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Abstract: 

The present work is the first part of a comprehensive study on the use of guar gum to improve 

delivery of microscale zero-valent iron particles in contaminated aquifers. Guar gum solutions 

exhibit peculiar shear thinning properties, with high viscosity in static conditions and lower 

viscosity in dynamic conditions: this is beneficial both for the storage of MZVI dispersions, and 

also for the injection in porous media. In the present paper, the processes associated to guar gum 

injection in porous media are studied performing single-step and multi-step filtration tests in sand-

packed columns. The experimental results of single-step tests performed injecting guar gum 

solutions prepared at several concentrations and applying different dissolution procedures 

evidenced that the presence of residual undissolved polymeric particles in the guar gum solution 

may have a relevant negative impact on the permeability of the porous medium, resulting in evident 

clogging. The most effective preparation procedure which minimizes the presence of residual 

particles is dissolution in warm water (60°C) followed by centrifugation (procedure T60C). The 

multi-step tests (i.e. injection of guar gum at constant concentration with a step increase of flow 

velocity), performed at three polymer concentrations (1.5, 3 and 4 g/l) provided information on the 

rheological properties of guar gum solutions when flowing through a porous medium at variable 

discharge rates, which mimic the injection in radial geometry. An experimental protocol was 

defined for the rheological characterization of the fluids in porous media, and empirical 

relationships were derived for the quantification of rheological properties and clogging with 

variable injection rate. These relationships will be implemented in the second companion paper 

(Part II) in a radial transport model for the simulation of large-scale injection of MZVI-guar gum 

slurries. 
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1. Introduction 

 

The injection of water-based slurries of nanoscale and microscale iron particles (NZVI and MZVI) 

represents a promising in situ remediation technology for contaminated aquifer systems (O’Carroll 

et al., 2013; Tosco et al., 2014; Yan et al., 2013). Micro and nanoscale iron particles proved 

effective in reducing a variety of metal ions (DeVor et al., 2006; Jegadeesan et al., 2005; Kanel et 

al., 2005; Ponder et al., 2000) and degrading a broad range of organic pollutants in groundwater 

systems, in particular chlorinated hydrocarbons and recalcitrant compounds (Chang et al., 2005; 

Freyria et al., 2011; He and Zhao, 2005; Joo et al., 2004; Lowry and Johnson, 2004; Zhang, 2003). 

Since NZVI and MZVI dispersions in pure water are not stable, due to fast aggregation and 

sedimentation, the use of stabilizers is necessary. Amendments to the particle surfaces which 

increase inter-particle repulsion forces are effective for NZVI, which is prone to attractive 

interactions, mainly magnetic in nature (Dalla Vecchia et al., 2009a; Hosseini and Tosco, 2013; 

Hydutsky et al., 2007; Kocur et al., 2013; Saleh et al., 2007; Schrick et al., 2004; Tiraferri et al., 

2008), while modifications of the dispersant fluid is mainly applied for MZVI, which is subject to 

fast sedimentation (Cantrell et al., 1997; Dalla Vecchia et al., 2009b; Oostrom et al., 2007; Xue and 

Sethi, 2012). In particular, the increased viscosity of the dispersant fluid resulted in a significantly 

improved colloidal stability, when "green" biopolymers, like xanthan gum, starch, guar gum and 

carboxy-methyl-cellulose, were used (Comba et al., 2011; Kocur et al., 2013; Krol et al., 2013; Xue 

and Sethi, 2012). These polymers, dispersed in water, form non-Newtonian, shear thinning 

solutions, characterized by a non constant viscosity: in static conditions the viscosity is higher, 

which is beneficial for storage of the solutions, and in dynamic conditions it is lower, which helps 
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limiting the pressure build up during injection in the subsurface (Gastone et al., 2014; Xue and 

Sethi, 2012). 

Iron particles are typically delivered to the contaminated area via gravity in wells and piezometers 

(Elliott and Zhang, 2001; Elliott and Zhang, 2003), or more often via pressure injection applying 

direct push techniques (Gavaskar et al., 2005; Mueller et al., 2011; Varadhi, 2005; Velimirovic et 

al., 2014) or using injection wells (Henn and Waddill, 2006). Pressure injection can be performed 

applying a high injection pressure, thus resulting in the formation of preferential flow paths and 

porous medium fracturing, or injecting the slurries at low pressure (permeation injection), 

generating a fairly homogeneous flow through the soil pores (Christiansen et al., 2010; Suthersan, 

1999; Tosco et al., 2014). The fracturing approach is used in low to medium permeability 

formations and when injecting particles whose dimension is in the order of the pore size. 

Conversely, permeation delivery is preferred in highly permeable formations and, more in general, 

when particles are small compared to pore size. The threshold between permeation and fracturing 

injection is related to the critical pressure, that is, the pore pressure which overcomes the porous 

medium lithostatic load and thus gives rise to preferential flow paths. If permeation is identified as 

the target delivery method, it is extremely important to limit the pressure build up as much as 

possible, in order to prevent the possible formation of undesired preferential flow paths (Tosco et 

al., 2014). 

