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Analysis of the Security of Compressed Sensing
with Circulant Matrices

T. Bianchi, E. Magli
Dept. of Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract—Recent results have shown that the compressed sens-
ing (CS) framework can provide a form of data confidentiality
when the signals are sensed by a fully random matrix. In
this paper, we extend those results by considering the security
achievable by partially circulant sensing matrices generated from
a vector of random variables. Circulant matrices, having similar
CS recovery performance as fully random matrices and admitting
a fast implementation by means of a fast Fourier transform,
are more suitable for practical CS systems. Compared to fully
random Gaussian matrices, which leak only the energy of the
sensed signal, we show that circulant matrices leak also some
information on the autocorrelation of the sensed signal. In order
to characterize the above information leakage, we propose an
operational definition of security linked to the difficulty of distin-
guishing equal energy signals and we propose practical attacks to
test this definition. The results provide interesting insights on the
security of such matrices, showing that a properly randomized
partially circulant matrix can provide a weak encryption layer
if the signal is sparse in the sensing domain.

Index Terms—Compressed sensing, encryption, random ma-
trices, circulant matrices, security.

I. INTRODUCTION

Compressed sensing (CS) has recently been proposed as an
efficient framework for acquiring sparse signals, i.e., signal
that can be represented by few nonzero coefficients in a
suitable basis [1], [2]. CS relies on the fact that linear mea-
surements of a sparse signal enable signal recovery with high
probability, provided that the measurements satisfy certain
incoherence properties with respect to the signal basis. An
interesting result is that linear measurements acquired using
random matrices have indeed such properties [3].

The randomness in the signal acquisition process suggests
that CS may provide some notion of security. In [4] the
authors conclude that CS does not provide information the-
oretic secrecy [5], while it offers computational secrecy if
viewed as a cryptosystem. In [6] the authors show that CS
is computationally secure against a systematic search of the
sensing matrix. Recently, the security of a practical CS system
based on Bernoulli sensing matrices has been considered in
[7], showing that CS measurements asymptotically reveal only
the energy of the signal. More formal results in this sense were
proved in [8], where it was also shown that normalizing the
measurements can provide a perfectly secure channel in the
case of Gaussian sensing matrices.

The results in the previous works are valid when the ele-
ments of the sensing matrix can be considered as i.i.d. random
variables, i.e, for fully random sensing matrices. Despite their
inherent security, using fully random matrices is difficult in

practice, since it requires either storing or generating on the
fly a great amount of random values. Also, the matrix product
involving a fully random matrix is usually expensive. In order
to solve the above problems, some researchers have proposed
the use of partially circulant sensing matrices based on a
random vector that is circularly shifted to generate every row
[9], [10]. As to recovery properties, such matrices usually
prove to be almost as good as fully random matrices [11].
Moreover, they only require managing a single row of random
values and matrix product can be efficiently implemented by
relying on a fast Fourier transform (FFT). Circulant sensing
matrices can also allow to perform linear filtering directly
on the measurements, which enables direct processing in the
measurement domain without costly recovery procedures [12].

In this paper, we analyze the security properties of random
circulant matrices generated from a row of i.i.d. Gaussian
variables. Unlike the case of fully random Gaussian matrices
[8], we demonstrate that, due to their additional structure,
random circulant matrices do not leak only the energy of the
sensed signal, but also some partial information on the signal
autocorrelation. This information can be partly obfuscated by
randomly selecting the rows of the partially circulant sensing
matrix [10], however the above dependence can not be elimi-
nated. In order to characterize the additional security leakage
of circulant matrices, we propose an operational definition
of security linked to the performance of a detector trying to
distinguish equal-energy signals with different autocorrelation
structures and we provide useful bounds to evaluate the
security of CS according to the above definition. Finally,
we present simulation results to validate such bounds in
simple scenarios and we provide some empirical relationships
between the security of the system, the signal length, the signal
sparsity, and the number of measurements.

II. BACKGROUND

A. Compressed Sensing with Circulant Matrices

A signal x ∈ Rn is called k-sparse if there exists a basis
Φ such that x = Φθ and θ has at most k nonzero entries, i.e.,
||θ||0 ≤ k. According to the CS framework, a k-sparse signal
can be exactly recovered from m < n linear measurements

y = Ax (1)

by solving a minimization problem [1], [2]. In practice, if the
entries of A are i.i.d. variables drawn from a sub-Gaussian
distribution, then exact recovery of k-sparse signals can be



achieved with very high probability by solving the convex
minimization problem

θ̂ = arg min
θ
||θ||1, subject to AΦθ = y (2)

as long as m = O(k log(n/k)) [3].
Due to the complexity of performing the product Ax when

A is a fully random matrix, some authors have suggested to
use partially circulant matrices generated from a row of i.i.d.
variables [9]–[11]. Such matrices have the following form

A =


a1 a2 a3 . . . an
an a1 a2 . . . an−1
...

