
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting the network for securing personal devices / Dalton, C.; Lioy, Antonio; Lopez, D.; Risso, FULVIO GIOVANNI
OTTAVIO; Sassu, Roberto. - STAMPA. - (2014), pp. 16-27. (Intervento presentato al convegno Third Cyber Security
and Privacy EU Forum tenutosi a Athens (Greece) nel 21-22 May 2014) [10.1007/978-3-319-12574-9_2].

Original

Exploiting the network for securing personal devices

Publisher:

Published
DOI:10.1007/978-3-319-12574-9_2

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2577744 since:

Springer

Exploiting the network
for securing personal devices

Chris Dalton(∗), Antonio Lioy(+), Diego Lopez($),
Fulvio Risso(+), and Roberto Sassu(+)

(*) HP Laboratories, Bristol, United Kingdom
(+) Politecnico di Torino, Dip. Automatica e Informatica, Torino, Italy

($) Teléfonica I+D, Madrid, Spain

Abstract. Personal devices (such as smartphones and laptops) often
experience incoherent levels of security due to the different protection
applications available on the various devices. This paper presents a novel
approach that consists in offloading security applications from personal
devices and relocating them inside the network; this will be achieved by
enriching network devices with the appropriate computational capabil-
ities to execute generic security applications. This approach is fostered
by the Secured project, which will define the architecture, data and
protocols needed to turn this vision into reality.

Keywords: Network-based personal security, personal security protec-
tion, remote attestation, network functions virtualization

1 Introduction

The recent years have witnessed an increasing number of user terminals (such
as laptops and smartphones) being connected to the Internet and we foresee an
even more exciting growth in the coming years, due to new functions such as car
infotainment systems, smart Internet-of-Things (IoT) devices, and more. This
scenario encompasses a high number of devices with very different capabilities
and hence poses significant challenges in terms of security, particularly with
respect to protection from external threats.

First, many devices have limited resources, particularly embedded and mobile
devices, and are often further constrained by severe limitations in terms of power
consumption. As a consequence, complex protection applications (like anti-virus
or VPN client with strong encryption) may not be executed on all devices.

Second, users can access the network from anywhere, hence they experience
different levels of protection depending on the network they are connected to.
For example, a user is typically exposed to more threats when connecting from a
public hotspot than when connecting from the corporate network (as it usually
includes a sophisticated border firewall).

Last but not least, the level of protection depends upon the security appli-
cations available for a specific terminal. For example, a laptop can be equipped

antonio
Typewritten Text
This is the author's version of an article that has been published in the proceedings of the Cyber Security & Privacy Forum 2014,Athens (Greece), May 21-22, 2014, pp. 16-27, vol. 470 of Communications in Computer and Information Science (CCIS), Springer. The final version of this paper is available at http://dx.doi.org/10.1007/978-3-319-12574-9_2

http://dx.doi.org/10.1007/978-3-319-12574-9_2

2

with a powerful parental control, while the same software may not be available
when browsing the Internet from a smart TV, hence leaving kids unprotected.

This paper proposes a possible solution to the above problems, based on a
network application offloading approach [7]. In a nutshell, we move protection
from the user terminal to the (closest) network edge device (NED), which can be
represented by an access point, switch or router, augmented with the computing
capabilities required to run the offloaded security applications. According to this
approach, users will configure the desired security countermeasures (applications
and policies) only once, then they will be applied automatically by all NEDs
regardless of the user terminal and network connection.

The main advantage of this approach consists in transforming protection
from device- or network-based into a new user-centric paradigm, hence deliv-
ering personalized protection independent from the user’s device and location.
In addition, this would no longer require to install specific software on each
terminal, which simplifies management and reduces power consumption, hence
offering to devices with limited capabilities the same level of protection of more
complex platforms. This approach is fostered by the project Secured1, which
is currently designing the technical framework to turn this vision into reality.

2 Requirements

Running personal security applications into the network is a sensitive action and
several requirements must be met by an architecture aiming to reach this target.

2.1 Security requirements

Trust. Since applications would be executed at a node not under the control of
the end user, a verification mechanism is needed to provide evidence that the
NED can be trusted to run the applications. In particular, a NED should provide
the following guarantees.

First, it must prove to be an original device and not one simulating the
Secured behaviour (for example by reproducing the same output upon a re-
quest); the consequence of trusting a fake device could be that its owner could
manipulate the traffic of the victim at his will.