The present work is the first part of a comprehensive study, composed by two papers, on the use of 

guar gum solutions as dispersant fluids for MZVI delivery via permeation. Guar gum was selected 

due to its efficacy in improving the colloidal stability of MZVI particles, its environmental 

compatibility (it is usually adopted in the food industry as a thickening agent), limited cost, and 

easy degradation in subsurface conditions, especially in the presence of specific enzymes, which 

can be used to promote the polymer breakage and degradation (Burke and Khan, 2000; Cheng and 
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Prud'homme, 2000; Di Molfetta and Sethi, 2006; Gastone et al., 2014; Velimirovic et al., 2012; 

Zolla et al., 2009). In the present Part I, the processes associated with the injection of guar gum 

solutions in porous media via permeation, as well as approaches and methods for the quantitative 

analysis and prediction of such processes, are investigated. In Part II, the injection of guar gum-

stabilized MZVI in porous media will be studied, and a model for the simulation of field injection 

of MZVI slurries will be developed and discussed. 

When studying the permeation of guar gum in porous media, it is important predict the pressure 

build up during injection. However, the application of Darcy's law (Darcy, 1856) to guar gum 

slurries is not straightforward, since neither fluid viscosity nor permeability are not constant 

parameters: the viscosity is affected by the flow velocity, due to the shear thinning nature of guar 

gum solutions, and the presence of residual undissolved polymeric particles results in a progressive 

decrease in permeability during injection (clogging). In this paper, experimental tests and a 

modeling approach are presented for the prediction of the pressure build up via a modified Darcy's 

law, which takes into account variable viscosity and permeability. An experimental approach, based 

on step injection tests, is proposed for the characterization of the rheological properties of guar gum 

solutions in porous media. Provided that the rheological behavior of the guar gum solutions in the 

bulk is known (eg. from classical rheological measurements), applying the method herein presented  

the viscosity of guar gum solutions in the porous medium can be fully characterized. The reduction 

in permeability, associated with the presence of undissolved polymeric residuals, is considered as 

well. It is known that the presence of residual particles can be decreased by selecting a proper 

dissolution procedure (eg. dissolving guar gum powder at a temperature in the range 40°C-70°C), 

but cannot be completely avoided (Casas J.A., 2000; Chaudemanche and Budtova, 2008; 

Chauveteau and Kohler, 1984; Gastone et al., 2014). Their presence was shown irrelevant for the 

overall colloidal stability of the suspension (Gastone et al., 2014), and it has no negative impact on 

the injectability of guar gum-based slurries via fracturing. Conversely, when delivering via 
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permeation is desired, the undissolved guar gum particles can clog the porous medium. Moreover, 

when guar gum solutions are used as delivery fluids for MZVI injection, clogging due to 

undissolved guar gum produced similar effects to clogging due to the retention of iron particles and 

aggregates (which will be investigated in details in Part II), both contributing to the overall 

reduction in porosity and permeability. The quantification of the maximum acceptable pressure 

build up is not trivial, since the critical pressure for a given porous medium is related to a number of 

parameters and conditions, discussion of which is beyond the purpose of this work. A control of the 

overall pressure build up is therefore necessary to prevent fracturing. To this aim, the retention of 

guar gum particles is to be limited as much as possible, to prevent excessive pressure build up. 

In the present paper, clogging due to injection of guar gum solutions is investigated in laboratory 

column tests (filtration tests), exploring the influence of the guar gum dissolution procedure, and the 

operating conditions which can minimize clogging are identified. An approach for the modeling of 

the process is proposed, based on the software E-MNM1D (Tosco and Sethi, 2010), previously 

developed by the authors. The model is validated against the experimental data of column filtration 

tests, and simple empirical relationships linking permeability reduction, polymer concentration and 

injection rate are derived, which will be used in Part II in the MZVI transport model. 

 



8 

 

 

2. Background 

 

2.1. Guar gum flow in porous media 

The flow of polymeric shear thinning fluids in porous media has been investigated mainly for 

applications in oil engineering, where these fluids are used in enhanced oil recovery techniques 

(Muskat and Wyckoff, 1937; Zeinijahromi et al., 2012a), and in the food industry (Lee et al., 2006). 

When a non-Newtonian fluid flows through a granular medium, the Darcy's law can still be applied 

in the framework of the generalized Newtonian fluid theory (Bird et al., 1977; Bird et al., 2002): the 

non-Newtonian flow is represented applying the same laws valid for a Newtonian fluid, provided 

that the constant Newtonian viscosity is replaced by a shear-dependent viscosity, which takes into 

account both the rheological properties of the fluid in the bulk, and the additional influence of solid-

liquid interface forces  (Bird et al., 1977; Lopez et al., 2003; Pearson and Tardy, 2002; Sorbie, 

1991; Sorbie et al., 1989). Consequently, in 1-D geometry the Darcy's law for laminar steady state 

flow becomes 

( )
q

KL

p mm γµ &
=

∆
−          (1) 

where p  is the pressure [M L
-1

 T
-2

], L  is the length of the porous medium [L], q  is the specific 

discharge [L T
-1

], K  is the permeability of the porous medium [L
2
], and ( )mm γµ &  is the “porous 

medium viscosity” [M L
-1

 T
-1

] which depends on the shear rate experienced by the fluid in the 

porous medium, mγ&  [T
-1

]. 
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The Cross model (Cross, 1965) can well represent the dependence of bulk viscosity of guar gum 

solutions on shear rate, ( )γµ & , as discussed by the authors in a previous work (Gastone et al., 2014). 

