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1. Derivation of sedimentation kinetics in horizontal columns

The formulation of the removal kinetics due to 

in porous media, in case of horizontal flow (1D Cartesian coordinates) can be derived as follows.

Let us consider a horizontal pore

average size d50,sand. The horizontal cross

size: 

sandh LdA ,50ϕ=    

 

where φ [-] is a shape factor depending on the geometry of the pore. 

The volume of the pore is then: 

2

,50' sandpore LdV ϕ=    

 

where φ' [-] is another shape factor. For cylindrical pores, 

Particles suspended in the pore fluid

flow rate ve. The particles have a size 

derived from Stokes law, or modified Stokes law for non Newtonian fluids, or measured). The 

process is summarized in Figure S. 

 

Figure S. 1: Scheme of particle transport and sedimentation in a horizontal pore
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homogeneously dispersed in the pore fluid, the average sedimentation path, L
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cheme of particle transport and sedimentation in a horizontal pore 

is supposed to be constant. Under the hypothesis of particles 

homogeneously dispersed in the pore fluid, the average sedimentation path, Ls, is equal to half the 



The mass flux of sedimenting particles at the center of the pore (maximum horizontal section), Js 

[M T
-1

],  is: 

FessandFeshs cvLdcvAJ ,50ϕ==        (S 3) 

 

Up-scaling from the single pore to the porous medium with porosity ε leads to a corresponding 

volume of porous medium Vpm equal to: 

2

,50

1
' sandpm LdV
ε

ϕ=          (S 4) 

 

As a consequence, the mass flux of sedimenting particles per unit mass of porous medium, Js/Vpm 
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where Ca is a coefficient resulting from the combination of the previously introduced shape factors. 

The normalized mass flux Js/Vpm is also equivalent to the term expressing the removal of particles 

from the fluid phase in the mass balance equation for particle transport through a porous medium: 
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where 

( )

pm

sFeb

V

J

t

s
=

∂

∂ ρ
         (S 7) 

 

As a consequence, the kinetics of the irreversible removal of particle due to sedimentation is a first-

order kinetics with deposition rate ka proportional to the ratio of sedimentation rate to pore size 

diameter: 
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where 
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s
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d
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If the amount of particles deposited is relevant and modifies the volume and shape of the pores, the 

term Ca/d50,sand is not constant, and decreases with increasing the concentration of deposited 

particles. This variation is modelled in this work implementing the formulation for clogging 

processes previously developed by the authors [Tosco and Sethi, 2010]: 
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The formulation of equation S8 is equivalent to the one obtained applying the clean bed filtration 

theory, provided that the sedimentation is assumed as the unique removal mechanism, and the 

formulation of Yao is adopted: 
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The formulation of equation S8 is equivalent to the one obtained applying the clean bed filtration 

theory, provided that the sedimentation is assumed as the unique removal mechanism, and the 
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If equation S11 is substituted in S12, the removal rate ka becomes: 
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which compared to equation S9 leads to: 
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2. Matlab script for decorrelation of susceptibility profiles 

% Decorrelation function for susceptometer data 

% REFERENCE: 
% TOSCO T., GASTONE F., SETHI R. (2014). Guar gum solutions for improved 

% delivery of iron particles in porous media (Part 2): iron transport tests and 

% modelling in radial geometry, JOURNAL OF CONTAMINANT HYDROLOGY 
% Developed by Rajandrea Sethi, DIATI Politecnico di Torino, 

% rajandrea.sethi@polito.it 
 

% DATA matrix (example): 

