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De-anonymizing scale-free social networks by

percolation graph matching

Abstract—We address the problem of social network de-
anonymization when relationships between people are described
by scale-free graphs. In particular, we propose a rigorous, asymp-
totic mathematical analysis of the network de-anonymization
problem while capturing the impact of power-law node degree
distribution, which is a fundamental and quite ubiquitous feature
of many complex systems such as social networks. By applying
bootstrap percolation and a novel graph slicing technique, we
prove that large inhomogeneities in the node degree lead to a
dramatic reduction of the initial set of nodes that must be known
a priori (the seeds) in order to successfully identify all other
users. We characterize the size of this set when seeds are selected
using different criteria, and we show that their number can be
as small as n

ǫ, for any small ǫ > 0. Our results are validated
through simulation experiments on real social network graphs.

I. INTRODUCTION

The increasing availability of always-on connectivity on
affordable portable devices, coupled with the proliferation of
services and online social platforms, has provided unprece-
dented opportunities to interact and exchange information
among people. At the same time, electronic traces of our com-
munications, searches and mobility patterns, specifically their
collection and analysis by service providers and unintended
third parties, are posing serious treats to user privacy. This
fact raises a number of well known and hotly debated issues,
which have recently caused quite a stir in the media.

A distinctive feature of this trend is the uncontrolled
proliferation of different accounts/identities associated to each
individual. Most of us have more than one mobile subscription,
more than one email address, and a plethora of accounts (even
multiple) on popular platforms such as Facebook, Twitter,
LinkedIn and so on. A specific issue that naturally arises
in this context is the identification of the different identi-
ties/accounts belonging to the same individual. This problem,
which has strong implications with user privacy, is known in
the scientific literature as social network de-anonymization
(or reconciliation). The two most frequently cited reasons
why companies/organizations are interested in network de-
anonymization are user profiling (for targeted advertising and
marketing research) and national security (i.e., the prevention
of terrorism and other forms of criminal activity).

It is fundamental to notice that privacy concerns related to
de-anonymization are very subjective: some people do not care
at all about providing “personally identifiable information”
in their service registrations, explicitly linking their accounts
“for-free”. As we will see, such users play a fundamental role
in the network de-anonymization problem, acting as “seeds”
to identify other users. On the other extreme, some people
are totally obsessed by the idea of Big Brother spying into
their life and compiling tons of information on all of us.

Such users try to hide themselves behind anonymous identities
containing the minimum possible amount of personal data and
linkage information with other identities. In the worst case (for
the entity trying to solve the de-anonymization problem), an
identity consists just of a random identifier (e.g., a code or a
string).

One recent, dramatic discovery in the network security field
[1] is the following: user privacy (in terms of anonymity) can-
not be guaranteed by just resorting to anonymous identifiers.
In particular, the identities used by a user across different
systems can be matched together by using only the network
structure of the communications made by users (i.e., electronic
traces of who has come in contact with whom). More formally,
considering just the simple case of two systems, the vertices
(i.e., the users) of two social network graphs G1 and G2, where
edges represent the observed contacts among users in the two
systems, can be perfectly matched under very mild conditions
on the graph structures [2].

As anticipated, the complexity of the network de-
anonymization problem can be greatly reduced by having an
initial (even small) number of users already correctly matched
(the seeds). Such initial side information is often indeed
available, thanks to users who have explicitly linked their
accounts, to the presence of compromised or fake users, as
well as to other forms of external information providing total or
partial correlations among identities. Starting from the seeds,
one can design clever algorithms to progressively expand the
set of matched vertices, incurring only negligible probability
to match wrong pairs [3].

In previous work [4], the number of seeds that allows to
de-anonymize two networks has been characterized for the
case of Erdös–Rényi random graphs, adopting a convenient
probabilistic model for G1 and G2. By reducing the graph
matching problem to a bootstrap percolation problem, authors
identify a phase transition in the number of seeds required by
their algorithm. In particular, in the case of sparse networks
with average vertex degree Θ(logn), the number of seeds
that are provably sufficient to match the vertices scales as
Θ( n

log4/3 n
), which is (unfortunately) only a poly-log factor

less than n. One obvious limitation of the results in [4] is that
they apply only to Erdös–Rényi random graphs, which are a
poor representation of real social networks.

Contribution. In our work we extend the results in [4] by
considering a family of random graphs that incorporates one of
the most fundamental properties of real social networks (and
many other complex systems) not yet considered in analytical
work, namely, the scale-free vertex degree distribution [5].

We propose a novel algorithm for graph matching, here-
inafter referred to as degree-driven graph matching (DDM),



and show that DDM successfully matches a large fraction of
the nodes. Similarly to [4], we are interested in the scaling law
of the number of seeds that are needed to make the nodes’
identification process ‘percolate’, i.e., to propagate almost to
the entire set of nodes.

Our results mark a striking difference with those obtained
for Erdös–Rényi graphs. In particular, when initial seeds are

uniformly distributed among the vertices, order of n
1
2+ǫ seeds

(for an an arbitrarily small ǫ) are sufficient to match most of
the vertices. Even more amazing results hold when initial seeds
can be chosen (e.g., by the attacker) considering their degree:
in this case, as few as nǫ seeds are sufficient. The implications
of our results are clear: scale-free social networks can be
surprisingly simple to match (i.e., de-anonymize), especially
when initial seeds are properly selected among the population.

Moreover, scale-free networks appear to be so amenable to
de-anonymization that, differently from [4], we can establish
our results even in the case of finite average node degree
(i.e., we do not need any densification assumption, which
is necessary in Erdös–Rényi graphs if only to guarantee
connectivity). We remark that an algorithm to match scale-
free networks has been recently proposed in [3]. However, in
[3] authors do not identify any phase transition effect related
to bootstrap percolation. Actually, they consider a simple
direct identification strategy that requires Ω( n

logn ) seeds and

essentially prove that their algorithm is unlikely to match
wrong pairs. Also, their analysis is complicated by the adoption
of the preferential attachment model by Barabási and Albert
[5], whereas here we adopt a different model of scale-free
networks that greatly simplifies the analysis.

Finally, we emphasize that our model captures, in isola-
tion, only the impact of power-law degree, without jointly
accounting for other salient features of real social networks
such as clustering, community structure and so on. For this
reason, we have also empirically validated our findings running
the DDM algorithm on realistic data sets. Our preliminary
experimental results confirm that real social networks are
indeed surprisingly simple to de-anonymize starting from very
limited side information.

