
01 December 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Unified turbo/LDPC code decoder architecture for deep-space communications / Condo, Carlo; Masera, Guido. - In:
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. - ISSN 0018-9251. - STAMPA. - 50:4(2014),
pp. 3115-3125. [10.1109/TAES.2014.130384]

Original

Unified turbo/LDPC code decoder architecture for deep-space communications

Publisher:

Published
DOI:10.1109/TAES.2014.130384

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2581742 since:

IEEE - INST ELECTRICAL ELECTRONICS ENGINEERS INC

1

A unified turbo/LDPC code decoder architecture for

deep-space communications
Carlo Condo, Guido Masera, Senior Member IEEE

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy

Abstract—Deep space communications are characterized by
extremely critical conditions: current standards foresee the usage
of both turbo and Low-Density-Parity-Check (LDPC) codes to
ensure recovery from received errors, but each of them displays
consistent drawbacks. Code concatenation is widely used in all
kinds of communication to boost the error correction capabilities
of single codes: serial concatenation of turbo and LDPC codes has
been recently proven effective enough for deep space communica-
tions, being able to overcome the shortcomings of both code types.
This work extends the performance analysis of this scheme, and
proposes a novel hardware decoder architecture for concatenated
turbo and LDPC codes based on the same decoding algorithm.
This choice leads to a high degree of datapath and memory
sharing: post-layout implementation results obtained with CMOS
90 nm technology show small area occupation (0.98 mm2) and
very low power consumption (2.1 mW).

Index Terms—LDPC; turbo; concatenation; deep space

I. INTRODUCTION

While in most kinds of communications a steady growth

towards improved performance, higher throughput and low

power consumption can be noticed, deep space communi-

cations are characterized by some particularities. The lim-

ited number of fully developed applications plays a major

restraining role in the evolution of this field, that tends

to be slower than that of on-Earth communications. Since

spacecraft-to-Earth communications are supposedly very rare

events their throughput requirements are lower than those

of on-Earth communications. However, due to the limited

amount of power available and the long transmission times,

a failed reception and consequent retransmission are often

unacceptable.

The Consultative Committee for Space Data Systems

(CCSDS) has produced over the years a de facto standard for

all space-related communication systems. Four channel coding

schemes have been described in [1], and consequently assem-

bled into application-wise Forward-Error-Correction (FEC)

schemes in [2]. Both turbo [3] and Low-Density-Parity-Check

(LDPC) [4] codes are currently contemplated for deep space

communications [1]: while the suggested turbo codes target

stricter Bit Error Rate (BER) constraints, LDPC codes have

been recently included in the standard and have higher rate,

and they are currently subject to CCSDS experimentation [5].

While CCSDS current requirements are not very demanding

in terms of Frame Error Rate (FER), future standards are

expected to require much stricter performance constraints. A

FEC relying on the serial concatenation of turbo and LDPC

codes has been proposed in [6]: thanks to its very good error

correction capabilities, it has been deemed suitable for the

extremely critical deep space communications.

To the best of our knowledge no implementation solution

for the concatenated scheme has been proposed so far, but

decoders for both turbo and LDPC codes are present in the

state of the art, mainly targeting wireless communications.

Multi-code and multi-standard decoders that make flexibility

their primary concern have also been introduced recently [7]–

[12]: they are characterized by different degrees of datapath

and memory sharing.

This work proposes a decoder for concatenated turbo and

LDPC codes targeting deep space communications. The usage

of the same decoding algorithm for both codes greatly reduces

the area overhead of the concatenated scheme decoder with

respect to a single LDPC or turbo code decoder. In facts, it

allows to exploit a high degree of datapath sharing and obtain

very low power consumption and area occupation. In addition

to deep-space communications, the proposed solution could be

also useful in further applications where retransmission of lost

packets is not allowed, such as for example broadcasting.

The rest of the paper is organized as follows: Section II

introduces turbo and LDPC code decoding, while Section III

describes the concatenated FEC schemes and its performance.

The hardware structure of the proposed decoder is explained

in Section IV, and Section V gives the results of the imple-

mentation. Finally, conclusions are drawn in Section VI.

II. TURBO AND LDPC DECODING

Turbo codes can be obtained by concatenating in parallel

two convolutional code encoders. The dual encoding structure

is reflected on the decoder, that is consequently made of two

parts as well, known as Soft-In-Soft-Out (SISO) decoders.

These are connected by an interleaver Π and a de-interleaver

Π−1. Each of them implements the BCJR algorithm [13],

which produces extrinsic metrics from a priori information:

each iteration of the algorithm can be divided into an in-order

half-iteration and an interleaved-order half-iteration, due to the

presence of two SISOs. The BCJR algorithm relies on the

trellis representation of the constituent convolutional codes:

let us define k as a trellis step and u as an uncoded symbol.

Each SISO performs λk[u] = λ
apo
k [u] − λ

apr
k [u] − λk[c

u]
where λ

apo
k [u] is the a-posteriori information, λ

apr
k [u] is the a

priori information and λk[c
u] is the systematic component of

the intrinsic information. The a-posteriori information can be

obtained as follows:

λ
apo
k [u] =

∗

max
e:u(e)=u

{b(e)} −
∗

max
e:u(e)=ũ

{b(e)} (1)

where ũ ∈ U is an uncoded reference symbol (usually ũ =
0) and u ∈ U \ {ũ} with U the set of uncoded symbols; e

is a trellis transition and u(e) is the corresponding uncoded

symbol. According to the Max-Log-MAP approximation [14],

the
∗

max{xi} function can be approximated to max{xi} at

the cost of a small BER degradation. The term b(e) in (1) can

consequently be defined as:

b(e) = αk−1[s
S(e)] + γk[e] + βk[s

E(e)] (2)

αk[s] = max
e:sE(e)=s

{

αk−1[s
S(e)] + γk[e]

}

(3)

βk[s] = max
e:sS(e)=s

{

βk+1[s
E(e)] + γk[e]

}

(4)

γk[e] = λ
apr
k [u(e)] + λk[c(e)] (5)

where sS(e) and sE(e) are the starting and the ending states of

e, αk[s
S(e)] and βk[s

E(e)] are the forward and backward met-

rics associated to sS(e) and sE(e) respectively, and λk[c(e)]
is the channel intrinsic information. When large frames are

involved, the BCJR algorithm is usually applied to a subset of

the symbols to reduce latency, defining a window of w steps.

