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Abstract

A linear analysis of the transient evolution of small perturbations in the
supercritical FSC cross-flow boundary layer is presented. We used the classi-
cal method based on the temporal evolution of individual three-dimensional
travelling waves subject to near-optimal initial conditions and considered an
extended portion of the parameter space. Our parametrization included the
wave-number, the wave-angle, the cross-flow angle, the Hartree parameter
and the Reynolds number. Special focus was given tothe role played by
the waveangle in inducing very steep initial transient growths in waves that
proved to be stable in the long term.

We found that the angular distribution of the asymptotically unstable
waves and of the waves that show a transient growth depends greatly on
the value of the cross flow angle and wave-angle as well as on the sign of
the Hartree parameter, but depend much less on the Reynolds number. In
the case of the decelerated boundary layer, at sufficiently short wavelengths,
transient growths become much more rapid than the initial growth of the
unstable waves. In all cases of transient growth, pressure perturbations at
the wall are not synchronous with the kinetic energy of the perturbation.

We present a comparison with the sub-critical results obtained by Breuer
and Kuraishi in 1994 [1] (Re = 500, sweep angle of π/4) for the same full
range of the obliquity angle here considered (π radiants).
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1. Introduction

The cross flow boundary layer is one of the most important boundary
layers in engineering applications (aerospace, mechanical, wind...), cf. the
recent review by Saric et al. [20] and the monographs Schmid & Henningson
[24], Criminale et al. [4]. Examples of cross flow boundary layer include flow
over a swept back air plane wing, rotating discs, cones and spheres and cones
at an angle of attack. It is important to understand the dynamics of this
flow and to learn how to prevent the possibility of breakdown to turbulence.
Furthermore, unlike the well-known Blasius boundary layer, breakdown is far
more likely in this flow. For example, it can be unstable inviscidly as well as
that caused by the influence of viscosity due to the existence of an inflexion
point in the mean profile [6]. This work presents a study in an extended
portion of the parameter space of the stability of the cross flow boundary
layer in supercritical conditions with three-dimensional perturbations based
not only on the modal approach but also examining the temporal evolution
of the perturbation.

Flow due to an infinite rotating disk often has been used in literature as
an archetypal example of three-dimensional boundary layers [20]. Lingwood
in 1995 [11] found that in this flow a transition from local linear convective
to radial absolute instability can occur. This inspired many authors and led
to the investigation of the fully non linear regime (see, among others Pier
[18], Healy [7]).

The swept-wing boundary layer is genuinely three-dimensional, which
makes its exploration very complex. Despite this complexity, Lingwood’s
approach motivated studies on the possibility of absolute instability operating
in the swept-wing boundary layer. In particular, it was found [12] that close
to the attachment line there is chordwise absolute instability above a critical
spanwise Reynolds number of about 545. Taylor & Peake [26] extended the
study by Lingwood and searched for pinch points in the cross flow direction
for a larger range of flow angles and pressure gradients. Although these
crossflow-induced pinch points do not constitute an absolute instability, as
there is no concomitant pinch occurring in the streamwise wavenumber plane,
they can be used to find the maximum local growth rate contained in a
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wavepacket travelling in any given direction. Recently, these findings were
confirmed by Koch [9] in a work dedicated to the study of the secondary
instability of stationary cross-flow vortices. In general, a rigorous proof that
the absolute instability cannot occur in a swept-wing boundary layer does
not yet exist.

The three-dimensional boundary layer has been also investigated in the
context of receptivity and transient optimal perturbations. Most studies
of optimal disturbances in wall-bounded flows [13, 14] deal with temporal
growth of perturbations. For example, Corbet and Bottaro (2001) [3] per-
formed a local stability analysis using a variational technique in the temporal
framework. They found that the three-dimensional boundary layer shows
significantly greater capacity for algebraic growth than the two-dimensional
boundary layer with the same base flow parameters. Moreover, they proved
that the cross flow angle that maximizes the transient growth is nearly equal
to 49o. Schrader et al. [25] and Tempelmann et al. [28] studied the re-
ceptivity problem for spatial growing perturbation considering vortical free
stream modes, free stream turbulence and surface roughness. They found
that steady cross-flow instabilities to dominate for low-level free stream dis-
turbance. Malik et al. [16, 17] investigate the secondary instability char-
acteristics of swept-wing boundary and found that three types of secondary
disturbances can be distinguished. The first two were high-frequency dis-
turbances with high growth rates and maxima located away from the wall.
Their origin was related to regions of high spanwise shear (type I) and vertical
shear (type II). The third type is a low-frequency disturbance with smaller
growth rates and maxima closer to the wall representing a primary traveling
crossflow disturbances being modulated by the stationary crossflow vortex.