II. MODEL AND MATCHING ALGORITHM

A. Basic assumptions

We study the network de-anonymization problem in the
case of two social networks G1(V1, E1) and G2(V2, E2), al-
though our model and analysis can be extended to the case in
which more than two networks are available. Both G1 and
G2 can be fairly considered to be sub-graphs of a larger,
inaccessible graph GT(V , E) representing the groundtruth, i.e.,
the underlying social relationships between people. We will
assume for simplicity that all graphs above have the same set
of vertices V with cardinality |V| = n, i.e., V1 = V2 = V ,
although this assumption can be easily removed by seeking
to match only the intersection of vertices belonging to G1

and G2. We emphasize that G1 and G2 do not necessarily
represent subsets of social relationships as observed in totally
different systems (e.g., Facebook and Twitter). They could also
be obtained within the same communication system (i.e., from
traces of emails, or from traces of phone calls), due to the

fact that users employs two ID’s in the same system (i.e., two
email addresses, or two SIM cards).

We need a mathematical model describing how edges E1
and E2 are selected from the groundtruth set of edges E . Any
such model will necessarily be an imperfect representation of
reality, since a large variety of different situations can occur.
A user might employ either of her ID’s to exchange messages
with a friend, or use only one of them to communicate with
a given subset of friends. General, realistic models trying
to capture possibly heterogeneous correlations (positive or
negative) in the set of neighbors of a vertex as seen in
G1 and G2 become inevitably mathematically intractable. We
therefore resort to the same assumption adopted in previous
mathematical work [2, 3, 4]: each edge in E is retained in
G1 (or G2) with a fixed probability s, independently between
G1 and G2, and independently of all other edges1. This model
serves as a reasonable, first-step approximation of real systems,
and permits obtaining fundamental analytical insights. More-
over, authors in [2] have experimentally found, by looking
at temporal snapshots of an email network, that the above
independence assumption is largely acceptable in their case.

Another key element is the model for the underlying
social graph GT. To understand the impact of the power-law
distribution of vertex degree, we have chosen a simple model
known in the literature as Chung-Lu random graph model
[6]. In contrast to the classic model of Erdös–Rényi, Chung-
Lu graphs permit considering a fairly general vertex degree
distribution while preserving the nice property of independence
among edge probabilities, which is of paramount importance
to develop the analysis.

Definition 2.1: A Chung-Lu graph is a random graph of
n vertices where each vertex i is associated with a positive
weight wi. Let w̄ = 1

n

∑

n wi be the average weight. Given
two vertices i, j ∈ V , with i 6= j, the undirected edge (i, j) is
included in the graph with probability pij = min

{wiwj

nw̄ , 1
}

,
independently of the inclusion of any other edge in E .

To avoid pathological behavior, it is customary in the Chung-
Lu model to assume that the maximum vertex weight is
O(n1/2). Doing so, weight wi essentially coincides with the
average degree of vertex i, i.e., pij = wiwj/(nw̄). In our work,
we will assume for simplicity that weights are deterministic 2

(but note that they depend on n, albeit we avoid explicitly
indicating this). A suitable way to obtain a power-law degree
sequence with exponent β (with 2 < β < 3, as typically

observed in real systems) is to set wi = w̄ β−2
β−1 (

n
i+i0

)1/(β−1)

where i0 can be chosen such that the maximum degree is
O(n1/2). In the following, we will assume w̄ to be a finite
constant, although our analysis can be easily extended to the
more general case in which w̄ scales with n.

B. Problem definition

The network de-anonymization problem under study can
be formulated as follows. We assume the underlying social
network graph GT(V , E) to be an instance of a Chung-Lu graph
having power-law degree distribution with exponent β (with

1Two different probabilities for G1 and G2 (also different from vertex to
vertex) could be considered, provided that they do not depend on n.

2Our results generalize to the case of weights being r.v. as well.
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2 < β < 3). However, we cannot access its edge set E .
Instead, we know the complete structure of two sub-graphs
G1 and G2 obtained by independently sampling each edge of
E with probability s. Also, each edge in E is assumed to be
(independently) sampled twice, the first time to determine its
presence in E1, the second time to determine its presence in E2.
Note that the sets of vertices V1 and V2 must be considered to
be assigned after a random permutation of indexes 1, 2, . . . , n.
The objective is to find the correct match among them, i.e., to
identify all pairs of vertices [i1, i2] ∈ V1×V2 such that i1 and
i2 correspond to the same vertex i ∈ V .

We define the graph of all possible vertex pairs as the pairs
graph P(V,E), with V = V1 × V2 and E = E1 × E2, In
P(V,E) there exists an edge connecting [i1, j2] with [k1, l2]
iff edge (i1, k1) ∈ E1 and edge (j2, l2) ∈ E2. We will slightly
abuse the notation and denote the pairs graph related to3 GT

simply by P(GT).

Two pairs [i1, j2] and [k1, l2] in P(GT), are said to be
conflicting pairs if either i1 = k1 and j2 6= l2, or j2 = l2
and i1 6= k1. We will refer to pairs [i1, i2], whose vertices
correspond to the same vertex i ∈ GT as good pairs, and to
all others (e.g., [i1, j2]) as bad pairs. The generic pair will be
denoted by [∗1, ∗2].

To help identifying good pairs, we assume there exists a
subset of a-priori matched vertices, named seed set and denoted
by A0(n), of cardinality a0. We will consider two variants of
the problem, which differ in the way seeds are assumed to be
selected among the n nodes. In the first variant, we assume
that seeds can be selected at will among the nodes, but using
just information on the vertex degree. In the second variant, we
assume that seeds are distributed uniformly at random among
the nodes.

Algorithm 1 The PGM algorithm

1: A0 = B0 = A0(n), Z0 = ∅
2: while At \ Zt 6= ∅ do
3: t = t+ 1
4: Randomly select a pair [∗1, ∗2] ∈ At−1 \ Zt−1 and add

one mark to all neighboring pairs of [∗1, ∗2] in P(GT).
5: Let ∆Bt be the set of all neighboring pairs of [∗1, ∗2]

in P(GT) whose mark counter has reached threshold r
at time t.

