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SUMMARY

In this paper we introduce and test the Enhanced Stability Recovery (ESR) scheme. It is a robust and compact
approach to the computation of diffusive fluxes in the framework of Discontinuous Galerkin methods.
The scheme is characterized by a new recovery basis and a new procedure for the weak imposition of
Dirichlet boundary conditions. These features make the method flexible and robust, even in the presence of
highly distorted meshes. The implementation is simplified with respect to the original recovery scheme [1]
(RDG1x). Furthermore, thanks to the proposed approach, a robust implementation of p-adaptive algorithms
is possible. Numerical tests on unstructured grids show a convergence rate equal to p+ 1, where p is the
reconstruction order. Comparisons are shown with the original recovery scheme RDG1x and the widely
used method proposed by Bassi, Rebay et al. [2] (BR2). Results show a significantly larger stability region
for the proposed discretization when explicit Runge-Kutta time integration is employed. Interestingly, this
advantage grows quickly when the reconstruction order is increased. The proposed procedure for the weak
imposition of Dirichlet BCs does not need the introduction of ghost cells and it is truly local since it
does not require data exchange with other elements. Further, it can be easily used with curvilinear wall
elements. Several test cases are considered. They include some benchmark tests with the heat equation and
compressible Navier-Stokes equations, and also more demanding problems assessing the behavior of the
scheme with very stretched elements and separated flows.
Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The main idea of the discontinuous Galerkin (DG) methods is to have several degrees of freedom
inside each element in order to obtain high order reconstructions without the need to use information
from neighbouring elements. With this approach the global solution is not continuous but has jumps
at the interfaces between the elements. At first glance, these methods may seem quite unsuitable for
the discretization of elliptic equations because the discontinuous behavior of the numerical solution
does not match well with the smoothness of the solution of an elliptic problem. However, the
application of the DG framework to the solution of elliptic problems has proved to be remarkably
successful. Several approaches have been proposed for the study of elliptic problems in the DG
framework, see [3] for a comprehensive review. The first works related to these problems appeared
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2 A. FERRERO, F. LAROCCA AND G. PUPPO

several years ago. Lions [4] proposed the use of a penalization approach for the imposition of
Dirichlet boundary conditions (BCs) in elliptic problems. His idea was to substitute the exact
Dirichlet BC with a weak BC which reproduces the same effect of the original BC when a
penalization factor tends to infinity. Nitsche [5] proposed an improved technique which was proven
to be consistent. These ideas were subsequently adopted to impose inter-element continuity in the
context of internal penalization methods (see e.g. the work of Babuska and Zlamal [6]) and were
used to compute the diffusive fluxes exchanged between adjacent elements. Bassi and Rebay [7]
proposed a DG method (BR1) for the discretization of the compressible Navier-Stokes equations
which was subsequently generalized by Cockburn and Shu [8] with the Local Discontinuous
Galerkin (LDG) method. Bassi, Rebay et al. [2] proposed also a second version of their scheme
(BR2) in which a compact stencil is obtained thanks to the use of lifting operators. Similar
motivations drove Peraire and Persson [10] to introduce the Compact Discontinuous Galerkin
(CDG) which can be seen as a compact evolution of the LDG. A contribution was also given by
Baumann and Oden [9] with a method based on a non-symmetric bilinear form. A different path
was chosen by Gassner, Lorcher and Munz [11] who proposed a numerical flux for the diffusion
terms in finite volume or DG schemes which is based on an exact solution of the diffusion equation
with piecewise polynomial initial data.

In 2005 van Leer and Nomura [12] proposed the recovery method (RDG) in which diffusive
fluxes are computed after a recovery procedure which gives a smooth solution that in the weak
sense is indistinguishable from the piecewise continuous discrete solution. A similar approach was
proposed by Dumbser [13] with the PNPM scheme in which both convective and diffusive fluxes
are computed through a reconstruction of order higher than the local element reconstruction. Luo
et al. [14] presented a work in which they applied a reconstruction method for the Navier-Stokes
equations, following the approach originally introduced by Dumbser et al. [15] in the context of
Euler equations.

Other methods recently proposed exploit the idea of recovery. Huynh [16] performed a stability
study for several of these schemes. He also proposed a 1D method which can be extended to 2D
on quadrilateral meshes via tensor products. Borrel and Ryan [17] proposed the elastoplast method
in which the recovery idea is applied to a small rectangle overlapping the interface between two
elements. French et al. [18] introduced a modified recovery scheme which makes use of a penalty
term. Moreover, in time several versions of the original recovery scheme were proposed by van
Leer and co-workers. While the first version was based on a weak formulation twice partially
integrated (RDG2x), a second version based on a weak formulation (RDG1x), requiring a single
partial integration, was subsequently introduced. Lo and van Leer [1] suggested that this second
version could be more suited to the discretization of the non linear Navier-Stokes equations, thanks
to some simplifications in the switching to primitive variables. For this reason, the scheme proposed
in this work will be compared mainly with the RDG1x scheme.
In this brief historical review it is possible to see some common lines which have driven the evolution
of DG methods for elliptic problems. One of these is the compactness of the discretization. A
compact stencil is very useful to simplify the implementation of codes on unstructured grids, and to
improve scalability in parallel computations. Other important aspects are flexibility and robustness
in dealing with highly distorted meshes and p-adaptive algorithms.
The aim of this work is to modify the original recovery method (RDG1x) focusing the attention on
high order discretizations of convection-diffusion problems (Section 4). In particular, we propose a
recovery basis which makes the scheme flexible and allows a robust implementation of p-adaptive
algorithms. This basis has less terms than the original recovery basis and remains well conditioned
also in the presence of higly distorted meshes. Furthermore the proposed discretization shows a
larger stability limit than the RDG1x method and the implementation is simplified (Section 6).
Moreover, a general procedure for the weak imposition of Dirichlet BCs in the framework of
recovery-based methods (Section 5) is proposed and tested in the presence of curvilinear wall
elements. The proposed boundary procedure is truly local and acts only on the boundary element. In
contrast, the original procedure [19] proposed for the RDG1x method needs information also from
the neighbouring elements.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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ENHANCED STABILITY RECOVERY METHOD 3

The results obtained with the proposed discretization were compared not only with the original
RGD1x method but also with the widely used BR2 method, which represents a reference in this
field.

2. GOVERNING EQUATIONS

The numerical method described in this work will be applied for simplicity to 2D problems. The
approach can be easily extended to 3D simulations. First of all, the 2D heat equation is considered:

∂T

∂t
+
∂F

∂x
+
∂G

∂y
= q (x, y) ∈ Ω ⊂ R2, t ∈ R+

0 (1)

where T is the temperature, q is a source term, and F andG are the fluxes. If we consider the Fourier
law we obtain:

F = −κ∂T
∂x

G = −κ∂T
∂y

(2)

Here κ denote the diffusivity coefficient which is assumed constant.
The heat equation will be used as a benchmark for the validation of the discretization of the diffusive
fluxes.

The main purpose of this work is to integrate non linear convection-diffusion problems, such as
compressible Navier-Stokes, which in 2D can be written as

∂ρ

∂t
+∇ · (ρv) = 0 (3)

∂ρv

∂t
+∇P +∇ · (ρvv)−∇ · ¯̄τ = 0 (4)

∂E

∂t
+∇ · ((E + P )v)−∇ · (¯̄τ · v)−∇ · (λ∇T ) = 0 (5)

¯̄τ ij = µ

[(
∂vj
∂xi

+
∂vi
∂xj

)
− 2

3
(∇ · v)δij

]
(6)

where ρ,v, P , E, τ , λ and µ are density, velocity vector, pressure, total energy per unit volume,
viscous stresses, conductibility and dynamic viscosity, respectively. The set of equations is
completed by the ideal gas law. Conductibility and dynamic viscosity are assumed constant.

3. NUMERICAL METHOD

The numerical scheme described in this work is based on the method of lines in which space and
time are discretized separately. The space discretization is based on the discontinuous Galerkin
approach, while the time discretization is performed with explicit Runge-Kutta algorithms or with
the implicit Euler scheme .