For a given fluid, the porous medium viscosity obeys the same rheological model of the fluid in the 

bulk, ( )γµ & , provided that a proper definition of shear rate is adopted (Bird et al., 2002; Taylor and 

Nasr-El-Din, 1998). Therefore the Cross model can be written as (Pearson and Tardy, 2002; Sorbie 

et al., 1989; Tosco et al., 2013) 

( )
( )
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=

+

−
+= ∞
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mm

&

&

&
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       (2) 

where ε is the porosity of the medium [-] and µ0, µ∞, λ and χ are the Cross parameters of the 

rheological model in the bulk. The shear rate in the porous medium mγ&  depends on the Darcyan 

velocity q  referred to a characteristic length of the porous medium, namely εK  [L] (Perrin et al., 

2006; Sorbie, 1991). The shift factor α  [-] represents the shift between rheograms of a fluid in the 

bulk and in the porous medium. This shift was experimentally observed by several authors, and 

theoretically justified for specific rheological models (Hayes et al., 1996; Liu and Masliyah, 1999; 

Lopez et al., 2003; Tosco et al., 2013). The shift factor α  depends on both rheological properties of 

the fluids and micro-scale structure of the porous medium, and is expected to be in the order of 1 for 

well-sorted rounded grains, and higher for irregularly shaped and poorly sorted media (Lopez et al., 

2003; Tosco et al., 2013). 

Based on equations (1-2), the prediction of the pressure gradient arising from the injection of a 

shear thinning fluid in a porous medium requires a complete characterization of the fluid viscosity 

in dynamic conditions, i.e. of the bulk rheological model of the fluid, along with the porous medium 

properties (permeability and porosity), and the shift factor α . 
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2.2. Porous medium clogging 

The injection of fluids containing particles in a porous medium often results in partial or total 

clogging. When the amount of retained particles is relevant, the pore size and permeability are 

reduced, and the pressure gradient consequently increases. Typical examples include industrial 

applications in deep bed filtration and waste water treatment (Mauclaire et al., 2004), river bank 

filtration, mobilization of natural colloids in aquifer systems following variations in the pore water 

chemistry (Dikinya et al., 2008; Mays and Hunt, 2007), and oil reservoir engineering, where 

clogging is often associated to the mobilization of fines in the proximity of injection or extraction 

wells (Bedrikovetsky et al., 2012; Zeinijahromi et al., 2012b). Clogging is also observed in the 

presence of bacterial communities, and is associated both to retention of suspended bacteria and to 

their growth within the porous medium in a favorable environment (Brovelli et al., 2009; Thullner 

et al., 2004). A partial clogging of porous media is also often associated to the injection of MZVI 

and NZVI suspensions (Hosseini and Tosco, 2013; Saleh et al., 2007; Tosco and Sethi, 2010). 

Particle retention in porous media can be attributed to a number of mechanisms, including 

mechanical filtration, straining, sedimentation, and physico-chemical interactions among particles 

and solid grains (Bradford et al., 2002; Elimelech, 1992; Elimelech, 1994; Rajagopalan and Tien, 

1976; Tosco and Sethi, 2009; Tosco et al., 2009; Tufenkji and Elimelech, 2004; Yao et al., 1971). In 

the case of guar gum solutions, a partial clogging of the porous medium is expected due to presence 

of large undissolved particles and microgels, which size is of the same order of magnitude of sand 

grains (Gastone et al., 2014). Sedimentation is unlikely, due to the reduced density contrast between 

residual particles and pore fluid. Conversely, the retention of particles and poorly hydrated 

aggregates can be attributed to mechanical filtration and/or straining, and takes place in small and 
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dead-end pores, thus resulting in a progressive reduction of porosity and permeability (Chauveteau 

and Kohler, 1984). While particle retention associated to physical-chemical interactions among 

particles and porous medium can be reversible, particles entrapped in the porous medium due to 

mechanical filtration are likely to be irreversibly retained (Berthet et al., 2013; Wexler et al., 2013). 

A number of modeling approaches are available in the literature for the description of clogging 

following particles filtration, namely phenomenological approaches for the prediction of head losses 

(Mays and Hunt, 2005), pore scale-based models (Chen et al., 2009), and macroscopic approaches 

(Brovelli et al., 2009; Kildsgaard and Engesgaard, 2001). The model herein adopted is based on the 

macroscopic approach, and links the reduction in permeability to the reduction of porosity and to 

the formation of irregular deposits within the pores, which increase pore-scale head losses due to 

friction, and consequently generate additional head losses (Tosco and Sethi, 2010), as discussed in 

details in paragraph 3.4. 
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3. Materials and methods 

 

3.1. Materials 

Food-grade guar gum (RANTEC HV7000, Ranchester, United States) with nominal maximum 

particle size of 75 μm was used in the form of dry powder. 

Quartz sand (Dorsilit # 8 from Dorfner, Germany) with nominal size 0.3-0.8 mm, measured size 

distribution d10,sand - d50,sand - d90,sand of 0.22 - 0.28 - 0.33 mm respectively (Static Light Scattering, 

Beckmann-Coulter LS230, DISAT – Politecnico di Torino) was used in column filtration tests. The 

sand is mainly composed by quartz (98.9%), with a minor content of K-feldspar as microcline, with 

measured average grain density of 2.64 g/cm
3
. A pre-treatment of the commercial sand with 

cindering ensures the absence of residual organic matter, thus no specific cleaning procedure was 

adopted for removing it. Before being used for column packing, the sand was thoroughly rinsed and 

sonicated to remove any residual colloids and impurities, and finally degassed in a vacuum 

container to promote the release of residual water bubbles attached to the grain surface. The 

washing procedure included four cycles of rinsing with deionized water, alternated by sonication 

cycles of 5 minutes each. 