% 1st column: x along column 

% 2nd column and following: K1 K2 .... KN (each K column represents a measured 

profile) 
xd=[  
0   1   1   747 408 392; 
2   -1  -1  738 451 439; 
4   -2  -1  668 434 413; 
6   -2  -2  604 413 391; 
8   -2  -1  580 402 396; 
10  -2  -2  562 368 390; 
12  -2  -2  524 312 344; 
14  -3  -2  516 293 323; 
16  -2  -2  509 282 305; 
18  -1  -2  496 270 288; 
20  -1  -1  464 233 248; 
22  -1  -1  424 187 193; 
24  -2  -2  397 163 161; 
26  -2  -1  385 157 144; 
28  -2  -1  373 140 133; 
30  -1  -2  370 129 124; 
32  -2  -2  355 122 109; 
34  -2  -1  345 118 98; 
36  -1  -2  335 112 83; 
38  -2  -2  328 104 77; 
40  -2  -2  320 90  74; 
42  2   3   299 75  71] 

  

  
% Bartington Susceptometer weight function: Length Krel 

% 1st column is space position 

% 2nd column is weight function  
yd=[ 
-4.366818031    0.015206463; 
-4.091669774    0.020445565; 
-3.85179475 0.025693079; 
-3.576645958    0.030932181; 
-3.16743784 0.04321293; 
-2.934612712    0.050230783; 
-2.715886304    0.060789182; 
-2.412493884    0.074864199; 
-2.250205613    0.085436271; 
-2.094971774    0.096010053; 
-1.93266775 0.111887883; 
-1.643334006    0.143651955; 
-1.495103875    0.171913083; 
-1.339799022    0.207246622; 
-1.205648392    0.24612255; 
-1.120870251    0.288547569; 
-1.029042749    0.329202383; 
-0.951288606    0.382240493; 



-0.859374873    0.452960823; 
-0.816924933    0.495396097; 
-0.78151928 0.541370207; 
-0.739069341    0.583805347; 
-0.710774453    0.610327034; 
-0.675394698    0.647458259; 
-0.632919396    0.698736418; 
-0.59052018 0.723486055; 
-0.55513989 0.76061728; 
-0.505671024    0.790670967; 
-0.477381209    0.815424022; 
-0.279540184    0.923258485; 
-0.223036641    0.946236073; 
-0.152418625    0.970978874; 
-0.095940444    0.98511371; 
-0.039472408    0.995711419; 
0   1; 
0.039472408 0.995711419; 
0.095940444 0.98511371; 
0.152418625 0.970978874; 
0.223036641 0.946236073; 
0.279540184 0.923258485; 
0.477381209 0.815424022; 
0.505671024 0.790670967; 
0.55513989  0.76061728; 
0.59052018  0.723486055; 
0.632919396 0.698736418; 
0.675394698 0.647458259; 
0.710774453 0.610327034; 
0.739069341 0.583805347; 
0.78151928  0.541370207; 
0.816924933 0.495396097; 
0.859374873 0.452960823; 
0.951288606 0.382240493; 
1.029042749 0.329202383; 
1.120870251 0.288547569; 
1.205648392 0.24612255; 
1.339799022 0.207246622; 
1.495103875 0.171913083; 
1.643334006 0.143651955; 
1.93266775  0.111887883; 
2.094971774 0.096010053; 
2.250205613 0.085436271; 
2.412493884 0.074864199; 
2.715886304 0.060789182; 
2.934612712 0.050230783; 
3.16743784  0.04321293; 
3.576645958 0.030932181; 
3.85179475  0.025693079; 
4.091669774 0.020445565; 
4.366818031 0.015206463] 

  
% sorts the weight function, in case it was measured: 
yd=sortrows([-yd(:,1),yd(:,2)]) 
xd_int=sort([-xd(2:length(xd)) xd(:,1)']) 
y=interp1(yd(:,1),yd(:,2), xd_int, 'linear',0)  
[n,co]=size(xd); 
 

% Decorrelation: 
A=[]; 
for i=1:n 
    A=[A; y(n+1-i:2*n-i)] 



end 
x_dec=[] 
for i=2:co 
    x2=A\xd(:,i) 
x_dec=[x_dec x2]; 
end 
 

 

% Final plot 

  
figure(1) 
subplot(2,1,1) 
plot(xd(:,1),x_dec); title('After decorrelation') 
subplot(2,1,2) 
plot(xd(:,1),xd(:,2:co)); title('Before decorrelation') 
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