The forward and backward recursions are applied on each

window separately: between iterations, αk[s] and βk[s] are

exchanged between border symbols of adjacent windows. This

technique is a particular version of the sliding window method,

since windows are static and state metrics are exchanged only

once per iteration, or can be seen as a classical sliding window

with sliding step equal to w.

LDPC codes are identified by an M×N sparse parity check

matrix H, that represents all the parity checks a codeword must

satisfy, i.e. H · x′ = 0, where x is the codeword of length N .

Various decoding approaches are possible, depending on the

graph representation of H, but the most performing one is the

layered decoding approach [15]. It sees H as a multipartite

graph composed of different layers of parity check constraints:

multiple updates of the bit error probabilities within a single

iteration allow for a fast convergence of the decoding algo-

rithm. It is particularly advantageous in case of Quasi-Cyclic

LDPC codes (QC-LDPC), where the parity check layers are

inherent to the structure of H. In fact, the parity check matrix

is constituted of multiple instantiations of an m×m identity

matrix circulated of a variable shift factor: each layer will

consequently be constituted of m rows.

Let us define as λ[c] the Logarithmic Likelihood Ratio

(LLR) of symbol c. The bit LLR λk[c] related to column k

of H is initialized to the corresponding received soft value.

For every parity constraint l in a given layer, the following

operations are performed and reiterated up to the desired level

of reliability:

Qlk[c] = λold
k [c]−Rold

lk (6)

λnew
k [c] = Qlk[c] +Rnew

lk (7)

where λnew
k [c] is the updated version of LLR λold

k [c]. Rnew
lk

is the updated version of Rold
lk , that is initialized to zero and

stored for the next iteration: a different Rlk is identified for

each H matrix non-zero entry at column k and row l. Several

exact and approximated algorithms have been proposed to

calculate Rnew
lk : the most common algorithm used in LDPC

Padder

De−Padder

Output

Input

 bits

 bits

LDPC

decoder

encoder

Turbo

Turbo

decoder

encoder

LDPC

Channel

Figure 1. Serial concatenation of LDPC and turbo codes FEC scheme

decoding is the Belief Propagation (BP) algorithm, together

with the min-sum approximation and its variations [16].

It can be noticed how the LDPC and turbo decoding pro-

cesses share many characteristics. Both of them are iterative,

rely on soft information, are usually implemented in their

logarithmic form, while commonly being represented through

special kinds of graphs. A particularly interesting exploitation

of these characteristics has been proposed in [17]. Every row

of H is seen as a turbo code with trellis length equal to the

row weight: a direct link between turbo and LDPC codes is

consequently drawn, and turbo decoding algorithms like BCJR

can be applied to LDPC codes with minor adjustments. The

BCJR-based LDPC decoding relies on the fact that binary

LDPC codes can be represented with a 2-state trellis: state

metrics can consequently be expressed as differences ∆α[c]
and ∆β[c], reducing the quantization noise. Considering the

Max-Log-MAP approximation [18], the calculation of Rnew
lk

becomes:

Rnew
lk = Φ(∆αk[c],∆βk[c]) (8)

where the operator Φ(·) is defined as

Φ(x, y) = max(x, y)−max(x+ y, 0) (9)

and ∆α[c] and ∆β[c] can be computed as

∆αk = Φ(∆αk−1[c], Qlk[c]) (10)

∆βk = Φ(∆βk+1[c], Qlk[c]) (11)

∆α[c] and ∆β[c] at the edge of the trellis are initialized as

the minimum value of the dynamic range.

III. TURBO AND LDPC CONCATENATED FEC SCHEME

The concatenation of different codes targets the improve-

ment of performance via careful code selection. The concate-

nation of code A and B is in fact meaningful only when

A+B performs better than both A and B. This means that the

coupled codes must be in some way complementary, each one

overcoming the shortcomings of the other. Outer Codes (OCs)

are often chosen among those with guaranteed performance,

like Reed-Solomon (RS) [19] or BCH [20] codes, thanks

to their theoretically predictable error correction capabilities.

They are associated to powerful Inner Codes (ICs) such as

convolutional or LDPC codes, as used in WiMAX and DVB-

S2, that greatly reduce the number of errors the OC has to

correct. The RS+convolutional FEC scheme used by CCSDS

allows these codes to rival with the more powerful LDPC and

turbo codes. In [21] the performance of the common turbo+RS

FEC scheme is analyzed in relation to their interleaver. Good

results are observed with complex interleavers and at very

high Signal-to-Noise Ratio (SNR). However, this is not the

only possible criterion of choice. In [22] LDPC and recursive

systematic convolutional codes are concatenated in parallel,

with good performance and little additional complexity with

respect to a standard LDPC code. Block turbo codes and

LDPC codes have been concatenated in [23], where a FEC

scheme for 3D HDTV is devised. The scheme outperforms

the DVB-T2 standard serial concatenation of BCH and LDPC

codes. Satellite communications are handled through the con-

catenation of Luby Transform (LT) codes and non-binary

LDPC (NB-LDPC) codes in [24]. Thanks to the high error

correction capabilities of NB-LDPC and the intrinsic flexibility

of LT codes, the resulting system is very versatile.

Serial concatenation of codes is based on the concept that

the output bits of an encoder are used as input bits for

another encoder. Turbo and LDPC codes in particular have

been considered for concatenation in [6], where deep space

communications were targeted: Fig. 1 shows the proposed

idea. The performance of these two types of codes are some-

what complementary: while turbo codes guarantee much better

performance than LDPC codes at low SNR, they suffer from

higher error floors [25]. Consequently, the LDPC encoder is

placed before the turbo encoder, while the decoders are in

inverted order. The turbo code, working as an IC and being

the first one to be decoded, can exploit its early waterfall

region, while the outer LDPC code receives already refined

error probabilities and can thus work at higher equivalent SNR.