This work treats the linear perturbation problem and demonstrates the
importance of the results during the transient period as well the long time be-
haviour. Near-optimal perturbations which are localized within the boundary
layer thickness are used as initial conditions [10, 3]. We also have good agree-
ment with results obtained by using impulsive forcing [26] or least-damped
Orr-Sommerfeld eigenfunctions as initial conditions [1]. The extreme sim-
plicity of this method allows for an extended study of the parameter space.
In particular, special attention was given to the role played by the direction
of the perturbation both in the transient and in the asymptotic regime. In
sub-critical conditions, a similar analysis was performed by Breuer & Ku-
raishi [1]. They observed that, when the external flow is accelerated, the
disturbances which have greater transient growth are those that propagate
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in the crossflow direction. Vice versa, if the external flow is decelerated, the
maximum transient growth is obtained with disturbances propagating in the
opposite cross-flow direction.

With this paper we wish to extend the study of Breuer and Kuraishi
by considering supercritical conditions. The pressure perturbation during
the transient is also investigated and in particular is investigated when the
maximum amplification factor for the pressure measured at the wall come in
advance or in delay with respect to the maximum amplification of the energy.

This paper is organized as follow. The physical problem is described
in section 2. Subsection 2.1 is dedicated to the mean three-dimensional
flow, subsection 2.2 to the definition of the initial value problem and modal
analysis. Sections 3 and 4 present transient dynamics and the role of the
perturbation inclination and the long term behaviour, respectively. Section
5 gives information on the wall pressure transient. Conclusions follow in
section 6.

2. Problem formulation

2.1. Mean flow

As customary, we use the parallel flow approximation to describe the
linear evolution of small amplitude disturbances. When the parallel flow as-
sumption holds, the base flow components only vary with the wall normal
coordinate. The assumption behind this approach is that the mean boundary
layer flow quantities vary slowly in the streamwise direction compared to the
disturbance quantities. In general, to account for nonparallel effects in di-
verging flows, the spatial formulation of the governing perturbative equations
is used, see for example the multiple scale analysis carried out by El-Hady [5]
who considers the nonparallel effects for subsonic and supersonic boundary
layers. A specific application to the base flow analyzed in this paper (the
Falkner-Skan-Cooke boundary layer, with a displacement thickness Reynolds
number of 490) can be found in Hogberg & Henningson (1998) [8] where, by
means of linear local eigenvalue calculations compared to spatial direct nu-
merical simulations, it is showed that nonparallel effects induce a raise in the
growth rate of the order of the 13% along the streamwise direction.

In this paper, nonparallels effect are disregarded. We thus assume that
locally we can represent the boundary layer as a parallel shear flow subject
to small pertubations in the form of travelling waves and define two local
coordinate systems as shown in Figure 1(a-b). On an infinite swept wing,
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taken any point x∗ lying on the wing, we can always distinguish the chord-
wise direction, xc, from the streamline direction, x. We use the coordinate
system based on the streamline direction. The y direction is normal to the
wall and the z direction is normal to both x and y directions. A good ap-
proximation of the velocity profiles in a three dimensional boundary layer
is given by the family of similarity solutions known as Falkner-Skan-Cooke
(FSC) solutions [2, 19]. There are two parameters in the FSC formulation
that allow the magnitude of the cross flow to be varied: β, the dimensionless
pressure gradient, or Hartree parameter, and θ the crossflow angle between
the streamwise direction and the chordwise direction, see Figure 1(c). The
mean vertical velocity is assumed to be zero.

It should be recalled that with this approximation the external flow is
accelerating as the external pressure decreases (β > 0) and one can talk of
boundary layer in a favourable pressure gradient and vice-versa.