...
an−m+2 an−m+3 an−m+4 . . . an−m+1


(3)

where the first row aT = [a1, a2, . . . , an] is a vector of i.i.d.
variables from a Gaussian or sub-Gaussian (e.g., Bernoulli)
distribution. Partially circulant matrices have similar recovery
performance as fully random matrices [10]. Moreover, they
can be diagonalized using a discrete Fourier transform (DFT)
as

A = PWHΛW (4)

where W is the unitary DFT matrix, Λ is a diagonal ma-
trix whose nonzero elements are the DFT of the sequence
[a1, an, an−1, . . . , a2], i.e., the first column of the n× n fully
circulant matrix generated from aT , and P is a m× n matrix
that selects the first m entries of a vector of n elements. Thanks
to the above decomposition, the product Ax can be efficiently
implemented using a fast Fourier transform (FFT). Moreover,
the cost of transmitting or generating the sensing matrix is also
sensibly reduced, since only n random values are required. The
randomness of partially circulant matrices can be improved by
letting P choose a random subset of m indexes instead of the
first m entries [10].

B. Security definitions

Let us call the set of possible plaintexts P , the set of cipher
texts C and a key K. A private key cryptosystem is a pair
of functions eK : P → C, dK : C → P such that, given
a plain text p ∈ P , and a ciphertext c ∈ C, we have that
dK(eK(p)) = p and that it is unfeasible, without knowing the
key K, to determine p such that eK(p) = c.

A cryptosystem is said to be perfectly secure [5] if the
posterior probability of the ciphertext given the plaintext p
is independent of p, i.e., if

P(c|p) = P(c). (5)

Given a perfectly secure cryptosystem, an attack can not be
more successful than guessing the plaintext at random.

Following the approach in [8], we define a CS-based cryp-
tosystem where the signal x is the plain text p, the sensing
matrix A is the secret key K and the measurement vector y
is the cipher text c. The encryption function eA is the matrix
multiplication between the sensing matrix A and the signal
x; the decryption is achieved by solving the problem in (2).

We assume that each sensing matrix is used only once (one-
time sensing matrix (OTS) scenario), and that different sensing
matrices are statistically independent. Under this scenario, we
can assume that the adversary has only knowledge of the
measurements y (ciphertext-only attack (COA) scenario), since
the knowledge of plaintext/ciphertext pairs (x, y) does not
reveal anything about the unknown plaintexts.

CS-based cryptosystems can not achieve in general perfect
secrecy [4], [8]. However, some application scenarios may
be interested in a weaker security notion with respect to
standard cryptographic definitions. For example, in multimedia
encryption it is sometimes required that an attacker is not
able to recover a copy of the plaintext with a sufficiently
high quality, which is referred to as perceptual/transparent
encryption [13]. Since this is usually an application-dependent
notion, in this case there are no formal and universally agreed
security definitions. In the next sections, we will define an ad-
hoc security measure in order to characterize the security of
CS as a weak encryption layer.

III. SECURITY OF CIRCULANT MATRICES

Let us consider the OTS cryptosystem defined by y = Ax,
where A can be expressed as in (4) and the matrix P is public.
We will denote such a cryptosystem as OTS-circulant (OTS-
C). Let us define Cx as the circular autocorrelation matrix of x,
that is, [Cx]ij =

∑n
r=1 xrxr+i−j mod n, for i, j = 1, . . . , n.

It is easy to verify that Cx is a Toeplitz matrix and that
its diagonal elements are equal to Ex = xTx. We have the
following result:

Proposition 1. If ai, i = 1, . . . , n, are i.i.d. zero-mean
Gaussian variables, then the OTS-C cryptosystem satisfies
P(y|x) = P(y|PCxPT ).

