains are coupled via localized Lagrange Multiplierstéad of one global La-
grange Multiplier set. They considered previous works fiken Atluri [2] as well
as the FETI (Finite Element Tearing and Interconnectingptthm by Farhat and
Roux [19] on coupling independently modelled domains. KP@rk and Felippa
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method expanded the previous ones by adding the possibibfirigid body motion
and floating sub-domains of non matching meshes in orderdblerthe method to
be used for crack propagation problems.

A possible reduction of this three-field formulation whitél setaining a local de-
scription is the elimination of the independent unknowntatcommon interfaces.
Through the construction of a suitable interface approkionait can be reduced to-
wards a Two-field formulation. This technique is known as tdoMethod presented
by Lacour and Maday [45] or Puso [60]. It still uses an indejeem Lagrange Mul-
tiplier field in-between the independently modelled doreaiBqually to the before
mentioned methods, the Lagrange Multipliers are definedllipdbased on the de-
scription of the adjacent sub-domains. However they arébaséd on a Lagrange
polynomial like in the FETI method, but rather on piecewiseér functions. Here
the piecewise linear functions are established using tidesiof the non-matching
meshes of the independently modelled domains.

An alternative technique has been presented by Blanco BtjalBased on the
two different kinematical descriptions, two Lagrange Nhpller spaces are intro-
duced. The classical principle of virtual variations isrdfere enriched by a dual
space between the kinematical variables and LagrangeMeis. It allows to cou-
ple heterogenous dimensionality and kinematics. Furtlegaild of this technique
will be given later in this chapter in the section 413.1.

The introduction of Lagrange Multipliers prohibits the biastructure of the linear
system describing the mechanical problem. H.G. Kinl [40]eitgyed therefore a
special interface element in order to avoid Lagrange Miigtip. In a moving least
squares approach, the new specific shape functions areluicid in an interface
element domain. This domain assures the continuity of teplaliement. Through
this localized approach, the numerical integration is fatift task.

Commercial FE Codes offer the possibility of the so-calléabgl local analy-
sis. The overall domain is described with a simple or low pkdeematical model
and one or more local sub-domains can be chosen for applgfimed geometric or
model representations. So, heterogeneous dimensioaalitkinematics are possi-
ble. Both domains have a common border. The results of thplsitacal model at
this common border are used as boundary conditions for tia $oib-domain having
the higher order kinematical model inside. Calculatioresraarmally done in at least
two subsequently steps, but also iterative methods have d&ygglied. Equally an-
other classical method available in commercial codes arkipluPoint Constrains
(MPC). They are frequently used in different applicatiaomginly to couple geomet-
ric heterogenous models. In the case of kinematical hetewmus modes, the two
domains are connected at the common interface through arsgdpelation between
the models used. This relation is applied at the discret levthe kinematical de-
scription, hence the available degrees of freedom (DOF}tarefore linked in a
suitable manner. This technique does not add new DOFs buisiespa behaviour
at the interface between both domains. In Fiduré 4.3, twldied displacement
fields through thickness of beam structures are shown. Todlifferent behaviours
need to be matched at the common interface. The complex nood#ie right is
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enforced through the applied condition to take the form efdimple model on the
left. Among the stated techniques, it is an exception aspuigly numerically mo-
tivated and does not rely on an energy principle. RecentMP& formulation for
eigenfrequency calculation and dynamic contact probleave bbeen developed by
Hetherington et al [30].

+
I

Figure 4.3: MPC enforces complex model to be compatible siitiple model

4.1.1.2 Partial Overlap

At least a partial overlap is used inside for the Arlequin Mbet introduced by Ben
Dhia et al [16]. This technique defines three zones: A domsingua simple kine-
matical model, a domain using a complex kinematical moddl the sub-domain
where both domains overlap. See configuratibnin Figure[4.1. Inside the over-
lapping domain, Lagrange Multipliers are used to estalthishconnection in a weak
sense formulation, representing a form of glueing forcaglthe common domain.
Due to the overlap, a partition of the energy between bothailosnis introduced.
Different possibilities to do so are studied in[26]. Applions of this technique to
receive detailed local results in sandwich structures teesn done by Hu et al for
geometrically linear([32] and nonlinear problends,|[34] 488]. In this work, the
Arlequin method was used to combine dimensional heterayenmodels. For the
local domain of interest, a higher dimensionality than ia tbst of the structure was
used to gain the desired detailed results. However BisaahiGiunta applied the
Arlequin Method to homogenous dimensional problems. Thergi@l of the local
refinement using the partial superposition of a lower ordertagher order kinemat-
ics in the context of the CUF are shown for beams [24] and pl@E Arlequin can
be reduced to surface coupling of the domains. This howeweot used frequently
as perturbations occur in resulfs [26]. This technique baldiscussed in further
details in the AppendixA.
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4.1.1.3 Complete Overlap

Several authors have studied the possibility to overlayobajl mesh with a local
mesh having different element size and different elemesteror

One of the most remarkable contributions were done by Fishi [&0]. They
introduced the superposition version of the FE Method, tezhas the s-Version or
S-FEM. Higher order hierarchical elements in the local dionaae overlaid onto the
global finite element mesh. Homogenous boundary conditidosg its common
boundary are applied to keep compatibility afiti continuity. The overall displace-
ment in the local area is the addition of the higher order nagghthe global mesh.
The solution for homogenous dimensional problems is obthin one direct step
with the possibility of incompatible meshes for the globatidocal domains. Fish
and Markolefas[[21] used the s-Version equally for the caiaian of layered struc-
tures, where they used ESL elements for the global domainLselements as
local overlays. Different polynomial orders are used fa tlisplacement field. In
this application, only the cross-shape of the laminate ished.

A Similar method was developed by J.W. Park et[al] [54], aethpo classical
displacement based and two-field assumed strain FE forimmgat This method is
capable of providing adaptive refinements inside the subaio of interest and fur-
ther needs no additional transition region or Multi-PoiminGtrains.

Refining locally element order and element size, is knowmasdh refinement.
Including these ideas into the coupling techniques wasuhgest of several authors.
One attempt to combine therefinement with the ideas of the s-Version are the works
on variable kinematics of Reddy and Robbins! [63]. The diffiee to the s-Version
is in the hierarchical element family considered, here tgable kinematics finite
elements. While in the s-Version for composites, the elémprodel the laminates
cross-shape, elements in the variable kinematics approadel the in-plane section
of the laminate. As the variable kinematics formulation waseloped for layered
structures, the higher order elements use a LW descriptidme elements in the
global domain use an ESL description. Different orders qfagmsion were used.
Reddy and Robbins considered up to second order polynothiaiggh thickness on
purely displacement based LW elements and up to third ordignpmials for the
ESL type elements. Unlike the s-Version, the global andlletanents have for the
in-plane direction the same order polynomial of their shfajpetions.

Spectral methods are appliedin[56] as an overlay of simatiasly refined ele-
ment order g-refinement) and sizeh(refinement). The laborios domain of the prob-
lem 2 is brought towards a simpler and larger domHincontaining(2. The chosen
II which will be used for the solution process, has to be fortealdn a way that in
the common regions of both domains the results will be cden.

An iterative two scale analysis method for local sub-domdias been devel-
oped by Gendre et al [22]. The method combines local and blodo#ributions.
The global domain is assumed to have linear elastic pra@sentvhich can be also
homogenized, while material and geometric non-linearéyn be included for the
local domain. It uses a two-scale approximation of the Schumplement of the lo-
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cal domain’s stiffness matrix. The use of a weighted contlnaof Dirichlet and
Neumann boundary conditions on the local domain enablatwely low number of
iterations and assures the convergence of the solution.

Finally, the zooming method [31] is a scale descending titerd-E technique.
Inside a global domain, a local domain of interest is defifdte mesh of the local
region is refined at each step. At the same time, the local ooofainterest is
redefined. The refined local domain will be a cut-out of thevimgs analysis, so
the new local domain is narrowed down in each so-called zogrsiep, shown by
Figure[4.4. Therefore the zooming method is used to locadeasres local stress
concentrations.

Figure 4.4: Principle of the scale descending Zooming Mg&tho

4.1.2 Comparison of methods

Based on the division of the three different domain arrargy@s) a more detailed
comparison of those existing techniques is done in Table Bdr each technique
some common aspects are compared. The first column is aleootiémtation of the
domain and the exchange of informations. This means for plaihthe exchange
happens origins from a coarse modébwards a fine modef or vice versa the fine
model is defined before the coarse model or even both at the @@, Further, due
to the different mathematical modellisations used, thaldishment of the connec-
tion is regarded via the unknowns included. Some are basétkatisplacements,
some on the stresses while some consider the sum of the total work, denoted by
3W. As a consequence, this requires for some techniques ativitecalculation,
while some other profit from the possibility of a direct cdition of the solution.
The domain arrangement is listed again for conveniencecatidg also for some
techniques the possibility to provide other domain arramggs. Some techniques
however need some additional interface formulations.

The most desirable technique seems to be a technigue havingenlap and a
global matching mesh, avoiding extensive additional &féor the transfer between
the domains. The recently developed eXtended VariatiomahElation (XVF) seems
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a promising candidate through the adoption of the diffeteadrange Multipliers.
These additional unknowns have the benefit to be of the sameds the kinemati-
cal models used and are strictly localized to the domairsfate. The XVF will be
therefore used within this chapter to establish the coimedtetween the different
domains. Further, it will be identified as an encompassingtdation for differ-
ent existing techniques. Among the different techniquesotobine heterogeneous
kinematics, the most used today are the Multi-Point Comg#alts relation with the
XVF will be given as well as for another recent technique,Ahlequin Method.
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Table 4.1: Technigues for Coupling heterogenous Kinersatic

model direction

connection via

solution

overlap

additional Interface

Name| coarse/fine | u| o | XW | direct| iterative | no | partial | yes |
MPC cef X | X X X X X
Submodelling c—f X X X
Spline method [1]. c—f X X X X
Collaborative by Ransom [62] f—c X X X
FETI [19] cef X X X
XVF [7] c—f X X X
Interface Element [40] fc X X X X X
Arlequin [16] cf X X X X
S-FEM [20] c—f X X
Mesh Superposition Method [64] c—f X | X X X
Variable Kinematics [63] c—f X X
Spectral by Parussini [56] c—f X X
Zooming method [31] cef X X X
iterative two scale [22] c—f X | X X X
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4.2 Modeling of One Dimensional Structures

The kinematics used in the present approach are discusas.sdttion deals with
the modeling of beam structures, and in particular for fayléred structures, as pre-
sented in section 2.3.

In the following, the reference coordinate system, giveffrigure[4.5b is used.
The cross-section of the beam is denafeand his thickness.

S

Figure 4.5: Coordinate system of a beam structure

4.2.1 Kinematical Models

The basis for all classical and advanced kinematical teedsimade up by the thick-
ness expansion functiofi(z). In the displacement based ESL approaches, it de-
scribes the assumed deformation behavior through thisknes

A general displacement field can be expressed as:

{ ui(z,z) = w(r) —zvi(x)+ f(2) (0(z)+vi(z))
9 (4.1)
ug(z,2) = wo(z) +2zwi(z) + 2° wa(x)

The membrane elongation is represented;ppnd the deflection of the neutral
fibre by wy. The rotation of the section is given By while v, represents a contri-
bution of the transverse shear deformation. This leads sf@mable section along
with the beam’s length and the thickness. In this expressianstretching effect is
also taken into account by two additional unknown functiansandws. The linear
term w; represents the coupling with the membrane component anduaératic
termws, the actual thickness dilatation. The according strainsbeadeduced as:

en(z,2) = wvy(z) —zvi(z) + f(z) (0(z) +vi(z))
{ ms(x,2) = wy(r) +zwi(z) + 2% wy(z) —vi(z) + f'(2) (O(x) +vi(x))
esz(z,2z) = wi(x)+ 2z we(x)
4.2)
Note that the transverse normal straip; is available with this displacement
formulation.
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Some classical kinematical theories can be deduced deygeadithe expression

of the thickness expansion functigiiz) and the suppression of the transverse normal

effects. Each of the assumptions and resulting capabilitiehose classical theories
are discussed hereatfter.

4.2.1.1 Euler-Bernoulli Theory

The simplest kinematical model is known as the Euler-Bdinkinematics for beams
and as Kirchhoff kinematics for plates [43]. As this theoned not include trans-
verse shear effects, the section will remain normal to therakfibre. Due to this
strong relation between the deflection and the non-exigtitgtion, the shear de-
formation v, is replaced byw,. For the beam structure the mechanical behavior
simplified towards a generalized plane stress behavioein thz plane. No rotation
of the section is present, which leads to the thickness ekparunctionf(z) = 0.
The formulation of the displacement field for a beam striectaithe following:

_ _ /
{ Ul(CC,Z) - UO(:C) ZZUO(ZC) (43)
us(xz,z) = wo(x)

As shear is one of the important components for layeredtstres, the kinemat-
ical hypothesis assumed are not sufficient for their deoripTherefore, for beams
made of isotropic material of medium or thin slenderneds,ttieory provides good
results.

4.2.1.2 Timoshenko Theory

The inclusion of constant transverse shear into the modeinagtions leads to the
First-Order Shear Deformation Theory, for beams also knaarthe Timoshenko
Theory [74] and for plates equally known as Reissner-Mmdllheory. The section is
not forced any more to remain perpendicular to the referéneer surface. In con-
trast to the Euler-Bernoulli Theory, an additional rotatibis present, but constant
through the thickness. Therefore, a constant shear strdireisection is present. In
this casef(z) = z. Hence, the displacement field can be written as follows:

{ ui(z,2) = wvolx) + 2 60(x) (4.4)
U3(£C,Z) = w(x)

No transverse normal effects are included. From the strafrssses can be cal-
culated via Hook’s law, which is given in Equatidn (2.12). énstant shear strain
gives a constant shear stress, which requires thereformtifoeluction of a shear
correction factor for the shear stiffness. As the shearection factors depend on
the geometry, loadings and boundary conditions, this solu$ not very convenient.
This model however is able to deliver good results also fantewith inhomogenous
material for medium to thin slenderness.

For other types of beams, a quadratic distribution of thesiseexpected, which
vanishes at the bottom and the top of the layup. Hence it isrédole to directly
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gain a parabolic distribution of transverse shears straiierefore a model with a
variable rotation of the cross section through the thickrngseeded.

4.2.1.3 Touratier Sinus Kinematics

In order to achieve a higher order distribution of the shaasjnusoidal displace-
ment distribution was proposed by Touratier ef al [36]. Tlpldcement field in its
classical form, considering the derivative of the deflecti¢ instead ofvy, is:

{ u(z,z) = wvolx) —zwy(x) + (%sm%’z) (0(z) + wj(x)) (4.5)
uz(z,z) = wo(x) '

Due to the sinusoidal distribution of the displacement, ghear strains have a
cosinusoidal form. This kinematical theory now also pregidood results for thick
beams, made of inhomogenous material.

4.2.1.4 Touratier Sinus Theory with Transverse Normal Effet

Finally the Touratier Sinus can be enhanced to include dedtion in the transverse
direction, named Sin-z2 Theory. The displacement field e3tlor = direction is
expanded with the terms up to the second order. A strondaelbetween deflection
and its derivative is not implied any more:

2

w(r,z) = wvo(x) =z i)+ (2singe) (0(x) +v1(2))
{ U3(ac,z) = ’U)O(x) +Z’U)1(£C) + 2z wzh(x) (46)

This theory is of interest for thick beams of homogenous anrinogenous
materials, which are exerted to transverse effects on fhertbottom surface of the
beam.