To prove the soundness of this choice, simulations were run

also inverting the order of the encoders. With an LDPC IC and

a turbo OC, BER results in the waterfall region improve with

respect to the use of the LDPC code alone, but they are much

worse than the proposed concatenated scheme. Moreover, error

floors can be noticed at BER levels only slightly lower than

that of turbo codes alone. The encoders are connected by

an optional padding block, that adapts the respective block

sizes in case they are different by adding zeros. This means

that not all the IC input bits carry useful information, but

experimentations with a wide variety of codes are possible.

At the same time, a de-padding block is inserted between

the decoders. The IC decoder receives an initial measure of

the bit error probabilities from the channel estimator, and

performs a fixed number of iterations Iterin. Afterwards, the

potential padding bits are removed, and the bit-level output

error probabilities λk[u] are passed to the OC decoder, that

interprets them as input λk[c]. Having gone through the turbo

decoding, the λk[c] at the input of the LDPC decoder can

not be considered channel-estimated LLRs. Those pertaining

to correct bits in particular have diverged from zero, and

are suitable for a hard decision on bits. This could lead to

poor performance on the LDPC part, but the nature of the

concatenated scheme prevents it. To exploit their low error

floor, LDPC codes need to work at high SNR: the refined

LLRs used as inputs guarantee the required general high level

of reliableness and avoid undesired bit flipping. The correction

of the errors that could not be corrected by the turbo code is

helped by the inherent interleaving effect brought by the LDPC

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,5 1 1,5 2 2,5

D
S

P
B

 [
d

B
]

Eb/N0 [dB]

Eb/N0 VS DSPB @ FER=10-7

LDPC CCSDS K=4096 R=1/2 LDPC CCSDS K=16384 R=1/2

LDPC CCSDS K=1024 R=1/2 Turbo CCSDS K=3568 R=1/3

Turbo WiMAX K=1920 R=1/3 SCCC K=16384 R=1/3

LDPC WiMAX + turbo CCSDS K=1920 R=5/18 LDPC WiMAX + turbo CCSDS K=1920 R=5/24

LDPC + turbo WiMAX K=1600 R=5/18 LDPC + turbo WiMAX K=960 R=1/6

Figure 2. Eb/N0 versus ∆SPB at FER=10−5

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-0.5 0 0.5 1

F
E

R

SNR [dB]

FER and SPB of concatenated and single turbo and LDPC codes

Turbo K=3568 1/3
SPB K=3568 1/3

Turbo K=3568 1/3, LDPC K=1920 5/6
SPB 1920 5/18

Turbo K=1920 1/3, LDPC K=960 1/2
SPB 960 1/6

Turbo K=1920 1/3, LDPC K=1600 5/6
SPB 1600 5/18

Figure 3. Concatenated LDPC and turbo FER, AWGN channel, BPSK
modulation

H matrix structure [26].

Comparing the performance of codes differing in both block

size and rate is a complex task. To help a fair evaluation

of the effectiveness of the concatenation, the distance of

each concatenated scheme from the Sphere Packing Bound

(SPB) [27] has been considered. The SPB is an evolution of

the channel capacity that binds the achievable performance

of a code not only to its code rate, but also to the block

size: different methods of calculation and refinements of this

measure exist, but the authors refer to that proposed by Dolinar

et al. in [27]. In particular, the asymptotic approximation

devised for long blocks (≥ 100 symbols) is used. In Fig. 2

the performance of various concatenations, along with that

of codes currently used in different standards, is evaluated in

terms of SPB and Eb/N0. The x axis represents the Eb/N0

at which FER=10−7 , while the distance of the code from its

SPB at that particular FER is shown on the y axis (∆SPB).

These results, together with those shown in Fig. 3 have

been obtained taking in account the performance degradation

brought by the Max-Log-MAP approximation and the bit-level

metric conversion addressed in Section IV-B. Together, they

sum up to around 0.3 dB loss. Simulations have been run with

10 maximum iterations for both turbo and LDPC codes: Rnew
lk

and λ
apo
k [u] values have been quantized with 10 bits, three of

which are assigned to the fractional part, while 9 bits are used

for channel LLRs and state metrics. The selected quantization

leads to negligible degradation with respect to floating point

and guarantees a much higher level of precision than typical

LDPC and turbo decoder quantizations, that can be as small

as 4 bits [9]. The white symbols are codes taken from

the current CCSDS standard, while full black symbols

in the Fig. 2 represent different choices of concatenations.

Where padding bits have been used, the SPB has been

computed by considering K=KIC×rateOC . At FER=10−7,

it is possible to observe the effect of the error floor on

turbo codes in both the high ∆SPB and the large Eb/N0

(white circle and white cross in Fig. 2). CCSDS LDPC

codes show good ∆SPB, especially for K=4096: however,

they are characterized by quite large Eb/N0. The results

obtained with the largest CCSDS LDPC code are similar

to those obtained by concatenated WiMAX LDPC and

turbo codes. The CCSDS turbo codes, when used as IC in

concatenation, give the best results, with the CCSDS turbo

+ WiMAX LDPC outperforming all the other solutions.

The comparison with SCCCs [28], which are able to

obtain lower error floors than parallel turbo code, shows

very similar performance, with the concatenated scheme

yielding slightly better results in terms of both ∆SPB and

Eb/N0.

The advantage of the concatenated scheme is partic-

ularly evident at low FER, as can be observed in Fig.

3, where FER curves are plotted alongside SPB. While

concatenated schemes exploit the very low error floors of

LDPC codes and follow the behavior of SPB closely, the

FER of turbo codes alone suffers from an early divergence

from the theoretical achievable performance. For example,

while the FER curve of the CCSDS turbo code plotted in

Fig. 3 displays ∆SPB= 0.72 dB at FER= 10−5, it rises to

1.26 dB at FER= 10−7 due to error floor.

IV. UNIFIED LDPC/TURBO DECODING ARCHITECTURE

Following the effectiveness of the concatenated FEC scheme

presented in [6], the decoder architecture for turbo and LDPC

codes concatenation shown in Fig. 4 has been designed.