Figure 1(b-c) shows the velocity profiles in this reference frame. As is cus-
tomary, variables are non-dimensionalized with respect to Ue, the free-stream
velocity at the boundary layer edge, and with respect to the streamwise dis-
placement thickness, δ∗ =

∫

∞

0
(1 − U)dy. The Reynolds number is then

defined as Re = Ueδ
∗/ν.

2.2. Initial-value problem and modal analysis

The transient as well as the long term behaviours of arbitrary three-
dimensional disturbances acting on the FSC cross-flow boundary layer are
investigated. We have considered the velocity vorticity formulation and have
Fourier transformed the governing disturbance equations in the streamwise
and spanwise directions only, using respectively the wavenumbers α and γ.
This leads to generalized forms of the Orr-Sommerfield and Squire equations:

(

∂
∂t
+ i(αU + γW )

)

(

∂2

∂y2
− k2

)

v̂ − i(αU ′′ + γW ′′)v̂ − 1

Re

(

∂2

∂y2
− k2

)2

v̂ = 0
[

∂
∂t
+ i(αU + γW )− 1

Re

(

∂2

∂y2
− k2

)]

ω̂y = i(αW ′ − γU ′)v̂
3

(1)
where k2 = α2 + γ2 is the polar wavenumber, v̂ and ω̂y are respectively
the the transformed perturbation vertical velocity and vorticity, U , U ′, U ′′,
W , W ′ and W ′′ indicate the base flow streamwise and spanwise profiles and
their derivatives in the y direction. The boundary conditions require that
v̂ = v̂′ = ω̂y = 0 at the wall and at infinity.
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Figure 1: Scheme. (a) Chordwise (xc, y, zc) and streamline (x, y, z) reference frame. The
cross flow angle, θ, is represented in green; the perturbation propagation is represented in
blue. k is the polar wavenumber and φ is the wave-angle. The attachment line is shown
as a dashed line, the external streamline is indicated by the dotted line. (b) 3D of the
boundary layer velocity profiles, U(y) and W (y). (c) Solutions of the Falkner Skan Cooke
flow. Effect of changing the parameters: β = −0.1988, 1 and θ = π/6, π/4, π/3. Note that
W (y;β, θ) ∝ sin θ cos θ (Cooke 1950), as a consequence W (y;β, θ = π/3) = W (y;β, θ =
π/6).

On these equations we have performed both a modal analysis and an
initial value problem, which hereafter will be indicated with the abbreviation
IVP. In the modal analysis to compute the eigenvalues, σ = σr + iσi, of Eq.1
a finite differences scheme of the fourth order of accuracy is used. In the
IVP we have adopted the method of lines [22, 23, 10]. This approach offers
an alternative means for which arbitrary initial conditions can be specified
and the full temporal behaviour, including both early-time transients and
the long-term asymptotics, can be observed.
For the temporal evolution, to measure the growth of the perturbations we
define the kinetic energy density:

e(t; k, φ, β, θ, Re) =
1

2

∫ yf

0

(

|û|2 + |v̂|2 + |ŵ|2
)

dy (2)

where yf is the computational limit of the domain, while û(y, t; k, φ, β, θ, Re),
v̂(y, t; k, φ, β, θ, Re) and ŵ(y, t; k, φ, β, θ, Re) are the transformed velocity com-
ponents of the perturbation. φ is the wave-angle, defined as the angle between
the streamwise and the perturbation directions, φ = arctan(γ/α), see Figure
1(a-b). yf is defined so that the numerical solutions are insensitive to further
extensions of the computational domain size. We also introduce the ampli-
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fication factor G, as the kinetic energy normalized with respect to its initial
value:

G(t; k, φ, β, θ, Re) = e(t; k, φ, β, θ, Re)/e(0; k, φ, β, θ, Re). (3)

Assuming that the temporal asymptotic behaviour of the linear perturba-
tions is exponential, the temporal growth rate, r, that corresponds to the
imaginary part of the modal analysis eigenvalue, can be defined as

r(t; k, φ, β, θ, Re) = log(e(t; k, φ, β, θ, Re))/(2t). (4)