 

3.2. Guar gum dissolution 

Four guar gum dissolution procedures were tested: 

• as received (AR): guar gum dissolved in MilliQ water at 20°C with continuous stirring until 

complete dissolution of the powder (30 min); 
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• thermally dissolved (T60): the guar gum powder was dissolved in MilliQ water at 60°C, 

with continuous stirring for 30 min; 

• thermally dissolved and wet centrifuged (T60C): the thermally dissolved guar gum (T60) 

was centrifuged for 10 minutes at a speed of 4000 rpm after the overnight hydration; 

• Thermally dissolved and filtered (T60F): the thermally dissolved guar gum (T60) was 

filtered through a porous medium after the overnight hydration. 

For all procedures, immediately after preparation the guar gum solutions were degassed 5 mins 

using a vacuum pump to remove air bubbles. 

Sodium azide was added as a preservative to avoid possible bacterial degradation during storage. 

Rheological measurements as well as sedimentation and column tests indicated no significant 

impact of sodium azide on hydration and rheology of the guar gum solutions. Further details on the 

dissolution procedures are reported in a previous work (Gastone et al., 2014). 

The guar gum solutions were prepared at nominal concentrations cGG of 1.5, 3 and 4 g/l. It was 

observed that, for a given guar gum dissolution procedure, the concentration of residual undissolved 

particles cp is directly proportional to the nominal concentration of the solution: 

GGp Fcc =           (3) 

being F (0 ≤ F ≤ 1) constant for a given preparation procedure. F = 0.12 was assumed for tests of 

dissolution at room temperature (Ma and Pawlik, 2007), while for T60 and T60C it was determined 

from column test results. 

The rheological characterization of the guar gum solution employed in this paper is reported in a 

previous work (Gastone et al., 2014), which the reader can refer to for a detailed discussion. Here 
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only the experimental curves of bulk viscosity versus shear rate, required for the comparison with 

viscosity values in the porous medium, are reported. 

 

 

3.3. Column filtration tests 

Single-step and multi-step filtration tests were performed injecting guar gum solutions in sand-

packed saturated columns. The column was obtained from Plexiglas cylinders (inner diameter 24 

mm, outer diameter 32 mm) with Plexiglas pre-filters and screwed/sealed caps at both ends, 

specifically designed for high pressure injection. The column was wet-packed with the clean sand 

up to a length of 0.425 m, average porosity ε0 = 0.37, bulk density ρb = 1.66·10
3
 kg/m

3
, specific 

surface area of the porous medium a0 = 1.42·10
4
 m

2
/m

3
, permeability K0 = 1.56±0.16·10

-10
 m

2
. The 

longitudinal dispersivity was assumed equal to the average grain size, d50,sand, following the 

approximation proposed for laboratory-scale transport phenomena (Bear, 1988), and therefore the 

hydrodynamic dispersion coefficient Dx in the model equations was calculated as esand vd ⋅,50 . 

Two progressive cavity pumps (MD 0005-24, Seepex, Germany) were used for the pre-conditioning 

and flushing with water, and for guar gum injection, respectively (Figure 1). Progressive cavity 

pumps were preferred as they provide constant flow velocity with no pressure pulses. The discharge 

rate was periodically monitored during the test, and variations were always below 1%. 

Single-step tests were run at constant flow rate (Darcyan velocity q = 1.88±0.11∙10
-3

 m/s), to 

evaluate the impact of the different guar gum dissolution procedures (AR, T60, T60C) on the 

porous medium clogging for two guar gum concentrations, namely 3 and 4 g/l. The experimental 

protocol included: 

• Pre-flushing with D.I. water (5 PVs); 
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• Injection of guar gum suspension in D.I. water (5 PVs, 15 PVs for one control test); 

• Post-flushing with D.I. water (10 PVs). 

Further single-step tests were run at lower Darcy velocity, equal to q = 4.20∙10
-4

 m/s. 

Multi-step filtration tests were then run for the rheological characterization of guar gum solutions in 

the porous medium. Guar gum solutions at polymer concentrations of 1.5, 3 and 4 g/l were prepared 

following the T60C procedure. The solutions were injected in the sand-packed columns with a step 

increase of Darcy velocity, as summarized in Table 1. The guar gum injection was preceded by a 

pre-flushing with DI water at the (low) flow rate of the first guar gum step (5 PVs), and followed by 

a post flushing at the (high) flow rate of the third guar gum step (10 PVs). 

During the tests, the total pressure drop along the column was continuously monitored via pressure 

sensors at column ends (Delta Ohm, Italy). Contrary to usual column transport tests of dissolved 

species and colloids, the guar gum concentration in liquid and retained phases was not determined 

in this work, and consequently the guar gum transport processes were inferred from pressure drop 

data, rather than from concentration measurements. 

