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Abstract—Software Defined Networking (SDN) is a new net-
working paradigm that permits to slice network infrastructures.
An example of SDN is the OpenFlow framework, where the
control plane runs on a separate device, called controller, that
manages data forwarding switches. The OpenFlow protocol
ensures communications between OpenFlow switches and the
OpenFlow controller. Before widely deploying OpenFlow based
networks, scalability and performance of such networks should
be studied and better understood.

In this paper, the scalability of NOX, one of the most popular
OpenFlow controller, is analyzed through both simulation and
lab measurements. We perform an Ethernet trace analysis on
the controller by defining flow characteristics as would be seen
by an OpenFlow controller. We study the potential trace impact
on an OpenFlow controller, analyzing among others, the number
of flows, flow inter arrival times, traffic volumes and flow size
distribution. Our results permit to discuss the feasibility of
running OpenFlow networks with a single commodity PC as
the controller in a mid-size campus network.

I. INTRODUCTION

Production networks must provide a high degree of avail-
ability and security, because networks are a critical compo-
nent of today’s world. At the same time running research
experiments on realistic networks is fundamental to test new
features for future networks, but innovative network protocols
and architectures barely find a chance to be tested on a
production network. These two trends are often in contrast on
real networks. To avoid modifying the installed base, several
new network protocols have been introduced to meet the
new demands, leading to a complex and ossified network
architecture.

To cope with this problem, projects like GENI [1] and
FEDERICA [2] propose to slice network resources through
network virtualization. In such architectures, it becomes pos-
sible to run experiments on a potentially large scale network
within a given network slice without interfering with other
slices. These solutions are promising but cannot be readily
used today in production networks and require considerable
investments.

Fairly recently, OpenFlow has been proposed in the frame-
work of the 4D network architecture [3]. OpenFlow separates
the control plane (Decision, Dissemination) and data plane
(Discovery, Data) to greatly simplifying network management.
Furthermore, administrators run all management and control
functions in a single device, the OpenFlow controller, it
would be possible to slice the architecture into a production
network and several experimental networks with very limited

interaction among them. These benefits are mainly due to the
flow-based traffic switching/forwarding mechanism and to the
centralized control paradigm. The OpenFlow controller has
a global view of the network and configures the switches to
forward packets on the basis of a specified flow definition. All
control and management functionalities, e.g., routing decision,
QoS management, flow identification, are performed in the
controller. The OpenFlow switch simply acts as a forwarding
engine that operates according to the rules set up in the
forwarding flow-based table(s) by the OpenFlow controller.

Before widely deploying an OpenFlow network, perfor-
mance and scalability features must be carefully studied.
The most critical component is the centralized OpenFlow
controller. In this paper we choose NOX [4], one of the most
popular OpenFlow controller, and we study its performance
through simulation and in-lab measurements. Furthermore, we
analyze traffic traces captured on the Politecnico di Torino
Ethernet-based campus network. More precisely, we extract
packet headers to determine flow behaviour as if the captured
traffic was running in an OpenFlow based infrastructure, to
study the flow arrival load in an OpenFlow controller that
manages the OpenFlow network. The analysis permits to
identify the average and worst case loads on the OpenFlow
controller. Flow size distribution, flow inter-arrival times and
traffic volumes are also derived.

II. RELATED WORK

Many SDN controllers exists nowadays, for instance, NEC
proposed the ProgrammableFlow controller [5], Big Switch
Network has the Big Network Controller [6] and Cisco de-
veloped the XNC (Extensible Network Controller) [7]. These
are all proprietary solutions. In the meantime, open souce
controllers like Beacon [8], Floodlight [9], Nox/Pox [4] and
Flowvisor [10] are quit popular as well. Given the large
amount of SDN controllers, the benchmarking of their per-
formance could be very important for selection. To the best
of our knowledge, Few works related to OpenFlow controller
performance and benchmarking exist in the literature. We
briefly discuss the main differences of the existing works with
respect to our approach. OpenFlow wiki page [11] presents
some benchmark results obtained by using cbench [12] for
three different OpenFlow controller implementations, namely
NOX, Beacon and Maestro. The results were obtained by ex-
ploiting the boost libraries and Google’s thread-caching malloc
features. Our work focus on the performance provided by off-