Proof. Let us consider the probability distribution function
P(y|x) for a given x. Since ai are Gaussian, we have that
P(y|x) is a multivariate Gaussian distribution with mean
µy|x and covariance matrix Cy|x. It is immediate to find
µy|x = E[y|x] = E[A]x = 0, whereas we have

Cy|x =E[AxxTAT ] = E[PWHΛ(Wx)(Wx)HΛHWPT ]

=nPWHdiag{Wx}E[(WHa)(WHa)H ]

× diag{Wx}HWPT

=nPWHdiag{Wx}WHE[aaT ]Wdiag{Wx}HWPT

=nσ2
APW

H |diag{Wx}|2WPT = σ2
APCxP

T

(6)

where diag{v} denotes a diagonal matrix defined by vector v,
we use Λ =

√
n · diag{WHa} and the fact that diag{u}v =

diag{v}u, and we assume that ai have variance σ2
A. It follows

that y depends on x only through the autocorrelation PCxPT ,
i.e. P(y|x) = P(y|PCxPT ).

The above result says that an OTS-C cryptosystem using
i.i.d. Gaussian variables reveals only some elements of the
circular autocorrelation matrix of x, according to the particular



selection matrix P . It is worth noting that this is true irrespec-
tive of the sparsity degree of x, that is, x does not necessarily
have to be sparse. In the following, we will denote such a
cryptosystem as Gaussian-OTS-C (G-OTS-C) cryptosystem.

Let us now consider a similar OTS cryptosystem in which
the selection matrix P is randomly drawn, with uniform
distribution, over all the possible choices of m indexes out
of n (we have NP = n!/(n − m)! possible sequences) and
kept secret. We will denote such a cryptosystem as Gaussian-
OTS-randomized circulant (G-OTS-R). In this case, it is easy
to derive the following result:

Corollary 1. The G-OTS-R cryptosystem satisfies

P(y|x) =
1

NP

NP∑
r=1

N (0, σ2
APrCxP

T
r )

where Pr denotes the rth possible selection matrix and
N (µ,C) denotes a multivariate Gaussian distribution with
mean µ and covariance matrix C.

When the choice of the rows of a Gaussian circulant sensing
matrix is randomized, the distribution of the measurements
given a particular x follows a mixture of multivariate Gaussian
distributions, whose covariance matrix is given by all the
possible principle minors of size m of the matrix Cx.

The previous results indicate that the measurements taken
with a circulant matrix in general are not distributed according
to a spherically symmetric distribution. As a result, circulant
sensing matrices provide a weaker security than Gaussian
sensing matrices, since their information leakage is not limited
to the energy of x [8]. In order to characterize this additional
leakage, we introduce a security notion based on the problem
of distinguishing whether the measurements y comes from one
of two known signals x1 and x2. Let us consider a signal
x that belongs to a two-element set {x1, x2}; a detector is
a function that given the measurements y outputs one of
two possible signals x1, x2. Formally, this can be defined as
D : Rm → {x1, x2}. Given a certain detector, we define the
probability of detection as Pd = Pr{D(y) = xi|x = xi} and
the probability of false alarm as Pf = Pr{D(y) = xi|x 6= xi}.
In the following, we will say that a cryptosystem is ϑ-
indistinguishable with respect to two signals x1 and x2 if for
every possible detector D(y) we have

Pd − Pf ≤ ϑ. (7)

According to the above definition, lower values of ϑ corre-
spond to higher security, with ϑ = 0 being equivalent to
perfect secrecy. Given an OTS cryptosystem defined by a
sensing matrix A with a certain distribution, we can link
the ϑ-indistinguishability of the cryptosystem to P(y|x1)
and P(y|x2). Let us define the total variation (TV) distance
between the probability distributions PA(a) and PB(b) as
δ(PA(a),PB(b)) = 1

2

∫
|PA(t)− PB(t)|dt. Let us also de-

note in short δ(P(y|x1),P(y|x2)) = δ(P1,P2). We have the
following:

Lemma 1. An OTS cryptosystem is at least δ(P1,P2)-
indistinguishable with respect to two signals x1 and x2.

Proof. The sum of error probabilities in a statistical hypothesis
test can be lower bounded as [14]

Pr{D(y) = x2|x1}+Pr{D(y) = x1|x2}
= 1− Pd + Pf

≥ 1− δ(P(y|x1),P(y|x2))

(8)

from which it is immediate to derive Pd−Pf ≤ δ(P1,P2).

The above result can be used to characterize the security
of G-OTS-C and G-OTS-R cryptosystems. Given any two
different signals x1 and x2, we have the following result:

Proposition 2. A G-OTS-C cryptosystem is at least
ϑC(x1, x2)-indistinguishable w.r.t. x1, x2, where

ϑC(x1, x2) =
1

2

√
log
|C2|
|C1|

+ Tr(C−12 C1)−m (9)

and Ch = PCxh
PT , for h = 1, 2.