4.2.1.5 Comparison of kinematical models

The deformation behaviour of those different theories isgared in Figuré_416,
showing the increasing flexibility from Euler-Bernoulli &bry towards the Sinug’
Theory.
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Figure 4.6: Deformation of Euler-Bernoulli Theory (a), Tashenko Theory (b), Si-
nus Theory (c) and Sinus’ Theory (d).

Based on the unified expression in Equatfonl(4.1), these imode be expressed
using:

f(z) = 0, w; = we =0, v =wy, representing the Euler-Bernoulli Theory
f(z) = z, w1 = we=0, v =w, representing the Timoshenko Theory
flz) = %sz’n%, w; = wy =0, v; = wy, for the Touratier Sinus Theory
f(z) = LsinZz, for the Sinus:? Theory

4.7)

Other thickness expansions can be imagined from this caompéation, enabling
even more flexible deformation through the thickness. ltisible that for layered
structures, more refined kinematics with a non constantiootean provide a good
answer of the local deformation. Regarding the FE impleatent using different
approximation functions, a complete description is predith AppendiX_C.

4.3 eXtended Variational Formulation for One
Dimensional Approaches

In this section the XVF will be adapted in the framework of ghesented one-
dimensional models with different kinematical models. risulting systems and
the coupling terms, the dual products, will be discussedhercase of homogenous
dimensionality. Finally its FE implementation is sketched

4.3.1 eXtended Variational Formulation (XVF)

4.3.1.1 Problem Formulation

Coupling models of heterogenous dimensionality and kinesiavas the original
aim of the formulation of Blanco et al[7]. The structure isided by a smooth
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artificial internal boundary, or Interfacé, into two domains: the complex domain
Q. and the simple domaifi; such that) = Q, U Q. andl', = Q4 N ., see Figure
[4.7. Recall that the simple domaiih, contains the simple kinematical model using
Su and the complex domaifl, the complex kinematical model usifig.

The original Principle of virtual Displacements in Equati@.3) is therefore
considered by a pair of displacements= (*u, “u). Over the common Interfade,
a continuity conditions for displacements and stressesaas fulfilled:

Su="C‘u in H/*(T,) (4.8)
‘c'n="C°°n in H Y*T,) (4.9)

Qs

n
% S
\ c )

Figure 4.7:Q2. and(); with common interfacé’, in a Beam Structure

The classical variational form of inner and outer work, likeEquation [(2.b),
needs to be expanded with the terms regarding the inteffaceThese terms are
expressed as a vanishing difference in the weak sense lretiveaisplacements
of both domains at the interface. The scalar parameter [0, 1] is introduced in
the variational formulation of the problem. It will be asségl to either use a pure
expansion of the simple model with a value~of= 0 or a reduction of the complex
model withy = 1.

Additional to the inner and outer work of Equatidn (2.11) neaviables at the
interface are introduced: a pair of two Lagrange Multigler= (°A, “\), according
to the kinematics used in each subdomain. For a better @verlliunknowns of the
XVF are written in the Table4l2. The additional couplinghesrare:

L coupie (Pu, “u, 5 X, C X, 65w, 0u, 6° X, 0°X) =
v [ A (Pu— 6u) dF+(1—7)/ ‘A (0°u — 0%u) dT°
T, r

+’y/ 55)\-(5u—cu)df’+(1—fy)/ X (Pu—“u)dl
Ty o

(4.10)

Therefore the mechanical problems reads:
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Table 4.2: Overview of variables in the two sub-domains

Qs | Q.
stress tensor *o | ‘o

strain tensor| ‘e ‘e
displacement “u | ‘u

virtual displacement 6°u | 6u
external traction| “t ‘t

external force| f | ¢f

traction at interfacg X | ‘A
virtual traction at interface 5\ | 6°A

For a giverry € [0, 1] find (*u, “u, *X,°X) € % x U. x Z5 x £, such that:

OIL;nt (Pu, 0°u) + 010 (Cu, 0u) =
0 coupte (P, “u, X, °X, 6%, 6“u, 0° A, 5°X)

411
+ 00zt (Pu) + 0X1ep(“u) ( )
V(0%u, 0°Uu, 0° X, 0°N) € 0Us X 0U, X 0.L5s X 6%,
with the following definitions for both domains:
__ [s 1 . s __ Sa7
Us = {*u e H (Q); ‘ur, = °u} (4.12)

U. = {*u € H'(Q.); ‘ur, = “u}

0% andd?%, are spaces of the admissible displaceméhtand%,.. Therefore
Y = % = HY*T,). All other definitions remain as in the initial problem
mentioned before.

The Euler-Lagrange Equations, derived from Equation {4.40the interface
provide the following relations:

v (Pu —“u) =0 onTl,

1-=7)Cu—C“u) = 0 onT,

5o 5n = A+ (1—7) A onT, (4.13)
‘o ‘n = A+ (1= X onl,

The Euler-Lagrange Equations identify the new unknowres Lidigrange Multi-
pliers, as the tractions at the interface. It can be notibad these tractions corre-
spond to°* for v = 1 and“X for v = 0 which characterizes the originality of the
XVF approach. Equally the Euler-Lagrange Equations shawttie displacements
have a vanishing difference in the integral sense.

4.3.1.2 XVF Dual Products

Several dual products are constructed in Equafion {4.1@®stablish a vanishing
difference in weak form between the displacements at tle@moon interface. These
dual products are of the forrfra O0A - u dI'. Dual products of the same space can
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be evaluated without further efforts, however those préglaoupling two different
spaces need a projection. As given by Blanco €tlal [7], theptexrspace has to be
projected into the simple space. In the sense of the duabiptgd: has components
which will deliver no work together witd* .

A decomposition into parallel and orthogonal parts of theplex displacement
field ‘u is done:

‘u=‘uj+ur (4.14)

Where the orthogonal parts of the displacement fields willdediver any work
in the sense of the dual product:

/ X-Cu dl' =0 (4.15)

The projected displacement fi€ld,| is expressed in the same form as the simple
displacement fieldw. With the Equationd(4.14) anf (4]15), the relations betwee
the components of the unknowfa | and the initial complex displacement field
can be expressed. This is shown hereafter by coupling thes Stnwith the Euler
Bernoulli models.

Coupling of Sinusz? with Euler Bernoulli Theory  The simple and complex dis-
placement fields are given in Equatidn {4.3) and Equafio8) (despectively. The
parallel complex displacement field is expressed as thelsidigplacement fieléhu.
Therefore we have:

Sup(z,2) = Svo(x) — 2z Swh(x)
{ Sug(z,2) = Swo(x) 0 (4.16)
Cup(z,z) = C“vo(x) — 2z “vi(z) + f(2) (Coi(x) + 0(x))
{ CU3("E, Z) = cw(](fE) + 2z CZU1(IE) + 22 CZUQ(.I) (417)

{ Cury(w,2) = o () = 2 “wpy (z) (4.18)

“ug, (x,2z) = “wo, (x)
The Lagrange Multipliers are only active on the interface ey are constructed

analogue to its according kinematical field. The number ditaahal unknowns for
the Lagrange Multipliers are hence according:

Az, 2) = Ay — 2 Ay
{S)\g(m,z) . (4.19)

The applied projection using Equations (4.14) dnd (4.1)is:
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0 = /63)\-(Cu—cu”)dl‘:

/G(Ss)\vo [(CUO - CUOH) + (f(2) —2)“v1 + f(2) 0 — 2 Cw,OH]
T

—2 8Ny [(Cv0 = uo)) + (F(2) = 2) o1 + £(2) 0 — 2 “uf |
+6° A {(Cwo + 2 Cwy + 2% Cwq — “wp, )| dI’

(4.20)

From Equation[(4.20) the following identities can be extedc

V0" Ay, ¢ “vo, = + /F <Cv0 +(f(z2) —2) 1+ f(2) 00—z Cw{)“) dr
V8% Ay CwOH = %/ (cwo + 2wy + 22 ng) dr’
Iq

V8T Ay Cw’OH =1 /F <z (“vo — “vo,) +2 (f(2) —2) “v1 + 2 f(2) 69) dr
with [, 1d0 = A and [ 2°dl' =1

(4.21)
For a symmetric cross shape, Equation (4.21) gives thewioip relations be-
tween the parallel and the complex displacement field:

V(SS)\UO : CUOH = CUO

V6 Ay “wo, = “wy + 12Cwy (4.22)
YNy = —2 g — (1) vy

In the AppendiXB, the same calculations are presented écahipling between
Sinusz? and Timoshenko models.

Matrix Formulation A matrix notation is introduced for both the displacement
fields and the Lagrange Multipliers. Based on the unified &sgion given in Equa-
tion (4.1), a generalized compact notation can be introdtuce

u = ‘F€,, iccs}

with 8u = [1)0 wo V1 0 w1 U)Q]T (423)
and
10 fm)—= f(z) 0 0
F=1p 1 0 0 =z 22 (4.24)
Following Equations[(4.23) and (4]24), the Lagrange Mli#tipare the same:
IN=FIE,
. 4.2
With €y = [y Mo Aoy A Ay Awo]” (4.25)

115



Chapter 4. System Reduction via Model Coupling

In the case of the Sinug’ and Euler Bernoulli kinematics, the following thick-
ness functions are:

e |10 f(2)—z f(2) O 0| 4, (1 0 —=z
F=1o 1 0 0 =22 FTlo1 o (4.26)
with the adapted generalized vectors:
€€, = [vo wo v1 0 wy wy]” $€, = [vo wo w’O]T
T T (4.27)
Ex = Dy Ao Ao Ao A Aaal” EN = [ Auy Aug

Using these expressions, the coupling matrifesan be established. For the

case of the simple kinematics with the simple Lagrange pligts, the following is
obtained:

/ SN Su dl = / S EVSFTSF s, dU = 6°EL By, °E,, (4.28)
a r
h 1 0 —z
with B, = / 0 1 0|dz
5 \—2 0 22

Applying directly the dual product on the unprojected ve€to with the simple
Lagrange Multipliers’\ delivers:

/ X -Cudl = 5°EL B,. €, (4.29)
1 0 —z
0 1 0
h b _2432 0 _ 24 ézQ
with B, = / s dz
o= 0 022
0 z 0
0 22 0

According to Equatiorf{4.15), the dual product has to beutaled as the product
of *X - “u);. While doing so and inserting the obtained relations betveg and‘u
in Equation[(4.2R), the same is obtained as if one direciyutates® X - “u, as shown
in Equation [[4:29). In the case of dimensional homogentit/same mathematical
spaces are present due to same base kinematics. The spheesofiple model is
included in the complex model. The same is valid for the duadipct of*w with A
to deduce3,, where we havé,., = B,

Finally B.. can be also defined as:
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/ SN - “u dl = 5°ETL By °E, (4.30)
Ty
1 0 flz)—=z f(z) 0 0
. 0 1 0 0 z 22
: 2 flz)=2 0 (f(z) =27 (f(z)=2)f(x) 0 0
with B.. = / dz
| fe 0 (F@-2f) (=) 0 0
0 z 0 0 22 28
0 22 0 0 23 A
This gives a matrix form of Equatiofi (4]10) as:
5Hcouple(sgm c£u7 38)\7 c“:)\v 5881“ 5CSU7 585}\7 508}\) =
5#&," 0 0 VBss (1—7)Bys] [*Es
0°E, 0 0 YBse (1 —7)Be| |Ey (4.31)
588)\ WBss WBsc 0 0 SS)\
(568)\ (1 — ’Y)BSC (1 — 'Y)Bcc 0 0 68)\

4.3.1.3 About the Choice ofy in XVF

In Equation [[4.ID), the scalar parametee [0, 1] is introduced. From the compact
form in Equation[(4.31), different interface conditiong @amposed with adoption of
different values of the scalay. In order to evaluate the role of this parameter, the
equations are rewritten, considering the two previousiglived kinematics.

Only the terms associated with the variation of the Lagraklystipliers are
given:

S ET Y Bys 5Ey — °EL Y By °€y + 6°ET (1 — ) Beg *Ey — 6°ET (1 — ) B € =
v 6% Ay [Fv0 — “vol h 4 (1 — 7y) 0Ny, [Pvo — vo] b
2 2
+7 0% Ay [Swo — Cwgy — %ng} h+ (1 =) 6Ny, [Swo — Cwg — %cwg h
h3 R3 (w3 — 24), 2h3 }

S s, ../ c
+v 0 )\“’6 |:E Wy — 13 v1 + 3 0

I
2h3 h3 (m—4 h3
+(1 =) 6N {—st() - chl - —CH}

273 272
II
h? (73 — 24) h3 (73 + 6m — 48) h3 (7 — 4)
1 _ c s, c, c
(1 =7) 0 [ 1273 10 1273 u oms !

III

Applying factorization on the termk, I1 andII1 gives:
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I: My [(Swg —cv1) b5 + (%0 +“v) 2%5]
I1T: —56)\9 [(Sw{) — Cvl) %TL; + (09 + CUl) %]
IIT: =N, | = (= o) B + (Cuf — 0 — 2°01) 28 + (0 + 0q) 455

(4.33)

Therefore, we can identify the restrictions satisfying thaditions at the inter-
face. The deduced sets of relations on the displacementawnps are now dis-
cussed. From Equatioh (4]32), two cases can be distingliishe

(i) Fory e [0,1]
"vp = “vo
Swo = Cwo + }f—;cwz (4-34)
Cv1 = =0 = Swy,

For this case, the conditions show that the rotation of tkesssection and the
unknownuv; of the complex model have the same value as the derivativieeodi¢-
flection of the simple model at the interface. It seems to becag restriction, the
additional variable of the complex model being reduced &g @me unique variable
of the simple one.

(i) Fory=1
S,UO — C,UO
“wo = “wo + 22wy (4.35)
wh = (1 2) oo — 20

For the case ofy( € [0, 1[) the most constrained conditions are implied as it in-
volves 4 conditions at the interface. Only 3 are implied far tase of{ = 1). I11
andII can only be satisfied simultaneously if both complex rotatiosariables’d
and“v; have the same value as the rotational variable of the simpénriatics®wy,.

As a consequence, the Sintistheory gets restricted to equal the form of the Euler-
Bernoulli theory at the interface. As final remark, it is i@sting to note, that both
condition do not provide any link fchwy, representing a symmetric linear membrane
effect in the thickness dilatation.

In the numerical examples in the following, only two caseB ke considered:
(i) v = 0 and (ii)y = 1. As shown before, the weak conditionpf= 1 gives a more
flexible solution.
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4.3.1.4 Finite Element Formulation of XVF

In the FE system of the eXtended Variational Formulatiomssic terms and the
additional entries of the dual products from Equation_(#34dve to be expressed
in a discrete form. The stiffness matrices of the domé&lpsand (2. are classically
constructed according to Equatién (IC.6) given in Appendia@ are:

XL (Pu) = 0°q Kq, °q for Q

0IL;(‘u) = 0°q Kq, “q for Q. (4.36)

The additional coupling entries become visible at the odi@gonal. For the use
in a discrete FE formulation, the matrices from Equatlo@I}#are multiplied with
the according shape functions of the concerned node, tiveréfisB = N7 B N.
The discrete Lagrange Multiplier DOFs are denoted by“L.