 

3.4. Flow and transport simulations 

Clogging was modeled as a reduction of porosity and permeability, dependent on the concentration 

of guar gum solid particles and microgels retained in the porous medium during injection. The 

transport of the solid particles dispersed in the solution was modeled by the classical advection-

dispersion-deposition equation, modified including a sink term for the particle removal due to 

retention in the porous medium (Tiraferri et al., 2011; Tosco and Sethi, 2010): 

( ) ( ) 0=


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where cp is the concentration of undissolved guar gum solid particles in the solution [M L
-3

], sP is 

the concentration of solid particles retained in the porous matrix, expressed as mass of particles per 

unit mass of porous medium [M M
-1

], ε is the porosity [-], Dx is the hydrodynamic dispersion 

coefficient [L
2
 T

-1
], and ρb the bulk density of the porous medium [M L

-3
]. The second term of eq. 

(4) expresses the removal of solid particles due to filtration. A first-order irreversible decay with 

removal rate kap [T
-1

] was adopted following the theory for fixed bed filtration (Tien, 1989): 

pap

p

b ck
t

s
ερ =

∂

∂
         (5) 

Irreversible attachment was assumed here since the retention of guar gum particles is likely to be 

due mainly to mechanical filtration. 

The impact of particle retention on the hydrodynamic properties of the porous medium is modeled 

as a progressive reduction of permeability, due to a concurrent reduction in pore space ε and 

increase in solid-liquid interface area a, both related to the concentration of retained particles sp 

(Mays and Hunt, 2005; Tosco and Sethi, 2010). The empirical Kozeny's relationship (Kozeny, 

1927) can be adopted for the dependence of permeability on porosity and specific interface area: 

( )
( )

( ) 0

2

0

3

0

K
sa

as
sK

p

p

p 




















=

ε

ε
       (6) 

where ε0 is the clean bed porosity, i.e. when sp = 0 [-], a0 is the clean bed specific surface area of 

the porous matrix [L
-1

], and K0 is the clean bed permeability [L
2
]. 

The dependence of porosity and surface area on sp can be described as: 
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where ρp is the density of the particles [M L
-3

], [-], λp is the degree of packing of the deposits, 

expressed as volume of particles per unit volume of particle deposits [-], ap is the specific surface 

area of the particles contributing to the overall increase of the solid-liquid interface area [L
-1

] (Mays 

and Hunt, 2005). 

A modified version of E-MNM1D (Tosco and Sethi, 2010) was used for solving the flow and 

transport equations (eq. 1-7) in one-dimensional geometry for the fitting of the experimental 

pressure curves. Porous medium properties (a0, K0, ε0 and ρb), particle density ρp and dispersion 

coefficient Dx were assumed as known parameters. Conversely, the contribute of the particles to the 

increase of specific surface area, ap, and the filtration rate coefficient, kap, were determined from 

data fitting. A graphical interface for E-MNM1D is provided by the software MNMs, which is 

available for download at www.polito.it/groundwater/software. 
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4. Results and discussion 

 

4.1. Single-step tests: influence of the preparation procedure on 

porous medium clogging 

Figure 2 reports the experimental results of single-step guar gum filtration tests in terms of 

normalized pressure drop ΔPn, calculated as pressure gradient referred to Darcyan velocity, ΔP/(Lq) 

[M L
-3

 T
-1

]. ΔPn increases linearly during the first pore volume, when guar gum progressively 

saturates the column. After the first PV, ΔPn is very similar for all tests, and is directly related to the 

guar gum viscosity, following the modified Darcy's law (eq. 1). Conversely, the slope ΔPn/PV after 

the first pore volume is approximately constant over time, and can provide a qualitative indication 

of clogging: the higher the slope, the higher the amount of particles retained, and consequently the 

reduction in permeability. Curves for T60C and T60F preparation procedures coincide, and 

therefore only the results for T60C preparation are reported here. The test for the 4 g/l solution, 

preparation procedure T60, was run for a longer period (15 PVs instead of 5 PVs) to verify the 

long-term behavior, showing that also in the case of prolonged injection the slope of the curve is 

almost constant for the whole period. 

For both concentrations, the maximum clogging (corresponding to the highest slope, and highest 

content of undissolved particles) corresponded to dissolution in cold water without any further 

treatment (AR preparation) (Figure 3). The use of warm water improved dissolution (T60), 

reducing the amount of undissolved particles, and consequently of porous medium clogging. 

However, the most significant reduction in clogging was obtained when centrifuging (T60C) or 

filtering (T60F) the guar gum solution. 
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The results of filtration tests indicate that the use of warm water in the preparation of guar gum 

solutions is required for improving dissolution, with a moderate reduction of clogging. However, if 

the application envisioned is the injection in porous media without fracturing, this is not sufficient, 

because T60 solutions still cause a significant clogging of the column. A post-treatment of the guar 

gum solution is required for further removal of the residual particles and poorly hydrated aggregates 

of molecules (microgels). In this sense, both centrifugation and filtration (T60C and T60F) are 

effective, with a significant reduction of porous medium clogging compared to the other preparation 

procedures. The efficiency of centrifugation and filtration in removing solid particles and microgels 

is very similar (Figure 2b). 

 

4.2. Multi-step tests: rheology of guar gum solutions in the 

porous medium 

The experimental results of multi-step filtration tests are reported in Figure 4 in terms of average 

pressure gradient along the column, ΔP/L, as a function of the number of pore volumes injected. 

An increase in flow rate results in a change in shear rate mγ& , which can be calculated applying eq. 