The gray blocks represent the duplicated datapath described

in Section IV-A, while the structure of the memory banks,

with their alternative usage according to half-iterations, is

detailed in Section IV-B. The common turbo/LDPC decoding

technique depicted in Section II paves the way for highly

shared datapaths, in the wake of works like [7] and [8], as

opposed to separate datapath turbo/LDPC decoders like [9]–

[11]. The proposed decoder relies on an innovative smart

memory structure that allows to increase the percentage of

module reuse within the datapath and avoid complex inter-

leaving mechanisms between the decoding modes.

A. Datapath

The structure of the designed LDPC/turbo datapath po-

sitions itself in between a completely shared approach and

datapath separation. The turbo and LDPC datapaths have great

disparities in terms of complexity, with the turbo datapath

STATE METRIC

STATE METRIC

INTERLEAVED MEMORIES

EXTRINSIC MEMORY III

EXTRINSIC MEMORY IV

INTRINSIC MEMORY III

INTRINSIC MEMORY IV

IN−ORDER MEMORIES

EXTRINSIC MEMORY I

INTRINSIC MEMORY I

INTRINSIC MEMORY II

EXTRINSIC MEMORY II

MEMORY α

MEMORY β

In-order/Interleaved half-iteration

α DATAPATH

β DATAPATH

Figure 4. Unified LDPC/turbo decoder overall block diagram

requiring more resources. As shown in this section and in

Section V, the LDPC datapath is included within the turbo

datapath, while constituting a limited percentage of its overall

logic. The concatenated scheme can consequently be decoded

at little more than the logic cost of a turbo decoder.

Fig. 5 shows a block diagram of the designed datapath.

It is characterized by a pipelined architecture, with registers

represented by striped blocks. The turbo decoding process

makes use of a butterfly structure: the datapath is duplicated in

an α and β datapath, respectively entrusted with the concurrent

forward and backward scanning of the trellis steps. They

implement the modified sliding window technique described in

Section II. Each half of the duplicated datapath receives as an

input from the memories the λ
apr
k [u(e)] and λk[c(e)] relative

to a trellis step: these are used by the Branch Metric Units

(BMUs) to perform (5) and obtain γk[e]. These are passed

to the α and β units, that perform the computations of (3)

and (4) respectively. The structure of the α and β units is

similar. Along with the output of BMU, the α unit receives

αk−1[s
S(e)] either from the memory (when computing the

first trellis step of a window) or from its own outputs (all

other trellis steps), as shown by the feedback loop in Fig.

5. Together with the updated αk[s], that are stored in the

state metric memory α (Fig. 4), the α unit also produces

the αk−1[s
S(e)] + γk[e] partial sums needed by (2). These

are passed to one of the extrinsic computation units (EXT-

α in Fig. 5). EXT-α completes (2) by taking the βk[s
E(e)]

stored in the state metric memory β by the β unit and finally

performs (1). The same computation is concurrently carried

out on another trellis step by EXT-β, to which are given

αk−1[s
S(e)] stored by the α unit in the state metric memory

α and γk[e] +βk[s
E(e)] partial sums calculated in the β unit.

The LDPC decoding process makes mostly use of the

turbo mode datapath. LDPC codes are characterized by 2-

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

BMU

BMU

α

β

Π

MEM

MEM

MEM

EXT-α

EXT-β

α[sS(e)]

γ[e] + β[sE(e)]

β[sE(e)]

α[sS(e)]

β[sE(e)]

γ[e]

γ[e]

β[sE(e)]

∆β[c]

∆α[c]

α[sS(e)]

∆β[c]

∆α[c]∆β[c]

∆α[c]

∆β[c]

∆α[c]

α[sS(e)] + γ[e]

λapo[u(e)]

λapo[u(e)]
λ[c(e)]

λapr [u(e)]

λapr [u(e)]

λ[c(e)]

∆β[c]

∆α[c]

α[sS(e)]

β[sE(e)]

Rnew

Rnew

Q[c]

Q[c]

Figure 5. Unified LDPC/turbo decoder datapath block diagram

LDPC/turbo

0

LDPC/turbo

21

MAX MAX
γk[e]

∆αk−1[c]

γk[e]

αk−1[s
S(e)]

αk−1[s
S(e)]

αk−1[s
S(e)]

∆αk−1[c]

γk[e]

γk[e]

αk−1[s
S(e)]

Qlk[c]

Qlk[c]

Figure 6. Unified LDPC/turbo comparator components, with inputs used in
the α unit

state binary trellises: since the turbo codes considered are

either 16-state Single-Binary (SBTC) or 8-state Duo-Binary

(DBTC), LDPC codes can easily exploit an additional par-

allelism factor, concurrently performing the computations

associated to multiple parity checks. The BMU is not used

and consequently deactivated in LDPC mode, while both α

and β units are shared with the turbo mode. In Fig. 6, the

core components of the unified α unit are depicted. Adders

and comparators are shared among the two operating modes.

Both structures are equivalent when in turbo mode, while their

operations differ in LDPC mode. Architecture ‘1’ implements

the max(x, y) operator of Φ(x, y), while architecture ‘2’

implements max(x + y, 0). The EXT-α and EXT-β units

perform (8), and rely on the same architectures used for α

and β unit (Fig. 6). Also in this case they are shared with the

turbo datapath.

B. Memory

As occupied area in both turbo and LDPC decoders is

dominated by storage components, efficient memory sharing

is very important: for example, a scheme suitable for serial

PEs with disjoint turbo and LDPC datapaths has been used

in [9], resulting in large memory saving. However, a different

approach is needed with this work. Since the sizing of mem-

ories strongly depends on the supported codes, the following

analysis is carried out supposing the concatenation of a rate

5/6, N=1920 WiMAX LDPC code with a rate 1/3, K=960

DBTC taken from the same standard, decoded considering a

window size w = 80. As already shown in [6] and in Section

III, this FEC scheme guarantees performance comparable to

that of more powerful codes. No padding bits are necessary,

since the size of the input frame for the DBTC (960 symbols,

i.e. 1920 bits) is equal to the size of the LDPC codeword.