the-shell PC without any hardware and software optimization.
In [13] the authors have presented an open software framework
which permits to test the OpenFlow-enabled switches. The
main conclusion of this work is that it is essential to consider
the data plane and the control plane traffic together for
accurate performance evaluation, rather than only concentrate
on the control plane traffic. During our experiments and
trace analysis, we followed their suggestion and combined
the control and data plane traffic together to evaluate the
controller performance. Jarschel et al. [14] presented a model
for estimating the forwarding speed and blocking probability
of an hardware based OpenFlow switch. By using such a
model, it is possible to estimate the switch performance under
any given traffic input. It would be interesting to extend their
work to support software OpenFlow switch to compare our
experimental results with their analytical results, we leave
this as future work. Finally, NOX-MT [15], an optimized
multi-threaded NOX contorller targeting on multicore server
has been developed, the performance results show that it can
efficiently utilize additional computation resource from many
core server and it outperforms all the existing controllers.

III. OPENFLOW CONTROLLER PERFORMANCE

In this section we analyze one of the OpenFlow controllers,
named NOX, and highlight its performance limitations, which
will be used to evaluate OpenFlow network scalability using
the captured traces in following sections. NOX is one of the
most common OpenFlow controllers, originally developed at
Nicira Networks. It became public in 2008 and, since then,
many researchers integrated different applications into NOX,
making it even more popular. We cloned the NOX “destiny”
branch from github because this version is multi-threaded,
with optimized code. We tested NOX’s performance using first
cbench [12] and later via in-lab measurements. The controller
is hosted on a commodity off-the-shelf PC equipped with an
Intel Xeon dual-core processor at 3Ghz, the RAM is 8GBs
(667Mhz DDR2 SDRAM). All Ethernet interfaces are gigabit
capable and the OS is 32bit Ubuntu 9.10 with kernel version
2.6.31-14.

A. Cbench Simulation Test

Cbench emulates an OpenFlow network with a variable
number of switches and end hosts. All switches are OpenFlow
enabled, and send new flow requests to the controller and
record response statistics. Cbench supports two operational
modes: latency mode and throughput mode. In latency mode,
cbench sends one request (i.e, packet in) to the controller
and waits for the response (i.e, flow mod) before sending the
next request. In throughput mode, cbench tries to send many
requests simultaneously so as to find the maximum controller
throughput. More precisely, cbench adapts the request rate
to reach a balance, i.e, #packet in = #flow mod. which
defines the controller’s throughput.

The server running the NOX controller is a Dell server
equipped with an Intel Xeon dual core running at 3.0GHz.
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Fig. 1: Openflow controller NOX performance test under
cbench as the number of switch increases, in latency mode
and in throughput mode

Fig. 1 shows the NOX throughput for the switching appli-
cation1 as a function of the network size, i.e, the number
of switches connected to it. When cbench runs in latency
mode, few switches are not able to saturate the controller.
As soon as the number of switches exceeds 8, the response
from the controller becomes stable, around 52000 packets per
second (pps). On the other hand, cbench running at throughput
mode easily saturates the controller, even with a single switch
in the network. Increasing the number of switches does not
significantly modify controller’s performance. When running
NOX in multi-thread mode, throughput improvement is very
limited. The curves in latency mode and throughput mode are
very similar, and, in both cases, the controller can forward
52000pps. Thus, a commodity server running NOX OpenFlow
controller could handle roughly 52000 flows per second.

B. In-lab Experimental Test

Although the controller performs similarly during the test
with cbench in different modes, the software based simulation
approach could be misleading and the accuracy of such an
approach is always open to question. To confirm our results,
we built a testbed in our lab, as shown in Fig. 2. PC1 is
the same server as the previous one and it runs the NOX
controller, while PC2-PC5 are standard servers running Open
VSwitch (OVS) [16], a software implementation of the Open-
Flow switch. The hardware traffic generator and receivers
are Agilent N2X RouterTester [17] with multiple Gigabyte
modules. During our experiments, we activate each switch and
check if the bottleneck is the switch or the controller. If the
switch is the bottleneck, we incrementally add more switches
to saturate the controller.