For the coupling of two sub-domains having one interface, fthite element
system is:

KQS 0 v Bgs (1 — 'Y) By, °q Sf
0 Ko, ¥ Bse (1—=7) Bee ‘q °f

¢ = 4.37

v B v Bg 0 0 SL 0 (4.37)
(1=7v)Bse (1—7) Be 0 0 ¢L 0

Note that this system has zero components on the diagonialpiidhibits the ad-
vantageous banded form of a homogen FE system. Therefodasthsolvers cannot
be used as they do not cope with all configurations possitdpeéially while having
differing domains sizes and multiple interfaces requirapaeld solver algorithms.
Either solvers with preconditioning and matrix decompoaithave to be used, or
algorithms considering block systems. Two approaches eéved a solution: for
only small B compared taK, and K, a preconditioning can be sufficient. For
larger block matrices, a complete LU decomposition is néedeshort introduction
of the XVF implementation in the FE code EvalEF is given in Apgix[D.

4.4 Unification of Approaches using the XVF

Through the assignment of value to the scalar parameter0, 1], the XVF adapts
for the homogenous dimensional problems presented het@otmain cases. Ac-
cording to Equation{4.11), two sets of Interface condiieould be found, one im-
posed withy = 1 and one imposed witl = 1. This simplification allows to further
identify identical interface conditions imposed by othexttniques.

4.4.1 The Arlequin Method without Overlap

Considering the Arlequin Method [16], a complete discusstan be found in the
AnnexA. In this section, only the parts needed to have arvatgrice with the XVF
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are presented.

In the sectiom 41, the Arlequin Method is considered asrtiegie having a par-
tial overlap. The zone of the partial overldp,, indicated in Figuré 418, can be
reduced to a surface coupling at a common interfaceAs in XVF, a coupling for-
mulation has to be established. Two coupling operators hage formulated in the
Arlequin Method: The purely displacement badedoperator and théf ' operator,
which equally considered at the same time the strain andspédement field. Here
only the first one, the purely displacement based operatonrsidered:

L?: C\u) = / A du dQ, (4.38)

Equal to Equationd (4.11) and (4110), related to the XVF aagh, the inter-
nal and external work, as well as the coupling term can beessgd using thé?
operator:

01T = / o 6°e dQQ + / ‘o 6% dS
)} - = fq0°udd+ / fq6u dQ2
{a fe (4.39)
+/ fa 5Sudﬂ+/ fq0ud2
00 Qe

M oupie = / A (6°u — 0°u) dT°
The jump over the displacement fields is here restrictedeg@@tmmon interface,
which restricts also the Lagrange Multiplieks to be defined only at the interface.
In an article by Belytschko and Guidadult |26], the constiarcbf the Lagrange Mul-
tipliers according to the coarser discretisation of the smb-domains showed to
provide better and more robust results. Hence, restridtiegArlequin Method to
surface coupling with thé&? operator, will provide the same results as in XVF, while

usingy = 1.
[ Q>
Q;

Figure 4.8: Arrangements of domains in the Arlequin Method
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4.4.2 Penalty Technique

In order to impose a predefined relation between several WOHe different kine-
matical theories, Multi-Point Constrains can be appliedistrete level at the com-
mon nodes on the interface. Several techniques are awilablder to impose them
on the systems of Equations: penalty or least squares ortegéntroduction of La-
grange Multipliers as new unknowns. According[to [5] allsbeechniques are sub
cases of Multi-Point Constrains. Here penalty techniquesél in comparison.

As a simple preliminary example Euler Bernoulli theory isgected with Timo-
shenko theory. In order to establish the connection, aioeléetween the derivative
of the flexional DOF of Euler Bernoulli and the cross sectiotation in Timoshenko
at their common node on the interface is needed. In the petwlhnique a value
of @ is imposed on a combination of several different degreeseafdormu; to w,,.
They are multiplied with factorg, to a,, whose signs and values are according to
the imposed relation. They are grouped into a global vectoespecting the global
order of the DOFs in the total system of equations. At thecidig nodes it contains
the imposed value, otherwise only zeros:

U= ajug + - + aply (4.40)

In this first preliminary example, the difference betweemrtblevant variables of
both kinematical fields has to vanish at the interface, theze: = 0. Equally to
Equation [(4.1D) a potential in variational form can be wrnitfor the Penalty tech-
nique:

5HPenalty(su7 ‘u, P>\, 0w, 0°u, (5P>\) =

Fi X 0 (44

In the case of penalty techniqué\ is fixed and not a additional unknown.
Therefore the relations applied have to be valid in stromgnfover the whole In-
terfacel’,. For the example of coupling Sinug with Euler Bernoulli theory the
potential in variational formulation gives:

6HPenalty(su> C'UJ, PA, 5SU, 66’11,) =
% PA [(Svo — ‘o) + (Sw6 — ‘v — ‘v — CQQ)]

31PN [P — “at — a1 — ) (4.42)
+5 X (fou — “6u)
From which the following restrictions for a givém\ are obtained by:
vV P Sy =
VA Swh = vy (4.43)

vV PX: cup = =<6
V P Swg = —Cwp + w1 + wo
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This is giving the same as restrictionsyas- 0 in Equation [4.34).

In general we can state, that having a higher number of unkadwthe complex
domain, which are related to a lower number of unknowns ofsihgle domain,
XVF using~ = 0 will match the Penalty technique. In contrast, XVF using- 1
provides a more flexible formulation.

For the adaption to the discrete FE system, the predefitedill be denoted as
G. For numerical efficiency it has to be 3 or 4 orders higher ti@nhighest stiff-
ness term in the overall FE system. The modified stiffnessixn&f’ is constructed
together witha:

0=(K+GaTa)q—f:K'q—f (4.44)

The Results obtained by inside this study where calculaiddaPenalty factor
G of 100,

4.5 Numerical Study of One Dimensional Structures

This sections treats the numerical implementation of theoittical formulations.
Two materials are considered: a homogenous material antavgzn material. Both
will be tested on a simple supported beam under a patch lagtbsen. As the con-
figuration is symmetrical, only half of the configuration sed for the FE solution.
The maximum axial stress will occur at the beams middle archiaximum shear
stress will be present at the support. The coupled modelstas with the introduc-
tion of one interface at first. This test is carried out in orieevaluate the influence
of the refinement with complex kinematic elements. Aftedgatwo interfaces are
applied in order to capture the appearing maxima of botlsstcemponents, each
one appearing at one of the half models extremes. This ewelll by set study of
a sandwich structure. For this case a new coupling opemfmoposed and tested.
This section will be concluded with a study concerning traguagion of the overall
number of unknowns without the loss of local precision.
The test case is described as follows:

e Geometry: rectangular beam with= 10 and slenderness ratio= % of 5,10
and 1000

e Boundary conditions: simply supported beam

e Load: patch loady on 10 per cent of the beam’s length, located at the beams

center
e Material properties:

1. Homogeneous Materiall = 1 MPa andv = 0.3
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2. Sandwich Material: Layer thicknessésih/0.8h/0.1h

a) Face:F;; = 131.1 GPa ,Ey = E33 = 6.9 GPa ,G12 = 3.588
GPa G135 = 3.088 GPa ,Go3 = 2.3322 GPa ,v1o = 113 = 0.32,
V93 = 0.49

b) Core: F1; = 0.2208 MPa , E2; = 0.2001 MPa , E33 = 2760 MPa
, G2 = 16.56 MPa , G135 = 545.1 MPa , Go3 = 455.4 MPa ,
12 = 0.99, v13 = 0.00003 , o3 = 0.00003

e Mesh: number of the elemenig, along the half length = 20, 40, 60, 80

e Results: normalized usingi; = 100 us %‘qu T = ST = 2, with
Y'O — E?gace

p—

X

?/20

012

Figure 4.9: Test configuration of a beam subjected to a patthat the beams center

45.1 Assessment of Models

In this section, only one model will be used for the wholedtnee (denoted monomodel)
without any application of any coupling technique. Thigat to highlight the effect

of each model on the results. The different models (Eulen@dli denoted Euler,
Timoshenko denoted Timo, Sin-z2) are assessed on both agem®ous and a sand-
wich beam for various slenderness ratios and for differeeshms. The results are
summarized in Tablds 4.4 ahdW.5. They are compared with §iitsessued from

a 2D analysis performed with the commercial code ANSY S withverged meshes.
These are reported in Taljle ¥.3.

These tables show that a meshMf = 20 elements provides converged results
for thick to very thin beams witk = 5,10, 1000.

For the very thin case, the results are rather similar fortlihee models except
for the transverse shear stress. The Sin-z2 yield more @ecigsults. For very thick
and moderately thick structures, the accuracy of the dafle@nd the transverse
shear stress is also improved by the use of the Sin-z2 model.
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Table 4.3: ANSYS meshes with PLANES82 elements for homogesi@od sandwich
beams

homogeneous sandwich
S NJ: Nz NJ: Nface/Ncore/Nface
5| 80 20 80 12/48/12
10| 80 10 80 6/24/6
1000| 720 6 720 2/412

N, is the number of elements across the thickness

For further comparison, Figurés 4110 dnd 4.12 show the diefleof the beam
for the two materials. The main differences occur for thedgsach structure. Euler-
Bernoulli model yields poor results. The maximum deflectidrthe Timoshenko
model is 20% less stiff when compared with the referencetisoluwhereas the Sin-
z2 results are satisfactory with error rate less than 4.5%e distribution of the
transverse shear stress along the thickness is also refmesa Figure$ 4.11 and
[4.13. As expected, the results computed from the consttuélation for the Sin-z2
model are closer to the reference solution than these @uotdiom the simple mod-
els. Using the integration of the equilibrium equations tla results are in rather
good agreement with the ANSYS solutions.

In the following, the simple kinematical model will be eithiéuler-Bernoulli or
Timoshenko kinematics; the complex model will be the Sirkamatics. While
Tabled4W and 415 show thaf\g. = 20 mesh is convergedy, = 40 will be used in

the following in order to ensure that all the observed effeste due to the coupling
method only.
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Table 4.4: Homogeneous Material: assessment of differérggproximations

us3 T11 T13 T1350
s N (x:é,zZO) (x:é,z——h) (x=0,2=0) (x=0,2=0)
20 -8583.05 0.7141 - -0.3750
40 | Euler -8583.05 0.7129 - -0.3750
60 -8583.05 0.7127 - -0.3750
80 -8583.05(9.59%) 0.7126(0.30%) - -0.3750(1.42%)
20 -9607.01 0.7140 -0.2512 -0.3662
5 40 | Timo -9607.01 0.7129 -0.2503 -0.3690
60 -9607.01 0.7127 -0.2501 -0.3696
80 -9607.01(1.19%) 0.7126(0.30%) -0.2501(34.25%) | -0.3698(2.79%)
20 -9454.10 0.7581 -0.3833 -0.4118
40 | Sin-z2 -9454.10 0.7565 -0.3822 -0.4120
60 -9454.10 0.7562 -0.3820 -0.4121
80 -9454.10(0.42%) 0.7560(6.40%) -0.3819(0.39%) | -0.4121(8.33%)
Ansys -9493.85 0.7105 -0.3804 -
20 -8582.91 0.7141 - -0.3750
40 | Euler -8582.91 0.7129 - -0.3750
60 -8582.91 0.7127 - -0.3750
80 -8582.91(2.37%) 0.7126(0.67%) - -0.3750(1.37%)
20 -8838.90 0.7140 -0.2550 -0.3735
10 40 | Timo -8838.90 0.7129 -0.2513 -0.3746
60 -8838.90 0.7127 -0.2506 -0.3748
80 -8838.90(0.54%) 0.7126(0.67%) -0.2503(34.17%) | -0.3749(1.39%)
20 -8783.70 0.7272 -0.3879 -0.4111
40 | Sin-z2 -8783.01 0.7261 -0.3833 -0.4119
60 -8783.01 0.7251 -0.3825 -0.4120
80 -8783.01(0.09%) 0.7258(1.17%) -0.3822(0.53%) | -0.4120(8.36%)
Ansys -8471.34 0.7105 -0.3804 -
20 -8582.91 0.7141 - -0.3750
40 | Euler -8582.91 0.7129 - -0.3750
60 -8582.91 0.7127 - -0.3750
80 -8582.91(0.02%) 0.7126(0.01%) - -0.3750(1.03%)
20 -8582.91 0.7141 -0.2500 -0.3750
1000 40 | Timo -8582.91 0.7129 -0.2500 -0.3750
60 -8582.91 0.7127 -0.2500 -0.3750
80 -8582.91(0.02%) 0.7126(0.01%) -0.2500(34.02%) | -0.3750(1.03%)
20 -8583.00 0.7141 -0.3627 -0.4121
40 | Sin-z2 -8582.91 0.7129 -0.3627 -0.4121
60 -8582.91 0.7127 -0.3627 -0.4121
80 -8582.91(0.02%) 0.7126(0.01%) -0.3627(4.28%) | -0.4121(8.76%)
Ansys -8584.50 0.7125 -0.3789 -
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Figure 4.10: Homogeneous Material: deflection of the d#ifeiKinematicss = 5
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Table 4.5: Sandwich Material

: assessment of different REE@@mations

us o11 T13 T1350
S N (xzé,zzO) (x:é,z:—%) (x=0,2=0) (x=0,2=0)
20 -0.26832 0.29265 - -0.05533
40 | Euler -0.26832 0.29265 - -0.05533
60 -0.26832 0.29208 - -0.05533
80 -0.26832(80.95%) | 0.29205(37.29%) - -0.05533(0.02%)
20 -1.01485 0.29265 -0.02587 -0.05533
5 40 | Timo -1.01485 0.29217 -0.02587 -0.05533
60 -1.01485 0.29208 -0.02587 -0.05533
80 -1.01485(27.95%) | 0.29205(37.29%) | -0.02587(53.24%) | -0.05533(0.02%)
20 -1.32690 0.53668 -0.06613 -0.05562
40 | Sin-z2 -1.32690 0.53388 -0.06612 -0.05563
60 -1.32690 0.53336 -0.06612 -0.05563
80 -1.32690(5.80%) | 0.53316(14.48%) | -0.06612(19.52%) | -0.05563(0.56%)
Ansys -1.40859 0.46572 -0.05532 -
20 -0.26831 0.29265 - -0.05533
40 | Euler -0.26831 0.29217 - -0.05533
60 -0.26831 0.29208 - -0.05533
80 -0.26831(52.31%) | 0.29205(21.40%) - -0.05533(0%)
20 -0.45494 0.29265 -0.02589 -0.05532
10 40 | Timo -0.45494 0.29217 -0.02587 -0.05533
60 -0.45494 0.29208 -0.02587 -0.05533
80 -0.45494(19.13%) | 0.29205(21.40%) | -0.02587(53.24%) -0.05533(0%)
20 -0.53710 0.37522 -0.06615 -0.05562
40 | Sin-z2 -0.53709 0.37388 -0.06613 -0.05563
60 -0.53709 0.37365 -0.06613 -0.05563
80 -0.53709(4.53%) 0.37357(0.54%) | -0.06613(19.52%) | -0.05563(0.54%)
Ansys -0.56258 0.37157 -0.05533 -
20 -0.26831 0.29265 - -0.05533
40 | Euler -0.26831 0.29217 - -0.05533
60 -0.26831 0.29208 - -0.05533
80 -0.26831(0.02%) 0.29205(0.01%) - -0.05533(0%)
20 -0.26833 0.29265 -0.02587 -0.05533
1000 40 | Timo -0.26833 0.29217 -0.02587 -0.05533
60 -0.26833 0.29208 -0.02587 -0.05533
80 -0.26833(0.01%) 0.29205(0.01%) | -0.02587(53.24%) -0.05533(0%)
20 -0.26833 0.29266 -0.06761 -0.05563
40 | Sin-z2 -0.26833 0.29218 -0.06761 -0.05563
60 -0.26833 0.29209 -0.06761 -0.05563
80 -0.26833(0.01%) 0.29206(0.01%) | -0.06761(22.19%) | -0.05563(0.54%)
Ansys -0.26836 0.29203 -0.05533 -
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4.5.2 Homogen Beam Test
45.2.1 One Interface

Using one interface between the complex and the simple dyrived configurations
are possible. Therefore, it has to be evaluated, which aangiipn is the more ef-
fective one. As shown in Figufe 4114, either the complex Zemose to the simple
support or under the load. Three test are carried out foethe@s configurations:
XVF with v = 0, v = 1, and the Penalty technique.