However, the following discussion on memory requirements

stands also in case of padding, as long as the padding bits

are added at the end of the LDPC codeword. The memories

necessary to support the designed decoder can be observed in

Fig. 4: two sets of four memory banks serve the in-order and

interleaved half-iterations respectively, storing extrinsic and

intrinsic information, while two memories are dedicated to

the storage of state metrics.

In turbo mode, the duplication of the datapath required by

the butterfly structure rises the need for concurrent data reading

and writing. For the correct computation of a trellis step the

following metrics are necessary:

• λ
apr
k [u(e)] and λk[c(e)] for the computation of (5). Since

WiMAX codes are duo-binary, λ
apr
k [u(e)] consists of

three different metrics, while λk[c(e)] of four. However,

as explained in [29], symbol-level information in duo-

binary codes can be converted to bit-level information

and vice versa, with a small performance degradation.

This means that the memory requirements for λ
apr
k [u(e)]

can be reduced by approximately 1/3. Due to the butterfly

structure, eight λk[c(e)] metrics and four λ
apr
k [u(e)]

are needed. While λk[c(e)] values are received by the

decoder at the beginning of a frame and not updated

anymore, the λ
apr
k [u(e)] metric is updated at least once

per iteration.

• α[sE(e)] and β[sE(e)] for (2), (3) and (4). Every trellis

step computation requires a number of α[sE(e)] and

β[sE(e)] metrics equal to the number of states of the

turbo code: in this case, eight of each. The loading and

storing needs for these metrics vary during the decoding

process. At the beginning of each trellis window, the

α[sE(e)] and β[sE(e)] values coming from adjacent win-

dows must be read as initialization values. The updated

α[sE(e)] and β[sE(e)] must be stored during the first

half of the window, and loaded again in the second half.

Finally, the metrics belonging to trellis steps at the edge

of a window must be stored for the adjacent windows.

In LDPC mode, for every trellis step computation a λk[c] and

Rold
lk pair must be loaded in both parts of the datapath to

perform (6), along with ∆αk[c] and ∆βk[c] for (8), (10) and

(11). Similarly to the turbo case, only the ∆αk[c] and ∆βk[c]
metrics at the edge of the trellis need to be stored for further

usage, while the λk[c] and Rnew
lk metrics involved in (7) are

to be updated once per trellis.

Since the chosen turbo code is duo-binary and has an eight-

state trellis, its decoding process needs a much larger number

of metrics than the LDPC code, which decoding is similar to

that of a single-binary, two-state turbo code. From the LDPC

point of view, this translates in an internal level of parallelism

in the datapath that is not, however, directly available. In

fact, the structure of the H matrix and the layered scheduling

require the same LLR to be read and updated multiple times

during a single LDPC decoding iteration, resulting in complex

load and store patterns not found in turbo decoding. Careful

planning of the memory structure is consequently necessary

to maximize the level of memory sharing and to concurrently

allow the LDPC datapath to exploit the internal parallelism.

Figure 7 shows an in-depth detail of one of the two sets

of memory banks depicted in Fig. 4. Memories are sized to

accommodate the considered codes in case two concurrent

parity check computations are performed in LDPC decoding

(parallelism factor ×2). They are dual-port, and the usage

percentage of each memory is portrayed for both turbo and

LDPC codes, along with its depth and width.

In turbo mode, two λk[c(e)] metrics are stored at each

address in the two 1920×16 bit intrinsic memories: both ports

are always kept in read mode, except during initialization.

In this way, four λk[c(e)] are concurrently available to the

α datapath, and four to the β datapath. These same intrinsic

memories are used to store the Rold
lk values in LDPC mode. At

every clock cycle both the datapaths need a Rold
lk value: during

the second half of the trellis, the α datapath will need the

values fed to the β datapath during the first half in backward

order, and vice versa. This means that by storing at the same

memory address Rold
lk values in symmetrical positions with

respect to the trellis half-point (e.g. Rold
l1 with Rold

l20, Rold
l2 with

Rold
l19 etc.) the storage requirements are reduced by 1/2 without

decreasing the number of concurrently available metrics. The

total number of memory locations required becomes 3200,

resulting in a 83.3% usage of each intrinsic memory. Two

960 × 8 bit extrinsic memories hold the λ
apr
k [u(e)] values.

From the turbo decoding point of view, these two memories

could be merged into a single 960 × 16 bit memory, since

λ
apr
k [u(e)] metrics must be paired to obtain the symbol-level

���������
���������
���������
���������

���������
���������
���������
���������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

Turbo LDPC

INTRINSIC MEMORIES

STATE METRIC MEMORY

EXTRINSIC MEMORIES

960100% 100%

8 bit

λk[c]λk[u(e)]

960100%

λk[c]

8 bit

λk[u(e)]

100%

1920

16 bit

100% 83.3%

λk[c(e)] λk[c(e)] RlkRlk

16 bit

1920100% 83.3%

λk[c(e)] λk[c(e)] RlkRlk

128

∆αk[c1] ∆βk[c1] ∆αk[c2] ∆βk[c2]

66.4%

32 bit

αk[s] αk[s] αk[s] αk[s]

100%

Figure 7. Unified turbo/LDPC decoder memory sharing scheme

metrics used in the BCJR algorithm. LDPC decoding must

hold at least N λk[c]: four of them must be read concurrently.

A single 960 × 16 bit memory would not suffice, since the

coupling of values changes with every row of the H matrix.

Both extrinsic memories are used to their full capacity in both

decoding modes.

The memories portrayed so far compose the in-order half-

iteration memory banks (Fig. 4) and need to be kept, during

turbo decoding, with both ports in read mode. The in-order

half-iteration makes use of two additional extrinsic memories

to store the newly computed λ
apo
k [u(e)], that are used in

the interleaved-order half-iteration (Fig. 4). Also the λk[c(e)]
needed by the interleaved half-iteration are stored in two addi-

tional intrinsic memories. The same data could be retrieved

by adding complexity to the address generation logic and

reading in interleaved order the intrinsic memories used

in the first half-iteration. However, the extra storage is

useful for LDPC decoding. In fact, by having a total of

four 1920× 16 bit and four 960× 8 bit memories, LDPC

decoding can exploit a ×2 internal parallelism factor.