Second, a NED must prove that the traffic of a given user is processed by
the applications he requested and not by some malicious software (that could,
for example, forward all user’s traffic to an attacker’s favourite location).

Note that trust should come from the evaluation of these guarantees, but
we do not exclude the possibility to accept other sources of trust. For instance,
the user might be satisfied with trust originating from non-technical considera-
tions, such as having the physical control of his home gateway or a contractual
agreement (and corresponding liability) with his ISP.

1 http://www.secured-fp7.eu/

3

Channel protection. If the user trusts a NED, he must also create a pro-
tected channel with it, so that attackers cannot manipulate the traffic. In ad-
dition, he must ensure that the other channel endpoint is the same entity that
presented the trust proofs, otherwise an attacker could perform a man-in-the-
middle attack by relaying the proofs requests and replies to a trusted device.

Isolation. As a NED could be multi-tenant (e.g. many users connected at the
same time to a public WiFi access point), it must ensure the proper separation
of traffic of the different users and must bind each flow only to the applications
selected by that user. Since applications could misbehave (e.g. due to a bug or
a vulnerability exploited through a malformed packet), a NED must properly
confine each application so that a misbehaving one does not affect the others.

2.2 Technical requirements

User authentication. To deliver protection to the right user, a NED must have
the capability to recognize who is currently connecting to it with a standard
authentication procedure (e.g. a username/password pair). It is worth noting
that this is not a mechanism for network access control, although the NED
could use information exchanged during that phase. Rather, authentication is
needed to retrieve the user’s profile (applications and policies) so that a NED
knows how the traffic of this user must be processed.

Standardized platform. Since a security application could run on an arbi-
trary NED (e.g. home gateway or corporate switch, depending on the location a
user connect from), it must be designed to support different environments. This
requirement could be met by designing applications in a platform-independent
way (e.g. as Java byte-code) or ensuring that a NED could run the environment
required by an application (e.g. through virtualization).

Standardized policies. Typically applications that accomplish similar tasks
for different platforms offer different configuration options, thus increasing com-
plexity for a user to obtain the same behaviour. To overcome this problem, a
user should have the possibility to express how his traffic must be processed with
an application-independent policy language.

Scalability. Since the NED is primarily a networking device (although aug-
mented with computational capabilities) supporting a massive number of concur-
rent tenants connected to it, all the NED components executing user applications
should be as lightweight as possible, with fast primitive operations oriented to
network processing, such as packet filtering and segment/payload reassembling.

3 The Secured infrastructure

3.1 NED deployment scenarios

Figure 1 presents the possible implementation options of the NED according
to three orthogonal dimensions, namely the hardware architecture, the type of
deployment, and how the user traffic is delivered to the NED.

4

distributedmonolithic

special
purpose

general
purpose

x
[deployment type]

y
[hardware

architecture]

z [traffic delivery
to the NED]

explicit

(A)

(B)
(C)

(D)

(E)

(F) (G)

(H)

transparent

Fig. 1. Dimensions for the possible NED deployment scenarios.

The first dimension considers two possible hardware options: components en-
gineered for data plane processing (e.g. network processors, hierarchical memory
architectures, hardware accelerators) versus standard components (e.g. general
purpose processors, mainstream memories). The former is more appropriate for
high speed processing, while the latter offers a better price/performance ratio
and looks more appropriate to integrate the NED in a cloud-like infrastructure.

Concerning the second dimension, we distinguish the NED as a monolithic
component that implements all the core functions from the case in which the
NED functions are distributed across multiple elements. For example, a tradi-
tional router without advanced computing capabilities might redirect the user
traffic (e.g. through OpenFlow [5]) to a server that takes care of the required
processing. The monolithic flavour looks simpler to deploy and manage (e.g. the
procedure to verify the hardware/software integrity has to handle a single box),
while the distributed model can guarantee better scalability and is more oriented
to cloud-like environments.

The third dimension refers to the way the user traffic is redirected to the
NED. While the preferred incarnation of this project assumes that the network
is Secured-aware and hence the traffic is automatically handled by the (first)
network device encountered (“transparent” traffic steering), we foresee also the
case of a user connecting to an untrusted or legacy network. In this case we
provide a small agent operating on the user device to establish a secure tunnel
to a remote NED and delivers all the user traffic to it (“explicit” traffic steering).

The Cartesian product of these three dimensions (with two options each)
generates the eight points in Figure 1, corresponding to possible deployment
scenarios. Among the different possibilities, labelled (A) – (H) in the figure, we
discuss now those that we consider most promising (Figure 2).