In Figure[4.15 both configurations were applied, using EBlEemoulli kinemat-
ics as simple model and Sinus kinematics as complex moded ifthrface posi-
tioned at half the length of the model, sozat 2.5 = % Only v = 1 is displayed.
The same tendencies are obtained+for 0 and penalty method. The momomodel
results are provided for comparison in order to measurentheeince of the coupling.
The curves show, that the kinematical heterogenous modelseaping the tendency
of the local model used within the subdomain. Moreover, tleximum deflection
is influenced by the coupling. The maximum values are in betwiée results of
the two monomodels. An overall higher deflection is obtaif@dthose heteroge-
nous kinematical models using Sinus kinematics at the ft twvere the support is
located.

The according numerical values to the two configurationgHerthree tests are
listened in the Table4l.6 for the thick structure which is thest severe case. It
gives the maximum deflection and the maximum stresses. Alegsaare compared
with the according values of the monomodels. First of altam be noticed that the
XVF approach withy = 0 and the penalty method gives always the same results.
Furthermore, only the value of the maximal deflection changgh the involved
technique of coupling. Since the displacement is a globahtty, it depends on
both the choice of the simple model (Euler-Bernoulli or Tshenko) and the domain
modeled by the complex kinematics. On the contrary, thesséi® computed in the
complex domain is independent on of the coupling of the n®dal of the choice
of the simple model. The numerical value achieved corredpomly to these of the
complex kinematics. This feature is very attractive in tragrfework of the design of
composite structures in which the computation of the stessthe region of interest
is of major importance. Further this is a very promising hefew the aim of reducing
the total number of unknowns. This effect needs a furthatysin order to see how
much of the complex elements are really needed. Up to nownteefdce was fixed
atz =2.5 =L
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Table 4.6: Homogeneous Material: valuesigf o1; andz3 forT'y atz = 2.5,s =
5

Euler - Sin-z2 Sin-z2 - Euler
Type U3 11 U3 013
Penalty || -8904.31| 0.7564 | -9111.31| -0.3821

v=0 | -8904.31| 0.7564 || -9111.31| -0.3821
v=11] -8915.35| 0.7565|| -9121.80| -0.3822
Timo - Sin-z2 Sin-z2 - Timo
Type U3 011 U3 013
Penalty || -9443.62| 0.7564 || -9595.97| -0.3821
v =0 | -9443.62| 0.7564 || -9595.97| -0.3821
v =11 -9454.10| 0.7565| -9607.01| -0.3822

monomodels
Type U3 011 013
Euler Bernoulli || -8583.05| 0.7129 -
Timoshenko|| -9607.01| 0.7129| -0.2503
Sin-z2 || -9454.10| 0.7565| -0.3822
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In the following, the positioning of the interface is reviewvin further detail.
The Interface is therefore shifted from one of the beams émdards the beams
center. The distance is varied each time with a length inergraqual to half a the
beams height. This results ik with a € {0.5,1,1.5,2}. For a slenderness ratio of
s = % = 5 the length is hencaé. The deflection and stresses are evaluated at the
location of their maximum valuesiz = £, » = —24) for u3 anday; respectively
(x =0, z = 0) for 7135. Table4Y gives the value for the displacements, whileggabl
[4.8 and 4.B provide the values for the stresses. The resdltaie that the size of the
complex zone has very little influence on the result of theed#ifin and the in-plane
stress. Itis only the transverse stress who seems to bkedittmore sensitive. This
is shown in Figur€ 4.17, where the distributionssg§ through thickness at = 0 is
shown. In (a) fo2. = 1 - h and in (b) forQ. = 2 - h. In (a) the same distributions
for Penalty andy = 0 are obtained, whiley = 1 is already matching the Sin-z2
Monomodel. In Figuré 417 (b) we can see, that all the threpled models have
the same distribution as the Sin-z2 theory. In both confiipma we always retrieve
for the coupled models the distribution of the complex model

Q

\

h Q
2h S

Figure 4.16: Principal of refinement zone correspondin@isgtimes the height
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Table 4.7: Homogeneous Material: sensitivitymy refined with Sin-z2 at each of

beam ends separately , s =5

refined at support

u3
Type || 0.5-h 1-h 1.5-h 2-h
Penalty || -9596.52| -9596.52| -9595.97| -9595.97
v =0 || -9596.52| -9596.52| -9595.97| -9595.97
~v=1 || -9607.01| -9607.01| -9607.01| -9606.46
refined under load
Type || 0.5-h 1-h 1.5-h 2-h
Penalty || -9445.80| -9443.62| -9443.62| -9443.62
v =0 || -9445.80| -9443.62| -9443.62| -9443.62
v =1 || -9454.66| -9454.10| -9454.10| -9454.10
monomodel values
Timo T3 = —9607.01
Sin-z2 Tg = —9454.10

Table 4.8: Homogeneous Material: sensitivity@dn ; refined with Sin-z2 at each of

beam ends separately , s =5

refined under load

Typel| 05-h | 1-h | 15-h | 2-h
Penalty || 0.7502| 0.7562| 0.7565| 0.7565
v =01 0.7502| 0.7562| 0.7565| 0.7565
~v=11 0.7561| 0.7565| 0.7565| 0.7565
monomodel values
Timo o11 = 0.7129
Sin-z2 711 = 0.7565
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Table 4.9: Homogeneous Material: sensitivity®p; refined with Sin-z2 at each of
beam ends separately ,s=5

refined at support
713
Type || 0.5-h 1-h 1.5-h 2-h
Penalty || -0.3731| -0.3819| -0.3822| -0.3822
~=0 || -0.3731| -0.3819| -0.3822| -0.3822
~v=1 1| -0.3822| -0.3822| -0.3822| -0.3822

monomodel values
Timo 713 = —0.2503
Sin-z2 o153 = —0.3822
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Equation [[4.3B) imposed a stringent condition foe= 0 at the interface, which
could be only satisfied by having all rotational and shear paments of the same
absolute value. In the variational formulation, the sanm@slang displacement dif-
ference at the interface is enforced by different factorsvi@ Lagrange Multipliers.
This concerns the coupl )\, (Sw(, — “v;) together with§°\,, (*w(, — “v1) as well
as the couple&“\y (“v; — ©0) together withdc\,, (‘v1 — “6). Therefore one might
think of easing this stringent condition by loosening ond p&one of the couples.
This leads to canceling one of the double occurring Lagravigkipliers. This is
done in Figuré_4.18. While canceling one of the double o@ogrjump minimiza-
tions, it can bee seen that the overall system gets to rigiddmes not provide a
smooth displacement distribution around the interfaceraage. The stringent con-
dition for v = 0, which implies the restriction of the complex model to thericof
the simple model, cannot be loosened.
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Figure 4.18: Propagation af; over lengthz for cancelled double conditions; s =5
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4.5.2.2 Two Interfaces

As the general interest is to capture all the maximum stgeaséhe same time, el-
ements with the complex kinematics will be applied at bottiseat the same time.
Hence two interfaces will be used. The mesh with = 40 elements is used hav-
ing 20 elements in the centre associated with the simple hasdkat each end 10
elements using the Sin-z2 model, as shown in Figurel 4.19akFegular mesh, the
positions of the interfaces afig = é andzy, = %l At first, the impact of the local
refinements on the global behavior of the kinematical hgemous model is studied.
Therefore results gained with Ansys are given for compariséigure[4.2D shows
the distribution ofz;; at the beam’s lower surface,= —%, along the beam'’s axis
for monomodels and coupling models. Also for all models,uFéf4.21 shows the
distribution forz3 at the beam’s mid-fibre surface,= 0, along the beam’s axis.
For both, monomodel references and Ansys references aga givthe upper part,
while the values obtained by with the XVF are shown in the lopaat of the graphs.
Note that the penalty technique was identified before to @eame conditions and
distributions asy = 0 in the lowest graph. For convince it is not shown hereafter.

For the two values ofy, two different characteristics can be obtained. While
havingy = 1, no difference is visible along the length f@f;. However, forz3 a
sudden change between the levels at the interface can be Neanthat for Euler
Bernoulli theory,73 is not present, but for the kinematical heterogenous models
it can still be perfectly recovered in the domains using &rkinematics. While
having~ = 0, a transition between the models close to the interfacesiblei In the
case 0f71; this is rather a disturbance in the value, as all kinematiwadels deliver
very close results. However for both valuesyptarting from a point with a certain
distance from the interface, the mono model results arevezed.
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Figure 4.19: Position of refined zones in beam model

The occurring transition for = 0 is further studied. In Figurie 4.P2, the position
of the interface is changed. From the initial positions taeymoved further inwards
in order to have two time40 per cent of the model using complex kinematics. Hence
the positions of the interface afig = é andz, = f—é It is shown, that along the
length, the distributions af;; anda3 have the same transition zone and magnitude
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models; s =10

in disturbance, which is hence independent from the interfaosition for a given
mesh. In Figurd, 4.23, the number of elements is changedftrer while the posi-
tion of the interface is kept the same. A mesh with 80 elemmestglt is overlaid onto
the results obtained with 40 elements. The distributiomesacthe beam’s length of
711 anday3 are given. Here it is shown, that the transition zone and rihadm are
also independent from the number of elements used. The tar@s33) fory = 0,
have shown, that the occurring disturbance can be minimiaeceducing the differ-
ence in the values of the DOFs, provided by the differentrkiaical models. For a
thin beam, having = 1000 all kinematical models showed in Taljle 4.4 to provide
the same values. The length distribution for= 1000 in Figure[4.2% shows that for
~ = 0 no more disturbance of transition is present. All DOFs oftthe kinemati-
cal models adapt to the same absolute values. No significatipation effort is
needed by the Lagrange Multipliers any more. Note two odogiparticularities for
713 as for the Euler model no transverse shear stress is prdeetiie kinemati-
cal heterogenous model a jump at the interface occurs. éfuttle to the very thin
beam, the FE approximation is not able to deliver a contisutistribution ofz3
any more.
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4.5.3 Layered Structures

For the layered and the Sandwich Material tests, the douldeface configuration
from Figure[4.1D is used. Results are presented again ftk Bgams withs = 10
and thin beams witk = 1000, for configurations as shown in Figure 4.25. At first
it will be shown, that a new coupling operator is needed, Wicable to take into
account the material characteristics of the layers by denisig a highly anisotropic
sandwich beam. The behaviour of the new coupling operatbhb®iassessed first
and is this section is then completed by its application.

N~

072

Figure 4.25: Sandwich Beam Configuration with Local Presswad

4.5.3.1 Modified Coupling Operator

For XVF, a modification to Equation (4.110) is applied. Théfiséiss coefficient’;;

of each layer is now included into the duality product, besithe geometry, which
alone is not sufficient. The four duality products for layestructures are integrated
over all Nz, layers, counting fronk = 1,..., N :

4 . N hy .
0'EY Bij oy 7Eu withBi; = Ch / ‘FTIF dz (4.45)
k=1 h

k-1

(4.46)

The sandwich test described in the beginning of this sediBis considered with
two interfaces, but the material properties is chosen sttt .. = 1000-C1y,,,,
so as to highlight the interest of the new coupling operaldrerefore, results are
provided with and without the inclusion of the stiffness ffioeent C4,. The effect of
this modification is shown in Figufe’ 4126 where the transvetsear stress over the
beam length is given.

For~v = 1 without the modified dual product, the distribution of theess has
a , while the same abrupt change from one model to anotheroimetlhe homoge-
neous material case can be observed with the modified dpabtjuct. In the Euler
Lagrange Equation§ (4.113), the Lagrange Multipliers weemiified as stresses. For
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the proper establishment of the Multipliers not only thegetric informations are
needed but also about the materials stiffness. As a consegtiee origin of the peak
is a ill-conditioning problem of the original dual productrinulation. The values of
the Lagrange Multipliers of the original dual product areessive and, as shown, do
not fulfill their role as to satisfactorily minimize the diifence in the two displace-
ment fields. As a ESL formulation is used for the one dimeradibeam structures,
this effect was not visible for homogenous materials. Hbeeestiffness coefficient
C11 is only a constant factor, regardless of the kinematical ehctdosen. Due to
the ESL formulation, the ridigity terms of each kinematinadel can be of several
orders difference in magnitude. Therefore not only the getdmshare of the com-
pound does contribute to the overall ridigity. This modifica is done accordingly
to a proposition for the Arlequin Method by Hu [32] and[33].

0.25

I I I
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Figure 4.26: Sandwich Materialr;; over lengthx for v = 1; 1000 - Cy;,,,. =
Cllface; s=10

The influence of the Youngs moduldg; is now further studied. Therefore the
same test configuration is used. The difference here is therimlaused: the same
soft core material times a factor is applied to the diffedagers. It can be stated:
C11 e = matCilco,e, Whereay,,, is varied froml to 1000. The results are listed
in Tabled 4.10 t6 4.12.