Table I
MEMORY REQUIREMENTS

Memory Bits

Turbo LDPC Total

Separate memories
176384 210240 386624 100%

No smart allocation

Separate memories
161024 138560 299584 77.5%

Smart allocation

Shared memories
161024 138560 161792 41.8%

Smart allocation

Finally, two wider 128 × 32 state metric memories, as

the one shown in Figure 7, are used to hold the α[sE(e)]
and β[sE(e)] values for both window initialization and intra-

window state metrics in turbo mode. The same memories

are used in LDPC mode to store ∆αk[c] and ∆βk[c]. Each

address holds the values used by each datapath in both levels

of parallelism.

Table I synthesizes the advantages of the devised memory

structure. The first row gives the memory bits necessary for the

decoder architecture described in Section IV-A to work in both

turbo and LDPC mode, while considering separate memories.

If smart metric allocation techniques are used (Rold
lk coupling

and reusage, bit-level λ
apo
k [u(e)]), the required bits are reduced

of 22.5%. Moreover, by sharing the memories between the two

modes, only 41.8% of total bits is necessary, with LDPC mode

being completely supported by the memories required by turbo

mode.

C. Interleaving and addressing

Address generation for the described memory structure is in

most cases straightforward. In turbo mode, all read operations

are sequential, either in forward or backward order, and are

consequently handled by simple counters. Write operations

to the following half-iteration memories are based on the

permutation law associated to the turbo code encoding, and

the memory addresses can be obtained via simple operation

on the current half-iteration read address. In the considered

case study, the interleaving rules are those associated to

the WiMAX standard turbo codes: the interleaved addresses

are obtained on-the-fly by dedicated logic implementing the

WiMAX permutation function. Address generation for the in-

trinsic memories is sequential in both read and write operations

when in LDPC mode, and the counters used in the turbo

mode can be reused, but problems arise when dealing with the

extrinsic memories. While sequential addressing in intrinsic

memories is possible thanks to the local nature of Rold
lk values,

λk[c] are read and updated multiple times and in variable order

during an iteration. Address generation, however, can still

exploit the regular structure of the H of QC-LDPC codes. By

storing in a small memory the shift factors of the constituent

m×m circulant identity matrices, together with the position

of the nonzero entry of their first row, read and write addresses

can be obtained with modulo-m counters and adders. A single

160 × 36 bit memory is sufficient to support also the ×2
internal parallelism.

The devised memory structure is particularly advantageous

when switching between turbo and LDPC decoding: after the

last turbo iteration, the extrinsic memories relative to the in-

order half-iteration contain the data needed by the LDPC

decoding process in the correct order. The memories relative to

the interleaved-order half-iteration in turbo mode, to be used

in LDPC mode, will only need to have the read and write

addresses pass through the permutation law circuit.

V. IMPLEMENTATION

The decoder architecture described in Section IV has been

implemented in 90 nm CMOS technology: synthesis and

power estimation have been carried out with Synopsys Design

Compiler, while the switch activity has been analyzed with

Mentor Graphics Modelsim.

Several design choices are related to the set of codes that

is going to be implemented, in particular the sizing of the

memories. The largest codes considered for the implementa-

tion are taken from the WiMAX standard: an LDPC code with

block size 1920 and rate 5/6, and a DBTC with information

block size 1920 and rate 1/3. Soft metrics have been quantized

with nine and eight bits, with two bits of fractional part; the

maximum number of iterations has been set as ItOC = 10
for LDPC and ItIC = 6 for turbo. The CCSDS standard

foresees in [30] a wide range of possible throughputs

for spacecraft-to-Earth communications, depending on the

modulation scheme, frequency band and type of mission.

Downlink data rates supported by spacecrafts employed

in current missions vary consistently between one another.

For example, the Curiosity rover deployed on the surface

of Mars can communicate directly with Earth at 32 Kb/s:

however, it can exploit two different orbiters (the Mars

Odyssey Orbiter and the Mars Reconnaissance Orbiter)

to reach data rates of up to 110 Kb/s and 6 Mb/s

respectively. The Cassini orbiter around Saturn has a

maximum downlink data rate of 248.85 Kb/s, and the

Kepler planet search spacecraft communicates at 4.33

Mb/s. Higher rates (up to 28 Mb/s) will be considered

by the James Webb Space Telescope.

The throughput of the Cassini orbiter can be achieved

by the proposed decoder architecture at 12 MHz (252

Kb/s): with this target frequency, the total area occupation

is 0.98 mm2. Thanks to the shared datapath approach

more than 90% of the LDPC datapath is included in

the larger turbo datapath, with very few LDPC-exclusive

components. This is also reflected on the power consump-

tion estimate, resulting in 2.1 mW at 12 MHz. Memories

occupy 82.6% of the decoder area, and account for

70.1% of the total power consumption. Pipeline stages

contribute for 10.3% of the area and 13.4% of power

consumption, with the remaining 7.1% area occupation

and 16.5% power consumption being taken by processing,

addressing and control logic. The implementation results

show that this decoder has a smaller area and lower power

consumption than most LDPC and turbo decoders [9],

[31]–[33]. Obviously, due to the very reduced throughput

target, the obtained throughput-to-area ratio is low. It

yields, however, an energy efficiency of 120 Mb/s per Watt,

outperforming the majority of the state of the art.

The 6 Mb/s required by the Mars Reconnaissance Or-

biter are obtained by targeting a frequency of 286 MHz, for

which the occupied area results 1.03 mm2, and the power

consumption 56.6 mW. Whereas the energy efficiency is

reduced to 106 Mb/s per Watt, this implementation of

the decoder allows to comply with most current deep

space downlink throughput requirements. The proposed

architecture, however, can sustain even higher throughputs:

10.5 Mb/s have been obtained by synthesizing the presented

decoder without any modifications targeting a frequency of

500 MHz. The implementation yields an area occupation of

1.06 mm2 and 111.9 mW power consumption. To achieve even

higher throughputs, it is possible to reduce the system critical

path by adding a pipeline stage in the EXT-α, EXT-β modules

and another in the α, β modules: with these straightforward

modifications, up to 14.5 Mb/s can be obtained. Another pos-

sible approach can be incrementing the degree of parallelism

of the decoder: by subdividing the current memory structure in

a number of smaller banks, multiple instances of the datapath

can work concurrently, virtually multiplying the achievable

throughput.