6: Construct set ∆At ⊆ ∆Bt as follows. Order the pairs
in ∆Bt in an arbitrary way, select them sequentially
and test them for inclusion in ∆At:

7: if the selected pair in ∆Bt has no conflicting pair in
At−1 or ∆At then

8: Insert the pair in ∆At

9: else
10: Discard it
11: Zt=Zt−1∪[∗1, ∗2], Bt=Bt−1∪∆Bt, At=At−1∪∆At

12: return T = t, ZT = AT

C. Overview of the DDM algorithm

Before providing a high-level description of our matching
algorithm (DDM), we briefly recall the simple procedure

3In the following, we generalize the concept of pairs graph to a generic
graph G, from which G1 and G2 are obtained by independent sampling.

adopted in [4] in the case of Erdös–Rényi graphs. In essence,
their algorithm, referred to as PGM (percolation graph match-
ing), maintains a mark counter, initialized to zero, for any
candidate pair [∗1, ∗2] ∈ P(GT) that can still potentially
be matched. The counter is increased by one whenever the
candidate pair becomes neighbor of an already matched pair.
Two pairs [∗1, ∗2] and [∗′1, ∗′2] are said to be neighbors if they
are adjacent on P(GT), i.e., edge (∗1, ∗′1) ∈ E1 and edge
(∗2, ∗′2) ∈ E2. Among the candidate pairs whose counter is
larger than or equal to a fixed threshold r, the algorithm selects
one uniformly at random, adding it to the set of matched pairs.
After this, counters are updated. Note that some candidate
pairs might have to be permanently discarded because they
are conflicting with previously matched pairs. The algorithm
proceeds until no more pairs can be matched. Of course seeds
will be matched irrespective of their mark counter. The PGM
algorithm, although potentially suboptimal, is simple enough
that its performance can be predicted using known results from
bootstrap percolation [7], establishing a lower bound on the
number of seeds required to correctly match almost all vertices.
A more formal description of the PGM algorithm is given in
Alg. 1, where:

• Bt(GT) is the set of pairs in P(GT) that at time step t
have already collected a least r marks. It is composed
of good pairs B′

t(GT) and bad pairs B′′
t (GT).

• At(GT) is the set of matchable pairs at time t. Simi-
larly to Bt(GT), it comprises good pairs A′

t(GT) and
bad pairs A′′

t (GT). In general, At(GT) and Bt(GT) do
not coincide as Bt(GT) may include conflicting pairs
that are not present in At(GT).

• Zt(GT) is the set of pairs that have been matched up
to time t. By construction, |Zt| = t, ∀t.

Similarly to [4], in our work we want to establish lower
bounds on the number of seeds by means of bootstrap percola-
tion theory. To do so, our algorithm maintains the simplicity of
the PGM algorithm, adding some fundamental improvements
to exploit the heterogeneity of vertex degrees. Before explain-
ing our approach, we make the following observations on
the PGM algorithm described above for Erdös–Rényi graphs.
First, pairs are selected irrespective of the degree of their
constituting vertices. Intuitively, in Erdös–Rényi graphs this
is not so important, since node degree (which is binomial
distributed) is highly concentrated around the mean, and all
matchable pairs are essentially equivalent. Second, there exists
a unique threshold r, common to all pairs, which is a fixed
parameter of the algorithm (subject to the constraint r ≥ 4).

Our DDM algorithm for power-law graphs is based instead
on partitioning the vertices on the basis of their degree. It
requires a careful expansion of the set of matched pairs through
the various partitions, using also different thresholds and seed
sets at the various stages of the process.

In particular, we first isolate a specific slice P1 of the pair-
graph (i.e., a sub-graph of P(GT)), induced by vertices having
large (but not too large) degree. P1 includes pairs whose
vertices have weights between α1 = nγ and α2 = nγ/2,
where γ is a constant (slightly) smaller than 1/2. This slice is
somehow the crucial one: we show that its percolation triggers
the entire matching process, as the identification of all other
vertices in the network follows easily after we correctly match

3



all pairs in P1. Note that degrees of vertices in P1 are fairly
homogeneous (a constant factor of difference), so that the
results for Erdös–Rényi graphs can be adapted to this slice.

Vertices having degree smaller than those in P1 are par-
titioned in geometric slices Pk including vertex pairs with
weights between αk and αk+1 = αk/2, with k ≥ 2. Then,
a top-down cascading process is unfolded starting from P1,
where matched pairs in a slice are used as seeds to identify
the good pairs in the slice below, and so on.

At last, vertices with very large degree are identified at the
end, using as seed set a properly defined subset of previously
matched pairs with relatively small degree.

Here we have provided just the basic idea of our DDM
algorithm: many subtleties must be addressed to show its
correctness. Among them, we emphasize the problem that the
DDM algorithm has no direct access to vertex weights (i.e., it
does not know the original degree of a vertex in GT), and can
only make use of the observable vertex degrees in G1 and G2.

We remark that, when w̄ is constant, a finite fraction of
good pairs cannot be identified by a threshold-based algorithm
like ours. This is due to the fact that a good pair [i1, i2] can
be identified only if both i1 and i2 have at least r neighbors in
G1 and G2. Clearly, a non-vanishing fraction of vertices in GT,
having bounded degree, gives origin to vertices with degree
smaller than r in either G1 or G2. This explains why we say
that our algorithm can match a large fraction of the nodes, but
not all of the nodes (even asymptotically).

III. NOTATION AND PRELIMINARY RESULTS

We first recall the results on Erdös-Rényi graphs obtained
in [4]. In particular, one of the main results that we will use
in our analysis is stated in the following theorem [4, Th. 1].

Theorem 1: Let the groundtruth graph be an Erdös-Rényi
random graph G(n, p). Let r ≥ 4 and

ac =

(

1− 1

r

)(

(r − 1)!

n(ps2)r

)
1

r−1

. (1)

For n−1 ≪ ps2 ≤ s2n− 4
r , we have: if ao/ac → a > 1,

the PGM algorithm matches a number of good pairs equal to
|A′

T | = n− o(n) w.h.p. Furthermore, A′′
T = ∅ w.h.p.

Observe that, under the assumptions of Theorem 1, we have
T = |AT | = |A′

T | = n − o(n). The two corollaries below,
which can be derived from the arguments presented in [4],
strengthen the result in Theorem 1 and will come in handy in
the following.