The Tables for the first interfade, 4110 &and 4.11, show a dsarg Lagrange Mul-
tipliers with a growing factorv,,.;. While comparing the results of the unmodified
with the modified duality product in the same Tables, no ckarfgr the Lagrange
Multipliers with v = 1 are visible. Comparing the values of= 0 shows a slight
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increase with the rising factor for the rotational DOFs. Bhéngent interface con-
dition imposed helps the Lagrange Multipliers of the rata#il DOFs, even without
the modified coupling operator, to adapt with the growindgdea.,,,.;. Further it can

be noted, that for the factors 6&,, always a value close tt0!" is needed. In the
Penalty technique the fact6i was chosen to b&)'?, according to recommendation
by Wissman and Schwarz [[79], in order to provide stable tesil further justifica-
tion for the chosen magnitude 6f and the equivalence of both techniques. On the
second interface, located & = 3.75, the same values for the unmodified duality
product occur, but having inverted signs, as shown in Tallg 4

Table 4.10: Sandwich Material: Lagrange Multiplierslan atz; = 1.25; Sin-z2 &
Euler;y =1;s=10

Qmat H S)‘UO ‘ S)\wo ‘ S)\w(/)
with C'; conditioning
1] —0.50951 - 1072 | —0.22645 - 103 | 0.33967 - 10*
10 || —0.18197 -10~3 | —0.80875 - 10% | 0.62996 - 10°
100 || —0.24496 -10~* | —0.10887 - 10% | 0.68883 - 102
1000 || —0.25374 -107° | —0.11277 -10' | 0.69532 - 10!
without 1 conditioning
1] —0.11250 -10® | —0.50000 - 10% | 0.75000 - 10°
10| —0.11250 -10% | —0.50000 - 108 | 0.75000 - 10?
100 || —0.11250 -10% | —0.50000 -10% | 0.75000 - 10°
1000 || —0.11250 -10% | —0.50000 - 10% | 0.75000 - 10°

Table 4.11: Sandwich Material: Lagrange Multiplierslan atz; = 1.25; Sin-z2 &

Euler;y =0;s=10

Amat H “Ayg ‘ “Awy ‘ “Ng ‘ “Auy
with C'{; conditioning
1| —0.50951-1073 | —0.22645 - 103 | —0.26392 - 10* | 0.59915 - 10*
10 || —0.18197-1073 | —0.80875 - 102 | 0.40819-10% | 0.31531 - 10*
100 || —0.24496 - 10~* | —0.10887 - 10% | 0.21116 - 10* | 0.70761 - 10°
1000 || —0.25374 - 10~° | —0.11277 - 10' | 0.24176 - 10%> | 0.77464 - 102
without C'1; conditioning

1] —0.11250-10% | —0.50000 - 108 | —0.58275 - 109 | 0.13229 - 1019
10 || —0.11250-10% | —0.50000 - 108 | 0.90352-10° | 0.64141 - 10'°
100 || —0.11250-10% | —0.50000 - 108 | 0.11493 - 10'° | 0.72561 - 1010
1000| —0.11250-10% | —0.50000 - 108 | 0.11425-10'0 | 0.72328 - 100
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Table 4.12: Sandwich Material: Lagrange Multiplierslay) atz, = 3.75; Sin-z2 &
Euler; withoutCy1; v =1;s=10

AOmat S)\vo S)‘wo S)‘w6
1] 0.11250 - 10% | 0.50000 - 10% | —0.22500 - 1010
10 || 0.11250 - 103 | 0.50000 - 108 | —0.22500 - 100
100 || 0.11250 - 103 | 0.50000 - 10® | —0.22500 - 100
1000 || 0.11250 - 102 | 0.50000 - 10% | —0.22500 - 100

4.5.3.2 Sandwich Structure

Hereafter the sandwich structure with its face and core mahts tested. As de-
sired with the complex kinematics at both extremes to rgliapture the maximum
values of both stress components. Only the modified dualagyct from Equation
(4.43) is used.

The normal stress;; distribution along the beam length is shown in Fidure 4.27
for the monomodels and the Sin-z2 - Euler - Sin-z2 as well asSih-z2 - Timo -
Sin-z2 coupling. For the normal stress, the choice of theoimmodel has no influ-
ence, so only one result with the Euler model is represemédle havingy = 0 the
discontinuity with the transition is present at the inteefain the zone of the complex
model where far from the interface the effect of the localimad is well captured.
Continuous distributions can be achieved with= 1. Accordingly for the trans-
verse stres&3 in Figure[4.28, where foty = 0 the transition is present. Far from
the interface, the values are in good accordance with theomodel results. For
~ = 1 an abrupt change of the levels is observed. Here the unioéstunonomodel
distributions are recovered right at the interface in btith,simple and the complex
model.

Evaluating the thickness distributions of the stress ab#®m middle foF; or
at support 3 are given in Figure 4.29. The kinematical heterogenous faddéow
perfectly the distribution of the complex kinematics, hemdso in the layered case,
the local models response is preserved. It is also the case=00, the end of the
beam being not affected by the transition zone of the cogplin
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A last study on the sandwich beam is presented hereaftecaled to the influ-
ence of the size of the complex zone. Before<fot 0 a transition zone was present,
which must not disturb the results. Hence, the influence efsithe of the complex
zone is next studied for two cases= 0 andy = 1. A regular mesh of 20 elements is
used for the half beam. The number of elements using the sikipématical model
is varied in the central portion of the half-beam. This resirl a change of the size
of the simple and complex regions. From a mesh consistingnlgf 8in-z2 models
the number of elements with changed stepwise up to 18 elemiesaing only one
complex element at both extreme of the half-beam. The maximormal stress
and shear stress@&sgs are evaluate for each step. An error rate is defined as follows

—Sin—z2

Acy; = 100 2714 representing the variation of the maximum value of the

0,
according stress. Figures 4130 and #.31 show the erroferaga increasing number
of simple kinematics elements.

The presented results lead to the conclusion, that 1 yields better results, in
particular for the transverse shear stress. Only one congdament can be used
without affecting the quality of the results at the end oflleam. Fory = 0, the size
of the complex zone must be multiplied by four to achieve anreate of 2% for
the transverse stress. For the in-plane stress only a ga&itsadbtained. In contrast
to the transverse shear stress, which is affected mainlpdsl keffects, the in-plan
stress is dominated by the global behaviour of the whole mdeee especially in
therms of the deflections. An unbalanced kinematically heterogenous model will
not provide a smooth global behaviour.

An illustration of the efficiency of the XVF approach is givenFigure[4.32,
concerning the transverse stress distribution along thedength. Here a configu-
ration of only two complex element at each of the end is used-y= 0 the stress
distribution is disturbed by the transition zone, leadiadoiver maximum values in
the zone of interest. For = 1 however the stress distribution provides the desired
maximum value and a better congruence for the last two comglments, inside
21 < z < L. This attractive feature allows to confine the richer and potational
more expensive model in a very small region where accuregdssss are indispens-
able. This provides therefore a drastic reduction of themaational cost.
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4.6 Conclusion

The main goal of this study is to reduce overall computatieffart, without loss of
local precision. Therefore, different kinematical modsigh different FE approxi-
mations were used. Each within local sub-domains, whegedtethe most suitable
to deliver the desired results. For the kinematical modsd¢sludifferent formulations
of the Lagrange Multipliers were possible. In the presewtsk of dimensional ho-
mogeneity, the projection of the complex towards the sirkpplematical model ren-
dered the same results as without projection in the sen$e afutality product. This
lead to the identification of two different interface comalits, depending on the value
assigned to the scalar parameterone fory = 1 and one fory # 1. It could be
identified, that whiley # 1, the stringent interface conditions ¢f= 0 were present.
Also an application of XVF towards multilayered structuvess addressed. Through
the introduction of a new coupling operator for multilayerstructures, robust and
mechanical correct results could be provided.

Summing up the key aspects, for coupling of kinematicaltgtegenous models
via XVF and Penalty method, it can be stater that:

e the Penalty technique is included in XVF for= 0.
¢ the local response of each kinematical models is kept.

e for v = 0 perturbations in the complex model domain close to the faxtes
can be found, having a transition from the complex modellleweards the
simple model level. Far from the interface the undisturbechglex model is
achieved.

e for v = 1 an abrupt change from the complex model level towards thpleim
model level is obtained. This allows using smaller compleréins, which
are covering only the zone of interest.

e areduction of the number of total number of unknowns is fxbssespecially
forv = 1.
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Conclusion and Outlook

5.1 Conclusion

This work presented an overview of different techniques tmdeh layered struc-
tures, especially composites. The modelling approach waslynbased on the all-
encompassing CUF, which can also be adapted to the kinexhagipothesis used
in the one-dimensional models. Two classes of descriptimre distinguished: The
ESL type and the LW type descriptions. Kinematical hypattessused for the mul-
tilayer in the ESL descriptions was shown to be adaptable rimodified form per

layer in the LW descriptions.

The different models were evaluated on the free edge effectamposite plates,
applied to uniform extensional and bending loads. A simpiplane mesh refine-
ment was delivering reliable results for the CUF models.sTirbvided detailed re-
sults in order to understand the general mechanics of eathdée, and at the same
time was more economic than an equivalent 3D modeling appro& the vicin-
ity of the free edges high stress concentrations in the veaBs stress components
are present. In a linear elastic approach they are havinggalsr behaviour. Only
higher order kinematical models were capable to provideastel stresses close to
the free edge. Further it was the LW models that could proxétiebly results in the
intralaminar region. These models did further profit frora tieeded model refine-
ment in thickness direction via the use of several mathealaayers per physical
layer, which enabled a better visibility of the singular &elour. EM models showed
to be not as cabable to deliver the same amount of singulavimir as LM mod-
els. Among the CUF models, the LM models were able to proviithér detailed
prediction of the singularities.

Via the power law fitting approach, it was possible to gain asueement on
the occurring singularities in the different laminates. vidg only two parameters
it provides an intuitive measurement for the singular sees Here, the singularity
strength was based on a distance to the free edge, whereeastfirgss value is as-
sured. The resulting material data was based on an effautigilus theory, using a
homogenization via mixing rules of the volumetric share lfés and matrix. Micro
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mechanical effects were neglected. This has to be kept id ihame wants to apply
a failure criteria.

Via the power law parameters for the stress components ipassible to com-
pare the free edge effects in extension and bending for thnées under consid-
eration. The confrontation showed, that for equal defoiznagnergy, the effect in
extension is in the most cases more pronounced compareadinge In bending,
the stacking sequence has a major impact on the singuagfipearing. From the
CLPT one can see that the stiffness terms for the membraidktyigre invariant to
the position in the lay-up, however the rigidity terms fontdimg are. Due to the high
rigidity of the outer layers in the case of tfie 90, laminate, the singularity strength
is of the same order in extension and bending.

Viathe CUF models, compared with the results obtained fitwr8D code, it was
shown that only the cost expensive higher order LW modelgigea reliable results
close to the free edge. However far from the free edge, indgmmn where the hy-
potheses of the CLPT hold true, also ESL models provided gesults. They are of
special interest as they are very inexpensive regardingpatational cost. Therefore
it is desirable to model the laminate with the costly inexgyem ESL models in the
plate’s centre and use the precise LW elements only closketdrée edges. The
overall system size will be reduced and hence computatmwsis. The overall num-
ber of the degree of freedom determines them, which are theowms of the FE
system. This calls for a suitable connection method, whitheasame time does not
provoke extensive additional computational costs. The X5 identified as such a
method. As it uses a non-overlapping domain arrangemeshvess not involve a re-
dundant set of unknowns from both, the complex and the sikiplmatical model.
Its particularity is that the overall mesh can be kept ang tré element type change.
Further, the construction of the Lagrange multipliers, chtdre used to establish the
connection, is based on the kinematical models used. Havwdifferent formula-
tions are possible, assigned by the scalar parametér this work, the connection
between different one-dimensional ESL kinematic withatiéint FE approximations
has been studied. When the complex kinematical model is withdy = 0, the
conditions imposed at the interface were restricting thegex model towards the
kinematics of the simple model. Therefore a transition & ¢bmplex model close
to the interfaces was observed. In contrary, using the sikipematical model, with
~ = 1, less restrictive conditions were imposed, allowing arupbchance of the
levels at the interface. Both formulations showed theiratéliy to provide the de-
tailed response of the complex model far from the interfaiee XVF was shown
to be able to reduce the overall computational costs, thralg use of inexpensive
simple models. It was further shown that the domain usingkrkinematics could
be extended withy = 1. The advantages of the XVF using= 1 are promising for
further applications.
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5.2 OQOutlook

As a base to measure the singularities occurring in the itycof free edges, the
power law fitting was introduced. Its major drawback is itstimeanatical formula-
tion, allowing only to be applied to monotonous and strigthgitive or negative stress
distributions. A sign-chance for monotonous distribusiemfrequent in the free edge
effect, depending on the laminate considered. An exparione power law with
a third parameter can be imagined, in order to account ferkimd of distribution.
Other types of singular stress distributions might be aereid, as a waveform dis-
tribution which is occurring especially 90, 0]s cross-ply laminate. Nevertheless a
new measurement for this type of distributions has to beddeapart in order to keep
comparability between the formulations.

Up to now only symmetric laminates have been investigatedrder to further
investigate the difference between the free edge effeaiing and extension, also
other laminates have to be regarded. Therefore, unsynualeas well as asymmet-
rical laminates are of interest. As they have a strong cogptietween the flexion
and membrane behaviour, different response to the two {qebtare expected. Due
to those coupling effects of those types of laminates, ddit stress concentrations
are expected.

Concerning the application of the XVF, further developnseare needed in order
to couple ESL with LW formulations. This concerns also thepimg of PVD and
RMVT formulations. Due to the dimensional homogeneity, iknresults would be
expected. In contrary to the presented one-dimensionabapp, using purely ESL
models, additional sampling points through thickness appethe LW formulation.
Here the integral mean applied in the XVF will be formulateédcpwise per layer.
While usingy = 1 the weak fulfilment of the interface conditions, based orEB&
kinematics, is very promising.
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Conclusions

Ce travail a présenté un apercu des differentes teabaige modélisation des struc-
tures stratifiees, en particulier les matériaux compssit’approche de modélisation
a été principalement basée sur 'amplectif CUF, qui f@alement étre adapté aux
hypothéses de la cinématique utilisée dans les modileBmensionnels. Deux
classes de description ont été distinguées: le typekEfgL!'et les descriptions de
type LW. Il a été montré que les hypothéses cinémasiqutdisées pour le multi-
couches dans les descriptions ESL peuvent étre adapséudarforme modifiee par
couche dans les descriptions LW.

Les differents modeles ont été évalués sur les effetbords libres des plaques
composites, appliqués a des charges uniformes d’ewrterside flexion. Un simple
raffinement du maillage dans le plan a fourni des résultatdes pour les modeles
de la CUF. Cette technique de modélisation a permis de ldes résultats détailles
afin de comprendre les mécanismes généraux de chaqtiééstde plus, elle est
plus économique qu'une approche de modélisation 3Dvatgrite. Au voisinage
des bords libres, des concentrations élevées de carsalas composantes transver-
sales sont présents. Dans une approche élastiquerdindsiont un comportement
singulier. Seulement les modeles cinematiques d’urecsdpérieur étaient capables
de fournir des contraintes élevées a la proximité dulllibre. En outre, ce sont les
modeles LW qui pourraient donner des résultats fiables @arégion intralaminaire.
Ces modeles en outre ont profité du raffinement du modédessaire en direction
de I'epaisseur grace a l'utilisation de plusieurs cagcimathématiques par couche
physique, ce qui a permis une meilleure visibilité du cortgroent singulier. Les
modeles EM ont montré de ne pas étre aussi capable deirfémmméme quantité
de comportement singulier come les modeles LM. Parmi ledates du CUF, les
modeles LM étaient capables de fournir plus de détailsitegularités.

L'expression des contraints sous la forme exponentielfggrenis d’obtenir une
mesure sur les singularités qui se produisent dans lé&saiffs stratifies. Avec seule-
ment deux parametres, il fournit une mesure intuitive pesicontraintes singulieres.
Ici, la résistance a la singularité est basée sur untardie du bord libre, ot une valeur
finie des contraintes est assurée. Les données du nuatégaltant sont basées sur
une théorie de module effective, en utilisant une homeéigation par les parts volu-
migues des fibres et la matrice. Les effets micromécaniqueété négligés. Ceci
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doit étre gardé a I'esprit si I'on veut appliquer un eré de rupture.