The frequency, ω, of the perturbation is defined as the temporal derivative
of the wave phase, ϕ, at a specific spatial point along the y direction. The
wrapped phase, ϕw is a discontinuous function of t defined in [−π,+π], while
the unwrapped phase, ϕ, is a continuous function obtained by introducing a
sequence of 2π shifts on the phase values in correspondence to the periodical
discontinuities. The frequency [29, 22] is thus

ω(t; y0, k, φ, β, θ, Re) = |dϕ(t; y0, k, φ, β, θ, Re)|/dt. (5)

This corresponds to the real part of the modal analysis eigenvalue. As
reference, we use the transversal observation point y0 = 1, i.e. y0 = δ∗.
It should be noted that when r and ω become constant, the asymptotic state
is reached. In the asymptotic limit, in respect to the modal analysis, the IVP
can only select the mode which has the largest growth rate.

We have considered supercritical flows (Re=1000-7000) subject to both
positive and negative external pressure gradients (β = −0.1988, 1). The
cross flow angle, θ, is taken in the range [π/12, 11π/25]. Concerning the
perturbations, we vary both the polar wavenumber, k, and the wave-angle
φ. For the IVP, as initial condition, we use a Gaussian distribution for the
velocity field, while the vorticity is initially zero, namely

v(0) = y2exp(−y2), ωy(0) = 0. (6)

We recall that y is normalized on the displacement thickness based on the
streamwise velocity, see subsection 2.1. However, in order to make some com-
parison with literature data [1], in section 3 we have performed simulations
with different initial condition at Re = 500 and β = 0.2.

To validate the numerical procedure, solutions obtained by both the
modal approach and the IVP are compared with each other and with data

7



0.03 0.05 0.07 0.09 0.11

−0.2

−0.3

−0.1

0

σ
i

σ
r

 

 

Taylor Peake,
jfm 1998
Current study, IVP
Current study,
modal analysis

Re=1000, θ=π/4, β=1,
α=0.1, γ=0.35

(a)

0.1 0.15 0.2 0.25 0.3
−0.4

−0.3

−0.2

−0.1

0

σ
r

σ
i

 

 

Mack, jfm 1976
Current study, IVP
Current study, modal analysis

Blasius BL
Re=998, α=0.308

(b)

Figure 2: Spectra of eigenvalues of the Orr-Sommerfeld equation. Comparison of different
numerical methods: 4th order finite differences scheme (blue squares); initial value problem
(cyan circles); literature data (red triangles).(a) Cross flow boundary layer Re = 1000,
β = 1, θ = π/4, α = 0.01, γ = 0.35, ∇ Taylor & Peake [26], same parameters but complex
spanwise wavenumber (γ = 0.35 + i0.125). (b) Blasius boundary layer flow, Re = 998,
k = 0.308, φ = 0, ∇ Mack [15]. Please note that with our approach the continuous part
of the spectrum is discretely approximated. The red line represents the analytical solution
obtained by taking v̂ and v̂′ bounded for |y| → ∞.

in literature; cf. Figure 2. In both cases, Figure 2 (a) shows good agreement
with the results of Taylor & Peake [26] (γ = 0.35+ i0.125, Figure 5 therein).
Since we have not found any discrete and continuous spectra for the cross
flow boundary layer to compare with, in Figure 2 (b) we have considered as
base flow the Blasius boundary layer and contrasted our results with Mack
[15].