Proof. Thanks to Proposition 1, we have that P(y|xh) =
N (0, σ2

ACh). Hence, the Kullback-Leibler (KL) divergence
between P(y|x1) and P(y|x2) can be expressed as [15]

D(P1||P2) =
1

2

[
log
|C2|
|C1|

+ Tr(C−12 C1)−m
]
. (10)

The result then follows from Pinsker’s inequality between TV
distance and KL divergence [16], which states δ(P1,P2) ≤√
D(P1||P2)/2.

Proposition 3. A G-OTS-R cryptosystem is at least
ϑR(x1, x2)-indistinguishable w.r.t. x1, x2, where

ϑR(x1, x2) =

√√√√ 1

4NP

NP∑
r=1

[
log
|C2,r|
|C1,r|

+ Tr(C−12,rC1,r)

]
− m

4

(11)
and Ch,r = PrCxh

PTr , for h = 1, 2.

Proof. Thanks to Corollary 1, we have that P(y|xh) =
1
NP

∑NP

r=1N (0, σ2
ACh,r). The KL divergence between two

mixture distributions with the same number of components
Pi =

∑
r wh,rPh,r, h = 1, 2, can be upper bounded as [15]

D(P1||P2) ≤ D(w1||w2) +
∑
r

w1,rD(P1,r||P2,r). (12)

The result can be easily obtained by considering that w1,r =
w2,r = 1

NP
, from which D(w1||w2) = 0, D(P1,r||P2,r) can

be computed as in (10), and then applying Pinsker’s inequality
to the upper bound on the KL divergence.

For relatively small values of n and m, the computation
of the bound in (11) can be become prohibitively expensive.
Following the suggestion in [17], we can approximate the
KL divergence between the two mixture distributions using
the KL divergence of two multivariate Gaussian distributions
having the same mean and covariance matrix. Interestingly, the



covariance matrix of the involved mixture distributions has a
very peculiar form, since

[Ch]ij =

NP∑
r=1

1

NP
[Ch,r]ij =

{
σ2
AExh

i = j

σ2
A

∑
s 6=t xh,sxh,t i 6= j

(13)
for h = 1, 2. The above covariance matrix can be expressed
in a compact form as Ch = αhIm + βh11

T , where we define
αh =

σ2
A

n−1 (nExh
− (1Txh)2) and βh =

σ2
A

n−1 ((1Txh)2−Exh
).

Thanks to the above representation, the KL divergence be-
tween P(y|x1) and P(y|x2) can be approximated as

D(P1||P2) ≈1

2

[
log

αm−12 (α2 +mβ2)

αm−11 (α1 +mβ1)

+
mα2(α1 + β1) +m(m− 1)α1β2

α2(α2 +mβ2)
−m

]
,D̃(x1, x2).

(14)

The above equation can be used together with Pinsker’s
inequality to provide an approximation of the TV between
the two mixture distribution. However, since (14) is not an
upper bound on KL divergence, we can not use it to provide
a strict security bound for the G-OTS-R cryptosystem.

In [8], the authors proposed to create a sort of secure chan-
nel by normalizing the measurements to unit norm vectors.
Such a normalization does not provide a perfectly secure
channel in the case of circulant sensing matrices. However, we
can provide an upper bound on the security of normalized G-
OTS-C and G-OTS-R cryptosystems by using the above propo-
sitions. Let us define uxh

= xh/
√
Exh

and uyh = yh/
√
Eyh ,

where yh = Axh, h = 1, 2. Then we have the following

Corollary 2. If a G-OTS cryptosystem based on circulant
matrices is ϑ(ux1

, ux2
)-indistinguishable w.r.t. equal-energy

signals ux1
, ux2

, then the normalized version of the same
cryptosystem is at least ϑ(ux1

, ux2
)-indistinguishable w.r.t.

generic signals x1, x2.