5

VPN

Remote NED

Network

Virtual NED

network

network
edge device

(dumb / untrusted)

computing device

(SECURED)

SEC_APPS

end-user
device

end-user
device

computing device

(SECURED)

SEC_APPS

network
edge device

(dumb / untrusted)

network edge

device (SECURED)

end-user
device

SEC_APPS

Monolithic NED

network

Split NED

network
edge device

(SDN-enabled)

network

computing device

(SECURED)

SEC_APPS

end-user
device

Fig. 2. Some Secured deployment scenarios.

Monolithic NED (case E). This is the case of a high performance appli-
ance (e.g. HP 3800 series) directly connected with the user device and containing
a network router with a custom computational unit in the same hardware box.

Split NED (case D). This represents a traditional access router directly
connected with the user device and redirecting the traffic to a general purpose
server (e.g. via SDN technologies such as OpenFlow), which executes the security
applications. This model could work also on legacy networks, when traditional
routers are coupled with a companion server that takes care of the processing.

Virtual NED (case C). This is the case where a local compute node, under
user control (e.g. a home desktop), is equipped with the NED software and acts
as a communication gateway for all user’s devices. User terminals have to connect
directly to the virtual NED (via the local network, if trusted by the user, or by
means of a secure channel) by explicitly redirecting their traffic to this box.

Remote NED (case B). This point represents the case in which the user
terminal explicitly connects to a remote NED through a secure channel (e.g.
a traditional virtual private network): in this case we would depart from our

6

philosophy of not requiring any modification to the client as we need to install
a custom application at the user terminal. This approach would incur penalties
both in management (necessity of a VPN client) and performance (additional
computations performed at the terminal and non optimized routing through the
remote NED). However we consider this case as a form of “last resort” option if
the user connects to a legacy network without Secured capabilities: this case
should be rare as many modern routers already support some protocols that
enable the implementation at least of the split NED option.

3.2 Providing trust

Regardless of how the infrastructure is implemented, the most important aspect
from the user’s perspective is that the NED must be able to process the traffic
as expected and must prove this to the user. The problem is how to guarantee
to a user that, when he connects to a network, the traffic will be processed by
a Secured device. Indeed, a user may connect to a legacy network (without
NEDs) or to a NED that has been previously compromised: in these cases users
are exposed to possible threats. To avoid this situation, Secured exploits the
Trusted Computing technology, in particular the remote attestation procedure.

The Trusted Computing Group (TCG) defined the specifications of a crypto-
graphic chip, the Trusted Platform Module (TPM) [4], which uniquely identifies
a Trusted Platform (TP). The TPM contains the necessary primitives to record
measurements (i.e. fingerprints) of hardware and software components, to pro-
tect measurements integrity while they are stored at the TP, and to securely
transmit them to a verifier. The latter can evaluate, from received data, if the
TP will perform the requested tasks as expected: this procedure is known as
remote attestation.

If the user remotely attests a NED before sending network traffic to it, this
prevents the threats described above:

– in case of a legacy network, a device cannot prove to the user that it belongs
to a Secured infrastructure since this proof requires the use of an asym-
metric key (Attestation Identity Key), which belongs to a unique TPM and
whose private part is never exposed outside this chip;

– in case of a compromised NED, the TCG methodology ensures that the user
can reliably detect if the accessed device will not properly process his traffic.

However, the sole attestation of the NED is not enough to protect users against
attacks from other users connected to the same network. Indeed, attackers may
try to intercept or modify the communication between the user and the attested
NED. Although a secure channel is appropriate to overcome this problem, this
does not ensure that the endpoint contacted by the user is the attested NED:
as pointed out in [2], the endpoint may be a device controlled by an attacker
relying the attestation to a NED. To fight this threat, Secured employs a
trusted channel between the user terminal and the NED and investigates which
solution is the best fit for this goal (e.g. [1] or [8]).

7

3.3 Security policies

Secured allows to describe user security requirements via a High-level Secu-
rity Policy Language (HSPL). HSPL is a user-oriented language suitable for
expressing concepts related to end-point protection, which represents a depar-
ture from current languages that are either related to network filters (for border
firewalls) or to access control (for database and applications). This language
is appropriate for capturing the user requirements but cannot be directly im-
plemented by security controls. As a consequence, we translate HSPL into a
medium-level security policy language (MSPL) which conveys the same infor-
mation in an application-independent format suitable for configuring security
controls, typically an ordered sequence of permit and deny actions related to
matching packets or payloads. A final translation step is needed from the MSPL
to the application-dependent languages that are needed to configure the actual
security controls (e.g. the Linux iptables firewall or the Snort intrusion detection
system).