Corollary 1: For any ǫ > 0, define t0 =

min
(

T, n
−3/r−ǫ

(ps)2

)

. Then, B′′
t0 = ∅ w.h.p.

When t0 = T , the corollary guarantees that A′′
T ⊆ B′′

T = ∅,
i.e., no bad pairs are matched by the PGM algorithm. When

t0 < T (i.e., for p ≫
√

n−3/r−ǫ−1

s2 ), we complement the above

statement with the corollary below.

Corollary 2: Under the conditions of Theorem 1, for p ≫
√

n−3/r−1

s2 , let t0 = n−3/r−ǫ

(ps)2 for any 0 < ǫ < 1
r . Then, |B′

t0 | =
n w.h.p.

The fact that, for some t0 < T , |B′
t0 | = n and B′′

t0 = ∅
jointly occur w.h.p. implies that the PGM algorithm matches
almost all the good pairs (i.e., |A′

T | = n and A′′
T = ∅) w.h.p.

This is because, by construction, A′
t0 = B′

t0 . Indeed, B′
t0

contains no conflicting pairs and none of the pairs in B′
t0 can

be blocked by previously matched bad pairs since B′′
t0 = ∅.

We now extend the above results to Chung-Lu graphs. First,
we introduce the key concept of increasing property.

Let H(V , EH) and K(V , EK) be two random graphs insist-
ing on the same set of vertices V , and such that EH ⊆ EK ,
i.e., EH can be obtained by sampling EK . We introduce the
following partial order relationship: H(V , EH) ≤st K(V , EK).
Then, we consider a vertex property R satisfied by a subset
of vertices, and denote with R(H) ⊆ V the set of vertices of
H that satisfy property R. We say that R is monotonically
increasing with respect to the graph ordering relation “≤st”
if R(H) ⊆ R(K) whenever H ≤st K.

In our case, for any 0 ≤ t ≤ T , sets Bt, B′
t, B′′

t are
all monotonically increasing with respect to relationship “≤st”
defined on the pairs graph P(GT). Instead, nothing can be said
on At, A′

t and A′′
t due to the effect of mutual conflicts among

pairs (i.e., the presence of a pair in At prevents the further
addition of all conflicting pairs in Bt). We will leverage such
observations to prove Theorem 2 below.

As a preliminary step, we show that a properly defined
sub-graph G0 of a Chung-Lu graph can be lower and upper
bounded (w.r.t. “≤st“ relation) by Erdös-Rényi graphs. Then,
we observe that a similar relationship holds for the associated
pairs graphs. (Proofs are omitted for brevity; they can be found
in [8].)

Proposition 1: Given a Chung-Lu random graph
GT(V , E), for any given interval of vertex weights
[wmin, wmax], we define: V0 ⊆ V , V0 = {i ∈ V|wi ∈
[wmin, wmax]} with |V0| = n0 and E0 = {(i, j) ∈ E|i, j ∈ V0}.
Now, consider G0 = (V0, E0), i.e., the sub-graph of
GT (V , E) induced by only vertices in V0. The following
relationship holds: G(n0, pmin) ≤st G0 ≤st G(n0, pmax), with
G(n0, pmin) and G(n0, pmax) being Erdös-Rényi graphs and
pmin = w2

min/(nw̄) and pmax = w2
max/(nw̄).

Proposition 2: Given the above Chung-Lu subgraph
G0(V0, E0) and the Erdös-Rényi graphs G(n0, pmin) and
G(n0, pmax), consider the two graphs obtained from each
of them by independent edge sampling with probabil-
ity s. Let P(G0), P(G(n0, pmin)) and P(G(n0, pmax))
be the corresponding pairs graphs. If G(n0, pmin) ≤st

G0 ≤st G(n0, pmax), then P(G(n0, pmin)) ≤st P(G0) ≤st

P(G(n0, pmax)).

Next, we present our first main result, which shows that
the PGM algorithm can successfully match all good pairs in
the above specified sub-graph G0 of a Chung-Lu graph.

Theorem 2: Consider G0 obtained from GT as defined in
Proposition 1. The application of the PGM algorithm on P(G0)
guarantees that |AT (G0)| = n0 and A′′

∗(G0) = ∅ w.h.p.,
provided that:

1) n0 → ∞ as n → ∞;

2) pmin = w2
min/(nw̄) satisfies: pmin ≫

√

n−3/r−1

s2 ;

4



3) pmax = w2
max/(nw̄) satisfies: pmax ≤ n

− 4
r

0 ;

4) limn→∞ ao/ac > 1 with ac computed from (1) by setting
p = pmin.

Proof: First observe that, if we find t0 with t0 = o(n0)
such that B′′

t0(G0) = ∅ w.h.p., then we have w.h.p that ∀t ≤ t0:

|At(G0)| =|B′
t(G0)|

(a)

≥

|B′
t(G(n0, pmin))|

(b)
= |At(G(n0, pmin))|

(c)
> t. (2)

In (2), inequality (a) holds by monotonicity of sets B′
t with

respect to “≤st”, while equality (b) descends from Theorem 1.
Inequality (c) descends from the following argument. Denoted
by TG = min{t , s.t. |At(G(n0, pmin)| = t}, by Theorem 1
we have TG = n0 − o(n0). Since t0 = o(n0), t0 < TG, i.e.,
|At(G(n0, pmin))| > t for t ≤ t0. From (2), we immediately
get t0 < T , with T = min{t , s.t. |At(G0)| = t}.

Now, let us define, for an arbitrarily small ǫ > 0, t0 =
n
−3/r−ǫ
0

(pmaxs)2
; observe that, by construction, t0 = o(n0). We prove

that B′′
t0(G0) = ∅ exploiting the monotonicity of B′′

t0 with
respect to “≤st”. Indeed, |B′′

t0(G0)| ≤ |B′′
t0(G(n0, pmax))|, with

B′′
t0(G(n0, pmax)) = ∅ w.h.p., as immediate consequence of

Corollary 1 (recall that n0 → ∞ as n → ∞). Furthermore,
by Corollary 2, for an arbitrary 0 < ǫ′ < 1/r, define t1 =
n
−3/r−ǫ′

0

(pmins)2
= o(n0). We have: |B′

t1(G(n0, pmin)| = n0. Next,

by monotonicity, we get |B′
t1(G0)| ≥ |B′

t1(G(n0, pmin)| = n0,
provided that t1 ≤ T .