(2). Also, for each step the porous medium viscosity,  ( )mm γµ & , changes accordingly, and can be 

calculated from the measured pressure gradient as: 

L

P

q

K
m

∆
=µ          (8) 

As a consequence, each step is characterized by a different viscosity and shear rate, and represents a 

point of the rheogram of the fluid in the porous medium. The shift factor can be determined as the 

shift in shear rate required to superimpose the point values obtained from step tests to the bulk 
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rheogram. Bulk rheograms were previously discussed in (Gastone et al., 2014) and the 

corresponding Cross parameters are reported in Table 2. 

The pressure gradient in the first injection step followed the behavior discussed for single-step 

injections. The point data exhibit a nice agreement with the bulk rheogram (Figure 5), suggesting 

that the shift factor α is close to the unit. This finding implies that, for future injection tests 

performed in the same porous medium, the rheological characterization in the bulk is sufficient for a 

correct simulation of pressure drops (Sorbie et al., 1989; Tosco et al., 2013). A shift factor close to 

1 is also in agreement with the literature, that suggests low values in the order of few units in the 

case of well sorted porous media with regular grain shape, like the sand used in these tests. 

 

4.3. Single-step and multi-step tests: numerical modeling and 

quantification of clogging 

The numerical modeling of the experimental data of column filtration tests evidenced that transport 

and flow phenomena are strictly coupled since the deposition of a certain amount of particles 

reduces permeability and porosity, with a double impact on pressure gradient: shear rate increases, 

decreasing the fluid viscosity (eq. 2) and increasing the pressure gradient (eq.1). On the other hand, 

a decrease in permeability increases the pressure gradient as well (eq. 1). The overall process is 

controlled by the content of undissolved particles (cp), and by the retention kinetics, kap (eq. 5). 

First, the experimental results of the injection step in single-step filtration tests were least-squares 

fitted to the model equations (1-7) to obtain the unknown parameters controlling flow and clogging 

phenomena. Unknown parameters include the specific surface area of the residual particles and 

microgels ap (which plays a role in determining the reduction of permeability consequent to the 

deposition of a certain amount of particles), the removal rate kap (which defines how many particles 
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are retained) and the fraction of undissolved guar gum mass F. Intuition suggests that both ap and 

kap should not depend on the preparation procedure or guar gum concentration, while F should. As a 

consequence, all single-step tests were fitted simultaneously for the determination of the three 

parameters, as reported in Table 3. The model-fitted curves are reported in Figure 2 along with the 

experimental data. The good agreement between experimental and model results indicates that the 

assumptions made on the independence (for ap and kap) or dependence (for F) of the fitted 

parameters on the preparation procedure and guar gum concentration is correct. 

The fitted value of ap is quite high, coherently with the irregular shape of the guar gum powder, 

implying that also a limited quantity of particles retained in the porous medium can significantly 

reduce the permeability coefficient. The content of undissolved particles F is lower for T60 tests 

compared to AR tests, and significantly lower for T60C tests, in agreement with the conclusions 

drawn from the qualitative observation of the experimental results. 

The possible dependence of clogging on the flow velocity can be inferred from the combined 

analysis of single-step and multi-step tests. The model eq. (1-7) were fitted to the experimental data 

of further tests performed injecting guar gum at lower flow velocity, namely a single step test with q 

= 4.20∙10
-4

 m/s, and the first step (q = 1.13∙10
-4

 m/s) of the multi-step tests. The values of F and ap 

determined from the fitting of single-step tests were used in this case, and consequently kap was the 

only unknown parameter. A value of kap was determined for each test (Figure 6). When kap from 

both single- and multi-step tests and different guar gum concentrations is reported against Darcy 

velocity (Figure 6), no evident trend is observed. 

As a consequence, it is possible to conclude that, during guar gum injection in a water-saturated 

medium, the retention kinetics kap is not significantly affected by the injected concentration nor the 

flow velocity. An average value of kap = 6.3∙10
-3

 s
-1

 is found.  
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4.4. Guar gum flow processes 

The observation of experimental and modeled pressure curves in Figure 2 and Figure 4 also 

provides a deeper insight on the processes controlling the subsequent injection of guar gum and 

water in porous media. The least-squares fitted pressure curves correctly reproduce the guar gum 

saturation (first pore volume), and the guar gum injection with clogging. On the contrary, the model 

does not correctly capture the flushing step: the final experimental pressure drop during post-

flushing is underestimated by the simulated curve. Also the modeled decrease in pressure drop in 

the first pore volume of the flushing (PVs 5 to 6) is slower compared to the experimental data. This 

discrepancy suggests that the model does not correctly capture the displacement of guar gum by 

water, and overestimates the final porosity available for water flow. 

Furthermore, in multi-step tests (Figure 4) clogging is more pronounced in the first step, when guar 

gum is injected at the lowest flow velocity, and decreases with increasing flow velocity. In the last 

step it is almost negligible. The same trend is observed for all injected concentrations. This finding 

is only apparently in contrast with the results of modeling, discussed in the previous paragraph, 

which evidenced an independence of the removal kinetics kap on the flow velocity both in single-

step tests and in the first stage of multi-step tests: in this case, guar gum is injected in a water-

saturated medium, while in the second and third injection stages of multi-step tests the porous 

medium is already saturated in guar gum. 

The observed discrepancies can be explained referring to miscible displacement processes (Juanes 

and Lie, 2007; Obernauer et al., 1994; Singh and Azaiez, 2001; Yan et al., 2013). During the first 

pore volume water is displaced by guar gum, that is, a viscous fluid is displacing a less viscous one. 