The state of the art is currently lacking extensive infor-

mation about decoders aimed at deep space communications,

making the comparison between the concatenated FEC scheme

implementation and alternative solutions unfeasible. The work

in [34] presents an FPGA-based LDPC decoder for space

communications: however, the considered near-Earth trans-

missions involve codes and specifications very different from

deep-space links. Turbo codes are a more mature technology

in the deep space field, and various CCSDS-compliant turbo

decoders are available on the market [35], [36]. However,

very few scientific papers have been written on the subject.

The work in [37] discusses the implementation of a CCSDS-

compliant turbo decoder, but it is based on multiple off-the-

shelf Digital Signal Processors, lacking area occupation and

power consumption details. Also evaluating the area, power

and energy efficiency gain of the proposed solution with

respect to similar architectures is problematic. Shared datapath

LDPC and turbo decoders are present in the literature, for

which complete implementation results are provided [7], [8].

Their target applications are wireless communication standards

like 3GPP-LTE, WiMAX, WiFi and DVB, for which BER and

throughput requirements are extremely different from deep-

space communications. These decoder designs are often based

on high levels of parallelism, favoring speed over performance,

especially in video broadcasting. For example, the decoder

presented in [7] relies on a completely shared datapath. Since

the target throughput ranges between 450 and 600 Mb/s, the

internal parallelism of each decoding core can be close to a

hundred, while the frequency is set to 500 MHz. Moreover, to

give full support to high-throughput communication standards,

multiple instances of parallel cores are used. Consequently,

while the concept of datapath sharing and turbo/LDPC code

decoding behind the presented work and [7] is similar, the dif-

ference in throughput requirements results in diverging design

choices, that lead to a more than three-fold area occupation

and an estimated ×20 factor in power consumption. While

it is clear that a fair comparison with the state of the art

cannot be performed, it is possible to get a sense of where the

proposed decoder stands. The CCSDS-compliant RS decoder

[38] and Viterbi decoder [39] yield a total area normalized

to 90 nm CMOS technology of 0.63 mm2. The RS+CC

FEC schemes is consequently cheaper to implement than the

proposed turbo/LDPC concatenation, but its performance are

much worse. An additional evaluation can be made thanks to

the resource utilization data given in Lattice Semiconductor

FPGA-based CCSDS turbo decoder [35]. Approximately 8000

Look-Up Tables (LUTs) and 4000 registers are necessary for

different Lattice devices. This work, implemented on a Xilinx

Virtex 6 FPGA, requires 6000 LUTs and 1000 registers, having

better performance while at the same time occupying a smaller

area than [35].

VI. CONCLUSION

This work presents a unified turbo/LDPC decoder architec-

ture for concatenated LDPC and turbo codes aimed at deep

space communications. The performance of such FEC scheme

is compared to that of FEC schemes currently used by the

CCSDS standard, extending the evaluation of previous works:

this solution greatly outperforms both CCSDS LDPC and

turbo codes. The architecture of the joint turbo/LDPC decoder

is described: it yields a high percentage of datapath sharing

(> 90% in the LDPC case) and completely shared memories.

The novelty of the solution and the lack of similar implementa-

tions in the state of the art make a fair comparison impossible.

The proposed decoder has been implemented obtaining post-

layout results, that show very small area occupation (1.01

mm2) and power consumption (18.4 mW).

REFERENCES

[1] TM Synchronization and Channel Coding - Summary of Concept and

Rationale, Consulative Committee for Space Data Systems (CCSDS)
Std. 130.1-G-1, Jun. 2006.

[2] TM Channel Coding Profiles, Consulative Committee for Space Data
Systems (CCSDS) Std. 131.4-M-1, Jul. 2011.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error
correcting coding and decoding: Turbo codes,” in IEEE International

Conference on Comm., 1993, pp. 1064–1070.
[4] R. G. Gallager, “Low density parity check codes,” IRE Transactions on

Information Theory, vol. IT-8, no. 1, pp. 21–28, Jan 1962.
[5] G. Liva, E. Paolini, T. De Cola, and M. Chiani, “Codes on high-order

fields for the CCSDS next generation uplink,” in Advanced Satellite

Multimedia Systems Conference and 12th Signal Processing for Space

Communications Workshop, 2012, pp. 44–48.
[6] C. Condo, “Concatenated turbo/LDPC codes for deep space communi-

cations: performance and implementation,” in International Conference

on Advances in Satellite and Space Communications (SPACOMM), apr.
2013, pp. 1 –6.

[7] Y. Sun and J. R. Cavallaro, “A flexible LDPC/Turbo decoder architec-
ture,” Jour. of Signal Processing Systems, vol. 64, no. 1, pp. 1–16, 2010.

[8] F. Naessens, B. Bougard, S. Bressinck, L. Hollevoet, P. Raghavan,
L. Van der Perre, and F. Catthoor, “A unified instruction set pro-
grammable architecture for multi-standard advanced forward error cor-
rection,” in Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop

on, oct. 2008, pp. 31 –36.
[9] C. Condo, M. Martina, and G. Masera, “VLSI implementation of a multi-

mode turbo/LDPC decoder architecture,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 60, no. 6, pp. 1441–1454, 2013.
[10] M. Alles, T. Vogt, and N. Wehn, “FlexiChaP: A reconfigurable ASIP for

convolutional, turbo, and LDPC code decoding,” in Turbo Codes and

Related Topics, 2008 5th International Symposium on, 2008, pp. 84 –89.

[11] P. Murugappa, R. Al-Khayat, A. Baghdadi, and M. Jezequel, “A flexible
high throughput multi-ASIP architecture for LDPC and turbo decoding,”
in Design, Automation and Test in Europe Conference and Exhibition,
2011, pp. 1–6.