Utilisant les parametres de la forme exponentielle ddéréifits composants des
contraints c’était possible de comparer les effets de blore au lieu (pour dire a la
place ?) des chargements d’extension et de flexion pourkgigs étudiés. La con-
frontation, en assurant la méme énergie de déformaftos tbs deux chargements, a
montré que I'effet en extension est dans la plupart desloagpononcé par rapport a
la flexion. En flexion, la sequence d’empilement a un impaajenr sur I'apparition
des singularités . De la CLPT on peut voir que les termesgildité de la membrane
sont invariants a la position dans le stratifie, mais les\és de rigidité de flexion
le sont. Grace a la rigidité importante des couches estedans le cas du stratifie
[0,90],, la résistance a la singularité est du méme ordre dexrtehsion et la flexion.

Par I'intermédiaire des modeles de CUF, par rapport agxltats obtenus avec
le code commercial 3D, il a é&té montré que seulement led&trs colteux d’'ordre
supérieur LW ont fourni des résultats fiables a proxénditi bord libre. Cependant,
loin du bord libre, dans la région ou les hypothéses delRTsont valides, les
modeles ESL ont donné de bons résultats. Ills sont paéiement intéressants
pour leurs trés bas codts de calcul. Il est donc souhaitdbl modéliser le strat-
ifié avec les modeles ESL peu coliteux dans le centre deatpelet d'utiliser les
eléements de LW précises que prés des bords libres. La tdbbale du systeme
est réduite, ce qui diminue le colt de calcul. Le nombrébalale degré de lib-
erté détermine la taille, a travers les inconnues ddérdifits éléements du systeme
FE. Il faut pour cela une méthode de connexion adaptée dgns le méme temps,
ne provoque pas dimportants colts de calcul. La XVF aiééntifieé avec un
tel procédé. Comme il utilise un agencement de domaine sscouvrement, il
n’inclus pas des inconnues redondantes a la fois, du reat#la cinematique com-
plexe et simple. Sa particularité est que le maillage dlpbat &tre maintenu et on
change seulement le type d’éléement. En outre, la congirudes multiplicateurs
de Lagrange, qui sont utilisés pour établir la connexist, basée sur les modeles
cinématiques utilisés. Deux formulations differensesit donc possibles, et sont at-
tribuées par le parameétre scalajreDans ce travail, la connexion entre les differents
unidimensionnels d’'une cinématique ESL avec differemeproximations FE a été
étudiée. Lorsque le modele cinématique complexe d&éuavecy = 0, les condi-
tions imposées a l'interface restreignaient le modetagexe vers la cinématique du
modeéle simple. Par conséquent, une transition dans lelmoedmplexe dans la prox-
imité des interfaces a été observée. En revanche, ksaatile modéle cinématique
simple, aveey = 1, des conditions moins restrictives ont été imposéegucpermet
un changement brutal des niveaux a l'interface. Les detmdtations ont montré
leur capacité a fournir la réponse détaille du mod@mplexe loin de l'interface.
La XVF a montré sa capacité de réduire les colts des lsaglobaux, grace a
I'utilisation de modeles simples peu coliteux. |l a égasat été déemontré que le
domaine utilisant une cinématique simple pourrait étemndu avee = 1. Les avan-
tages de la XVF utilisant = 1 sont prometteuses pour d’autres applications.
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Perspectives

Pour mesurer les singularités qui se produisant au vajsida bord libre, I'expression
des contraints sous la forme exponentielle a été intted&on inconvénient majeur
est sa formulation mathématiquement, qui permet seuleomenapplication sur des
distributions des contraintes monotones et strictemesitipes ou négatives. Un
changement de signe pour les distributions monotoneséegidnt pour les effets du
bord libre, selon le stratifié considéré. Une extensieadorme exponentielle avec
un troisieme parametre peut étre imaginé afin de tentoampte de ce genre de dis-
tributions. D’autres types de distributions des contesrdgingulieres pourraient étre
envisagées, comme une forme de distribution d’onde quirgdug en particulier
dans le stratifi@90, 0]; cross-ply. Néanmoins, une nouvelle mesure de ce type de
distributions doit étre traitée indépendamment pouinteair la comparabilité entre
les formulations.

Jusqu’a présent, seulement les stratifies symeétriguniesté étudiés. Afin d’étudier
plus en détail la difféerence entre I'effet de bord libreflexion et en extension, aussi
d’'autres stratifiés doivent étre considérés. Par ekesrges stratifies antisymétriques
ainsi que des asymeétriques. Comme ils ont un fort couplatye k& flexion etle com-
portement de la membrane, une réponse differente podel@stypes de charge est
attendue. En raison des effets de couplage de ces typesatifiestr des concentra-
tions de contraintes supplémentaires sont attendues.

En ce qui concerne I'application de la XVF, de nouveaux t#mements sont
nécessaires pour coupler des cinématiques ESL avecrderatiques LW. Cela con-
cerne aussi le couplage des descriptions PVD et RMVT. Epmals 'homogénéité
dimensionnelle, des résultats similaires seraient dttenAu contraire de I'approche
unidimensionnelle présentée, en utilisant seulemesatndedeles ESL, des points
supplémentaires pour les multiplicateurs de Lagrangarapgsent dans I'épaisseur
dans la formulation LW. La moyenne intégrale appliquéasdie XVF sera for-
mulée par couche tout en utilisamt= 1. De plus, utiliser des conditions faibles
a l'interface, basées sur la cinématique de I'ESL, efaures prometteur.
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Conclusioni

Questo lavoro ha rappresentato una sintesi di modelliamazdelle strutture lami-
nate, in particolar modo quelle composite. L'approccia alodellizzazione era prin-
cipalmente basato sulla complessiva CUF che pud anchecesdattata alle ipotesi
cinematice usate per i modelli unidimensionali. Si possdistinguere due classi di
descrizioni: i tipi di ESL e le descrizioni LW. Le ipotesi @matice usate per il mul-
tistrato nel caso delle descrizioni ESL hanno dimostratesdiere adattabili in forma
modificata per le descrizioni LW.

| diversi modelli sono stati valutati per gli effetti del lolar libero nelle piastre
composite, esposte a sforzi uniformi di trazione o flessioda semplice raffina-
mento del mesh nel piano della piastra pud fornire deitasiuhffidabili per i mod-
elli CUF. Questa dimostrazione ha fornito dei risultatitdgliati per comprendere |l
comportamento generale di ogni laminato e nello stessoddrapappresentato una
soluzione pit economica di una modellizzazione equitelenn elementi tridimen-
sionali. Nella contiguita ai bordi liberi sono presentildeconcentrazioni consider-
abilmente elevate a sforzi trasversali. Utilizzando unrapgio lineare elastico, loro
hanno un comportamento singolare. Solo i modelle cinemaliordine superiore
erano capaci di fornire sforzi elevati vicino ai bordi libeUlteriormente, i modelli
LW hanno potuto fornire dei risultati affidabili nella regie intralaminare. Questi
modelli hanno potuto usufruire inoltre del raffinamento weldello nella direzione
dello spessore, utilizzando alcuni strati matematici pexte fisico, concretizzando
una migliore visibilita del comportamento singolare. Iadeti EM hanno comunque
dimostrato di non essere cosi potenti nel fornire la propae del comportamento
singolare come i modelli LM. Tra i modelli di CUF, i modelli LMrano i modelli
che potevano dare predizioni piu dettagliate di sing@lari

Utilizzando I'approccio della descrizione esponenziakepossibile ricevere una
misura di singolarita nei diversi laminati. Con solo duegpaetri la descrizione
ha dato una misura intuitiva per gli sforzi singolari. In gieecaso, la potenza della
singolarita era basata su una distanza dal bordo libewg, fdsse presente uno sforzo
finito. |1 doni materiali erano basati su una teoria di un modffettivo, utilizzando
una omogeneizzazione e rispettando la composizione valizaelelle fibre e della
matrice. Erano stati negati degli effetti micromeccan@uesto aspetto deve essere
preso in considerazione se si vuole applicare un criteriottlira.
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Utilizzando i parametri della discrezione esponenziateparssibile confrontare
gli effetti dei bordi liberi tra trazione e flessione per i lmati considerati. Questo
confronto ha mostrato che per la stessa energia di defoomazotale gli effetti in
trazione sono dominanti rispetto alla flessione per la noaggarte dei casi. Nella
flessione la sequenza di laminazione ha un effetto impertaeit le singolarita risul-
tanti. Dalla CLPT si pud osservare che il termine delladégiza membrane sono
invariate della posizione nel dei strati nel laminato, mékenine della flessione lo
sono. Grazie alla rigidezza elevata dai strati esterni asb cel0, 90|, laminato, la
singolarita era dello stesso ordine in trazione e flessione

Dai modelli CUF, confrontati con i risultati ottenuti daldioe tridimensionale,
e stato dimostrato che solo i modelli piu costosi LW detline elevato potevano
fornire dei risultati affidabili vicino al bordo libero. Camque lontano dal bordo
libero, nella regione in qui la CLPT & valida, anche i madeBL forniscono dei
buoni risultati. Questi modelli sono molto interessantineoanche molto economici
dal punto di vista dei costi computazionali. Per questo grdn lunga preferibile
modellizzare il laminato con elementi economici ESL neltoeidella piastra e us-
are elementi precisi LW solo vicino ai bordi liberi. Coditdaglio del sistema viene
ridotto e con questo conseguentemente anche i costi comguddi. || numero to-
tale dei gradi di liberta sta determinando i costi compiotaai. Questo richiede un
metodo adatto che allo stesso tempo non fornisca dei caagaliecosti addizionali.
La XVF era stato identificato come un metodo adatto. Utiliritasolo una config-
urazione dei domini senza recupero, non utilizza dellegnde ridondanti da tutte
e due, il modello di cinematica complesso e semplice. La swicplarita € che il
mesh globale pud essere tenuto invariato, si cambia sdipoildi elemento. Poi,
la costruzione dei moltiplicatori di Lagrange, che si usprola connessione, sono
basati sugli modelli cinematici usati. Di seguito due folazioni sono possibili,
assegnato dal parametro scalareln questo lavoro € stata studiata la connessione
tra diversi modelli cinematici unidimensionali del tipo ESDgni modello usava la
sua approssimazione di elementi finiti adattata. Quandtilgiza il modello della
cinematica complessa con= 0, le condizioni imposte all'interfaccia costringono
il modello complesso verso il modello semplice. Di seguitjno all'interfaccia,
diventa visibile una transizione tra i livelli nel modell@raplesso. In contrario,
quando si utilizza il modello della cinematica semplice goa 1, dei condizioni piu
liberi sono imposti che permettono un cambio bruscameritéveéi al interfaccia.
Tutti e due le formulazioni hanno dimostrato la loro cagadit fornire dei risultati
dettagliati nei modelli complessi lontano dall'interfeéeccLa XVF ha dimostrato di
essere capace di ridurre i costi totali di computazione doai usano dei modelli
semplici ed economici. In seguito, e stato dimostrato btieminio che usa i modelli
semplici pud essere esteso cpe- 1. | vantaggi cony = 1 sono molto promettenti
per future applicazioni.
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Prospettive

Come base della misura delle singolarita che compaionia gehtiguita ai bordi
liberi, e stato introdotto I'uso della formulazione esponiale. La sua piu grande
incovenienza € la sua formulazione matematica che perndétapplicarla solo a
delle distribuzioni monotone e strettamente positive catieg. Un cambiamento di
segno e frequente per gli effetti del bordo libero e dipet@daminato considerato.
Un’espansione della formulazione esponenziale con u fgazametro puo essere
immaginata per prendere in considerazione questo tipostilalizione. Possono
essere immaginati anche altri tipi di distribuzione, coma distribuzione in forma
di onda, che appare nél0, 0], cross-ply laminato. Un nuovo tipo di misura deve
essere trattato a parte per questi tipi di distribuzioneigregre una comparabilita tra
le formulazioni.

Fino ad adesso sono stati studiati solo dei laminati sinioietPer studiare in
maggior dettaglio gli effetti ai bordi liberi tra traziondlessione possono essere stu-
diati anche altri laminati : non simmetrici e anche asiminegono particolarmente
interessanti perché hanno una connessione forte tradandafione delle membrane
e flessione. Si attendono risposte diverse per i due tipirititia A causa di queste
connessioni delle concentrazioni appaiono sforzi addaio

Riguardando la applicazione della XVF, sono necessarrioitesviluppi per
creare la connessione tra le formulazioni ESL e LW. Questaarida anche la con-
nessione tra le formulazione PVD e RMVT. Grazie al’'omogdgndelle dimensioni
si attendono dei risultati simili. Al contrario rispetto ehso presentato della con-
nessione solo tra elementi ESL, altri punti di campionamesoino necessari nello
spessore per le formulazione LW. Qui la media integraldazaabpplicata per ogni
strato. Utilizzandoy = 1 si applicano in ogni caso le condizioni basate sui mod-
elli ESL che sono relativamente rilassate. Ci si aspettagciesti risultati siano pit
favorevoli.
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Appendix A

Arlequin Method by Ben Dhia

A.1 The Classical Arlequin Method with Overlap

The Arlequin method [16] was also formulated to locally iy the description of
a sub-domain. The main difference to the Extended VariatiGormulation is that
the sub-domains do occupy completely separated spaceks.hBe¢ a common su-
perposition zone in which the sub-domains are defined toumxlgb each other. The
three sub-domains ar€l, with the displacement fieltht, (2. with the displacement
field “u and the superposition domat), with the displacement fieltk:.. Note Fig-
ure[4.8 which displays the sub-domains. Inside the supgigmozone, meshes of
the different sub-domains can be non-matching. The digidb of energy between
this two sub-domains in the superposition domain has to bightexd to the different
contributions.

Inside the corresponding sub-domain, there is no need fastabdition of the
energy. Hence we can write the overall energy:

Ws +aWs+aWe+ We = W (A1)
~ ———
Qs Qq Qe

While as + . = 1. There are two interfaces at the outer boundarieg ofvith
the other non-overlaid parts of the sub-domdhsand()..

As the information about the correlation of energies of the sub-domains is
provided, the link between the different displacement §edtdll needs to be done.
Figure[A1 displays a different situation as used before-familton’s principle in
Figure[4.Y. The two interface§,,, andT',_, at both extremes of the superposition
zone are present. Inside the superposition Zonthe displacement-fielda, and“u
have to be brought together to a unique fiedd Again Lagrange Multipliers will be
used therefore. The Lagrange Multiplier fields is rangirapfrthe Interfacd’,, to
Interfacel’,,, inside (2, minimizing the jump in-between the displacement fields. In
contrast to the XVF only one Lagrange Multiplier field is prpg like in the case of
Hamilton’s principle. In the Arlequin framework, two diffent coupling operators,
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based on the Lagrange Multipliers, can be used. They amdddll andL? operator.
The last one was presented in Equafion 4.38. Mheperator is defined as follows:

H': C(A\u) :/ X ou+ 12 € e, dQy, (A.2)

Q ral raz Q

Figure A.1: Configuration with partial overlap for Arlequihethod

I denotes the characteristic length of the coupling zone.nAké formulations
before,\ denotes the Lagrange Multiplier field for the coupling. Régzg the differ-
ence between both coupling operators it is evident thatth©perator does include
an additional formulation for the energy while tié is purely based on displace-
ments. Having information about displacement and straghiriie preferable but it
might complicate the modelling effort. Therefore the uséhefH/! Operator should
not always be preferred. This is mainly due to the aim of achgean overall less
demanding model with a lower computational effort compdceal model made with
only the complex kinematics.