In this case, the displacement is complete, as suggested by experimental and modeling results in 

both porous media and capillaries (Malta and Castro, 2009). Even if the transient phenomena 

arising at the displacement front are different and more complex compared to the Newtonian 
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displacement (Ciriello and Di Federico, 2012; Ciriello and Di Federico, 2013), the approximation of 

the generalized Newtonian model and single phase displacement is acceptable. Being the model 

equations (1-7) based on the hypothesis of single phase flow, experimental and simulated pressure 

curves are coherent, and a kinetic formulation accounting for constant removal rate kap is 

acceptable. 

On the other hand, the incorrect simulation of the experimental data of Figure 2 during the post-

flushing suggests that in this case the displacement of guar gum is not complete. Experimental 

evidence of partial displacement of miscible fluids is reported in the literature when a polymeric 

viscous fluid (here, guar gum) is displaced by a less viscous one (water) (Obernauer et al., 1994; 

Petitjeans and Maxworthy, 1996). The phenomenon takes place also for moderate viscosity 

contrasts (Habermann, 1960; Malta and Castro, 2009), and a residual saturation in the viscous fluid 

can be observed. 

In this study, an incomplete displacement of the guar gum solution is expected to occur during the 

water front progress (Obernauer et al., 1994), while the removal of the residual polymer remained in 

the porous medium is expected to take place on a longer period due to progressive dissolution. In 

this case, the single-phase flow hypothesis assumed in eq. (1-7) does not hold. Similarly, a step 

change in guar gum injection rate may lead to pore-scale flow processes governed by transients in 

viscosity, and consequently also in this case the hypothesis of single-phase complete displacement 

may not be assumed. In this sense, the modeled curves are not reported in Figure 4 for the second 

and third injection steps. 

Confirmation of an incomplete displacement of guar gum by water can also be inferred from the 

experimental results of single-step tests (Figure 2). Darcy's law was applied at the beginning of the 

test, end of guar gum injection and end of flushing to calculate, respectively, the clean bed 

permeability K0, the permeability at the end of the guar gum injection Kend,inj and the permeability at 
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the end of flushing Kend,flush. It is observed from the calculated permeability values that Kend,flush is 

significantly lower than Kend,inj (Table 4). This finding cannot be attributed to particle retention, but 

only to flow-related processes, and specifically to an incomplete displacement of guar gum by 

water. 

Even though it was observed in column filtration tests, the incomplete miscible displacement was 

not included in the modeling approach because the final aim of this work is to investigate the flow 

and transport processes related to the injection of guar gum slurries in porous media, for the 

development of a radial model, and the flushing step is not  usually envisioned for field 

applications. However, the experimental evidence of an incomplete displacement of guar gum by 

water during flushing is clear, and is to be taken into account for full scale applications of MZVI 

slurries, even if it is not necessary to model it for the prediction of iron mobility. 
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5. Conclusions 

 

The present first part of the study concerning the use of guar gum solutions for improved delivery 

of iron microparticles focused on the flow of guar gum solutions in porous media, and associated 

processes. A key aspect for guar gum injection is the progressive clogging of the porous medium, 

due to the presence of particulate and poorly hydrated aggregates of polymer. The incomplete 

hydration of guar gum powders is an intrinsic property of the material, which cannot be completely 

avoided. However, the use of warm water during dissolution and, at a higher extent, the application 

of a post-treatment before injection (centrifugation or filtration) can significantly reduce the 

quantity of undissolved residual material and, consequently, the associated clogging when the 

solution is injected in a porous medium. From a practical point of view, the centrifugation 

(preparation procedure T60C) was preferred in the laboratory, for the easier preparation of the 

suspensions. However, for field applications the centrifugation of large volumes of guar gum 

solutions is very unlikely, and therefore an in-line filtration system in fixed bed filters can be 

envisioned, with largely comparable results in terms of associated clogging. 

The estimate of the pressure build up during the injection of shear thinning guar gum solutions in 

porous media can be obtained applying the Darcy's law extended to non-Newtonian fluids. To this 

purpose, an estimate of the guar gum viscosity in dynamic conditions in the porous medium is 

necessary. The literature suggests that the viscosity of a fluid in the porous medium is similar to that 

of the same fluid in the bulk (which can be easily measured in the laboratory), but is shifted in shear 

rate of a constant value α, called shift factor, which cannot be easily estimated theoretically. An 

experimental protocol for step injection tests was therefore proposed and applied for the 
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determination of the shift factor α: multi-step injection tests were run using the guar gum solutions 

prepared following the optimized procedure, and the shift factor α was determined  comparing 

rheograms (i.e. viscosity as a function of shear rate) in the bulk (fully characterized in classical 

rheological measurements) and rheograms obtained from step test data. 