At last, since pmax/pmin = K2, we can always choose an

ǫ < ǫ′ such that T > t0 =
n
−3/r−ǫ
0

(pmaxs)2
>

n
−3/r−ǫ′

0

(pmins)2
= t1. Thus,

since B′
t0(G0) is by construction non-decreasing with t, we

have: |B′
t0(G0)| ≥ |B′

t1(G0)| = n0. In conclusion, there exists
a t0 < T such that |B′

t0(G0)| = n0 and B′′
t0(G0) = ∅. Hence,

|A′
T (G0)| = |A′

t0(G0)| = |B′
t0(G0)| = n0 and |A′′

T (G0)| =
|B′′

t0(G0)| = 0.

IV. DDM ALGORITHM AND ANALYSIS

Here we present the details of the DDM algorithm and
prove the following main results of its analysis.

(i) For a sufficiently large seed set, the DDM algorithm suc-
cessfully matches Θ(n) good pairs and no bad pairs. Moreover,
it matches all good pairs (except for a negligible fraction)
constituted by vertices with sufficiently high weight, i.e., a
weight that tends to infinity as n → ∞.

(ii) The above result holds for a seed set as small as nǫ (with
any arbitrary ǫ > 0) when the seeds can be chosen based
on the vertices’ degree. When, instead, seeds are uniformly

distributed among the nodes, n
1
2+ǫ seeds are sufficient.

(iii) More in general, when seeds are arbitrarily distributed, the
key parameter governing the percolation of the graph matching
process is not the number of seeds but the cardinality of the
set of edges connecting the initially matched pairs (associated
to the seeds) to the other pairs of the graph.

We start by generalizing a node partitioning approach
originally proposed in [9] for the study of bootstrap percolation
in power-law random graphs. We slice the pairs graph P(GT)

into subgraphs Px, including pairs of vertices whose weight is
comprised between thresholds αx and αx+1 (x ∈ N). By doing
so, we assume the vertices weights to be directly accessible
by the DDM algorithm. In practice, this is not possible: the
DDM algorithm has direct access only to vertex degrees on
G1 and G2. In the Appendix, we present a technique to work
around this issue and relax the above assumption.

Slices of the pairs graph are constructed as follows:

(i) P0 includes pairs whose vertices have weights between
α0 = n1/2 and α1 = nγ , with 0 < γ < 1/2;

(ii) P1 includes pairs whose vertices have weights between
α1 = nγ and α2 = nγ/2;

(iii) Pk includes vertex pairs with weights between αk and

αk+1, with k ≥ 2, αk = αk−1/2, αk >
(

8w̄ logn
Cs2(1−ǫ)2

)
1

3−β

for

some ǫ > 0;

(iv) Ph includes vertex pairs with weights between αh and

αh+1, with αh = αh−1/2 and αh ≤
(

8w̄ logn
Cs2(1−ǫ)2

)
1

3−β

but
αh → ∞ as n → ∞;

(v) Pq includes vertices with weights between αq and αq+1,
with αq = αq−1/2 and lim supαq < ∞.

We initially leave out slice P0, populated by just few
nodes with very large degree (the hubs). The reason is that
these nodes share a non-negligible number of neighbors, hence
including them at the beginning of the matching process would
likely lead to errors. Instead, we consider P0 at the very end,
when most of the nodes have already been identified, and hubs
can then be matched more carefully without risk of error.

We therefore start the node identification process from
P1. In essence, we consider the matching process in P1 in
isolation, using just the seeds initially present in it, and we
establish sufficient conditions for the correct identification of
all good pairs in P1, applying Theorem 2. We denote by A1

0
the seed set in P1.

Proposition 3: All good pairs are successfully matched
in P1, provided that the following conditions are jointly

satisfied: 1
4 − 3

2r < γ < 1
β−1 , r ≥ 4[1+γ(1−β)]

1−2γ and

|A1
0| ≫ n

(1−2γ)r+γ(β−1)−1
r−1 .

Proof: First, we compute the number of good pairs in P1,
denoted by N1, and make sure that N1 grows to infinite when
n → ∞ (as requested by condition 1) of Theorem 2. We have:

N1 =
∑

i∈V
11{wi∈[α2,α1]} ≈

∫ α1

α2

nx−β dx = Cn1+γ(1−β)

where C is a proper constant. Clearly, N1 → ∞ provided
that 1 + γ(1 − β) > 0, i.e., γ < 1

(β−1) . Now, probabilities

pmin and pmax, defined as in Theorem 2, satisfy the following
relationship:

pmin,max = Θ

(

n2γ

nw̄

)

= Θ(n2γ−1).

To verify condition 2) in Theorem 2, we must have: − 3
2r −

1
2 < 2γ − 1, thus γ > 1

4 − 3
4r , and to verify condition 3)

(i.e., pmax < N
− 4

r
1 ), we need: n2γ−1 ≤ n[1+γ(1−β)]4/r or,

5



equivalently,

r ≥ 4[1 + γ(1− β)]

1− 2γ
. (3)

Next, we observe that:

ac1(N1) =

(

1− 1

r

)(

(r − 1)!

N1prmin

)1/(r−1)

= Θ(n
(1−2γ)r+γ(β−1)−1

r−1 ).

Thus, condition 4) of Theorem 2 is surely satisfied if |A1
0| ≫

n
(1−2γ)r+γ(β−1)−1

r−1 .

The above proposition already provides one of our key
results. Essentially, it states that we can chose any 1

4 ≤ γ < 1
2

and determine a minimal threshold r and a minimal |A1
0| such

that all good pairs in P1 can be successfully identified (after
this, the process easily percolates to the rest of the network,
as we will see). Note that, if we want to minimize |A1

0|, γ
should be chosen as close as possible to 1

2 (i.e., γ = 1
2 − ǫ for

some small ǫ). Then, asymptotically, for a sufficiently large r,
we can make the seed set arbitrarily small (in order sense) and
still correctly match all pairs.