As shown in Fig. 3, since one switch can handle at most
22000pps, based on the previous evaluation we know that this
volume is too low to saturate the NOX controller. As the input
load increases, the switch starts to drop packets, thus further

1 Preliminary results show that NOX switching and routing applications
perform very similarly in terms of flow handling capabilities. Thus, we stick
to NOX switching in this section.



Fig. 2: The hardware topology of Openflow controller NOX
performance test with in-lab experiment
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Fig. 3: The results of Openflow controller NOX performance
test with in-lab experiment

reducing the controller load. This could be mitigated with
more switches being active simultaneously. When activating
the 2nd, 3rd and finally the 4th switches, controller loads over
52000pps could be successfully obtained. The CPU loads on
the NOX server and switches were also checked to confirm
that the bottleneck is at the controller and not at the switches.

The experimental results obtained from the cbench and in-
lab measurements are coherent. In summary, a commodity
PC running the NOX OpenFlow controller can handle around
52000 flows per second. In the remainder of this paper, we
capture and analyze traffic traces to understand if the NOX
OpenFlow controller is able to handle flows generated in a
middle sized campus network.

IV. TRAFFIC ANALYSIS METHODOLOGY

We wish to cross validate the controller performance with
Ethernet based traces. Indeed, our objective is to study
OpenFlow flow characteristics, which are fundamental to
the controller. We are not running an OpenFlow network,
but we captured the campus network traffic and extracted
information valuable from an OpenFlow network’s point of
view. Although we captured traffic on a conventional Ethernet
network, packets can be analyzed in terms of OpenFlow
applications running in the controller. i.e., identifying flows

Duration Packets Size
External 24 hours 156,984,191 13.78 GB
Internal 24 hours 138,286,565 13.78 GB

TABLE I: Trace Characteristics

for different OpenFlow control applications. We choose three
different control applications to study:

1) OpenFlow: Switching based on all packet header fields
defined in OpenFlow specification [18];

2) Layer234: Switching based on source/destination MAC,
IP addresses and TCP/UDP port numbers;

3) Layer23: Switching based on source/destination MAC
and IP addresses.

We assume that there is a single controller to handle all
the traffic inside the campus network, and that all networking
nodes are OpenFlow enabled devices.

The Politecnico di Torino campus backbone network is
based on a multi-root tree topology. Each switch in a Depart-
ment is connected to two backbone core routers for redun-
dancy; the remaining switching nodes inside the Department
form a tree.

The traces used for the analysis were taken from two
links of the DET (Dipartimento di Elettronica e delle Tele-
comunicazioni), one inside the department (named internal
link) and the other one connecting the backbone and the
department gateway (named external link). There are roughly
1000 active hosts in the department and more than 5000 hosts
in the campus network. We captured packets for a week, from
January 23rd until January 29th 2012, with TCPDUMP from a
standard Linux PC. Only packet header fields were recorded.
More than 60GB binary data in pcap format for each link have
been captured. To process data, we exploit libtrace [19] to get
target header fields according to different control applications.
The time-stamp for each packet has also been analyzed to
derive flow inter-arrival time information. Several ad hoc
scripts were used to extract interesting parameters from the
traces.

V. TRACE ANALYSIS

We present the main results obtained by analyzing the traces
considering different OpenFlow control applications. All the
results fix the Flow Inactivity Time (FIT) parameter at 5s, i.e.,
if no packet belonging to a given flow is received for more
than 5s, the corresponding flow entry is removed from the
switches’ flow table, except the results directly measuring the
FIT value impact on controller. The 5s value was obtained by
the source code inspection of the NOX [4] controller.

Control application Number of flows Avg flows/s

External
OpenFlow 9693169 112.19
Layer234 9672603 111.95
Layer23 6347418 73.47

Internal
OpenFlow 8034403 92.99
Layer234 8018252 92.80
Layer23 5342101 61.83

TABLE II: Overall Statistics without the Scan



A. Daily Trace Statistics: Scanning Detection

Due to the lack of space, we only report the main results
obtained by analyzing the large data set. We selected the
24 hours trace from Wed 9:30am until Thursday 9:30am to
perform the daily analysis.