Comparing the coupling operators with the one in XVF, whisksia combina-
tion of a single real parameter times a Lagrange Multiptieiconnect the different
sub-domains, Arlequin has a very similar construction.hmArlequin Method they
are based on a single Lagrange Multiplier field, which hasstahmnsen before. The
coupling operatof ! is used to minimize the difference in-between the two kine-
matics, while the factow is used for the partition of unity. The operatbf can be
handled as a special casefdt.

Here the classical Principle of Virtual Displacements, Egaation [[2.5), is used
as basis, in order to keep the comparability. An adaptioratda/Reissner’s Mixed
Variation Theorem, stated in Equatidn (2.15) is possiblegdkdless which coupling
operator will be used, the energies from Equation|A.1) aawitten identified into
the following terms, accordingly to the initial definitioms Equation [2.111):
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0] 1 P = / So 6% dQ) + / ‘o 0% dQ)
Qs/Qa Qc/Qa
+/ as fad’e dﬂ+/ (1 —ay) ‘o 6% dS2
a Q

a

5Hea}t =

S~

fd (SS'U/ dﬂ —+ / fd (5CU dQ
Qe /Qq

£ 85w dQ+ £ 6%u dS2 (A.3)
904 /0% 90/0%

+/ asfdésudﬂ—i—/ (1 —as) fq6°udS2
Q

Qa

Qu/Q

+/ Qe fd58udﬂ+/ (1 —as) fy6°ud2
Q4 0Qa

6Hcouple = / A (5871: - 6cu) + 12 (Y ((586 — (SCE) df)

a

For a givenos € [0, 1] find (us, e, A € % x %, x £) such that:
0L (Pu, “u, 0°u, 6°u) = 6Mcoypre(Pu, “u, A, 6%, 0°u, 6X) + 61Lcp (6°u, 6°u)

V(0%u, 0°u, O\ € 0Us X 0% x 0.L)
(A.4)

Within Equation[(A.4) the difference in the displacemenitifids vanishing in the
integral sense rather over a volume than a surface. Therepsssibility to weight
the different Lagrange Multiplier constructions avaikabl

As last step, it is important to define the Lagrange Multidiield for the coupling
operators. Belytschkd [26] et al showed that using the LraggaViultipliers with the
coarser discretisation of the two sub-domains gives battdrmore robust results.
They also showed the case of non-overlapping meshes, indbeguin method de-
noted as surface coupling. According to them, this can béaeth with simple
linear depending Lagrange Multipliers along the princigilections of the coupling
interfacel’,,. In the following section, the aspects of surface couplirgirvestigated

A.2 Arlequin System in Finite Element Method

Brought into its matrix form for Finite Element solution gtirlequin Method has a
very similar form to the before mentioned XVF system. Masé& o, and K¢, are

the ones from the simple and complex model far from the iaterf MatricesK o, |

and Kq,, contain the stiffness terms of the superposition doniajn The forces

in the superposmon domaifl, are partioned in the same manner as the stiffness.
The displacements in the superposition domain are coupledigh the entries of
B4, respectivelyB. and the Lagrange Multiplierd. For the coupling of two sub-
domains having one common superposition domain it gets:
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Appendix B

Coupling of Sinus z* with
Timoshenko Theory

According to the examples given in the Chaptet 4.3 here therdimg calculations
for the projection and the coupling matrices are presented.

B.1 Projection of Sinusz? into Tmoshenko model
The displacements fields are given as follows:

ui(z,2) = wvo(z) +20(x)

B.1
us(e,2) = wolw) G
“ur(z,y,2) = wvo(z) —zv(2) + f(2) (vi(z) + 0(2)) (B.2)
‘ug(w,y,2) = wo(x)+ 2z wi(z) + 22 we(x) '
cus” (x> Y, Z) = wOH (:U)
While the Lagrange Multipliers are equal to Timoshenko kiaécs:
S)\l(x> Y, Z) = 8)‘1)0 +z 8)\9
B.4
{ S)‘3(x7y7 Z) = S)‘wo ( )
The applied projection using Equations (4.14) dnd (4. 1&g aks:
0 (5S>\ u — u” dP =
5 Avo [ vo — “vo ) + (f(2) — 2) ‘v + f(2) O — 2 09”} (B.5)
+Z (58)\9 UOH f(Z) - Z) ‘v + f(Z) 0 — 2z CHH}
+8% Ao |(Cwo + 2 Cwy + 22 ’U)Q—C’U)OH) dl’
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From Equation[(BJ5) the following identities can be exteakt

V5N ¢ o, = %/ (v + (f(2) — 2) vy + £(2) 0 — 2°6)) dT
I

V6% Ay - CwOH = % f (Cwo + 2wy + 22 cwg) dl’
Lo

V8T Ayt O = %/ (z (‘vo — “vo,) +2 (f(2) —2) “v1 + 2 f(2) 09) dr
Lo
with [, 1dl' = A and [ 22dl =1
(B.6)
For a symmetric cross shape, Equatibn{B.6) gives the fafigwelations be-
tween the parallel and the complex displacement field:

V0% Ay, ¢ CUOH = ‘g

V0% Ay “wo, = “wo + If—zcwg (B.7)

V8 Ay 1 0 =250+ (2 — 1) ‘v

B.2 Dual products of Sinusz? coupled with Tmoshenko

model

These Vectors, adapted to the simple and complex kinerhatieary, are used to
establish coupling matriceB:

/ 5S>\-sudr:/585§ SFTSFSE, dl = 5°EL By °E,  (B.8)
a r
h 1 0 =z
Witths:/ 01 0] dz
-5 \z 0 22

Applying directly the dual product on the unprojected ve€to with the simple
Lagrange Multipliers’\ delivers:

SN “udl = 5°E5 By €y (B.9)
Tq

1 0 —z
0 1 0

th B 5 243z 0 _243;2 J

with B, =

/ 1-2)z 0 —(1-2)=2| ¥
0 z 0
0 22 0
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Appendix B. Coupling of Sinus? with Timoshenko Theory

The dual product in Equatioh (B.8) with inserted identitiesn Equation[(4.22)
gives same result as the direct evaluatior’ dfwith the unchanged complex dis-
placement fieldu in Equation [[B.D). In the case of dimensional homogenéity, t
same mathematical spaces are present due to same basetkisemherefore the
space of the simple model is included in the complex modeé §dme is valid for
the dual product ofu with °X in B, which therefore iB., = BL..

Accordingly the same definition is made 8.

8N - “u dl' = 0°€} B €, (B.10)
Fa
1 0 flz)—= f(2) 0 0
. 0 1 0 0 z 22
- _ [P -2 0 (fle)=2)? (fle)=2)f(z) O O]
wih B‘”‘/_g [0 FB-af (e o ol
0 z 0 0 22 23
0 22 0 0 23 24

The evaluation of the first half of the terms, with variatiamyoof the Lagrange
Multipliers gives:

S ET Y Bys 5Ey — °EL Y By °€ + 6°ET (1 — ) Beg *Ey — 6°ET (1 — ) B €y =

¥ 6% Ay [Fv0 — “vol h 4 (1 — ) 0Ny, [Pvo — vo] b
2 2
+7 8% A [Swo — Cwg — %ng} h+ (1 —7) 6Ny, [Swo — Cwg — %ng h

o [P, R —24), 2h3
+'Y(5)\.9|: H—Tﬂ_?’?}l—ﬁe}
c 2h3 h3 (7T B )c h3 c
+( )(5 )\9 |: 0 7271_3 1_ﬁ 0:|
I1
h3 (w3 — 24) h? (73 + 67 — 48) h3 (7 —4)
1— c sn __ c R S
(1 =7) [ 2 ¢ 1273 L P
I‘IrI
(B.11)
Applying factorization on the termb, I andI11 gives:
I: 53)\9 [(89 — cvl) 12 (CH-F U1 ) 2h3]
ITI: —(56)\9 |:( ) 2:33 (CH + c?)l) %}
IIT: =3\, = (0= u) B + (Cuf = 0 — 20) 2y + (0 + v1) 45
(B.12)

167



Appendix B. Coupling of Sinus? with Timoshenko Theory

Therefore, we can identify the restrictions satisfying tbhaditions at the inter-
face. The deduced sets of relations on the displacementawnps are now dis-
cussed. From Equatioph (B]12), two cases can be distingliishe

(i) Fory € [0,1]
*vp = “vo
st — ch + fll_;sz (813)
‘v = —0 =*0

For this case, the conditions show that the rotation of tkesssection and the
unknownuv; of the complex model have the same value as the derivativieeofié-
flection of the simple model at the interface. It seems to beeomg restriction, the
additional variable of the complex model being reduced &g @me unique variable
of the simple one.

(i) Fory=1
fvp = “vo
Swp = “uwo + 2wy (B.14)
9= (1 20, - 2heg
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Appendix C

FE Approximations for One
Dimensional Structures

C.1 Constitutive Law for One Dimensional Structures

Hooke’s law in Equation[(1]4) is valid for all kinds of mat@rsymmetries, also in
the case of orthotropic materials. In the case of a locaksam reference system
{1,2,3} defined by the material orthotropy planes of the layer, Holeav for a
general orthotropic material reads:

Oz ) [ Ci1 Ci2 Ci3 0 0 Cis | ( €aa
Oyy 012 022 023 0 0 026 Eyy
Oz o 0 0 0 0 0 C36 Ezz
Oz - 0 0 0 044 C45 0 Exz (Cl)
Oyz 0 0 0 C45 055 0 Eyz
Ty | C16 O C36 0 0 Cos | | euy

Figure[4.b depicts a beam structure with its reference sydtere the principle
axis is thezx-axis, standing on the cross section, described byythad z-axis. In
Equation [[2.1P) the components were grouped into trans\aers in-plane parts. For
beam structures they are now composed as follows:

Cy Cy 0 Cia Ci13 0
Cop=1| Coz C33 0 |; Canan 0 0 Cgp |;
0 0o C C C 0
44 2% C36 (C.2)
Cii 0 Cis
Cnn: 0 C155 0
Cie 0 Cegs

Only the mechanical behaviour into theand z axis will be modelled for the
beam structures inside this work. The behaviour into thehwéxisy is neglected.
The same assumptions as for the thickness directiare used normally. Through
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Appendix C. FE Approximations for One Dimensional Struetur

this description of a representative section initheplane, another simplification can
be introduced, assuming plane stress. Therefore the M@atiix the global system

will be further reduced using only the effective modulestfar plane stress and will
be denoted”.

C.2 Geometric and Mechanical Relations for One
Dimensional Structures

The displacement field of the desired kinematics is reciwethb thickness expan-
sion functions from Equatiori(4.7) in order to adapt the gaingisplacement field
in Equation [(4.6). This leads to the generalized displacgmectore,, in Equation
(4.23) together with the thickness expansion ve#tggiven in [4.24). These vectors
will be used to introduce the general approximations forltbem structures. Note
therefore that entries fav; andws,, z andz? are set to zero for all kinematics except
Sinusz?.

Equally to the generalized displacement vector a generhlitrain vecto€ is
introduced:

e=F.E.
with E.=[vh w) v} 6 0 w wy)"
While expression{Cl3) is introduced into Equatibn (2. Xlpider to define the
elementary stiffness Matrix:

(C.3)

oMLt (w, du) = / SET FT CF.E.dQ (C.4)
Q

were the integration on the cross section is separated:

k = /FET C F.dS (C.5)

The terms for a single element are denoted by the subscrigiirough Equation
(C.3) only the integration along the length is remainingydeeEquation[(4.23) takes
the final form:

6Lt (u,0u) = 6q° K.q, with K, = / dNT k., dN dzx (C.6)
L
MatricesIN containing interpolation functions of the chosen FE appnation,
were the application of the derivative opera®rto it is denoted a® (N) = dN.
The interpolation functions are linking FE DOgs with w and&:

8u:NQe
E. =

AN (C.7)
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Appendix C. FE Approximations for One Dimensional Struetur

Generally, the interpolation functions are either a quigcl@pproximation via
Lagrange Polynomials or a cubic approximation via Hermitigmpomials. The quadratic
Lagrange polynomials are onty° continuous and will be using the two outer ele-
ments nodes and a centre node of the beam element.CTl®ntinuous Hermite
polynomials are using only the two outer nodes of the beamah. At last a linear
C° continuous interpolation at 2 central GauR Integratiom{soof the Element is
used forw; andws. Those two DOFs will be condensed on elementary level.

C.3 Interpolation for Euler Bernoulli Theory

From Equation{4]3) a need fox& continuos approximation afi, can be identified.
Hence the approximation is done via Hermite polynomials]enly is approximated
via quadratic Lagrange polynomials. For the Euler Berndiikory, the generalized
vector of variables simplifies t6, = [v}, wfj]T and the vector of the finite element
degrees of freedoms ég, = [vg, wo, wh] T, which is shown in Figure'Cl1 (a).

With the effective modulué’, gained from the reduced three dimensional elastic-
ity law, the elementary matrix containing the kinematicahaviour integrated over
the section for an element using the Euler Bernoulli Thesry i

ke = / [ O ngllll ] ds (C.8)

sym

C.4 Interpolation for Timoshenko Theory

Equation [4.4) for Timoshenko Theory gives no more need f6f aontinuosuwy,
hence all DOFsyq, wy andd are interpolated by quadratic Lagrange polynomials.
The generalized vector of variables for Timoshenko, usihg= (w}, + ), is €, =
[vg,0,0",7°]T and the vector of the finite element DOFsgis = [vg, wy, 0]” , see
figure[C.1 (b) for an illustration.

For the Timoshenko Theory, the elementary matrix contgimith the kinemat-
ical behaviour integrated over the section is:

611 70 z 6_'11 70
Css 0 s
ke = 2’2 011 70 dsS (Cg)
Css
sym Css

C.5 Interpolation for Sinus z? Theory

For element using the Sinug Theory from Equation[{4]6), all active DOFs are
interpolated via quadratic Lagrange polynomials. The twOH3w; and wy are
eliminated at elementary level through static condensatito w,. Shear locking of
this quadratic element for very thin beams is controlledthia field compatibility
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Appendix C. FE Approximations for One Dimensional Struetur

approach as described [n [58]. For an element based on #uosyttthe generalized
vector of variables become& = [vg, 0, 0', wg, v}, 7", w1, ws]T. The vector of the
active finite element DOFs ig, = [vg, wo, 0, v1]T, which can be seen in Figure C.1
(©).

The elementary matrix containing the kinematical behaviotegrated over the
section for the Sinus? theory is:
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€LT

[Ch1

- 0
Css f'(2)?

sym

(711 f(Z)
0
C_'11 f(2)2

B 0
Css f'(2)?
B 0
Css f'(2)?