3.1. Discontinuous Galerkin discretization in space

The space discretization will be described in the case of a general 2D governing equation for the
variable u:

∂u

∂t
+
∂F

∂x
+
∂G

∂y
= q (x, y) ∈ Ω ⊂ R2, t ∈ R+

0 (7)

Assume that the domain Ω is subdivided into a collection of non overlapping elements Ωe.
Consider a generic element Ωe: let Vh be the finite dimensional functional space which will be
used to approximate the solution inside Ωe. Consider a proper basis for Vh which contains Ne basis

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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4 A. FERRERO, F. LAROCCA AND G. PUPPO

functions Φi. The numerical approximation of the solution (uh) belongs to the space Vh and can be
represented using a linear combination of the basis functions:

uh(x, t) = ũ ·Φ =

Ne∑
i=1

ũiΦi (8)

If uh is substituted in the governing equation (7) the residual Rh is obtained:

Rh =
∂uh
∂t

+
∂Fh
∂x

+
∂Gh
∂y
− q (9)

Galerkin’s approach requires that the projection of the residual on the spaceVh is set equal to
zero:

∫
Ωe

Rhνdxdy =

∫
Ωe

∂uh
∂t

νdxdy +

∫
Ωe

∂Fh
∂x

νdxdy +

∫
Ωe

∂Gh
∂y

νdxdy −
∫

Ωe

qνdxdy = 0 ∀ν ∈ Vh
(10)

The weak form of the discontinuous Galerkin discretization is derived by using integration by parts:∫
Ωe

∂uh
∂t

νdxdy +

∫
∂Ωe

(F̂hnx + Ĝhny)νds−
∫

Ωe

(
∂ν

∂x
Fh +

∂ν

∂y
Gh)dxdy −

∫
Ωe

qνdxdy = 0

(11)
where nx and ny are the cartesian components of the outward-pointing unit normal vector and s is a
curvilinear cohordinate along the element boundary. The last equation shows that the integral over
the element boundary ∂Ωe requires the knowledge of fluxes (F̂h and Ĝh) at the interface between
neighbouring elements. These quantities are obtained introducing a numerical flux. The convective
and diffusive contributions to this flux are evaluated separately. The first one is computed with an
approximate Riemann solver, following the approach proposed by Osher and Solomon [21] and
Pandolfi [22] for finite volume schemes. The numerical diffusive flux will be introduced in Section
4.

Eq. (11) has to be evaluated for all the Ne functions which define the basis of Vh, i.e. setting
ν = Φj with j = 1, ..., Ne. In this way the time evolution of the element’s degrees of freedom is
described by the following Ne equations:∫

Ωe

Ne∑
i=1

∂ũi
∂t

ΦiΦjdxdy +

∫
∂Ωe

(F̂hnx + Ĝhny)Φjds−
∫

Ωe

(
∂Φj
∂x

Fh +
∂Φj
∂y

Gh)dxdy+

−
∫

Ωe

qΦjdxdy = 0 1 ≤ j ≤ Ne

(12)

The system can be rewritten in compact form through the introduction of the element mass matrix
([M]) and the basis matrix (Φ),

[M]ij =

∫
Ωe

ΦiΦjdxdy (13)

[M]
∂ũ

∂t
= −

∫
∂Ωe

(F̂hnx + Ĝhny)Φds+

∫
Ωe

(
∂Φ

∂x
Fh +

∂Φ

∂y
Gh)dxdy +

∫
Ωe

qΦdxdy (14)

3.2. Basis functions and mapping

The choice of the basis functions strongly affects the behavior of the numerical discretization.
Indeed, the time evolution of the numerical solution depends on the linear system (14) in which
the mass matrix appears. A bad choice of the basis functions can lead to an ill-conditioned
mass matrix and this can deteriorate the accuracy of the numerical solution. For this reason we
chose to use a hierarchical orthonormal basis obtained by the application of the modified Gram-
Schmidt orthonormalization to a set of monomials defined in physical space. Furthermore, this

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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ENHANCED STABILITY RECOVERY METHOD 5

choice helps to reduce the computational cost with explicit time integration because, thanks to the
orthonormalization, the element mass matrix is the identity and so it is not necessary to multiply the
right hand side of (14) for the inverse of the mass matrix at each time step. In particular, we followed
the approach of Bassi et al. [23]. They suggest to start the modified Gram-Schmidt procedure with a
set of monomials defined in the physical space on a reference frame centered on the element’s center
of mass and aligned to its axis of inertia. They use this basis for general shaped elements obtained by
agglomeration. In the present work this basis is employed for both triangles and quadrangles. In this
way an element with a reconstruction of order p has Ne = (p+ 1)(p+ 2)/2 degrees of freedom,
independently on its shape. The size of the particular element basis chosen for this work is not
related to the recovery basis presented in Section 4.2. In fact other choices are possible, for example
a tensor product basis (with Ne = (p+ 1)2) can be efficiently used for quadrilateral elements.
Integrals are approximated through the use of Gauss quadrature formulas (from [24]) on the
transformed reference element. The number of quadrature points is chosen in order to exactly
integrate polynomials of order 2p on the reference element. The mapping between the general
curvilinear quadrilateral element and the reference square are computed with the Serendipity
mappings reported by Oñate [25]. Curvilinear triangular elements are transformed into the reference
triangle with standard mappings also from [25].

3.3. Explicit and implicit time integration

In this work several explicit Runge-Kutta algorithms are employed. First order accuracy is obtained
with the forward Euler scheme. We use two and three stages Total Variation Diminishing Runge-
Kutta methods (RK2TVD and RK3TVD), proposed by Gottlieb and Shu [26] in order to achieve
second and third-order accuracy. Fourth-order time accurate computations are performed using the
low storage five stages Runge-Kutta method (RK4LS) described in [27]. In the general case in
which convection-diffusion equations are considered the diffusion and convection stability limits
are evaluated separately:

∆td = σ
H2
e

κ(2pe + 1)
(15)

∆tc = σ
He

c(2pe + 1)
(16)

where σ, c, He and pe are the stability coefficient, maximum signal speed and element characteristic
size and order. The allowed time step in the generic element is chosen as the minimum between the
diffusion and convection step:

∆t = min(∆td,∆tc) (17)

Implicit time integration is also considered in this work. In particular, the first order backward
Euler method is used for the test of Section 7.4. The jacobian matrix required by this approach is
evaluated analytically.

4. A RECOVERY-BASED APPROACH

4.1. The recovery idea

The recovery method (RDG) proposed by van Leer and Nomura [12] is an elegant way to obtain the
numerical diffusive fluxes.

Consider the interface between two elements ΩA and ΩB . The goal is to recover a smooth
differentiable function (ur) on the union of these two elements (ΩC = ΩA ∪ ΩB) in order to
compute gradients on the quadrature points along the interface. The key idea is that the recovered
function has to be equivalent in the weak sense to the original solution on the two elements, namely∫

ΩA

urΦndxdy =

∫
ΩA

uhΦndxdy 1 ≤ n ≤ NA

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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6 A. FERRERO, F. LAROCCA AND G. PUPPO

∫
ΩB

urΦndxdy =

∫
ΩB

uhΦndxdy 1 ≤ n ≤ NB (18)

A set of basis functions Ψ with Nr degrees of freedom can be introduced for the recovered solution:

ur = ũr ·Ψ =

Nr∑
j=1

ũrj(t)Ψj(x, y) (19)

Substituting (19) and (8) into (18) the following two sets of linear equations are obtained:

[RA] ũr = [MA] ũA

[RB ] ũr = [MB ] ũB (20)

in which [MA], [MB ], ũA and ũB are the mass matrices and the vectors of the degrees of freedom
of the two elements A and B, respectively. The recovery matrices [RA] and [RB ] are defined as

[RA]nj =

∫
ΩA

ΨjΦndxdy 1 ≤ n ≤ NA, 1 ≤ j ≤ Nr

[RB ]nj =

∫
ΩB

ΨjΦndxdy 1 ≤ n ≤ NB , 1 ≤ j ≤ Nr. (21)

Introducing the interface recovery matrix [R], the set of equations (20) can be expressed in a more
compact form: [

[RA]

[RB ]

]
ũr = [R]ũr =

[
[MA] 0

0 [MB ]

]{
ũA

ũB

}
. (22)

If an orthonormal basis is used, the mass matrix within each element is the identity, and so the
matrix multiplication on the right hand side can be removed,

[R]ũr =

{
ũA

ũB

}
. (23)

From the previous derivation it can be seen that the recovery matrix [R] has dimension (NA +
NB)×Nr. The most difficult task in the recovery approach is the choice of the recovery basis Ψ.

Van Leer and Lo [19] considered the case in which NA = NB , and they set Nr = (NA +NB).
They introduced a provisional recovery basis Ψ which makes the recovery matrix non singular. The
elegance of their idea is related to the next step. They used the columns of the inverse recovery
matrix to define a final recovery basis Ψ̂ which is in the weak sense indistinguishable from the
elements discontinuous basis (van Leer and Lo [28]). In this way the degrees of freedom of the two
elements which share an interface can be used to put in evidence both the discontinuous hyperbolic
nature or the continuous parabolic nature of the underlying equations simply by switching from a
basis (Φ) to another (Ψ̂).

ur =

NA∑
j=1

ũAj Ψ̂j +

NB∑
j=1

ũBj Ψ̂NA+j . (24)

4.2. Enhanced Stability Recovery (ESR) method

The approach proposed by van Leer, Nomura and van Raalte [19] makes it possible to enhance
the accuracy of the viscous fluxes discretization because the recovered solution has twice the
number of degrees of freedom with respect to the element solution. This advantage is important
in pure diffusion problems but can be lost in convection-diffusion problems if the convective fluxes
are computed using the element internal reconstruction. There are some approaches in which the
information from the neighbouring elements is used to improve also the accuracy of the convective
terms, see for example the PNPM method [13] or the approach proposed by Nourgaliev et al. [29].