Tab. I and II report the aggregate statistics. We run the same
statistical analysis by considering different time scales: 60min,
30min, 5min and 5s respectively. The results are shown in
Figs. 4 and 5. We only include graphs related to 5min time
scale. Fig. 4 reports results for the external link traffic. Quite
surprisingly, we discovered that the number of flows varies
significantly during the day. The maximum number of flows
is almost 10 times larger than the minimum one, and there is
no evident day-night behavior for the number of flows. The
same phenomenon is observed for the flow inter-arrival time,
but not for the traffic volumes. This effect is not seen if the
traces are analyzed over 30 minutes or 60 minutes intervals,
but only for the 5min and 5s intervals. Since the traffic volume
is stable, we suspected that there could be some periodic
scanning applications running in our campus network. After a
deeper analysis through Tstat [20], we found that, once every
15min, a server performs a scanning with nmap to detect the
liveliness of all the hosts in the campus network. The scanning
depends on the PoliSave project, running at Politecnico di
Torino, that tries to turn off unused host for power saving
purpose. A nmap daemon is used to scan all IPs to record
servers’ liveliness every 15 minutes. The scanning service
translates to a large number of flows with low volumes (i.e,
each packet belongs to a different flow). This would cause
undesirable and excessive OpenFlow control traffic between
switches and the controller, because each packet should be sent
to the controller, each flow being one packet long. In this case,
packet based switching, being distributed in switches and not
centralized in the controller, would be more efficient than flow
based switching. This type of traffic if not properly managed
may lead to OpenFlow controller overload.

B. Daily Trace Statistics: External vs Internal

Results for the traffic after filtering out the scan traffic
are shown in Fig. 5. We did not report the plots for the
three applications but only leave the OpenFlow as the target
application to highlight the statistics on two different links.

As expected, the captured traffic exhibits a strongly periodic
day-night pattern as shown in fig. 5. From left to right, each
figure represents respectively, the total number of flows, the

Link/Flow Definition Duration Average Min Max
External/

OpenFlow or
Layer234 or

Layer23

1 hour 4366.8 1218.3 11396
30min 2183.4 538.39 8006.2
5min 363.9 62.87 2810.5
5sec 6.065 0.097 115.31

Internal/
OpenFlow or
Layer234 or

Layer23

1 hour 3658.3 1064.0 9507.8
30min 1829.1 491.11 6042.7
5min 304.86 60.11 2070.9
5sec 5.081 0.084 105.79

TABLE III: Flow Volumes Statistics in MB

flow inter arrival times and the traffic volume. Each point
is the average over 5 minutes. The daily number of flows
is 2-3 times larger than the number of flows at night, with
the exception of Saturday and Sunday because fewer flows
are observed thus reducing the difference between day and
night. The flow inter arrival time roughly behaves inversely
proportional to the flow number. During the day, shorter flow
inter arrival times are observed compared to the night time.
The minimum and maximum inter arrival times differ roughly
by a factor of 2-3, similarly to the case of number of flow. For
the traffic volumes, besides the day-night pattern, more outliers
can be observed. No direct relation can be found between the
number of flows (or the flow inter arrival times) and the traffic
volume spike. This means that OpenFlow can handle elephant
flows (high volume flows) efficiently, because only the first
packet belonging to each flow is sent to the controller and
all the subsequent packets follow the same path without any
interaction with the controller. Thus, whereas volume spikes
can be observed, the number of flow does not directly depend
on the volume.

Comparing the two different links, the external one has more
flows and a larger traffic volumes, as expected, because it
aggregates all the traffic within DET. It is interesting to notice
that the shape of the two curves are similar. This suggests
that: i) the traces we captured share a large amount of data,
i.e, the packets sent to the external world (public Internet or
other Department buildings) traverse both links; ii) the internal
traffic, i.e, traffic appearing only on the internal links, is very
limited.