[12] G. Gentile, M. Rovini, and L. Fanucci, “A multi-standard flexible
turbo/LDPC decoder via ASIC design,” in International Symposium on

Turbo Codes & Iterative Information Processing, 2010, pp. 294–298.
[13] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of

linear codes for minimizing symbol error rate,” IEEE Transactions on

Information Theory, vol. 20, no. 3, pp. 284–287, Mar 1974.
[14] S. Papaharalabos, P. T. Mathiopoulos, G. Masera, and M. Martina,

“On optimal and near-optimal turbo decoding using generalized max∗

operator,” IEEE Comm. Letters, vol. 13, no. 7, pp. 522–524, Jul 2009.
[15] D. Hocevar, “A reduced complexity decoder architecture via layered de-

coding of LDPC codes,” in Signal Processing Systems, IEEE Workshop

on, 2004, pp. 107 – 112.
[16] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative

decoding of low-density parity check codes based on belief propagation,”
IEEE Trans. on Comm., vol. 47, no. 5, pp. 673 –680, May 1999.

[17] M. Mansour and N. Shanbhag, “Turbo decoder architectures for low-
density parity-check codes,” in Global Telecommunications Conference,

2002. GLOBECOM ’02. IEEE, vol. 2, nov. 2002, pp. 1383 – 1388 vol.2.
[18] M. Martina, G. Masera, S. Papaharalabos, P. T. Mathiopoulos, and

F. Gioulekas, “On practical implementation and generalizations of
max* operator for turbo and LDPC decoders,” IEEE Transactions on

Instrumentation and Measurement, vol. 61, no. 4, pp. 888–895, Apr
2012.

[19] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
Jun. 1960.

[20] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting
binary group codes,” Information and Control, vol. 3, Mar. 1960.

[21] M. Ferrari, F. Osnato, M. Siti, S. Valle, and S. Bellini, “Performance of
concatenated reed-solomon and turbo codes with non ideal interleaving,”
in Global Telecommunications Conference, 2001. GLOBECOM ’01.

IEEE, vol. 2, 2001, pp. 911–915 vol.2.
[22] S. Gounai, T. Ohtsuki, and T. Kaneko, “Performance of concatenated

code with LDPC code and RSC code,” in Communications, 2006. ICC

’06. IEEE International Conference on, vol. 3, june 2006, pp. 1195 –
1199.

[23] K. Kwon, H. H. Im, and J. Heo, “An improved FEC system for next
generation terrestrial 3D HDTV broadcasting,” in Consumer Electronics

(ICCE), 2012 IEEE International Conference on, jan. 2012, pp. 327 –
328.

[24] W. Lei, L. Jing, and W. J. bo, “Design of concatenation of fountain and
non-binary LDPC codes for satellite communications,” in Information

Engineering and Computer Science (ICIECS), 2010 2nd International

Conference on, dec. 2010, pp. 1 –4.
[25] Low density parity check codes for use in near-earth and deep space

applications, Consulative Committee for Space Data Systems (CCSDS)
Std. 131.1-O-2, Sep. 2007.

[26] S. H. Lee, J. A. Seok, and E. K. Joo, “Serial concatenation of LDPC
and turbo code for the next generation mobile communications,” in
Wireless and Optical Communications Networks, 2005. WOCN 2005.

Second IFIP International Conference on, march 2005, pp. 425 – 427.
[27] S. Dolinar, D. Divsalar, and F. Pollara. (1998, May) Code

performance as a function of block size. Jet Propulsion
Laboratory (JPL), TMO Progress Report 42-133. [Online]. Available:
http://tmo.jpl.nasa.gov/progress report/42-133/133K.pdf

[28] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concate-
nation of interleaved codes: performance analysis, design, and iterative
decoding,” Information Theory, IEEE Transactions on, vol. 44, no. 3,
pp. 909–926, 1998.

[29] J.-H. Kim and I.-C. Park, “A 50Mbps double-binary turbo decoder for
WiMAX based on bit-level extrinsic information exchange,” in Solid-

State Circuits Conference, IEEE Asian, nov. 2008, pp. 305 –308.
[30] Radio Frequency and Modulation Systems Part 1: Earth Stations and

Spacecraft, Consulative Committee for Space Data Systems (CCSDS)
Std. 401.0-B-23, Dec. 2013.

[31] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn,
N. L’Insalata, F. Rossi, M. Rovini, and L. Fanucci, “Low complexity
LDPC code decoders for next generation standards,” in Design, Au-

tomation Test in Europe Conference Exhibition, 2007. DATE ’07, 2007,
pp. 1 –6.

[32] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150mbit/s 3gpp lte
turbo code decoder,” in Design, Automation Test in Europe Conference

Exhibition (DATE), 2010, 2010, pp. 1420–1425.

[33] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, “An 8.29 mm2 52
mw multi-mode LDPC decoder design for mobile WiMAX system in
0.13 µm CMOS process,” IEEE Jour. of Solid-State Circuits, vol. 43,
no. 3, pp. 672 –683, 2008.

[34] F. Demangel, N. Fau, N. Drabik, F. Charot, and C. Wolinski, “A generic
architecture of CCSDS low density parity check decoder for near-
earth applications,” in Design, Automation Test in Europe Conference

Exhibition, 2009. DATE ’09., 2009, pp. 1242–1245.
[35] Lattice Turbo Decoder, Lattice Semiconductor Corporation, 2008.

[Online]. Available: http://www.latticesemi.com/lit/docs/ip/ipug14.pdf
[36] TC6000 CCSDS turbo decoder, Turbo Concept. [Online]. Available:

http://www.turboconcept.com/prod tc6000.php
[37] J. Berner and K. Andrews, “Deep space network turbo decoder imple-

mentation,” in Proc. of IEEE Aerospace Conference, vol. 3, 2001, pp.
3/1149–3/1157 vol.3.

[38] Y.-K. Lu and M.-D. Shieh, “Efficient architecture for Reed-Solomon
decoder,” in International Symposium on VLSI Design, Automation, and

Test (VLSI-DAT), april 2012, pp. 1 –4.
[39] M. Kawokgy, C. Andre, and T. Salama, “Low-power asynchronous

viterbi decoder for wireless applications,” in International Symposium

on Low Power Electronics and Design, 2004, pp. 286–289.