We now consider slice Pk (k > 1) and prove that: (i)
the node identification process successfully propagates from
one slide to the next and (ii) no errors are made. To this
end, we first compute the number of edges from the good
pairs in a slice toward those in the slice above and show that
the probability that this number is smaller than or equal to
a given threshold goes to 0 sufficiently fast. We emphasize
that in the following analysis it is important to explicitly find
the minimum value of n for which the above result holds.
Indeed, later we will have to show that a correct identification
is guaranteed to occur uniformly over all the considered slices,
for sufficiently large n.

Theorem 3: Consider the good pairs [i1, i2] ∈ Pk, with
vertex weight wi ∈ [αk+1, αk]. For any such pair [i1, i2] ∈ Pk,
and any ǫ > 0, with probability greater than 1 − n−2, the
number of its neighboring good pairs [l1, l2] ∈ Pk−1 is greater

than ρk = max(4, (αk)
4−β

√
n

), as long as
(

8w̄ logn
Cs2(1−ǫ)2

)
1

3−β

=

α∗
k < αk < nγ (with 1/4 < γ < 1/2), and n > n1 =

max
{

exp
[

(

8w̄
Cs2

)2−β
ǫβ−3

]

,
(

2w̄
Cs2ǫ

)
2

1−2γ

}

. Furthermore, the

above property holds uniformly over the good pairs in Pk with
a probability greater than 1− n−1, under the same conditions
as before on αk and n.

Proof: Given a pair [i1, i2] ∈ Pk, for any pair [l1, l2] ∈
Pk−1, we denote with 11i,l the indicator function associated
to the presence of an edge between [i1, i2] and [l1, l2] in

P(GT). Note that E[11i,l] ≥ αk+1αks
2

nw̄ =
α2

ks
2

2nw̄ = pmin, and
that 11i,l’s are independent r.v. Thus, by denoting the number

of good pairs in Pk−1 with Nk−1 = Cnα
(1−β)
k , and defining

µ = Nk−1pmin = Cns2α1−β
k

α2
k

2nw̄ = Θ
(

s2(αk)
3−β

)

, for any
ρk < µ, we have:

P





∑

l∈Pk−1

11i,l ≤ ρk



 < P(Bi(Nk−1, pmin) ≤ ρk)

≤ exp(−δ2µ/2) (4)

with δ = µ−ρk

µ . In the above derivation, the first inequality

descends from the fact that
∑

[l1,l2]∈Pk−1
11i,l can be stochasti-

cally lower bounded by a sum of Nk−1 independent Bernoulli
r.v. with average pmin, while the second descends from the

Chernoff bound. Now, let us fix ρk = max
(

4, (αk)
4−β

√
n

)

=

o(µ). For any ǫ > 0 and choosing δ = 1 − ǫ, we have that,
whenever ρk < (1− δ)µ = ǫµ,

P





∑

[l1,l2]∈Pk−1

11i,l ≤ ρk



 < exp((1− ǫ)2µ/2).

It is straightforward to see that exp((1 − ǫ)2µ/2) < n−2

provided that µ > 4 logn/(1 − ǫ)2, which corresponds to

αk >
(

8w̄ logn
Cs2(1−ǫ)2

)
1

3−β

.

Then, we have that P
(

∑

[l1,l2]∈Pk−1
11i,l ≤ ρk

)

< n−2

provided that, for some ǫ > 0, jointly αk > α∗
k =

(

8w̄ logn
Cs2(1−ǫ)2

)
1

3−β

and ρk < (1 − δ)µ = ǫµ. The last con-

dition can be reformulated in terms of n as4: n > n1 =

max
{

exp
[

(

8w̄
Cs2

)2−β
ǫβ−3

]

,
(

2w̄
Cs2ǫ

)
2

1−2γ

}

.

At last, jointly considering all pairs in Pk, the probability
that

∑

[l1,l2]∈Pk−1
11i,l ≤ ρk for some [i1, i2] ∈ Pk, is:

P



∃[i1, i2] ∈ Pk|
∑

[l1,l2]∈Pk−1

11i,l ≤ ρk





≤
∑

[i1,i2]∈Pk

P





∑

[l1,l2]∈Pk−1

11i,l ≤ ρk



 < nn−2 = n−1 (5)

provided that jointly n > n1 and α∗
k < αk < nγ , as immediate

consequence of probability sub-additivity.

Similarly, the theorem below proves that the probability
that a bad pair has a number of neighboring good pairs greater
than, or equal to, a given threshold tends to zero.

Theorem 4: Consider the bad pairs [i1, j2], with ver-
tex weights wi, wj < αk, being αk < nγ (γ <
1/2). Uniformly over such pairs [i1, j2], for any n >

n2 = max

{

(

272Cs4

w̄2

)

2(4−β)
3−β

,
(

36Cs4

w̄2

)
2

1−2γ

}

, with probabil-

ity greater than 1−n−1, the number of their neighboring good

pairs [l1, l2] ∈ Pk is smaller than ρk = max
(

4, (αk)
4−β

√
n

)

.

The proof follows the same lines as in Theorem 3, thus it is
omitted for brevity. We only remark that the average number
of good pairs in Pk, which are neighbors of a bad pair [i1, j2],

is µ = Θ
(

s2(αk)
5−β

n

)

= O( αk√
n
ρk) with αk√

n
< nγ−1/2.

Theorems 3 and 4 provide the basic ingredients to show
that the DDM algorithm can match all good pairs in slices

Pk, for k ≥ 2, with αk > α∗
k = ( 8w̄ logn

Cs2(1−ǫ)2 )
1

3−β . Indeed,

we can show that the identification of good pairs successfully
propagates from one slice to the next (up to α∗

k), even without
requiring a “local” seed set in Pk. Specifically, the matching

4The second term in the right hand side of the inequality can be easily
obtained by upper bounding αk with n

γ .
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process performed by the DDM algorithm can be divided into

stages. At stage k + 1, we fix rk+1 = ρk = max(4,
α4−β

k√
n
)

and match all of the candidate unmatched pairs of vertices,
with weight smaller than αk, that have at least rk+1 neighbors
among the already matched pairs in Pk. Observe that the
success of the whole recursion through k is guaranteed again
by sub-additivity of probability. Indeed, given that the number

of stages is by construction upper bounded by logn
2 , for

n > max(n1, n2):

P (∃k|either not all good pairs in Pk are matched

or some bad pair is matched) ≤ n−1 logn . (6)

Next, we consider slices Ph with αh ≤ α∗
k. The same

algorithm with rh = 4 can be applied, however only a weaker
form of percolation occurs in this case.