3. Transient dynamics and role of the obliquity angle

As mentioned in the introduction we want to extend the results of Breuer
& Kuraishi [1] to the case of supercritical flow. As initial condition they use
the least-damped Orr-Sommerfield eigenfunction for the velocity field and
set the vertical vorticity equal to zero. See in Figure 3(a) the comparison
between their initial condition extending outside the boundary layer and
the initial condition defined in Eq. 6. Breuer and Kuraishi consider stable
waves and found that transient growth can be observed in a narrow range
of wavenumbers (k ∈ [0.2, 1.1]). Within this region, they observe that for
positive β, positive values of φ show a greater transient growth than those
with negative values, see Figure 3 (c), and the peak value is achieved for an
obliquity angle of about 80o (9/20π). For negative value of β, the opposite
is true and the peak value is reached for an obliquity angle of about −80o.
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Figure 3: Comparison between the current study and Breuer and Kuraishi (BK94). (a)
Their (red) and our (black) initial condition profile. Vertical dash-dotted lines indicate the
displacement thickness and the boundary layer width. (b-c) Numerical results atRe = 500,
β = 0.2 and θ = π/4. Red circles indicate results from BK94, green triangles show results
by Corbet and Bottaro (CB01), blue squares are the reproduction of results in BK94 made
with our numerical procedure using their initial condition, black asterisks are the transient
growths obtained by the initial condition Eq.6.(b) Maximum of the amplification factor as
a function of the spanwise wavenumer with α = 0.1 and initial condition as in BK94. (c)
Maximum of the amplification factor as a function of the the obliquity angle at k = 0.5.
Results in CB01 are obtained at θ = 48.8 using an optimal initial condition.

To further validate our simulations we have done some simulation using
their initial condition, as done also by Corbett & Bottaro [3] (see figure 3
therein), getting a very good agreement, see blue squares in Figure 3 (b,c).
In Figure3 (c), the transient growth obtained with the initial condition 6 is
again contrasted with Breuer and Kuraishi results. We also have a point of
comparison with an optimal perturbation at a similar sweep angle (48.8o)
obtained by Corbet and Bottaro. It should be noted that according to Las-
seigne et al. [10] and Corbett & Bottaro [3], our kind of initial condition
fully confined within the boundary layer promotes the initial energy gain.
However, in this study we are not focusing on the use of optimal initial con-
ditions, but we simply wish to describe how in supercritical condition the
obliquity of arbitrary perturbation can influence its evolution.

Figure 4 shows the temporal evolution of the amplification factor for per-
turbation with different obliquity angles at the supercritical Reynolds number
of 5000. Fixing the wavenumber, when the external flow is accelerated, the
growth rate increases with the positive wave-angle up to φ = 5/12π and then
slightly decreases, see Figure 4(a), while for negative angles the increase is
monotonic, see Figure 4 (d). One can also note that in case of transient
growth the maximum of G is monotonically increasing with the modulus of
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Figure 4: Temporal evolution of the amplification factor, G(t) for perturbations with
different obliquity angles, φ = 0, π/12, π/6, π/4, π/3, 5π/12, π/2 at Re = 5000 and θ =
π/6. Left panel β = 1, middle and right panels β = −0.1988. Panels (a,b,d,e) k = 0.2,
panels (c,f) k = 0.4

φ. When the external flow is decelerated a rather general rule can be found.
When considering positive angles of obliquity, Figure 4((b,c), k = 0.4) high-
lights a rich and, for certain aspects, counter-intuitive scenario on the role of
the perturbation direction. We see in fact that the waves with small obliquity
together with the orthogonal waves are unstable but a range of oblique waves
in between are not. Usually, in 2D shear flows, if one sees instability in the
longitudinal direction, one then sees a progressive tendency to stability mov-
ing toward the orthogonal direction. Instead, here, intermediate angles have
an intense initial growth and then become stable. When considering nega-
tive angles of obliquity, Figure 4(e,f), we see that the waves do not present
significant transient growth and are all unstable.

It should be noted that for the cases in panels (a,b,c) in Figure 4, the polar
wavenumber vector of perturbations beyond φ = π/3 has negative chordwise
component (i.e. θ + φ > π/2). We can introduce the phase velocity, defined
as C = (ω/k)k̂, where k̂ is the unitary vector in the k direction, and we can
observe that the traveling waves with a phase velocity propagating toward the
attachment line of the wing are unstable for β = 1 and are transiently growing
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β = 1

k0 vgx = dω/dα vgy = dω/dγ
0.02 0.2994 0.0802
0.04 0.2855 0.0765
0.2 0.3249 0.0871
0.4 0.4007 0.1074
1.2 0.9992 0.2677
1.4 0.9995 0.2678

β = −0.1988

k0 vgx = dω/dα vgy = dω/dγ
0.02 0.4841 0.1297
0.04 0.4331 0.1161
0.2 1.0320 0.2765
0.4 1.0316 0.2764
1.2 1.0366 0.2778
1.4 1.0455 0.2801

