A ventilative cooling system in a School Building, Imola, Italy

Original
A ventilative cooling system in a School Building, Imola, Italy / Grosso M.. - ELETTRONICO. - (2013).

Availability:
This version is available at: 11583/2579955 since:

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
A ventilative cooling system in a School Building, Imola, Italy

Prof. Arch. Mario GROSSO,
Associate Professor
of Architectural Technology
Energy-Environmental Consultant
mario.grosso@polito.it

Brussels, March 19-20, 2013
mario.grosso@polito.it

Estimate of energy needs

PRELIMINARY - PHASE 1
- Focused simulations of energy strategies and comparison to a benchmark configuration
- Calculation of annual energy needs using simplified tools

Attention to ventilation load
Need to high-performance glazing

Priority to application of passive cooling systems

Data related to the South-West block

SOLUTION D
To optimize yearly energy balance

TECHNOLOGICAL OPTIONS FOR INDOOR CLIMATE CONTROL SYSTEMS

Architecture

South view of the School Building

Data related to the South-West block for an occupation period from September to July

Data related to the North-West block

Attention to ventilation load
Need to high-performance glazing

Priority to application of passive cooling systems

South East longitudinal axis

Brussels, March 19-20, 2013
mario.grosso@polito.it

North view of the School Building

Brussels, March 19-20, 2013
mario.grosso@polito.it
Ventilation system

- Hybrid system (controlled natural/mechanical system)
- Controlled natural ventilation (CNV): motorised sensor-driven openings related to IAQ and thermal comfort

- Cafeteria and discontinuous-use spaces:
 - Winter - mechanical
 - Summer - mechanical

- Classrooms:
 - Atrium:
 - Winter - mechanical
 - Summer - mechanical + CNV
 - Winter - mechanical
 - Summer - mechanical + CNV

Cooling systems

- Absorption chiller
- Vacuum Solar Collectors on roof
- Radiant floor
- Ventilative Cooling systems

Ventilative cooling

- Natural stack-driven airflow through the south-facing class rooms and the atrium

Ventilation

- Isolated suspended-ceiling element integrating lighting, sound adsorption, and air diffusion

Isolated suspended-ceiling element

- Ventilative cooling: laboratory testing of air downdraft distribution

Internal view

- Ventilated clerestory on the atrium glazed roof

South glazed wall

- Ventilative cooling

Internal view

- Ventilated clerestory on the atrium glazed roof

South glazed wall

- Ventilative cooling
2-D CFD simulation in a classroom with ceiling appliances:
- Air temperature zones after 1 hour with a gradient of 10 °C

Brussels, March 19-20, 2013
mario.grosso@polito.it
2-D CFD simulations: enthalpic flows for the three storeys in the time interval 0-400 s

Unbalanced flows amid the three storeys

Balanced flows amid the three storeys

Brussels, March 19-20, 2013
mario.grosso@polito.it

3-D CFD simulations: airflow rate and enthalpic flow in the time interval 0-6500 s (linear trend)

500 2500 4500 6500

3-D CFD simulations: airflow rates, enthalpic flow and global thermal exchange coefficient in the time interval 0-850 s

3-D airflow rate, 2-D airflow rate, 3-D enthalpic flow
global thermal exchange coefficient for floor, ceiling, walls

Brussels, March 19-20, 2013
mario.grosso@polito.it

Night cooling of thermal mass

3D CFD simulation of flow between a classroom and the atrium: temperature zones for a gradient of 10°C between inside (atrium) and outside

after 5 minutes

after 35 minutes

after 1 hour

Brussels, March 19-20, 2013
mario.grosso@polito.it

Thermal dynamic simulations using TRNSYS: annual indoor air temperature profile in the south-facing classrooms with ventilative cooling

Brussels, March 19-20, 2013
mario.grosso@polito.it
Thermal dynamic simulations using TRNSYS: annual indoor air temperature profile in the 3rd-storey south-facing classroom.

- Ambient (blue): indoor without VC (pink); indoor with VC (green).

Contribution to energy saving of RES & RUE technologies (prediction)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Annual energy intensity (kWh/m²-gfa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference configuration (a)</td>
<td>Heating: 28.8 Cooling: 64.4</td>
</tr>
<tr>
<td>High insulation (opaque components)</td>
<td>Heating: 30.3 Cooling: 66.4</td>
</tr>
<tr>
<td>High insulation (glazed components)</td>
<td>Heating: 28.4 Cooling: 64.3</td>
</tr>
<tr>
<td>Time optimisation of mechanical ventilation (OMV)</td>
<td>Heating: 10.8 Cooling: 10.8</td>
</tr>
<tr>
<td>Shading devices (fixed)</td>
<td>Heating: 14.0 Cooling: 14.0</td>
</tr>
<tr>
<td>Shading devices (fixed and movable)</td>
<td>Heating: 14.1 Cooling: 14.1</td>
</tr>
<tr>
<td>ET + OMV + heat recovery</td>
<td>Heating: 20.1 Cooling: 67.0</td>
</tr>
<tr>
<td>High insulation (opaque components)</td>
<td>Heating: 14.0 Cooling: 14.0</td>
</tr>
<tr>
<td>ET + OMV + Solarwall®</td>
<td>Heating: 13.0 Cooling: 13.0</td>
</tr>
<tr>
<td>ET + OMV + VC (green)</td>
<td>Heating: 9.8 Cooling: 9.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>Heating: 66.8 Cooling: 66.8</td>
</tr>
</tbody>
</table>

U value (walls): 0.45 W/m²K; *U* value (glazing): 2.65 W/m²K

Additional configurations:
- Mech. Vent. for 12 h/day
- Mech. Vent. for 24 h/day

Annual energy intensity:
- Heating: 179500 kWh/year
- Cooling: 443000 kWh/year

Contact: mario.grosso@polito.it