The guar gum flow and the associated pressure build up was estimated applying and existing 

software for the solution of one-dimensional flow and transport problems associated to shear 

thinning slurries of iron particles (E-MNM1D). The software was modified and successfully 

simulated the experimental data of guar gum injection in single-step and multi-step column 

filtration tests. The results of the fitting were analyzed to determine the retention kinetics of 

undissolved guar gum particles (namely, the coefficient kap) and to evaluate whether it is affected by 

the flow velocity. This point in particular is extremely important in the perspective of estimating the 

pressure build up during injection in the field: since in most delivery techniques the injection can be 

approximated as a radial flow field (as will be discussed in the companion paper Part II), the flow 

velocity is not constant with increasing distance from the delivery point, and therefore the 

relationship between clogging parameters and the flow velocity is to be known. The numerical 

modeling of the experimental results evidenced an independence of kap on flow velocity, and an 

average value of the retention kinetics was determined. It will be used for the simulation of 

additional pressure drop due to guar gum retention during the injection of microscale iron slurries in 

radial geometry, which is the topic of the second part of this study. 
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Figure captions 

 

Figure 1: Experimental setup for column filtration tests 

 

 

Figure 2: Normalized pressure drop ΔPn = ΔP/(Lq) over time for filtration tests of guar gum 

solutions at 3 g/l (a) and 4 g/l (b), prepared using different procedures. Pre-flushing data are not 

reported. 
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Figure 3: Porous medium clogging in filtration step tests, quantified as the slope of normalized 

pressure drop, ΔPn/PV. 

 

 

Figure 4: Pressure gradient for multi-step filtration tests: experimental data and modeled curves. 
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Figure 5: Bulk and porous medium rheology. Point values represent the apparent viscosity and 

shear rate calculated at the end of each injection step calculated from experimental pressure drop 

curves. Lines represent the bulk viscosity curves for the corresponding guar gum concentrations 

obtained from Cross curves in (Gastone et al., 2014). 

 

 

Figure 6: Filtration rate coefficients kap as a function of flow velocity for single-step tests (points), 

and the first step in multi-step tests (triangles). 
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Table captions 

Table 1: Step filtration tests: test protocol (guar gum concentration, injected fluid, number of pore 

volumes for each step and Darcy velocity), experimental viscosity and shear rate in the porous 

medium. 

     Experimental 

data 

cGG 

 

 

(g/l) 

Step Fluid PVs q 

 

 

(m/s) 

µm

 

 

(Pa s) 

γ̇m

 

 

(1/s) 

1.5 Inj. step 1 GG 4 1.39·10
-4

 1.26·10
-2

 19.6 

Inj. step 2 GG 3 4.22·10
-4

 1.01·10
-2

 62.9 

Inj. step 3 GG 3 1.71·10
-3

 7.21·10
-3

 256.0 

3 Inj. step 1 GG 4 1.11·10
-4

 7.80·10
-2

 16.1 

Inj. step 2 GG 3 3.62·10
-4

 5.07·10
-2

 53.0 

Inj. step 3 GG 3 1.71·10
-3

 2.49·10
-2

 250.8 

4 Inj. step 1 GG 4 9.06·10
-5

 1.87·10
-1

 13.0 

Inj. step 2 GG 3 2.65·10
-4

 1.19·10
-1

 38.1 

Inj. step 3 GG 3 1.22·10
-3

 5.61·10
-2

 173.9 

 

 

Table 2: Cross parameters of bulk viscosity curves from (Gastone et al., 2014) used in eq. (2) for 

the calculation of bulk viscosity in Figure 5. 

µGG

 

 

(g/l) 

µ0

 

 

(Pa s) 

 µ∞

 

 

(Pa s) 

λ

 

 

(s) 

χ

 

 

(-) 

1.5 0.014 2.47·10
-3

 7.27·10
-3

 0.57 

3 0.167 3.42·10
-3

 5.61·10
-2

 0.68 

4 0.487 4.20·10
-3

 1.01·10
-1

 0.74 
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Table 3: Clogging parameters obtained from inverse-fitting of single-step filtration tests. 

Parameter Test Parameter value 

ap (m
2
/m

3
) All tests 2.01·10

7
 

ka (s
-1

) All tests 5.86·10
-3

 

F (-) TQ 0.12 (*) 

 T60 7.97·10
-2

 

 T60C 1.14·10
-2

 

(*) Value not fitted (imposed a-priori). 

 

Table 4: Permeability coefficients estimated from single-step experimental results 

Guar gum 

conc. 

 

 

 

cGG 

 

(g/l) 

Prep. 

method 

 

 

 

 

 

 

Clean bed 

(initial) 

permeability 

 

 

 k0 

 

 (m
2
) 

Permeability 

at the end of 

GG injection 

 

Kend,inj  

 

(m
2
) 

Permeability 

at the end of 

flushing 

 

 

 Kend,flush 

  

(m
2
) 

Darcy 

flow rate  

 

 

 

q 

 

(m/s) 

Shear rate 

during 

injection 

 

γ̇m

 

 

(1/s) 

Viscosity 

during 

injection 

 

 µm

 

 

(Pa s) 

3 AR 1.37·10
-10

 7.78·10
-11

 2.20·10
-11

 1.93E-03 3.48E+02 2.02E-02 

3 T60 1.76·10
-10

 1.18·10
-10

 3.63·10
-11

 1.98E-03 2.90E+02 2.67E-02 

3 T60C 1.49·10
-10

 1.46·10
-10

 1.02·10
-10

 1.92E-03 2.53E+02 2.51E-02 

4 AR 1.68·10
-10

 7.54·10
-11

 2.04·10
-11

 1.86E-03 3.40E+02 2.99E-02 

4 T60 1.45·10
-10

 6.01·10
-11

 6.27·10
-12

 1.77E-03 3.63E+02 4.35E-02 

4 T60C 1.74·10
-10

 1.60·10
-10

 9.21·10
-11

 1.91E-03 2.40E+02 4.84E-02 

 

 

 

 