Table 1: Examples of group velocity at the temporal asymptote: variation with the central
wavenumber of the wave packet k0. FSC boundary layer with Hartree paramenter 1 and
-0.1988 and Re = 5000, θ = π/4, φ = 5π/12. The increment ∆k is 0.002.
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Figure 5: Temporal evolution of the amplification factor growth, dG(t)/dt for perturba-
tions with different obliquity angles, φ = 0, π/12, π/6, π/4, π/3, 5π/12, π/2 at Re = 5000,
β = −0.1988 and k = 0.4. Panel (a), θ = π/6. Panel (b), θ = π/4. Panel (c), θ = π/3.

for β = −0.1988. However the energy of the perturbations is transported by
the group velocity, vg = (dω/dα, dω/dγ), that propagates in the positive
chordwise direction (see for example the values reported in Table 1).

4. Long-term behaviour

Regarding the influence of the wave-angle on the long-term behaviour, the
best way to study it is by means of the modal analysis. In fact, considering
the large number of parameters involved, with the IVP the knowledge of the
final growth rate of a perturbation would require a large computational effort
and a large memory space to store the temporal results (there are simulations
that can last up to 105 time scales). In Figure 6 the growth rate is shown
for different combination of obliquity angle, pressure gradient and cross-flow
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angle and two different wavenumbers taken in the range of the most unstable
one. r is computed as the imaginary part of the least damped eigenvalue
in the discrete spectrum Taylor & Peake [26] have also investigated the
combined effect of β and θ. Considering wavenumbers supporting pinch
points, they found that asymptotically the perturbations acting on an adverse
pressure gradient base flow are more unstable at lower cross flow angles, while
for negative pressure gradient the opposite is true. Our results are completely
in agreement with their observations.

Summarizing the situation shown in Figure 6, by changing the sign of
Hartree’s parameter, the sign of the growth rate changes. A concentration of
the growth factor values that become nearly constant in the range [−π/3, π/3]
is observed for the accelerated boundary layer at k = 0.4, see Figure 6(c). A
less intense similar trend is observed in Figure 6(d) for the same configuration
with a positive pressure gradient.

In Figure 7 we describe the variations of the obliquity angles for which
the growth rate reaches its minimum negative value, φmin, and its maximum
positive value , φmax. These angles are slightly decreasing with the cross
flow angle, Figure 7(a). They are almost constant with the Reynold num-
ber, Figure 7 (c), which confirms Lingwood [12]. The behaviour with the
wavenumber in the range [0.02−1] is a bit more complex as shown in Figure 7
(b). When the external pressure gradient is positive (dashed lines) φmax and
φmin are general decreasing function of the wavenumber. For β = 1 (solid
lines), both φmin and φmax present a local mild minimum where the waves
are long (k ≈ 0.1). Furthermore φmin has a local maximum at k = 0.4.

5. Perturbed pressure transient

In literature, as regards the perturbed pressure field, effects associated
with the pressure gradient on the outside are mainly considered. For example,
the effects on the growth rate and propagation of turbulent spots on the wall
[21]. Little is found on the characteristics of the pressure field within the
same layer and in particular on the wall. For this reason we analysed the
evolution of the perturbed pressure at the wall and found a behaviour that
is not easily predictable by the amplification factor evolution. The pressure
field is computed by the Poisson equation, ∆p̂ = −ik(cos(φ)U ′+sin(φ)W ′)v̂,
with boundary conditions p̂(y → ∞) = 0 p̂′(y = 0) = v̂′′(y = 0)/Re. As in
the previous section, we are primarily interested in the role of the obliquity
angle. For this purpose we define the equivalent of the amplification factor
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for the pressure:
P = |p̂(y = 0, t)|/|p̂(y = 0, t = 0) (7)

that we call pressure amplification. We consider only stable waves that have
a transient energy growth. As expected, the pressure field is also initially
amplified. This transient growth does not follow the amplification factor
transient growth. This is illustrated in Figure 8. Figure 8(a,b) show the
time evolution of the pressure amplification contrasted to the time evolution
of the amplification factor respectively for a favourable and an adversepres-
sure gradient. In this last case once its maximum value is reached, the
pressure has an oscillatory damping. Moreover, in this case the maximum
value of the pressure amplification, Pmax, is always higher than in the case
of β = 1. In Figure 8(c,d), as a function of the wave-angle, Pmax is reported
(circles) together with the maximum of the amplification factor Gmax (trian-
gles) and the difference between the times where the two maxima are reached
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∆T = t(G(t) = Gmax)−t(P (t) = Pmax) (squares). We can observe that Pmax