The Security Policy Management service (SPM) allows users to create, delete,
edit, view, store and save their security policies. Each user may have more than
one set of policies (associated to different personae) to differentiate the level of
protection according to the security level required for a certain type of work. The
SPM is also the main user interface to select security applications (or Personal
Security Applications, PSA in short), either directly (in case of an expert user
that prefers an application-driven security configuration) or indirectly (in case
of a user preferring a policy-driven security configuration and thus selecting
applications among those that offer the capabilities needed by his policy).

Once the policy has been specified with MSPL statements and PSAs with the
required capabilities have been selected, we still need to create the configuration
files for the PSAs. This is done by invoking the Medium-to-Low level (M2L)
translation service associated to each PSA: it transforms a policy expressed in
MSPL in the configuration format required by the specific application.

4 The Secured architecture

Figure 3 displays the Secured architecture. We now proceed to explain how
the application offloading can be realized, examining first modifications at the
user terminals (to recognize if it is attached to a Secured network) and then
introducing the main components inside the NED. Finally, we describe at high
level the steps required for a user to setup a network connection with Secured.

4.1 User terminal

If the user may access either a Secured infrastructure or a legacy network, he
must install on his devices a small monitoring application, the Secured app.
This application is activated each time the device attaches to a new network to
check that the connection is to a trusted and secure NED. In case this condition

8

NED

hypervisor

privileged OS

user terminal

OS

SECURED
app

user
app

external
network

1: attestation
2: authentication

3: query user
 profile

user PSC

orchestrator

4: instantiate
 PSC

PSCM

policy mgmt

RA agent

authN

5: PSC attestation

PSC OS

MGMT +
CTRL

(admin)
PSA 1 PSA 2

6: download PSAs (from PSCM)
7: load + static attest PSA
8: execute + dynamic
 attest PSA

local / external
network

9: feedback to user

user profiles PSA repository
policy

repository

Fig. 3. Overview of the SECURED architecture.

is not verified, the Secured app establishes a remote connection (e.g. VPN) to
a trusted NED and redirects all the traffic of the user terminal to the remote
network node, hence guaranteeing the expected level of protection although with
a higher latency.

It is worth nothing that the above application is not mandatory. For instance,
we foresee the case of devices which cannot install this application. These devices
are still compatible with the Secured model, although they may not have access
to additional features such as the possibility to trust the NED or to automatically
connect to a remote NED in case of a legacy network.

4.2 The NED

Within the NED, each user is provided with a Personal Security Controller
(PSC), a logical container of execution environments (e.g. virtual machines)
that will coordinate the execution of his security applications into the network.

The PSC can run either directly on the network device (monolithic NED)
or on a separate computational unit (split NED) When a user connects to the
network, the NED will create a new PSC and download on the created container
the security applications (PSAs). When ready, the new PSC will operate on the
sole traffic of the user.

Two main NED components are involved in configuring the PSC: the Per-
sonal Security Controller Management service (PSCM) and an orchestrator.

The PSCM is the component contacted by users to setup a connection with
Secured and contains three main modules. A Remote Attestation Agent is in
charge of executing the remote attestation protocol with the user and reporting
the integrity status of a NED. An Authentication Module requests to a con-
necting user a proof of his identity to retrieve the user profile (policies and

9

applications). The Policy Management component performs harmonization and
conflict resolution on the policies extracted from the user profile.

After the PSCM determines the configuration of the user connection, it con-
tacts the orchestrator to start a new PSC. The orchestrator determines, depend-
ing on the requirement of the PSAs chosen by the user, the number of virtual
machines that must be created for that PSC to process the user traffic. Also, its
role is to configure the network paths inside the NED (to connect together the
virtual machines forming a PSC) and inside each virtual machine (to send the
traffic from a PSA to another). Finally, the orchestrator monitors the integrity
of the PSC, detects whether there are communication problems between virtual
machines of the same PSC and if a PSA inside a PSC crashed; if one of these
events occurs, the orchestrator may request the hypervisor to restart the virtual
machine causing the problem.

4.3 Connection set-up

When a device connects to a NED the following steps are performed to create a
protected network connection.