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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ENHANCED STABILITY RECOVERY METHOD 7

We believe that one of the main reasons for the current success of DG methods is the possibility of
obtaining high order reconstructions without the need of data from neighbouring elements. For this
reason we prefer to adopt a classical approach, in which the convective fluxes are computed using
the internal element reconstruction. As a consequence the effects of a higher order approximation
of the diffusion terms are mitigated by the lower order approximation of the convective terms.
Furthermore, in the original recovery approach it is necessary to choose a provisional recovery
basis (Ψ) which makes the recovery matrix ([R]) square and invertible. This is not a trivial task
in multidimensional problems, especially when high order reconstructions are used on irregular
unstructured meshes. For example, van Leer et al. [30] reported that the RDG1x scheme becomes
unstable for p > 2, if the gradient in the volume integral is computed with one of the approaches
described in [1]. In contrast, the discretization proposed in this work was successfully tested up to
p = 6 (see Section 7.3).
Van Leer, Nomura and van Raalte [19] chose to use an anisotropic monomial recovery basis in
which the reconstruction orders in the direction normal and tangential to the interface are (2p+ 1)
and p, respectively. Even if this approach improves the order of the scheme on cartesian meshes, a
standard (p+ 1) convergence order is obtained on general unstructured meshes [28].
One of the final goals of this work is the discretization of convection-diffusion problems in which
p-adaptivity strategies can bring important benefits. In this context, we observe that it is not clear
how to extend the RDG1x approach (Eq. 24 which requires Nr = NA +NB) to problems in which
the reconstruction order changes from one element to another (NA 6= NB). In the literature there
are no applications of the original recovery approach with p-adaptive algorithms to the best of our
knowledge.
Thus we choose an alternative approach in order to obtain a general and flexible scheme (Enhanced
Stability Recovery (ESR)), which can be easily adopted in the context of p-adaptive algorithms. In
particular we give up the constraint of a square recovery matrix (i.e. we set Nr < NA +NB) and
we solve the over-determined system (23) with the least square method:

[R]T [R]ũr = [R]T
{

ũA

ũB

}
(25)

Thanks to a proper choice of the recovery basis (defined in the following) the least square problem
is well conditioned and the matrix [R]T [R] is invertible:

ũr =
(
[R]T [R]

)−1
[R]T

{
ũA

ũB

}
= [R̃]

{
ũA

ũB

}
(26)

In this way it is sufficient to perform a matrix-vector product for each interface and the recovery
coefficients are obtained. Then these coefficients can be multiplied by the gradient of the recovery
basis functions in order to obtain the diffusive fluxes at the interface quadrature points (first term on
the right hand side of Eq. (14)). If the domain is fixed, the rectangular recovery matrix ([R̃]) can be
precomputed since it depends only on the mesh. In Section 6 more details on the implementation
are given.
In the proposed approach, the recovered solution is used only for the evaluation of the diffusive
fluxes at the interface. Indeed, the diffusive fluxes within the volume integral (second term on the
right hand side of Eq. (14)) are computed inside each element, and therefore are given by the product
between the element degrees of freedom and the gradient of the element basis functions.
The most important aspect of the method is the choice of the recovery basis Ψ. We use an
orthonormal basis obtained by the modified Gram-Schmidt procedure. The orthonormalization
makes use of the L2 inner product (f, g) =

∫
ΩA∪ΩB

fgdxdy in which the integral is evaluated on the
union of the two elements. This approach makes it possible to ensure that the condition number of
the recovery system remains low. We propose to initialize the orthonormalization procedure with a
particular starting monomial basis defined according to rules, depending on the degree pA and pB of
the polynomials in the two elements A and B, defining the interface. Three cases will be described
depending on the order of the two elements. Consider a reference frame centered on the mid-point

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
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8 A. FERRERO, F. LAROCCA AND G. PUPPO

of the interface and with the axis aligned to the normal and tangential directions (ξ, η) as shown in
Figure 1:

Figure 1. Interface reference frame for constructing the recovery basis.

• pA = pB = p
First of all we consider the case in which the two elements have the same order p. The starting
recovery basis for the initialization of the orthonormalization procedure is obtained by
considering the monomial basis of order p in the variables (ξ, η) and adding all the monomials
with order p+ 1 in which ξ appears. In other words these additive functions consist in the first
p+ 1 monomials of the (p+ 1)th row of the Pascal triangle. We emphasize that it is these
additive functions that make the difference. Indeed, our preliminary experiments showed that
if the additive functions are not used or if only the term ξp+1 is included, the convergence rate
of the scheme can be compromised. Since the order of the recovery reconstruction is reduced
with respect to the original recovery approach, it is easier to control the condition number of
the recovery matrix. Moreover, this choice is related to the improvement in the stability limit
observed in the numerical experiments presented below.
An example of the proposed starting basis in the case p = 2 is shown in Figure 2. For the
sake of comparison, Figure 3 reports the provisional basis for p = 2 obtained according to
the original recovery approach.

Figure 2. Preliminary recovery basis before orthonormalization for the case pA = pB = 2, in the Enhanced
Recovery approach.

Figure 3. Preliminary recovery basis with the original recovery approach for the case pA = pB = 2.

• |pA − pB | = 1
The starting recovery basis is obtained by considering the monomial basis of order
p̃ = max(pA, pB) and adding all the monomials of order p̃+ 1 in which ξ appears. It is
possible to use the maximum order between pA and pB if there is enough information
in the union of the two elements to obtain a recovered solution with this accuracy, i.e.
Nr ≤ NA +NB . This condition is satisfied ifmin(pA, pB) ≥ 1. Thus, the p-adaptive strategy
avoids the use of elements with p = 0.

• |pA − pB | > 1
It could happen that a p-adaptive algorithm introduces a jump of two or more orders between
neighbouring elements. In this case it is impossible to choose the recovery basis with
p̃ = max(pA, pB). Indeed, in the case |pA − pB | > 1, the recovery degrees of freedom would
be more than the sum of the degrees of freedom in the two elements if p̃ = max(pA, pB).
For this reason, we locally reduce the order of the recovery, choosing p̃ = max(pA, pB)− 1,
i.e. at the interface between elements with a different accuracy, the algorithm chooses an
intermediate value for the degree of the polynomial being reconstructed. This reflects the fact
that the adaptive algorithm assignes a jump in the accuracy across the interface, so it seems
reasonable to choose an intermediate state at the interface. Thus, in this case, we construct
the starting basis with a monomial basis of order p̃ = max(pA, pB)− 1 and we add all the
monomials of order p̃+ 1 in which ξ appears. In our tests we found that the presence of strong
jumps in the order distribution across the domain should be prevented whenever possible (see
Section 8.1). For this reason, we try to avoid the condition |pA − pB | > 1 in the simulations by
choosing a more regular order distribution. However, if the condition is verified the algorithm
is able to manage this case, as described above.
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Therefore, the starting recovery basis has always Nr = (p̃+ 1)(p̃+ 2)/2 + (p̃+ 1) degrees of
freedom, where p̃ is equal to p if a uniform order distribution is used. Otherwise p̃ can be set equal
to max(pA, pB) or max(pA, pB)− 1, depending on the jump in the order.
As far as numerical quadrature is concerned, the integral on the interface is computed with a suitable
quadrature formula in order to satisfy the accuracy requirements of both elements. In particular, if
the two elements require MA and MB points for the integrals on their edges, the formula with
M = max(MA,MB) is adopted.

Finally, a comment on the use of piecewise constant reconstructions. When pA = pB = 0 the
recovery reconstruction has only two degrees of freedom: a constant term and a linear term related
to the direction normal to the interface. From this information, only the normal derivative can be
obtained from the recovery solution. If the heat equation is considered this information is enough to
compute the fluxes across the interface. On the other hand, if a more complex system of equations is
considered (i.e. Navier-Stokes), not only the normal derivative but also the tangential derivative have
to be computed in order to evaluate the fluxes. For this reason, we prevent the presence of elements
with p = 0 in the domain. Note that the DG method is usually chosen for its high accuracy. Thus,
the occurrence of piecewise constant reconstructions is expected to be unlikely in most applications.