Proof. Let us define y′i = Auxi
. It is easy to verify that

uy′i = y′i/
√
Ey′i = uyi . Then, we have the following inequali-

ties involving the KL divergence

D(y′1||y′2) =D(P(uy1 , Ey′1)||P(uy2 , Ey′2))

=D(uy1 ||uy2) +D(P(Ey′1 |uy1)||P(Ey′1 |uy1))

≥D(uy1 ||uy2)

(15)

where we exploited the chain rule for KL divergence [16] and
the fact that KL divergence is always nonnegative. Hence, the
proof follows from the following chain of inequalities

δ(P(uy1),P(uy2)) ≤
√

1

2
D(uy1 ||uy2) ≤

√
1

2
D(y′1||y′2).

(16)
It is easy to verify that in the case of G-OTS-C and G-
OTS-R cryptosystems the right hand side of (16) evaluates
to ϑC(ux1 , ux2) and ϑR(ux1 , ux2), respectively.

IV. ATTACKS TO CS CRYPTOSYSTEMS BASED ON
CIRCULANT MATRICES

The bounds introduced in the previous Section hold for
any possible attack under the COA scenario. However, it is
interesting to evaluate the performance of practical attacks
with respect to those bounds. In this section, we will introduce
two attacks to G-OTS-C and G-OTS-R cryptosystems. The
aim of the attacks is to distinguish two different equal-energy
signals by exploiting their different autocorrelation functions.
Since these attacks are derived as the solution of a detection
problem, they will be referred to as detection attacks.

We consider a scenario in which an OTS cryptosystem
is used to sense two distinct signals x1 and x2 having
equal energy. Without loss of generality, we can assume
that Ex1 = Ex2 = 1. The aim of the attacker is to guess
whether the measurements conceal the signal x1 or the signal
x2. This is a classical detection problem, where the aim
is to distinguish whether the measurements y come from
the probability distribution P(y|x1) or from the probability
distribution P(y|x2).

Let us consider a detector D. The Neyman-Pearson (NP)
lemma states that for a given probability of false alarm Pf ,
the probability of detection is maximized by letting D(y) = x1
whenever

Λ(y) =
P(y|x1)

P(y|x2)
≥ τ (17)

where τ satisfies Pr{Λ(y) ≥ τ |x2} = Pf .
In the case of the G-OTS-C cryptosystem, the optimal NP

test can be easily obtained as

ΛC(y) = yT (C−12 − C−11 )y ≥ τ ′. (18)

where τ ′ = log τ + 1
2 log |2πC1| − 1

2 log |2πC2|.
In the case of the G-OTS-R cryptosystem, the optimal NP

test would be obtained as the ratio of two mixture distri-
butions. Even with relatively small values of n and m, the
number of components of such mixture distributions becomes
prohibitively high, so that it is not practical to evaluate the NP
test. As done for the approximation of the KL divergence, a
suboptimal yet practical test can be obtained by approximating
the two mixture distributions using two multivariate Gaussian
distributions with the same mean and covariance matrix. By
using the expressions of the covariance matrices found in
Section III, after simple computations the test can be expressed
as

ΛR(y) =

(
1

α2
− 1

α1

)
yT y

−
(

β2
α2(α2 +mβ2)

− β1
α1(α1 +mβ1)

)
(1T y)2

≥τ ′′
(19)

where τ ′′ satisfies Pr{ΛR(y) ≥ τ ′′|x2} = Pf . It is worth
noting that the above test is not able to distinguish equal-
energy signals whose components sum up to the same value
in magnitude, i.e., such that |1Tx1| = |1Tx2|, since in this
case we have α1 = α2 and β1 = β2.



V. SIMULATION RESULTS

In this section, we evaluate the security of G-OTS-C and G-
OTS-R cryptosystems in different scenarios. For the G-OTS-C
cryptosystem, we consider the matrix P that selects the first
m rows of the n× n circulant matrix WHΛW : an advantage
of this construction is that the resulting sensing matrix enables
several processing tasks directly on the measurements [12]. In
a first experiment, we compared the theoretical upper bounds
ϑC and ϑR with the performance obtained by the optimal
test ΛC and the suboptimal test ΛR, respectively. Since the
upper bound ϑR can be efficiently computed only for small
values of NP , we also considered the approximation ϑ′R =√
D̃(x1, x2)/2 computed according to (14). We consider only

unit energy signals: thanks to Cor. 2, similar results also apply
to arbitrary signals if we consider normalized measurements.
The signals have been defined as x1 = [1, 0, . . . , 0] and [x2]i =
Z(α)e−4α(i−1), for i = 1, . . . , n, where Z(α) is a suitable
normalizing constant such that Ex2

= 1. The above signals
have a common autocorrelation function. Moreover, x2 tends
to become similar to x1 as α increases.