Theorem 5: Consider the good pairs [i1, i2] ∈ Ph, with
vertex weight wi ∈ [αh+1, αh]. Also, assume that, for some
η > 0, at least a fraction η of neighboring good pairs, [l1, l2] ∈
Ph−1, have been previously identified. Then, for any 0 < ǫ <
1, at least a fraction (1−ǫ) of pairs [i1, i2] ∈ Ph have a number
of neighbors among the identified pairs [l1, l2] ∈ Ph−1 greater
than 4 w.h.p., as long as αh → ∞.

Proof: We employ again the indicator function 11i,l and
repeat the same arguments as in the proof of Theorem 3.
Given any 0 < η < 1, we define µ = ηNh−1pmins

2 =

ηCns2α1−β
h

α2
h

2nw̄ = Θ
(

s2(αk)
3−β

)

. Since 4 ≪ µ, we have:

P





∑

l∈Ph−1,l identified

11i,l ≤ 4



 <

P(Bi(ηNh−1, pmin) ≤ 4) ≤ exp(−δ2µ/2) (7)

with δ = µ−4
µ and as long as αh ≫ 1.

Let us denote by Yh the random variable indicating the
number of vertices in Ph that have at least 4 neighbors
among the vertices in Ph−1, which have been previously
identified. Then, the above result implies that: E[Yh] ≥ (1 −
exp(−δ2µ/2))Nh = Nh−o(Nh). Thus, for a sufficiently large
n such that exp(−δ2µ/2) < ǫ/2, (i.e., µ > max

(

8,−4 log ǫ
2

)

and E[Yh] > (1− ǫ/2)Nh), recalling that 0 < ǫ < 1, we have:

P(Yh ≤ (1− ǫ)Nh) < e[−ǫ2(1− ǫ
2 )

Nh
8 ] → 0, as αh → ∞.

Furthermore, consider slices in the interval h ∈
[hmin, hmax], where hmin has been chosen so as to guarantee

αhmin ≥ ( 8w̄ logn
Cs2(1−ǫ)2 )

1
3−β , while hmax is such that αhmax → ∞.

Then, a sufficiently large n3 can be found such that, uniformly
on h ∈ [hmin, hmax], we have µh > max

(

8,−4 log ǫ
2

)

(i.e.,

exp(−δ2µh/2) < ǫ/2). This because, by construction, for
every n, µh is decreasing with h. Thus, if for a given n the
expression µhmax > max

(

8,−4 log ǫ
2

)

holds, the relationship
is automatically satisfied for any h < hmax. Now, for n ≥ n3,
by sub-additivity of probability we can bound the probability
that the DDM algorithm at some stage fails to identify at
least a fraction 1− ǫ of good pairs. Specifically, the bound is

given by:
∑hmax

hmin
exp

(

− ǫ2
(

1− ǫ
2

)

Nh/8
)

=
∑hmax

hmin
exp

(

−
ǫ2
(

1 − ǫ
2

)

Nhmin2
(h−hmin)(β−1)/8

)

= Θ(exp(−ǫ2(1 −
ǫ/2)Nhmin+1/8)) → 0. We conclude that, for any ǫ > 0,

we can iteratively identify at least a fraction 1 − ǫ of good
pairs jointly in all slices w.h.p., as long as for each slice h the
assumptions of Theorem 5 are satisfied for some η > 0.

At last, we consider slices Pq such that αq = Θ(1).

Theorem 6: Consider the good pairs [i1, i2] ∈ Pq, with
vertex weight wi ∈ [αq+1, αq]. A finite fraction f(αq) (0 <
f(αq) < 1) of such pairs have a number of neighbors among
the identified pairs [l1, l2] ∈ Pq−1 greater than 4, with a
probability at least 1 − n−1. This result holds provided that
at least a fraction f(αq−1) ≥ f(αq) of neighboring good
pairs [l1, l2] ∈ Pq−1 (i.e., pairs whose vertices have weight
wj ∈ [αq, αq−1]) have been previously identified. The above
property holds for properly selected values of f(αq), whenever

αq > ( 32w̄
Cs2f(αq)

)
1

3−β and n >
2αβ−1

q

104Cs2f(αq)
.

Proof: Define Yq as in the proof of Theorem 5. If E[Yq] >
(1 + ǫ)f(αq)Nq , for some ǫ > 0, we can claim:

P(Yh ≤ f(αq)Nq) < exp
(

− ǫ2E[Yq]/2
)

< n−1 (8)

as long as n >
(

4E[w]
ǫ2Cs2f(αq−1)

)2

. Now, E[Yq] > Nq(1 −
exp(−δ2f(αq)µq/2)) with µq ≥ Cs2α1−β

q
α2

q

2w̄ and δ =
f(αq)µq−4
f(αq)µq

. Thus, to guarantee E[Yq] > (1 + ǫ)f(αq)Nq, we

impose Nq(1− exp(−δ2f(αq)µq/2)) ≥ (1 + ǫ)f(αq)Nq , i.e.,
1− exp(−δ2f(αqµq/2)) ≥ (1 + ǫ)f(αq), from which we can
derive the minimal value of µq and the maximal f(αq) for
which the previous inequality holds.

As before, the joint application of Theorem 6 to all slices

Pq−1 with αq > ( 32w̄
Cs2f(αq)

)
1

3−β permits concluding that at

least a fraction of good pairs in each slice Pq−1 is matched
w.h.p., while no bad pairs are matched (again thanks to
Theorem 4). In conclusion, a fraction Θ(n) of vertices is
successfully identified by our algorithm.

At last, the DDM algorithm recovers the pairs initially left
out in slice P0. Theorem 7 (whose proof is omitted for brevity)
guarantees that all good pairs in P0 (and only them) can be
matched.

Theorem 7: Consider a generic pair [i1, i2] ∈ P0 with

wi > nγ/2, and a slice Pk such that αk ≤ log2 n. For a
sufficiently large n, with probability greater than 1−n−1, the
number of good pairs [l1, l2] ∈ Pk that are neighbors of [i1, i2]
is greater than ρ0 = nγ/2. Also, for sufficiently large n, with
probability greater than 1 − n−2, the number of neighboring
good pairs [l1, l2] ∈ Pk of bad pair [i1, j2] ∈ P0 is smaller
than ρ0, The above properties hold uniformly over all good
pairs in P0 w.h.p.