1. Front-end attestation. The user terminal has to perform a remote at-
testation pass toward the NED to verify that is connected to a trusted device
running the expected software.

2. User authentication. This step aims at discovering the identity of the
user connecting to the network, which is needed to retrieve his personal security
profile. This could be integrated with existing authentication mechanisms that
are already active for network access, such as the 802.1x protocol2 or SIM-based
authentication in mobile networks. This way the user would perform a single
authentication, both for network access (not requested by Secured) and to
retrieve the user profile.

3. Retrieval of the user profile. Upon successful identification of the user,
the PSCM fetches from a server the user security profile, which contains the list
of PSAs to be executed and their calling order. Then the PSCM contacts the
PSA repository to retrieve the application characteristics, such as their execution
model (e.g. full fledged virtual machine, Java virtual machine, Linux container)
and hardware requirements (e.g. CPU and memory). This information is needed
to create a precise view of the computing/networking primitives to be set up,
which includes the execution environment themselves, the PSAs, and the network
connections between the previous components to satisfy the desired service order.

4. Setup of the user PSC. Giving the execution graph created in the
previous step, the orchestrator issues the proper commands to create the required
computing resources and properly connect them. These resources are grouped
under the term Personal Security Controller (PSC), which may include different
execution environments based on the requirements of the PSAs. In this step no

2 While the 802.1x protocol was originally intended to perform device authentication
(e.g. based on the MAC address of the user terminal), recent extensions allow to
perform this step based on user-defined credentials, such as username and password.

10

PSAs are installed, as the user has to perform an additional verification step to
make sure that his PSC has been set up properly.

5. Attestation of the PSC. The user completes a remote attestation phase
to verify the correctness of the PSC (albeit limited to computing and networking
resources), making sure that the execution environments are trusted and that
traffic will traverse those components in the expected order.

6. Download and install applications and policies. PSAs are down-
loaded from the repository and installed in the execution environment. Further-
more, policies are retrieved from the user profile and applied to the applications.

7. Loading and attestation of the PSAs. PSAs are loaded in memory and
are statically attested to verify the correctness of the applications themselves.

8. PSA execution. PSAs are launched and operate on the user traffic. Pos-
sibly, a dynamic attestation step can be carried out on the whole PSC (execution
environments, network connections, PSAs) to detect run-time attacks.

9. Feedback to the user. Finally, the user is notified that all steps have been
successfully completed and the user PSAs are operating properly. A dynamic
feedback is optional but strongly desirable to notify users about possible changes
(e.g. when moving from a network to another, hence the PSC moves to a different
NED, or in case of any problem such as a crashed PSA or network issues) .

Note that the user is required to complete the setup of his profile before being
able to connect to a NED. This requires the user registration in the profile server
with a valid account, selection of the proper PSAs and definition of the desired
policies (following either the policy-driven or application-driven approach).

5 Evaluation and conclusions

As evident from the discussion above, the execution model chosen for our network
application offloading schema is compatible with the service model proposed in
ETSI by the Network Functions Virtualization (NFV) group. This is a recent
framework for the provision of network services by virtualization techniques [6]
and many operators are looking at it with increasing interest. As such, it is of
high interest also to Secured as a target environment for its implementation.
NFV is based on the availability of a homogeneous infrastructure, supporting the
deployment, replication and mobility of software-based implementations of the
different network functions, named VNF (Virtual Network Function). Network
services are built by composing VNFs and deployed by the NFV Orchestrator
upon the virtualized infrastructure.

NFV can support an additional Secured model, the Distributed NED,
which can be seen as the generalization of the Split one. In this case the NED
is composed by several distinct processing components deployed in different lo-
cations, such as a dedicated server in the enterprise domain, the edge point-of-
presence of the network operator, and/or a centralized datacenter. Each critical
component (PSC, PSCM) is mapped to a separate VNF, while PSAs are mapped
onto VNF elements, the so-called VNFCs (VNF components).

11

There are mutual benefits in a relationship between Secured and NFV.
First, the NED faces a scalability problem as it may have to cope with hundreds
of simultaneous users, but this is not an issue for NFV as new VNF can easily be
deployed as needed. Second, since VNF is a technology being currently adopted
by telecom and network providers, its mapping with Secured implies an easy
implementation path for those parties wishing to offer Secured services. Last
but not least, as Secured pays special attention to the trust and security as-
pects of the NED, there are several techniques (such as remote attestation for
distributed systems) that could be adopted to improve the NFV framework.