We emphasize the importance of using the Gram-Schmidt orthonormalization not only on the
element basis but also on the recovery basis. This approach makes the method robust and able
to deal with highly distorted meshes. For example we report in Table I the effect of the recovery
basis orthonormalization on the 2-norm condition number of the matrix

(
[R]T [R]

)
which has to

be inverted in Eq. 26. The data refer to the interface between the two distorted elements shown in
Figure 4 for the case pA = pB . Orthonormalization is applied on the element basis functions in
both cases, but only in the second case it is also applied to the recovery basis. These results suggest
that the use of orthonormalization on the proposed recovery basis becomes fundamental when high
order reconstructions are employed on irregular meshes. The condition number of the matrix was
estimated with the free software package GNU Octave [31].
It can be expected that the use of the orthonormalization procedure on the recovery basis can be
useful also for other recovery-based schemes, since they all involve the definition of a recovery
procedure which is influenced by the behavior of the recovery basis.

Figure 4. Interface between two distorted elements for the test of Table I.

4.3. Extension to 3D

In this Section some considerations on the extension of the method to 3D are reported. In particular
it is necessary to define how to build the recovery basis in 3D. Consider a reference frame with the
origin in the geometric center of the interface. Its axis are aligned with the normal and tangential
directions (ξ, η, ζ).
First of all, the case pA = pB = p̃ is studied. The starting recovery basis can be obtained by
considering the monomial basis of order p̃ and adding all the monomials with order p̃+ 1 in which ξ
appears. With this approach the size of the recovery basis is Nr = (p̃+ 1)(p̃+ 2)(p̃+ 3)/6 + (p̃+
1)(p̃+ 2)/2.
The cases |pA − pB | = 1 and |pA − pB | > 1 can be managed in a way similar to the 2D approach.
The same problems described for p = 0 in the 2D context are present also in 3D.
Another important issue which can become important in 3D is the memory requirement. In Section
6 there are suggestions on implementation details which can help in saving memory. Future work
will be devoted to the assessment of the method in 3D.
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5. BOUNDARY CONDITIONS

In this Section we describe how boundary conditions for diffusive equations should be imposed with
the Enhanced Recovery Method. Neumann BCs are simply satisfied by setting the exact value of
the fluxes on the boundary integral. Dirichlet BCs require further considerations.

In the context of discontinuous Galerkin methods it is possible to impose Dirichlet BCs in both
strong or weak form [32]. The strong approach consists in forcing the solution reconstruction to
exactly satisfy a prescribed condition on the boundary. The weak approach is based on the idea that
the error in the enforcement of the BC’s and the error in the interior solution can be of the same
size. In other words, the accuracy required in the interior of the domain is the same as the accuracy
imposed at the boundary: in this approach therefore there is an error between the value prescribed
and the solution reconstructed on the boundary, but this error vanishes in the limit of an infinite
mesh refinement, with the same rate of the error in the interior of the domain.

From a practical point of view, it can be shown that the use of strong Dirichlet BCs can introduce
stability limitations and spurious oscillations in the numerical solution (see for example [33]).
Furthermore several discretization methods allow the weak imposition of Dirichlet BCs in a natural
way. For example, in the BR2 scheme this is simply done through the definition of a proper
ghost state in all the boundary quadrature points. The extension to this approach in recovery-based
schemes could be non trivial. Indeed, the recovery procedure is applied to the union of two elements
and so a ghost element would be required in this case, not just a local ghost state. The definition of
the proper values in the ghost element can be obtained through symmetry considerations between
the boundary element and the ghost element. For example Borrel and Ryan use this approach in their
paper [17] on the elastoplast method. The problem is that this procedure may become ambiguous
in the presence of curvilinear elements, because in this case the boundary curve is not a symmetry
axis between the boundary element and the ghost element.
Another path was followed by van Leer, Nomura and van Raalte [19]. They proposed to impose the
BCs on the recovery solution. They substitute the missing information in the boundary element with
data from one or more interior elements. They observed that this procedure may reduce the stability
range of the method. Furthermore this approach is not trivial when unstructured meshes are used,
because there are multiple possible choices.

Two of the main reasons for the success of DG methods are the compactness of the reconstruction
and the simplification in the treatment of BC’s when high order reconstructions are employed. In
order to keep these positive features, we developed an alternative approach which makes it possible
to impose both strong or weak Dirichlet BC’s in recovery-based DG methods, without the need to
use ghost elements or data from other interior elements.

5.1. Dirichlet BC’s in strong form

In our approach boundary conditions are imposed on the element internal reconstruction, not on the
recovery solution.
The strong imposition of Dirichlet BC’s requires that the numerical solution at the quadrature
points of the boundary elements is equal to the prescribed values. In other words, the degrees of
freedom inside the element have to be altered in order to satisfy the BC’s. Consider for example a
discontinuous Galerkin scheme with Ne degrees of freedom inside the element and M quadrature
points on the edge (M < Ne). The imposition of the BC’s on the quadrature points gives M
equations for each element on the boundary:

umw = uw(xmq ) =

Ne∑
i=1

(ũi + ∆ũi)Φi(x
m
q ) 1 ≤ m ≤M (27)

where umw represents the prescribed wall value in the quadrature point m.
If the procedure is forced to be conservative the mean value has to be preserved (∆ũ1 = 0). In this
way the system (27) has Ne − 1 unknowns which describe the perturbation of the elements degrees
of freedom (∆ũi, 2 ≤ i ≤ Ne). In general the set of equations (27) is under-determined and so more
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ENHANCED STABILITY RECOVERY METHOD 11

information has to be imposed. In particular we chose to minimize the L2-norm of the perturbation
∆ũ:

min(|∆ũ|2) = min(

Ne∑
i=2

∆ũ2
i ). (28)

The minimization problem can be solved using a Lagrange multiplier, µ. In this approach, equation
(28) is the goal and equations (27) are the constraints:

∂

∂∆ũi

[
Ne∑
i=2

∆ũ2
i +

M∑
m=1

µm

(
umw −

Ne∑
i=1

(ũi + ∆ũi)Φi(x
m
q )

)]
= 0. (29)

In other words we look for the smallest perturbation which is able to satisfy the BC’s. The set of
equations (29) and (27) defines the linear system (30) in which there are (Ne − 1 +M) equations
and (Ne − 1 +M) unknowns: the perturbations of the element degrees of freedom (with the
exception of ∆ũ1 which is set to zero and is already known) plus the Lagrange multipliers. The
boundary matrix [B] and the boundary vector {W} are explicitly written in (31) and (32) :

[
B
]


∆u2

...
∆uNe

µ1

...
µM


=
{
W
}

(30)

[
B
]

=



2 0 · · · 0 −Φ2(x1
q) · · · −Φ2(xMq )

0 2 0
...

... · · ·
...

... 0
. . . 0

... · · ·
...

0 · · · 0 2 −ΦNe
(x1
q) · · · −ΦNe

(xMq )
Φ2(x1

q) · · · · · · ΦNe
(x1
q) 0 · · · 0

... · · · · · ·
...

... · · ·
...

Φ2(xMq ) · · · · · · ΦNe(xMq ) 0 · · · 0


(31)

{
W
}

=



0
...
0

uw1 −
∑Ne

i=1 ũiΦi(x
1
q)

...
uwM −

∑Ne

i=1 ũiΦi(x
M
q )


. (32)

The solution of this system gives the perturbations which have to be applied to the element. In
particular, the Lagrange multipliers are not needed and they can be eliminated. Thus it is possible
to define a reduced boundary matrix [B̂] such that:

∆u2

...
∆uNe

 =
[
B̂
]

u1
w −

∑Ne

i=1 ũiΦi(x
1
q)

...
uMw −

∑Ne

i=1 ũiΦi(x
M
q )

 =
[
B̂
] {

Ŵ
}
. (33)

The reduced boundary matrix [B̂] can be obtained by the first Ne − 1 rows and the last M columns
of the inverse of [B]. At this point the gradient required by the boundary fluxes can be computed
with the product between the perturbed degrees of freedom and the gradient of the element basis
functions.
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12 A. FERRERO, F. LAROCCA AND G. PUPPO

5.2. Dirichlet BCs in weak form

In the previous paragraph a procedure for the strong imposition of Dirichlet BC’s has been
presented. The element’s degrees of freedom are perturbed in such a way that the element internal
reconstruction exactly satisfies the condition on the boundary. After that, the gradient of the element
solution is computed at the boundary quadrature points, yielding the boundary fluxes.

We adopt a similar procedure also for the weak imposition of the BC’s. The only difference is
that, after the fluxes computation, we remove the perturbation previously applied to the element. In
this way the BC’s are weakly imposed in the sense that they determine the value of the boundary
fluxes, but there is not a direct alteration of the element’s degrees of freedom. The procedure can be
summarized as follows

• Compute the element’s perturbation ∆ũ with Eq. (33).
• Apply the perturbations to ũ, ũ := ũ + ∆ũ.
• Compute the boundary gradients ∇u =

∑Ne

i=1 ũi∇Φi.
• Compute the boundary fluxes F̂h(∇u)
• Remove the perturbations ũ := ũ−∆ũ.