Cu (f(2) = 2)
0
Cu(f(z) = 2)f(2)
0
Cn (f(z) — 2)°

- 0
Css f'(2)
- 0
Css f'(2)
70
Css

Ci3 2C132
_0 B 0
C13 2C13f(2:)2
B 0 B 0
Ci3(f(z) = 2) 2C13(f(2) — 2)z
0 0
Css 2C532
463322

ds (C.10)

Irganis feuolisuswiq auQ Joj suonewixoiddy 34 D Xipuaddy



Appendix C. FE Approximations for One Dimensional Struetur

An extensive study of the performance and convergence ©kthématical mod-
els with its different approximations can be found[in|[75J6] and [77].

Vo Vo Vo
vy Vo vy vy vo Wo Wo Wo
W Wo wo W wo ey W 6y Wy ey
wo' Vo wo' Oy Oy By v, W2 vy wy oV
O f O O f O O0— f +
94 93 92 9q 93 92 94 93 9o

@) (b) (©)

Figure C.1: (a): Euler Bernoulli - ; (b): Timoshenko - ; (c)n8s 2> beam element
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Appendix D

FE Code Implementation for One
Dimensional Structures

In order to study one-dimensional structures, the laboyabevn FE code EvalEF
has been enriched with the XVF. Here a brief overview of thedee input is given.
Four different main kinematics can be used: Euler-BermnoLilnoshenko, Sinus and
Sinus-z2 models. Timoshenko and Sinus can be handled Widnatit approxima-

tions, using either Lagrange or Hermite polynomials. Duthtopoor conditioning
of the XVF system, see Equatidn_(4.37), a robust solver isi@@én order to solve
the system. Here a solver for a full matrix is used for the X\{iplging a pre-

conditioning and solving the overall system with a LU decosipon.

D.1 The DATA file

NOMELT NCLE(1:6) name of the element approxima-
tion types, each has to be given with its six specific keys
NOMELT = PHER1D or PLAG1D or PLAG3D
all element types used can be stated independently in
any order
NCLE(1) type of model
=4 : MultiModel
NCLE(2) number of integration points (1-2-3)
RConstEIt(1:2) Real constants related to the used
elements:

RConstElt (1) width of the beam
RConstEIlt (2) shear correction factor for Timoshenko model
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Appendix D. FE Code Implementation for One Dimensional Strres

NOMANA Name of analysis
= MECA
TYPANA NANACLE(1:6) analysis type with its six spe-
cific keys
TYPANA analysis type

= STAT : static analysis

= VALP : modal analysig\, v )

= BUCK : buckling analysis (critical load)
NANACLE(1) algorithm for VALP or BUCK

=0 : Pl algorithm

=1 QZ algorithm
NANACLE(2) eigenvalues indicator

NBVALP : number of Eigenvalues Pl algorithm
NANACLE(3) eigenmode indicator

= 0 :VALP — mass matrix = Identity ; rigid rang

=1 :VALP —> calculation of eigenvalues (modal anal-

ysis)
NANACLE(4) model coupling indicateur
= 0: Common node assembly, using penalty value
=1: XVF method with Lagrange Multiplier coupling
NANACLE(5) model coupling indicateur
=0 : band assembly and solver
= 1: full assembly and solver
NANACLE(6) post indicator
=1 :Post gives list of element energies
= 2 :Post gives list format of stresses
RconstAna(l) if algorithm VALP or BUCK
= ValMax : Pl algorithm
=ValNul : QZ algorithm
RconstAna(1) if STAT and XVF algorithm is
used

= value for~y
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Appendix D. FE Code Implementation for One Dimensional Strres

name of MATerial/EMPilement

NOMMATEMP
(stacking) file
NOMGEO name of GEOmetry file
NOMOUT name of result file
Xmult Ymult x scale for geometrnX andY
NBTYPECHG Load Type Number
loop on NBTYPECHG
NOMCHG NCHGL Load Name, Load Number

if NOMCHG ='CC’: Concentrated Loads (Charges Concentrées)
loop on NCHGL
NUMCHG(1,.) =1, NUMCHG(2,.) =0

NUMCHG(2:3,.) DCHG(.) node and DOF number (node,
DOF), load value
end of loop on NCHGL

or if NOMCHG ='PL": local pressure (Pression Locale)
NUMCHG(1,.) =2, NUMCHG(2,)=0

NUMCHG(3,.) DCHG(.)
NUMCHG(3,.) pressure direction
=1:X
=2:Y
=3:7Z
DCHG(.) pressure value

or if NOMCHG ='PG’: global pressure (Pression Globale)
NUMCHG(1,.) = 3, NUMCHG(2,.) =0

NUMCHG(3,.) DCHG(.)
NUMCHG(3,.) pressure direction
=1:m
=2 x9

=3.z
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Appendix D. FE Code Implementation for One Dimensional Strres

NUMCHG(4,.) pressure position
= 0: lower surface
= 1: upper surface
= 2: middle layer

DCHG(.) pressure value

or if NOMCHG ='PC’: contour pressure (Pression contour)

loop on NCHGL
NUMCHG(1,.) = 4

NUMCHG(2:3,.) DCHG(.) face, pressure direction, pressure
value

NUMCHG(2,.) face

=1:X = cste
=2:Y =cste
NUMCHG(3,.) pressure direction
=1:X
=2:Y
=37
DXYCHG(1o0u 2,.) coordinate valueX orY)

end of loop on NCHGL

or if NOMCHG ='PS’;, sinus pressure (Pression Sinus)
NUMCHG(1,) =6

NUMCHG(2:3,.) DCHG(.)
NUMCHG(2,.) alongx
=0:yes
#0:no
NUMCHG(3,.) alongy
=0:no
#0:yes
DCHG(.) pressure value
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DXYCHG(1,.) DXYCHG(2,.) length alongz, length alongy

or if NOMCHG ='LC’: kinematic relation (liasion cinematiqiie
NUMCHG(1,) =8

NUMCHG(2:3,.) DCHG(.)
NUMCHG(2,.) concerned node
NUMCHG(3,.) first concerned DOF
NUMCHG(4,.) second concerned DOF
DXYCHG(1,.) DXYCHG(2,.) constrains first and second DOF

values to be equal via penalty method under the form0fi; + s us = 0,
penalty value is fixed ta0'°

end if
end of loop on NBTYPECHG

NXSub NYSub deformed mesh ; Subdivision along
ry

D.2 The Geometry file NOMGEO

NND NEL NoDe Number, ELement Num-
ber

loop on the number of nod&&ND

IVAR NBCDF(1:4,.) XYZ(1:3,.)
IVAR, Num Boundary Condition NoDe, Node coord.
end of the loop on the number of nodR&L
loop on the number of elements

IVAR ICOEIt(1) ICOEIt(2) ICOEIt(3) IVAR ICO(1:NNDEL,.)
Num Elem, Typ Elem, Model Num, MatEmpil Num, Connect. Table
end of loop on the number of elements

According to Appendix_C the general order of the DOFs is digetl In the fol-
lowing table, as well as the global availability in the diffat finite element models.
This is due to the different FE approximations possible fertain models, which
a either theC''-continuous Hermite approximations (HER1D), t6€-continuous
Lagrange approximations (LAG1D) or the same Lagrange ajpadions with the
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Model | vy | wo | w(, | 0 | vy
Her 1D
EB | x X X |- -
Timo | x | X X | x| -
Sin| x | X X | x| -
Lag 1D
Timo | X | X - x| -
Sin| x | X - | x| x
Lag 3D
Timo | x | X - x| -
Sin-z2| x | X - | x| x

Table D.1: DOF availability

transverse normal effect (LAG3D). Note that for the Sinugiadavith thickness ef-
fect, the additional DOFs; andws are condensed at elementary level:

In the EvalEF code, a special convention for constrainirggdéflectionw, and
its derivativew;, was implemented for the models with the Hermite approxiomati
In the global DOF definition only the deflection, is common between the different
approximations and therefore only this DOF is direct ada However all five
DOFs can be constrained using this convention using onljoilveaccessible DOFs.
It is displayed in the table hereafter:

Input | Constraintonw Constraint on w' Constraint scheme  global constraint
0 0 0 0000 00000
1 1 0 0100 01000
2 1 1 0200 01100
3 0 1 0300 00100

Table D.2: DOF constrainement far, in Hermite 1D

For all other DOFs in all models, zero as constraint means that the concerned
DOF isfree and aone means that the concerned DOFcsnstraint. The order of
the DOFs in the constraint table is; wq 6 v,

As all element types can be stated in any order , the usermgetddm. However
one has to take care of the right position of Element type aodeihnumbers in the
mesh. They have to be according to the order in which the Eietgpes are stated
in the head of the DATA file.

Just as reference and for your orientation we will state tieénternal variables
used for identification of the element types used. They cdoura in the subroutine
CARELT:

While the kinematical models are always fixed to the follayvinput values:
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Table D.3: Element type numbers

Element Type| NUMELTVal
Hermite 1D 2

Lagrange 1D 1

Lagrange 3D 3

Table D.4: model type numbers

Model Type| Number
Sinus 1
Euler Bernoulli 2
Timoshenko 3

In the following table, the available combinations of Elergypes and kinemat-
ical models are given:

- | Her1D | Lag 1D | Lag 3D
Sin X X -
Sin-z2 - - X
Euler X - -
Timo X X X

Table D.5: available models for the three Element types

D.3 The Material Stacking file MATEMP

NbMat number of material
loop on the number of materidishMat

PROPM(1:13,.) Material Properties
poayagas By Ey Eg vgg vig vig Gag Gz Gz

end of loop on the number of materials

NbEmpil number of stacking
loop on the number of stackinggbEmpil
IVAR IEmpil(1,.) REmpil(1,1,.)
IVAR, number of layers, distance of mid to outer layer basse
loop j on the number of layet&mpil(1,.)
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IEmpil(j+1,.) (REmpil(k,j+1,.),k=1,2)
number of material, orientation, thickness

end of loop j on the number of layers

end of loop on the number of stackings
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ABAQUS Implementation of CUF
Elements

For the study of the free edge problems, the CUF was implezdénto the commer-
cial FE code ABAQUS. It offers via the so-called subroutinBER ELEMENT, the
possibility to create own elements. Scripting has to be diof@®RTRAN using the
provided interface structure, given in the ABAQUS docuraéon.

E.1 The Problem Statement

In the first ABAQUS Plug-Inn, see Figute k.1, the mechanicabfem is defined.
Therefore the following parameters are defined:

e Geometry:

— rectangular plate
— rectangular plate with central hole
— skew angled plate

e Boundary Condtion:

— free

symmetry tax, y or z-axis

simply supported
encastred

e Load:

— uniform extension

— uniform pressure load
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— bi-sinusodial pressure load

) X| Abaqus/CAE Version 6.8-1 [Viewport: 1]
=] Eile Mudél Viewport View Part Shape Feature Tools Plug-ins Help R?
DEEs e e SEEINEE AN =) Cl R 8 7 (T ) @D © By (Fi FpfPatcerins o] @]
Resul ? =] Model [Mode1 ] Part [ |

Module: [Part

Ell-= =
43 Models (1)
£ Model-1

\| Plug-in creating a testcase suitable for Unified Formulation elements

TestCaseDiagam Gy
& | Model Name: [Flatte
3  Define Test Case and Geometry
: 13 y 3 - Select a Test Case| [~ Geometry Parameters ——|
t © rectangular plate || width (W) [4
L ¢ rectangular piate || length (L) 16
with hole
] radius (o
C skew plate
shewzngle (1) [0

i A

= BCs
L, Predefined F/
B Remeshing R
[ Sketches
4 Annotations

By Adaptivity Proce

Rl | > zs
[1] [2eter these steps, the Up-plug-in con be completed by rumming Step 2: dfimition of the clenents 5]
‘“ Vorking directory: /home/cufuser j

Figure E.1: Creating the mechanical problem via a Plug-kingipre-defined cases

The material model and its parameters have to be definekiABAQUS itself.

E.2 The FE Approximation

In preparation of preparing the generation of the ABAQUSuinjile, only the el-
ement definition is missing. In order to do so, a mesh has toelergted before
the definition of the CUF elements used. The standard ABAQid% tfor the mesh
generations are used. Afterwards via a second ABAQUS RindHe CUF elements
are defined, as indicated via Figlre]E.2. It is here, wherdathenates lay-up is de-
scribed. Afterwards the lay-up description for the elenigmiefined, the variational
statement and the expansion order, see Figure E.3. Fudtrer advanced controls
against shear locking, like reduced integration, and agdimickness-locking, like
reduced or simplified constitutive laws can be defined. Fetdlst cases under con-
sideration within this work neither of both have been usetterthis definition has
been done, the input file can be written and consequentlgdolv
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'home/cufuser/ABAQUSWORK / FREE-EDGE/traction_reference.cae [Viewport: 1]
elp. X

- & X

148 Models (1)
E Platte
s Parts (1)
[Pz Materials (1)
32 Sections
# Profiles
38 Assembly
o Steps (2)
B Field Output |
History Outpi
e Time Points
Bp ALE Adaptiv
T, Interactions
& Interaction Py
#{ Contact Con
] Constraints |
{& Connector 5
F Fields
% Amplitudes
[ Loads
[ BCs (3)
[ Predefined F
By Remeshing R
I Sketches (1)
4 Annotations
1% analysis
= 5 Jobs (16)
By Adaptivity Proce

Working directory: /home/cufuser

J | The model database "/h £ ‘traction_ref cae” has heen opened.

Figure E.2: The FE mesh is defined inside ABAQUS itself

\| Abaqus/CAE Versiol

Al R R mi e Yala ]
Model: [Flate ¥] Object: & Assembly C part[ T 5]

.8-1 - Model Database: /home/cufuser/ABAQUSWORK/FREE-EDGE/tracti

\_reference.cae [Viewport: 1]

28 Models (1)
© Platte
s Parts (1)
Bz Materials (1)
& Sections
& Profiles
43 Assembly
ofa Steps (2)
B Field Output
Bg History Outpi
|5 Time Paints
By ALE Adaptiv
3, Interactions
E Interaction Py
#{ contact Conl|
«]] Constraints
{8 connector 5
F Fields
[ Amplitudes
I Loads
[ BCs (3)
[ Predefined F i
Bl Remeshing R _Cancel |
I Sketches (1) :
4 Annotations
£% Analysis
= B Jobs (16)

By Adaptivity Proce

[Cayerwise Discrete Layen ]
[Thirg-order @) ]

Choose & Reference Surface for the Laminate [Vean suface ]

;l 'The model database “/home/cufuser/ABAQUSWORK/FREE-EDGE/traction_reference.cae’ has been opened.

Welcome to the UF Plug-in for ABAQUS =l
Python-file with script: ufp.py =

Figure E.3: The CUF elements are defined via a second Plug-Inn
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E.3 Post-Procesing

Via the subroutine, the results of the FE calculation arelabla in an output-file,

containing the nodal values of each DOF. As this is not a vetyitive and com-

prehensive expression of the results a further output peieg routine is written in

FORTRAN. Its purpose is to provide the displacement field a#i as stress and
strain field, expressed in their components, based on thal I@Fs. This results
are provided via problem dependent files containing thdisestieach of the before
mentioned fields. The numeric results presented withinvtbik have been exported
from the post-processor into MATLAB in order to provided thisualization of the

results for the different CUF elements. From an impleméntapoint of view, a

functional post-processing with result visualizationtih a missing feature.
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