In Fig. 1 we show the theoretical upper bounds for α ∈
[0, 1], m = 2, and n = 100. In the same plot, we also show
the maximum value of Pd − Pf achieved by the two tests in
(18) and (19), evaluated over 107 independent realizations. The
performance of the detection attack ΛC is predicted quite well
by the theoretical upper bound ϑC , whereas the upper bound
ϑR appears quite loose. Interestingly, the approximation ϑ′R
is quite close to the simulated performance of the detection
attack ΛR, especially for higher values of ϑ. In Fig. 2, we show
the same performance metrics for α = 1 and m ∈ [2, 100].
The bound ϑR is not computed here since its complexity
becomes exceedingly high when m increases. From both
figures, it is evident that the G-OTS-R cryptosystem has a
greater security than the G-OTS-C one. However, the security
of both cryptosystems appears to have the same asymptotic
behavior: namely, both curves in Fig. 2 suggest that the
performance of the detection attack increases as O(

√
m).

In a second experiment, we computed the numerical upper
bound ϑC(x1, x2) and the approximated bound ϑ′R(x1, x2)
for different realizations of equal-energy signals x1 and x2
and different scenarios. The exact upper bound ϑR(x1, x2) is
not considered here because its computation would become
impractical. We considered 1000 pairs θ1, θ2 of independent
vectors of length k with values uniformly distributed on a unit
norm k-sphere: the respective k-sparse signals were obtained
by multiplying those vectors by a n × k matrix obtained by
taking k columns from a n × n unitary matrix Φ. The first
scenario considered as Φ the identity matrix, i.e., the signals
were sparse in the sensing domain, where the k columns were
randomly chosen. The second scenario considered the first k
columns of the discrete cosine transform (DCT) matrix. In
both scenarios we computed the bounds for m = 2.

In Fig. 3, we show the 0.95 percentile of ϑC(x1, x2) and
ϑ′R(x1, x2) when n = 1000 and k varies in the interval
[1, 500]. The results show that for the two considered classes
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Figure 1. Distinguishability of unit energy vectors for m = 2, n = 100.
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Figure 2. Distinguishability of unit energy vectors for α = 1, n = 100.

of sparse signals the security of G-OTS-C and G-OTS-R
has a similar behavior: the security of both cryptosystems is
independent of k when the signal is sparse in the sensing
domain, whereas there is a strong dependence on the signal
sparsity when the signal is sparse in the DCT domain, since
sparser signals are more difficult to conceal. An intuitive
explanation is that a very sparse signal in the DCT domain
is heavily correlated in the sensing domain and a circulant
matrix leaks a lot of information on this correlation.

In Fig. 4, we show the 0.95 percentile of ϑC(x1, x2)
and ϑ′R(x1, x2) when k = 10 and n varies in the interval
[20, 1000]. The security of the G-OTS-C cryptosystem in-
creases for large values of n when the signal is sparse in the
sensing domain, whereas it surprisingly decreases for large
values of n when the signal is sparse in the DCT domain.
In the case of the G-OTS-R cryptosystem, the security is
independent of n when the signal is sparse in the DCT domain,
whereas it significantly increases for large values of n when
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the signal is sparse in the sensing domain.

VI. CONCLUSIONS

In this paper, we have analyzed the security of CS measure-
ments when the sensing matrix is a partially circulant random
matrix. Unlike the case of fully random Gaussian matrices,
which reveal only the energy of the sensed signal, we find that
circulant matrices reveal also some partial information on the
autocorrelation of the signal. This fact implies that normalizing
the measurements can not achieve a perfectly secure channel
for this kind of matrices. In order to measure this loss of secu-
rity, we introduce an operational definition of security based on
the problem of distinguishing different signals and we provide
useful bounds for evaluating the security of circulant sensing
matrices according to this definition.

The above definition has been applied to two different
types of partially circulant matrices, considering two classes
of sparse signals. The results indicate that partially circulant
matrices obtained by taking the first rows of a circulant matrix,

which are interesting in practical settings since they enable
processing directly on the measurements, are in general less
secure than matrices obtained by randomly selecting the rows.
Moreover, the results also show that randomized circulant
matrices can provide a weak encryption layer if the signals
are sparse in the sensing domain, but are not very secure if
the signal is sparse in a DFT-like domain. Since the security
of circulant matrices is linked to the autocorrelation of the
sensed signal, an interesting direction for future research is
investigating whether a scrambling applied before sensing [18]
can actually improve the security of this kind of matrices when
applied to signals that are sparse in generic domains.
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