All numerical results obtained with the ESR method which are presented in the following were
computed with this weak enforcement of BC’s.

6. IMPLEMENTATION AND COMPUTATIONAL COST

In this Section the implementation of the method is briefly described in order to identify the main
contributions to the computational cost. In particular some considerations are made in order to
compare the proposed approach with the RDG1x recovery method. Both schemes are compact
in the sense that the computation of viscous fluxes requires the knowledge of information only
from the first neighbours of the element. For simplicity a scalar 2D problem in which all the
elements have the same order (p) is considered. In this case Ne = (p+ 1)(p+ 2)/2 and Nr =
(p+ 1)(p+ 2)/2 + (p+ 1). The domain is supposed to be fixed, so that the mesh does not change in
time. The cost required by the computation of the integrals appearing in Eq. (14) can be decomposed
in different contributions, analized below.

6.1. Interface integral computational cost

We start from the computational cost due to the evaluation of the diffusive fluxes on an interface
with M quadrature points.
If the ESR method is used the following operations are required for each interface quadrature point:

∇u = [Dr]ũ
r = [Dr][R̃]

{
ũA

ũB

}
= [DrR̃]

{
ũA

ũB

}
.

The matrix with the derivatives of the recovery basis functions [Dr] and the recovery matrix [R̃]
can be computed and multiplied at the beginning of the simulation since they depend only on the
mesh. The cost for each interface is proportional to M × 2× 2Ne.

In the RDG1x scheme the recovery coefficients ũr coincide with the degrees of freedom inside
the two elements and so the gradient can be obtained as

∇u = [Dr]
{

ũA

ũB

}
.

Thus, the cost for each interface is proportional to M × 2× 2Ne also in this case.
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6.2. Volume integral computational cost

The computational cost of the volume integral will be evaluated assuming that L quadrature points
are used.
The cost for the ESR method is related to the following operations:

• ∇u = [D]ũ
In each quadrature point the fluxes are computed using the internal element solution. The cost
is proportional to L× 2×Ne. The matrix with the derivatives of the element basis functions
[D] can be precomputed since it depends only on the mesh.

The cost for the RDG1x method is related to the following operations:

• ∇u = 1
NF

∑NF

i=1[Dr]iũ
r
i

In each quadrature point the gradient is computed as an average between all the gradients
obtained by the several available recovery solutions (one for each face of the element). In this
case the cost is proportional to L×NF × 2× 2Ne where NF is the number of faces of the
element. Lo and van Leer [1] proposed also another approach which improves accuracy but is
more involved. In practice they use the recovery solution only for evaluating the derivative in
the coordinate normal to the interface and, since there are more directions than dimensions,
they introduce a least square approach. This implies that, in each internal quadrature point,
a least square problem has to be solved. The cost in this case is greater than in the previous
approach and the implementation is significantly more involved.

The previous considerations suggest that the main difference between the cost of the ESR
method and the RDG1x method is related to the computation of the volume integral. Indeed, in
the described implementation the cost per interface is the same for the two methods even if they
use recovery basis with a different size. However, the RDG1x method requires more work than the
ESR method in the volume integral, because it uses all the several recovery functions defined in
the element (one for each face). In contrast, the ESR method is based on a very simple evaluation
of the volume integral since it directly uses the gradient of the element solution. From a practical
point of view, the CPU time per iteration required by the two methods might be similar but it is
strongly influenced by the implementation (cache effects can significantly alter the speed) and by
possible memory limitations which can forbid the storage of precomputed matrices.
Since the test cases considered in this work are 2D, there are no memory limitations, and all
quantities that can be precomputed will be stored in memory at the beginning of each computation.
However, memory requirements can become an important issue in 3D problems. In order to reduce
memory usage it is useful to avoid the storage of the interface recovery matrix ([R̃]). Indeed, it is
more convenient to pre-compute and store the product between the matrix of the derivatives of the
recovery basis functions ( [Dr]) and the recovery matrix ([R̃]), for each quadrature point.
In the example described in this Section a scalar problem is studied. If a system of equations
is considered (i.e. Navier-Stokes) the recovery approach gives the gradients of the conservative
variables. In order to compute the fluxes it is necessary to switch to the gradients of the primitive
variables. This can be done by computing the values of the conservative recovered variables at
the interface. In this case too, it is possible to save memory, avoiding the storage of the recovery
matrix and storing the product between the matrix containing the recovery functions, evaluated at
the interface, and the recovery matrix.

The previous analysis considers only a problem with a fixed grid. If deforming meshes are
employed, the recovery functions and the related matrices have to be re-computed during the
simulation. This additional cost can be significant for both the RDG1x and the ESR methods. In this
kind of problems recovery-based methods might be less efficient than other existing approaches,
like, for example, the BR2 method.
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14 A. FERRERO, F. LAROCCA AND G. PUPPO

7. NUMERICAL EXPERIMENTS

7.1. 1D Poisson equation

In order to evaluate the behavior of the proposed discretization we studied a 1D Poisson problem
with a time-marching approach. The problem has the following exact solution which also defines
Dirichlet BC’s:

u(x) = 1− x+ sin(2πx) 0 ≤ x ≤ 1. (34)

Van Leer et al. [30] reported a comparison between several schemes (with p = 1 and forward Euler)
for this test case. In Table II we report the dimensionless time step ν∆t/∆x2 obtained for the
ESR method, comparing it with the stability limit for the BR2 and then RDG1x methods from
[30]. Table III shows the L2 error on the temperature and the convergence order obtained in our
implementation for RDG1x, BR2 (ηBR2 = 1) and the proposed ESR scheme. All results shown in
the table, were obtained with p = 1 and forward Euler time integration. We took care of employing
the BC’s procedures originally proposed by the different authors. In particular for the RDG1x
scheme, BC’s are imposed on the recovery solution, exploiting information from the boundary and
the first two elements close to it, as in [19]. For the BR2 scheme we defined a proper ghost state
computed as a function of the BC’s. For the ESR method we used the weak minimization procedure
proposed in Section 5.2. Our numerical experiments show that the ESR method has a significantly
larger stability limit than the other schemes. On the other hand RDG1x gives excellent results and
is fourth order accurate (2(p+ 1)) while the other two schemes are second order accurate (p+ 1).
This advantage of the RDG1x method is lost on multidimensional unstructured meshes in which its
convergence order reduces to p+ 1 [19]. Even if the ESR method obtains the expected convergence
order, it can be seen that its error is 60% larger than the error obtained by BR2 when p = 1. On the
other hand, the time step for ESR can be chosen 65% larger than it is possible in BR2. From this
first comparison, it can be seen that in pure diffusion problems with cartesian meshes the RDG1x
method is the most accurate scheme between the three tested.

7.2. 1D Convection Diffusion problem

The final goal of this work is the application of the proposed discretization in convection-diffusion
problems. For this reason we studied the following 1D model problem with a time marching
approach:

∂u

∂t
+ 10

∂u

∂x
− ∂2u

∂x2
= 0 0 ≤ x ≤ 1 u(0) = 1, u(1) = 0. (35)

Simulations were carried out until the residual reached machine precision. Then, the converged
numerical solution was compared with the exact steady state solution

u(x) =
exp(10x)− exp(10)

1− exp(10)
. (36)

We performed computations with RDG1x, BR2 and ESR methods (p = 1) and the first order forward
Euler time integration scheme. Three non uniform meshes with 5, 10 and 20 elements were used.
The meshes are clustered in order to reproduce the aspect of the typical grids used in Navier-Stokes
boundary layer simulations. The size of the element near the boundary x = 1 is ∆x = 0.08, 0.04 and
0.02 for the different meshes. In Table IV the L2-errors are reported for the three schemes. While
in the previous test case the RDG1x scheme gave errors which are several orders of magnitude
lower than the other schemes, now the errors for the different methods are significantly closer. The
ratio between the error of the ESR and the RDG1x methods is equal to approximately 3-4 for the
different meshes. Furthermore the stability limit of the discretization is dominated by the diffusive
terms and so the ESR method can benefit from its double time step with respect to the RDG1x (the
data in Table II still hold). These results are limited to a scalar linear problem with p = 1 but they
suggest that when convective effects appear in the equations, the global errors obtained by the ESR
and the RDG1x methods become closer because the bottle neck is represented by the convective
discretization. We can expect that this difference becomes even smaller in high Reynolds number
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ENHANCED STABILITY RECOVERY METHOD 15

industrial flows, in which the convective terms are particularly strong and the meshes are often
highly distorted.