decreases with the obliquity angle for β = −0.1988 while it increases with
the module of φ in the other case. In the case of favourable pressure gra-
dient, Figure 8(c), we also observe that all the quantities increase with the
obliquity angle. Instead for negative β, Pmax decreases with φ while Gmax

grows. ∆T does not have a monotone behaviour: increases initially, reaches
a maximum at φ = π/6 and then decreases. We also investigated the role of
the wavenumber in this context. Figure 8(e,f) show the transient growths
as a function of the polar wavenumber for waves with obliquity angle and
cross flow angle π/4. For β = 1 all the quantities, Pmax, Gmax and ∆T grow
with the wavenumber if k is below the range of instability and decrease oth-
erwise, see Figure 8(e). For β = −0.1988, Figure 8(f), highlights a different
possible behaviour. In fact all the travelling waves shown in Figure 8 have
positive ∆T , but the very long waves in panel (f) (k < 0.05) have negative
∆T . In this cases the maximum of P can be delayed with respect to the
maximum of G for waves longer than those in the unstable range. Even if it
is not graphically presented here, we have observed that in general Pmax and
Gmax both increase with θ for negative β and decrease with θ for positive β.
The pressure behaviour here described at the wall also holds throughout the
entire boundary layer.

6. Concluding remarks

In this work we present a comprehensive study of the space of the pa-
rameters relevant to the life of small perturbations of the three-dimensional
boundary layer in cross flow. We considered a group of five parameters: the
Reynolds number, the external pressure gradient, the wave number, the angle
of cross flow and the tilt of the perturbation with respect to the streamline of
the flow outside the boundary layer. We adopted almost optimal initial con-
ditions and classical perturbation methods to obtain information on initial
transient and temporal long-term behaviour.

We compared our results with results produced by other numerical simu-
lations concerning the evolution of three-dimensional perturbations. In par-
ticular for the long term behaviour we compare our results with Taylor &
Peake [26] and Mack [15], while for the initial transient we compare our
results with Breuer & Kuraishi [1] and Corbett & Bottaro [3]. In both cases
good agreement was found.
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Perturbations that have transitional growth but are asymptotically stable
could still have a substantial role in triggering non-linear processes that may
lead to transition to turbulence. Some of our results are related to this
role, in particular with respect to the influence of the wave-angle. We show
that in the decelerated three-dimensional boundary layer at a high Reynolds
number there are some asymptotically stable perturbations in the range of
wave-angles [20 − 75] which are initially able to grow up to six times faster
than those which are asymptotically unstable (waves almost aligned with the
external flow or orthogonale to it). Among these, some have negative phase
speeds, that is they propagate in the negative chordwise direction, although
the associated group velocities are always positive and the energy propagates
in the positive direction. This was observed for Reynolds numbers based on
the displacement thickness higher than 103, which means Reynolds numbers
of the order of 104 or 107, respectively, when calculated on the thickness of
the layer or on a chord of the wing profile of about one meter.

There are two other noticeable aspects. The first is that in the decelerated
three-dimensional boundary layer the most unstable perturbations are either
those nearly aligned with the external current or those almost orthogonal
to it, that is almost aligned with the cross flow. Oblique perturbations in
between always have strong growths which, however, are still transient, while
the perturbations with tilt and direction of propagation opposite to the cross
flow are all unstable.

The second aspect is that the perturbed field of pressure at the wall
and inside the layer is not synchronous with the amplification factor of the
kinetic energy of the disturbances. In general, in the case of boundary layers
both accelerated and decelerated, the perturbed pressure field is made in
advance up to about 100 times scale. However, in the decelerated case, it is
also observed that the very long wave perturbations can induce a significant
delay in the oscillation of the pressure which again may be approximately up
to 100 time scales of the system.
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