C. Daily Trace Statistics: Worst Case Analysis

We focus now on minimum and maximum values of mea-
sured parameters to highlight the worst and best operating
conditions for the controller over different time intervals.
Fig. 6 shows the number of flows and the flow inter ar-
rival times for the external link over different time intervals.
Obviously, the number of flows decreases as the time scale
decreases. Furthermore, the gap between the maximum and
minimum flow numbers increases as the time scale decreases.
For instance, in a one hour interval the difference between the
minimum and maximum number of flows is roughly 3 times,
whereas it becomes 15 times over a 5s interval. The same
result holds for the flow inter arrival times. The average flow
inter arrival times show a slight discrepancy when observed
over different time scales, because the average on short time
intervals is different from the long term average due to the
border effect. We omit the results for the internal link because
they show the same statistical behavior as the external one.

Tab. III presents the traffic volume statistics for different
time intervals. As expected, the traffic volume scales down
as the time interval decreases. Traffic volumes show a larger
variation compared to the number of flows if comparing
the maximum and minimum values. This is justified by the
existence of mice and elephant flows.

In summary, the worst case traffic is quite different from the
average one, especially when considering small time intervals
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Fig. 4: Daily statistics on the external link averaged over 5min without filtering for different control applications. From left to
right: number of flows, flow inter arrival time, traffic volume.
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(i.e, 5s, 5min). For instance, in Fig. 6, the maximum number of
flows is 6 times larger when compared to the average value for
a 5s interval. This must be taken into account when designing
OpenFlow network architectures because the capability of
OpenFlow controller should be several times larger than the
expected average load to avoid traffic losses or large flow
forwarding delays.

D. Flow Inactivity Parameter and Flow Size Distribution

In this subsection we show how the flow inactivity time
(FIT) influences controller performance. Fig. 7 shows the
number of flows for the three applications with different FIT



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

64 160
256

352
448

 544
640

736
832

928
1024

2560
4096

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Fl
ow

 N
um

be
r 

Pe
rc

en
ta

ge

T
he

 C
D

F 
fo

r 
th

e 
N

um
be

r 
of

 F
lo

w
s

Openflow
Layer234
Layer23

Openflow-CDF
Layer234-CDF
Layer23-CDF
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for traces captured on the external link.

values, for traces captured on the external link. The number
of flows increases as the FIT value decreases. When the FIT
is less than 1s, the curve is very sharp, whereas when the
FIT value exceeds 1s, the curve becomes smoother. Results
suggest that OpenFlow switches should be designed with the
FIT larger than 1s to keep low control traffic exchanged with
the controller. If the flow table size is large enough, larger FIT
values would be desirable.

Fig. 8 report the distributions of the number of flows with
respect to the flow size. More than 70% of flows have a size
smaller than 352 Bytes, whereas more than 20% of flows are
larger than 832 Bytes, and 6% of flows have a size larger
than 4096 Bytes. This result means that OpenFlow controllers
deal with small flows for more than half of the time. This
reduces the advantage of flow based forwarding with respect
to packet by packet forwarding. In this situation, a high
volume of control traffic is created and the relatively small
number of packets belonging to a flow can not compensate the
initialization phase needed to set up a flow entry in switches.

VI. CONCLUSIONS

We studied the performance of the OpenFlow controller
NOX with simulation and experimental tests. We showed
that OpenFlow controller running in a commodity server can
handle roughly at most 52000 flows per second. Then, we
selected three OpenFlow control applications and we analyzed
OpenFlow traffic statistics on traces captured on our campus
network, focusing on two links at the DET. The number of
flows in this mid-sized network is not large, around 110 flows/s
on average, but ranging to 60000 flows/s in the worst case.
Simulation and lab measurements show that one OpenFlow
controller running in commodity server could manage this
number of flows, at least for the considered control appli-
cations. We also showed that traffic volumes are not related
to the number of flows, owing to the contribution of elephant
flows.

However, results related to the scanning service and to the
flow size distributions reveal that, in current networks, mice-
flows are dominant. In this context the centralized flow based
forwarding solution of OpenFlow becomes of little advantage
with respect to the classical packet by packet distributed
forwarding scheme in terms of performance. Indeed, many

control messages would be generated and setting up flow
entries becomes not so useful due to the limited number of
packets belonging to the same flow.
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