7.3. 2D Heat equation

In this Section the behavior of the proposed scheme is evaluated in 2D for several accuracies,
including some very high order schemes. The linear 2D heat equation was solved in a square domain
(0, 1)× (0, 1) with unstructured triangular meshes. The meshes were obtained starting from uniform
cartesian grids in which quadrilaterals were splitted in triangles. The following Dirichlet BC’s were
prescribed: {

T = 0 on x = 1, y = 0 and y = 1
T = sin(kπy) on x = 0.

(37)

For the ESR method, BC’s were imposed with the weak approach, based on the minimization
procedure of Section 5.2. The parameter k is an integer which represents the number of semi-
waves in the y-direction. In this test it was set to k = 1. The numerical solution was initialized
with a uniform field T0 = 1 and computations were carried out until the residuals reached machine
precision. The L2 norm of the temperature error was computed through a comparison between the
obtained steady state results and the exact analytical solution

T =
sinh(kπ(1− x)) sin(kπy)

sinh(kπ)
. (38)

The test was also performed with the widely used BR2 scheme in order to compare the behavior of
the two methods. The stabilization parameter associated with this last scheme was set to ηBR2 = 4
( ηBR2 > NF according to [23]). The BC’s for the BR2 scheme are weakly imposed by means of
proper ghost values on the boundary quadrature points.

The mesh refinement analysis is reported in Table V. It can be seen that even with few elements,
both schemes reach quickly the theoretical convergence order. In Figure 5 a direct comparison of
the two methods is presented. The error is given as a function of the equivalent length scale (h),
which depends on the number of total degrees of freedom (nDOFs): h = (nDOFs)−0.5. The plot
shows that the error for the ESR method is greater than the error for the BR2 method but, when the
order is increased, the two schemes give comparable errors.
These numerical experiments were performed with a time marching approach in which explicit
integration schemes were employed. The stability limits for the ESR method and the BR2 method
are reported in Table VI. It is interesting to see that the allowed time step for the ESR method is
approximately 4 times larger than the allowed time step for the BR2 method when p = 1. The ratio
tends to grow when the order is increased and it is near 8 for p = 6. This behavior, together with
the fact that for high orders the two schemes give comparable errors, suggest that the ESR method
becomes competitive for explicit time integration of high order reconstructions. On the other hand,
the fact that the BR2 method gives a lower error for all the reconstruction orders considered here,
makes it a general purpose scheme, with a wider applicability than the ESR method.

It is very hard to compare the efficiencies of the different schemes. A possible approach might be
to evaluate the total computational cost required to obtain a certain error level. However, the CPU
time obtained is strongly related to the particular implementation chosen, and to the nature of the
problem under study. Indeed, the presence of memory limitations (typically in 3D) or deforming
grids can dramatically increase the computational cost, since several quantities cannot be stored
but have to be re-computed during the simulation. Furthermore, the choice of the time integration
scheme can enhance or cancel some benefits of the different methods. For example, in steady state
problems, implicit integration schemes are commonly used. Their large stability domain can reduce
the advantages observed in the explicit time integration with the ESR method.

Figure 5. L2-norm of the temperature error vs the equivalent length scale h.
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7.4. Considerations on implicit time integration

In the previous paragraph, explicit time integration schemes have been considered in order to
evaluate the stability limits of the different methods. This aspect is particular important in time
dependent problems. However, implicit schemes can be much more efficient than explicit ones when
steady problems are studied. In this Section we describe how to implement the ESR method with
implicit time integration. Implicit schemes require the evaluation of the jacobian of the system. If an
approach based on the analytical computation of the jacobian is used, the ESR method shows some
interesting features which can be useful during the implementation. A linear heat diffusion problem
with a fixed mesh is considered as example.
In order to evaluate each term of the jacobian it is necessary to perform the derivative of the
residuals with respect to each degree of freedom. This derivative contains contributions from the
volume and the boundary integrals which appear in Eq. (14). In the proposed approach, the gradients
required by the volume integral are approximated using the internal reconstruction. This simplifies
significantly the computation of the jacobian. In contrast, both the RDG1x method and the BR2
method compute these gradients using information also from the interfaces. As far as the boundary
integral is concerned, there are two possible cases. In fact, an interface can be inside the domain
or it can belong to the domain boundary. In the first case, the required gradients are computed with
the recovery approach. This is done through matrix-vector multiplications in which all the matrices
depend only on the mesh and not on the solution:

∇u = [D]ũr = [D][R̃]

{
ũA

ũB

}
. (39)

The terms in the jacobian related to this contribution can be immediately computed from the constant
terms in the previous relation. On the other hand, if the interface belongs to a Dirichlet boundary, the
procedure of Section 5 has to be considered. In particular the gradient on the boundary is computed
as:

∇u = [D] (ũ + ∆ũ) = [D]ũ + [D][B̂]Ŵ. (40)

Again, the contribution to the jacobian can be directly obtained from the constant terms which
appear in the previous relation.
A performance test was carried out on the 2D heat diffusion problem of Section 7.3. In particular
an unstructured mesh with 512 triangles is considered. All the elements are fifth order accurate
(p = 4). The solution is initialized with a uniform field and time integration is performed with both
the RK4-LS explicit scheme and the backward Euler (BE) implicit scheme. In Figure 6 the L2 norm
of the residuals is reported as a function of the computational time. As expected, the plot shows the
significant advantage offered by the implicit approach for steady problems.

Figure 6. Adimensionalized L2-norm of the residual vs computational time [s].

8. P-ADAPTIVITY

The local nature of the discontinuous Galerkin reconstruction makes it easy to implement p-adaptive
strategies. This is particularly true when a hierarchical basis is employed. In this case, when an
element is refined, it is sufficient to add more degrees of freedom without the need to change the
ones already known. On the other hand, if an element needs to decrease the reconstruction order,
it is enough to eliminate the degrees of freedom related to the higher order modes. Several works
are concerned with both h-adaptive and p-adaptive algorithms for discontinuous Galerkin methods.
An overview of some techniques is presented in the book summarizing the results of the ADIGMA
European project [36].
In this work, a very simple p-adaptive algorithm has been implemented in order to test the behavior
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of the ESR method when the reconstruction order varies from an element to its neighbours. The
algorithm is based on a sensor and a control law. The choice of the sensor depends on the particular
set of equations which is considered. Its goal is to detect some features of the solution which can
identify the most interesting regions. For example it can be related to the intensity of a variable or to
its gradient. The control law is responsible of choosing the element order pe according to the signal
obtained locally by the sensor se. We use a simple control law with the following form:

pe = Int
[
pmin + (pmax − pmin)

(
se − smin
smax − smin

)α]
(41)

where the function Int rounds its argument to the nearest integer number.
Eq. (41) shows that the reconstruction order in a generic element is allowed to vary between

a minimum (pmin) and a maximum (pmax). The local value of the sensor (se) is compared to
the minimum (smin) and maximum (smax) values founded in the computational domain at the
considered time step. The coefficient α is a positive number which controls the distribution of
the order in the domain: the lower the α the larger the number of elements in which high order
reconstructions are employed. The chosen law helps in avoiding strong jumps in the order between
neighbouring elements. The algorithm just described is not optimized, and we refer to the literature
for more efficient approaches (for example [36]), but the main purpose of this Section is to evaluate
the behavior of the ESR method, when the reconstruction order varies from an element to its
neighbours. The implementation of better adaptive algorithms is left for future work.

8.1. Heat equation with p-adaptivity

We performed numerical experiments on the 2D heat equation with the p-adaptive algorithm. The
influence of the parameter αwas also investigated. The test case considered now is similar to the one
used before for the convergence analysis, but now the number of semi-waves is increased up to 5
(k = 5) as shown in Figure 7. The exact solution is characterized by regions in which there are large
gradients and regions in which the temperature distribution is close to constant. In a situation like
this, the p-adaptive algorithm can show its advantages with respect to a uniform order discretization.
The same unstructured meshes used in the previous Section were adopted for these experiments. We
chose to use the magnitude of the temperature gradient as sensor variable.

Figure 7. Temperature field for the 2D heat equation problem, with k = 5.

Figure 8. Example of order distribution with p-adaptivity and the 8x8x2 mesh (α = 0.3)

Figure 9. L2-norm of the temperature error vs total number of DOF’s (possible orders: pe = 1, 2, 3, 4, 5).