In addition to NFV, the adoption of “industry standard” components, such
as OpenFlow (for networking) and KVM/OpenStack (for the computation part),
enables our solution to be integrated in cloud-oriented platforms, hence guaran-
teeing synergies between different services of a network operator. Moreover, this
allows a NED to offload part of its workload to other machines, such as servers
operating in a datacenter, which can guarantee almost unlimited computational
power in addition to cost savings (even when the NFV approach is not taken).
Our architecture does not mandate the use of a single option, but leaves free-
dom to choose the most appropriate technology depending on the deployment
scenario: a single NED may be appropriate for a home network or a small com-
pany infrastructure, while a cloud/NFV architecture may be used by a mobile
operator to handle the network traffic of its customers.

Offloading applications to the network gives important advantages. In many
cases, our approach ensures better performance in terms of responsiveness and
throughput because of the limited resources available at the user terminal. Sec-
ond, it saves resources at the user terminal, that may be dedicated to other
purposes (entertainment, work) or to save power. Third, it provides personal
security protection, independent from the physical terminal in use. Finally, our
approach breaks the paradigm that the highest security standards are available
only on high-end platforms: a user could have many and heavy applications oper-
ating on his traffic even if his terminal does not satisfy the technical requirements
(e.g. CPU frequency, amount of memory) for those applications.

Among the costs that need to be paid for our solution, we mention the in-
creased amount of time needed for connecting (securely) to the network, in addi-
tion to the overhead generated by exchanging additional data between the user
terminal and the NED. For instance, the trusted channel between the user termi-
nal and the NED, one of the key elements described in Section 4, requires either
performing encryption/decryption of network packets at each channel side3 and
repeatedly fetching and evaluating the integrity measurements performed by the
NED. It is worth noting that the above overhead does not apply in all scenarios;
for example, the trusted channel can be avoided if the user trusts the network
he is connected to (i.e. other entities are not considered as adversaries or the
user is directly connected to the NED with a cable). In this case, the network
performance would be the same as if applications are run at the user’s terminal.

3 This step could be avoided in case the access network already uses encryption, such
as a WPA-protected WiFi hotspot.

12

Another possible drawback of our solution is the difficulty, for PSAs running
in the NED, to access the information available inside the user terminal, such
as the application that generated a given packet, in order to implement per-
application security policies. While currently we are not addressing this issue,
we are confident that a solution can be envisioned based on [3], which requires an
additional software in the user terminal that monitors the traffic and transfers
the <network session ID - process ID> pairs to a PSA running in the NED.

We think that the results of this preliminary evaluation are promising. The
proposed architecture opens an interesting opportunity to offer user-centric pro-
tection (as opposed to the current device- and network-centric approaches) and
enables also new business models, such as a marketplace for security applications
(PSAs) and ISP contracts including PSA execution.

Acknowledgement

The research described in this paper is part of the SECURED project, co-funded
by the European Commission (FP7 grant agreement no. 611458).

References

1. Armknecht, F., Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Ramunno, G.,
Vernizzi, D.: An efficient implementation of trusted channels based on OpenSSL.
In: ACM Workshop on Scalable Trusted Computing. pp. 41–50 (2008)

2. Goldman, K., Perez, R., Sailer, R.: Linking Remote Attestation to Secure Tunnel
Endpoints. In: ACM Workshop on Scalable Trusted Computing. pp. 21–24 (2006)

3. Gringoli, F., Salgarelli, L., Dusi, M., Cascarano, N., Risso, F., Claffy, K.: Gt: Pick-
ing up the truth from the ground for internet traffic. ACM SIGCOMM Comput.
Commun. Rev. 39(5), 12–18 (Oct 2009)

4. Trusted Computing Group: TPM Main Specification, Version 1.2, Revision 103.
https://www.trustedcomputinggroup.org (2007)

5. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rex-
ford, J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (Mar 2008)

6. Network Functions Virtualisation Industry Specification Group (NFV
ISG): Network Functions Virtualisation - update white paper (Oct 2013),
http://portal.etsi.org/NFV/NFV White Paper2.pdf

7. Risso, F., Cerrato, I.: Customizing data-plane processing in edge routers. In: Euro-
pean Workshop on Software Defined Networks. pp. 114–120 (2012)

8. Sadeghi, A.R., Schulz, S.: Extending IPsec for efficient remote attestation. In: FC’10:
Int. Conf. on Financial Cryptography and Data Security. pp. 150–165 (2010)