Figure 10. L2-norm of the temperature error vs total number of DOF’s (possible orders: pe = 1, 3, 5)

In the plot of Figure 9 the L2-norm of the temperature error is reported as a function of the
total number of degrees of freedom. DG1 and DG5 denote data obtained with a uniform order
of accuracy, namely 1 and 5. The other data are obtained with the p-adaptive strategy (with
pmin = 1 and pmax = 5). The control law defined by Eq.41 is used for this test. It can be seen
that the p-adaptive algorithm is convenient with respect to the uniform order discretization if a
sufficiently low value of α is chosen. The results suggest that the adaptive algorithm is competitive
for 0.1 ≤ α ≤ 0.2.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
Prepared using fldauth.cls DOI: 10.1002/fld



18 A. FERRERO, F. LAROCCA AND G. PUPPO

We performed also a test in order to study the effects of the proposed discretization for the case
|pA − pB | > 1. In particular, we modified the control law (Eq.41) in such a way that the algorithm
can choose only the following reconstruction orders: pe = 1, pe = 3 or pe = 5. In this way, when
there is a jump in the order across an interface, the jump is always greater or equal than 2. The
results for this somewhat artificial case are reported in Figure 10. A comparison with Figure 9
shows clearly that the presence of strong jumps in the order distribution is not convenient. For this
reason, it is important to use a control law which chooses a smooth distribution of the order and
which discourages the occurrence of the case |pA − pB | > 1.

9. EXPERIMENTS WITH THE NAVIER-STOKES EQUATIONS

In this Section the ESR method with the minimization BC’s procedure (Section 5.2) is employed
for the computation of viscous fluxes in the compressible Navier-Stokes equations. The convective
fluxes are computed using the approximate Riemann solver due to Osher and Solomon [21] and
Pandolfi [22]. In all tests an ideal gas with constant specific heat ratio γ = 1.4 and Prandtl number
Pr = 0.72 is considered. All the meshes used in the simulations were produced with Gmsh [20]
with the exception of the grid used for the tests of Section 9.1.

Three test cases were studied in order to compare our results with those available in the literature
and with experimental data.

9.1. Laminar boundary layer on a flat plate

This test case was proposed at the first and second edition of the International Workshop on High-
Order CFD Methods ([37], [38] and [39]). The flow is characterized by a Reynolds number based
on the plate length equal to Re∞ = 106. The angle of attack is 0◦ and the free-stream Mach number
is M∞ = 0.5. The plate is adiabatic and has unit length.

The purpose of this test case is to evaluate the behavior of the ESR method in the presence of
highly clustered meshes. In particular we used one of the meshes proposed by Bassi and Colombo
which can be downloaded from the Workshop website (file a1-125-2s.msh, [39]). This grid contains
560 quadrilateral elements. The distance between the inlet and the leading edge is 1.25. The distance
between the freestream and the plate is 2. The size of the elements near the wall is 3.75 · 10−4 in
the normal direction. The most stretched element in the domain has a length/thickness ratio equal
to 877.

We performed a p-refinement study on this mesh in order to evaluate the convergence of the
solution. The simulations make it possible to compare the results with those presented by several
groups at the workshop, which are reported in [38]. In Figure 11 the wall friction coefficient
distribution is shown for several orders of accuracy. Also, Blasius’ incompressible solution is
reported. The effect of p-refinement can be easily seen in the region near the leading edge. We
performed a second set of simulations with a lower free-stream Mach number (M∞ = 0.2) in order
to understand the influence of compressibility. In Table VII the drag coefficient (CD) is reported
as a function of the total number of degrees of freedom per equation (nDOFs/eq). The results
show that, in this problem, compressibility does not have a significant influence. Even when the
computations were performed using one of the meshes with less elements between those proposed
at the Workshop, the p-refinement quickly obtained a converged solution. The ESR method behaves
well also in the presence of highly clustered meshes with very stretched elements.

Figure 11. Wall friction coefficient (cf ) for the flat plate (Re∞ = 106,M∞ = 0.5)

9.2. Unsteady viscous flow over tandem airfoils

This 2D test case was proposed at the First and Second edition of the International Workshop
on High-Order CFD Methods ([37], [38] and [39]). It is characterized by the presence of two
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NACA0012 airfoils in tandem configuration. The leading airfoil is rotated by 10◦ about its
aerodynamic center (25% of the chord) while the trailing airfoil is translated backward by 1.5 chords.
The far field boundary is a circle with a radius of 100 chords centered on the leading edge of the
trailing airfoil. The free-stream Mach number is M∞ = 0.2 and the Reynolds number based on
the chord of an airfoil is Re∞ = 104. An initial smooth condition is prescribed according to the
following relations:

v(x, y) = 0 P (x, y) = P∞ ρ(x, y) = ρ∞

u(x, y) =

{
u∞ d > δ

u∞ sin(πd2δ ) d ≤ δ
, (42)

where u and v are the cartesian velocity components, d is the distance to the nearest wall and δ is a
constant equal to 5% of the chord length.

We used two mixed structured-unstructured grids with 2101 and 8404 elements. Quadrilaterals
are used near the airfoils and triangles in the rest of the domain. Elements with cubic edges are
employed at solid walls. Here the size of the first layer of elements is equal to 0.005 chords in the
direction normal to wall for the finest mesh. Figure 12 shows a detail of the finest mesh near the two
bodies.

Figure 12. Detail of the finest mesh used for the tandem airfoils test.

The drag coefficient of the trailing airfoil was monitored during the first 20 convective times. We
performed several simulations changing the reconstruction order from DG1 to DG5 on both meshes.
Time integration is performed with RK4LS. The flow field is characterized by the stall of the leading
airfoil. The vortices which are generated in the separation region strongly interact with the trailing
airfoil.

A plot of the entropy field at the end of the simulation is reported in Figure 13 for DG5 on the
finest mesh. The time evolution of the drag and lift coefficient for the trailing airfoil is reported in
Figure 14 and Figure 15 for p = 3, 4, 5 on the finest mesh.

It is clear from these results that the flow is not periodic, at least in the time interval considered
here. The chaotic aperiodic evolution of the vortices makes it difficult to perform a deterministic
study. The results obtained by the different simulations tend to overlap for the first part of the
computation but after a certain time they follow a different evolution. It can be seen that when the
number of degrees of freedom is increased (with both mesh refinement or order refinement) the
time interval in which the different solutions overlap becomes more extended. In particular the plots
show that the DG4 method follows well the DG5 solution up to time = 11. In contrast, the DG3
prediction follows the higher order solutions only up to time = 5. A similar behavior can be seen in
the results reported by other groups on the website of the First edition of the Workshop [38]. This
test case showed that the proposed discretization is able to deal with strong unsteady wall-vortex
interactions.

Figure 13. Entropy field for the tandem airfoils test at the end of the simulation (DG5RK4LS finest mesh)

Figure 14. Drag coefficient for the trailing airfoil (finest mesh p=3,4,5).

Figure 15. Lift coefficient for the trailing airfoil (finest mesh p=3,4,5).

9.3. Vortex shedding around a circular cylinder

In this classical test case, the unsteady flow field around a circular cylinder with Re∞ = 102 and
M∞ = 0.2 is considered. Characteristic far field boundary conditions are prescribed on a circular
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boundary. The distance of the far field from the body is equal to 100 cylinder diameters. The solid
wall is adiabatic. The domain is discretized with a structured O-mesh with 19x48 quadrilateral
elements. Wall elements have quartic edges.

Five simulations were performed with schemes ranging from DG1 to DG5 in order to evaluate
the behavior of the proposed discretization in the presence of unsteady flow fields. Computations
were carried out until periodicity was reached. The Strouhal number (St) related to vortex shedding
and the average drag coefficient were evaluated over a period of 10 cycles. After that, the p-adaptive
algorithm was tested and the order of the elements was allowed to vary between pmin = 1 and
pmax = 5 at each time step.

First of all, some experiments with the algorithm’s sensor were performed. Figure 16 and
Figure 17 show the order distribution in the region near the cylinder when the magnitude of the
velocity gradient or the entropy are used as sensors. In the first case, it can be seen that the separated
flow zone does not have strong velocity gradients, and as a consequence the algorithm chooses to
use low order reconstructions here. On the other hand, if entropy is used as sensor, the wake and
the separation zone are correctly detected, but low order reconstructions are selected in front of
the cylinder. For this reasons we chose to adopt a mixed approach: both sensors were used and the
order of the element was set to the maximum between the orders suggested by the two sensors (see
Figure 18). In all cases the control law described by Eq. (41) with α = 0.3 was employed.

Table VIII reports the results obtained as a function of the total number of degrees of freedom
per equation. Note that in the case of p-adaptivity the reported number of degrees of freedom refers
to the range spanned in a period. The average drag coefficient and the Strouhal number are in line
with the experimental data available in the literature (see Table IX). It can be seen from these results
that the strong clustering of the mesh makes it difficult to resolve the wake in regions far from the
cylinder. The natural remedy for this problem is the use of a hybrid hp-adaptive algorithm. Future
work will be devoted to this aspect.

Figure 16. Distribution of the reconstruction order with the entropy sensor.

Figure 17. Distribution of the reconstruction order with the sensor based on velocity gradients.

Figure 18. Distribution of the reconstruction order using both the entropy and the velocity gradient sensors.

Figure 19. Entropy field around a circular cylinder with p-adaptivity (Re∞ = 102).

10. CONCLUSIONS

In this paper, the ESR (Enhanced Stability Recovery) method for the computation of diffusive fluxes
in the framework of discontinuous Galerkin methods is introduced and tested. The scheme follows
the recovery approach [12] but it is based on a different recovery basis, with respect to the recovery
basis required in the original recovery scheme (RDG1x). The RDG1x and the ESR methods seem
to be complementary: the RDG1x method gives excellent results in pure diffusion problems while
the ESR method finds its natural application in convection-diffusion problems on irregular meshes.
The ESR method can be easily adopted with both structured and unstructured meshes thanks to the
compactness of the reconstruction. The particular recovery basis proposed for the ESR method is
flexible and makes the scheme robust since it remains well conditioned even in the presence of high
order reconstructions on irregular meshes.
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The accuracy of the proposed discretization has been compared with the accuracy of the widely
used BR2 method [2]. Results show that the BR2 method is more accurate than the ESR method for
low order reconstructions, but the two schemes become comparable for high order reconstructions.
A convergence rate of p+ 1 is obtained for the ESR method on unstructured meshes. The performed
numerical experiments indicate that the stability limit with explicit time integration is significantly
larger for the ESR method than the stability limits obtained with both the RDG1x and the BR2
schemes. In particular a comparison with the BR2 method on a 2D diffusion problem shows that
this benefit grows when the order of the reconstruction is increased.

These features make the ESR method interesting for those applications in which explicit time
integration is used in the presence of high order reconstructions. In particular, the method appears
to be well suited for problems characterized by rigid bodies in which the matrices related to the
recovery procedure can be computed and stored at the beginning of the simulation. On the other
hand the method can become inefficient in the presence of deforming domains, due to the cost
associated to the update of the recovery matrices during the simulation. In this kind of problems
other methods which do not need the recovery procedure (for example BR2) can be more convenient.

As fas as the implementation is concerned, it is interesting to observe that the volume integral
of the DG formulation is computed in a very simple way. Indeed, in the ESR method the gradient
required for the volume integral is directly obtained by the internal element solution without the
need to use information from neighbouring elements. If an implicit time integration scheme is used,
this feature helps to simplify the analytical evaluation of the jacobian as it is described in Section
7.4.
The recovery procedure requires to introduce two different sets of basis functions, one for the
element solution and one for the recovery solution. However, if the particular basis proposed in this
work are employed, the same orthonormalization subroutines can be used for the construction of
both the element and the recovery basis.

Further, a procedure for the weak imposition of Dirichlet boundary conditions is proposed.
This procedure is based on a minimization algorithm and it can be used in the framework of
recovery-based methods when curvilinear boundary elements are present. It does not need ghost
elements which can be problematic in the presence of curvilinear boundaries. The algorithm is
truly local thanks to the fact that it works on the element internal reconstruction and so it does not
require data from neighbouring cells. In contrast, the original boundary condition procedure for the
RDG1x method works on the recovery reconstruction and therefore it needs information also from
the neighbouring elements.

The ESR method and the weak boundary conditions procedure were tested on 2D Navier-Stokes
problems with flow separation. They perform well even in the presence of highly clustered meshes
with very stretched elements such as those used in high Reynolds number flows. A simple p-adaptive
algorithm was also successfully tested to show the ability of the ESR method to deal with elements
of different order inside the domain. The numerical results were compared with both theoretical
and experimental data and good agreement was found. Several tests considered in this work are by
now benchmark tests, designed to assess the capabilities of numerical schemes for Navier-Stokes
computations ([37],[38],[39]). Thus the numerical solutions obtained here can be easily compared
with results available in the latest literature.
The behavior of the scheme in the presence of non-conforming meshes and the extension to 3D will
be investigated in future work.
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Scheme Cond. number without ON Cond. number with ON
DG1 4.61E+02 1.97E+00
DG2 1.05E+04 3.87E+00
DG3 2.52E+05 5.36E+00
DG4 6.25E+06 6.62E+00
DG5 1.58E+08 7.87E+00
DG6 5.03E+09 9.09E+00

Table I. Condition number of the matrix
(
[R]T [R]

)
for the interface of Figure 4 without and with

orthonormalization (ON) of the recovery basis

Scheme ν∆t/∆x2

RDG1x (from [30]) 0.08
BR2 (from [30]) 0.10

ESR 0.165
Table II. 1D Poisson problem: stability limit (p=1, forward Euler)

Mesh RDG1x L2 error Order BR2 L2 error Order ESR L2 error Order
8 8.90E-04 - 3.06E-02 - 5.48E-02 -
16 4.24E-05 4.39 8.67E-03 1.82 1.44E-02 1.93
32 2.18E-06 4.28 2.25E-03 1.95 3.69E-03 1.96
64 1.21E-07 4.17 5.66E-04 1.99 9.35E-04 1.98

Table III. 1D Poisson problem: L2 errors and convergence order (p=1)

Mesh RDG1x L2 error BR2 L2 error ESR L2 error
5 5.58E-03 1.39E-02 1.77E-02

10 1.58E-03 4.25E-03 6.08E-03
20 4.25E-04 1.56E-03 1.82E-03

Table IV. 1D Convection-diffusion problem: L2 errors at steady state (p=1)
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Scheme Mesh Error ESR Order ESR Error BR2 Order BR2
DG1 2× (2× 2) 7.33E-02 - 2.98E-02 -

2× (4× 4) 2.02E-02 1.86 1.23E-02 1.28
2× (8× 8) 4.92E-03 2.04 3.88E-03 1.66

DG2 2× (2× 2) 2.15E-02 - 8.79E-03 -
2× (4× 4) 2.00E-03 3.43 9.77E-04 3.17
2× (8× 8) 2.47E-04 3.02 1.14E-04 3.10

DG3 2× (2× 2) 1.75E-03 - 1.08E-03 -
2× (4× 4) 9.17E-05 4.25 7.38E-05 3.87
2× (8× 8) 5.32E-06 4.11 4.79E-06 3.95

DG4 2× (2× 2) 1.45E-04 - 1.23E-04 -
2× (4× 4) 4.90E-06 4.89 4.25E-06 4.86
2× (8× 8) 1.45E-07 5.08 1.41E-07 4.91

DG5 2× (2× 2) 1.51E-05 - 1.24E-05 -
2× (4× 4) 2.96E-07 5.67 2.12E-07 5.87
2× (8× 8) 4.53E-09 6.03 3.44E-09 5.95

DG6 2× (2× 2) 1.25E-06 - 8.82E-07 -
2× (4× 4) 9.74E-09 7.00 7.60E-09 6.86
2× (8× 8) 7.79E-11 6.97 6.15E-11 6.95

Table V. L2-norm of the temperature error for the ESR and the BR2 methods.

Scheme σmaxESR σmax BR2
DG1-RK2TVD 6.2E-02 1.4E-02
DG2-RK3TVD 3.9E-02 8.5E-03
DG3-RK4LS 5.6E-02 8.6E-03
DG4-RK4LS 3.5E-02 5.0E-03
DG5-RK4LS 2.4E-02 3.2E-03
DG6-RK4LS 1.6E-02 2.1E-03

Table VI. Stability limit with explicit time integration for 2D heat diffusion on unstructured meshes.

Scheme nDOFs/eq CD (M∞ = 0.5) CD (M∞ = 0.2)
DG1-RK2TVD 1680 1.283 1.282
DG2-RK3TVD 3360 1.324 1.324
DG3-RK4LS 5600 1.327 1.327
DG4-RK4LS 8400 1.327 1.327
DG5-RK4LS 11760 1.327 1.327

Blasius - 1.328 1.328
Table VII. Drag coefficient (CD) for flate plate problem (Re∞ = 106,M∞ = 0.5− 0.2).

Scheme nDOFs/eq Average CD St
DG1-RK2TVD 2736 1.287 0.137
DG2-RK3TVD 5472 1.334 0.161
DG3-RK4LS 9120 1.334 0.163
DG4-RK4LS 13680 1.336 0.163

p-adapt.-RK4LS 5200-5300 1.335 0.163
Table VIII. Average drag coefficient and Strouhal number for cylinder flow (Re∞ = 102,M∞ = 0.2).
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Author Average CD St
Norberg [40] - 0.164
Tritton [41] 1.26 0.157-0.164

Wieselsberger [42] 1.43 -
Williamson [43] 1.33 0.160-0.164

Table IX. Experimental results from the literature for cylinder flow (Re∞ = 102)
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