A. Uniformly distributed seeds

Up to know we have assumed that all the initial seeds in
A0 belongs to P1. Now we show that the DDM algorithm
can properly percolate when seeds are uniformly distributed
over the slices. Note that, although the uniform distribution
is probably the most interesting one, our results hold for an
arbitrary distribution of the seeds over the nodes. We start
introducing the key parameter that characterizes the ability to
start the bootstrap percolation process over P1 (and then over
the whole P(GT)):
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Definition 1: We denote by ∂A0 the set of edges between
the seed set A0 and the rest of pairs P(GT) \ A0.

Theorem 8: Whenever the seed set A0 is chosen in such
a way that:

|∂A0| ≫ nγ+ (1−2γ)r+γ(β−1)−1
r−1 ,

our DDM algorithm successfully percolates identifying Θ(n)
good pairs.

Proof: We proceed as follows. By exploiting the mono-
tonicity property of the percolation process, we can show that
a properly dimensioned set of seeds belonging to slice Pk,
with k > 1, is equivalent to a single seed belonging to P1.
Similar arguments can be used to show that a group of seeds
in P1 behaves as a seed in P0. More formally, we consider
the evolution of the DDM algorithm operating on a seed set
A0 of pairs in P1. Then, we compare it to the evolution of a
modified version of the DDM algorithm operating on a seed
set A∗

0, which differs from A0 in that a fraction of seeds in
P1 is replaced with a group of seeds, Sk, in Pk.

The modified version of the DDM algorithm handles every
group of seeds belonging to Pk as a single seed (i.e., all
the seeds in the same group are selected by the algorithm
at the same time and simultaneously included in Z). Also,
while proceeding, the two versions of the algorithm process
exactly the same sequence of seeds. We show that, by properly
setting Sk, we can guarantee that the identification of good
pairs spreads faster starting from A∗

0 than from A0.

Consider a generic good pair [i1, i2] in P1. Note that,
by construction, the number of edges between [i1, i2] and a
given pair [l1, l2] ∈ A0 is either 0 or 1. The probability that
such edge exists in P(GT) is upper-bounded by p1,1 = wiα1

nw̄ .
Instead, the probability that at least an edge exists between
[i1, i2] in P1 and the corresponding group of Sk seeds in Pk

is lower-bounded by p1,Sk
= 1 − (1 − wiαk+1

nw̄ )Sk . By setting
Sk > α1

αk+1
+ ǫ for any ǫ > 0, it can be easily shown that, for

sufficiently large n, p1,Sk
> p1,1, i.e., the group of Sk seeds

belonging to Pk in A∗
0 distributes to any good pair in P1 \A0

a number of marks that upper bounds those distributed by
the corresponding seed in A0. This immediately implies that
B′
t(A∗

0)\A0 ⊇ B′
t(A0)\A0 for any t. Therefore, at t1 defined

as in Theorem 2, B′
t1(A∗

0) must necessarily include all pairs
in P1 \A0. In addition, it is straightforward to show that every
pair in A0 \ A∗

0 has at least r neighbors among good pairs in
P1 \ A0 and, thus, it is included in B′

t1(A∗
0).

To conclude the proof, we have to show that B′′
t1(A∗

0) =
∅. This can be done by following the lines of Theorem 2,
i.e., by uniformly upper-bounding the probability of adding
marks at any time t to bad pairs in P1, and, then, repeating
the arguments of Corollary 1. Iterating the previous argument
for all slices containing seeds, we get the assertion.

From Theorem 8, it immediately descends that, for any
choice of seeds, we can correctly match Θ(n) good pairs

provided that the size of the seed set is at least of order n
1
2+ǫ,

for an arbitrarily small ǫ.

V. EXPERIMENTAL VALIDATION

Our results hold asymptotically as the number of nodes
tends to infinite, thus it is difficult to validate them considering

networks of finite size. Nevertheless, in this section, we
show that the dramatic impact of power-law degree on the
performance of graph matching algorithms is already evident
on small-scale systems. Another important goal of this section
is to check whether Chung-Lu graphs, which only capture
effects due to the (marginal) degree distribution of the nodes,
can indeed predict the performance achievable in real social
networks, which possess several other features not accounted
for by the simple Chung-Lu model.

In our first experiment, we took a publicly available, early
snapshot of Facebook containing friendship data of users [10].
This graph contains 63,371 nodes, the average node degree
is 25.64, and the power law exponent, estimated using the
maximum-likelihood approach [11], is 2.9412 (quite large).
To understand the impact of network structure, we proceed
as follows: we generate a G(n, p) (Erdös-Rényi) graph with
the same average degree as the Facebook snapshot, and a
Chung-Lu graph which, besides the average, reproduces also
the power-law exponent of the Facebook snapshot, using the
simple weight sequence introduced in Sec. II-A. We obtain
three graphs, which are used, in turn, as groundtruth network
GT. We fix the edge sampling probability to s = 0.7.

We run the PGM algorithm on the G(n, p) graph, and a
simplified version of the DDM algorithm on both the Chung-
Lu and the Facebook graphs, considering either the case of
seeds uniformly distributed, or seeds selected only among
nodes whose degree lies in the interval [

√
n/2,

√
n]. I.e.,

we take γ = 1/2 for the first slice, even though in theory
we should take a value slightly smaller than 1/2. For a
more meaningful comparison, our simplified version of DDM
employs a constant threshold r = 4 for all slices, the same
used in PGM. Results are reported on Fig. 1, in which, for
each considered number of seeds, we average the total number
of matched nodes obtained in 100 different runs5.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1  10  100  1000  10000

T
o
ta

l 
n
u
m

b
er

 o
f 

m
at

ch
ed

 n
o
d
es

Number of seeds

PGM, G(n,p), uniform seeds
DDM, Chung-Lu, uniform seeds
DDM, Facebook, uniform seeds
DDM, Chung-Lu, selected seeds
DDM, Facebook, selected seeds

Fig. 1. Total number of matched nodes vs number of seeds, for different
graphs and algorithms, in the case of s = 0.7

We clearly see a phase transition effect in all cases, but
the position of the transition changes dramatically (notice the
log x scale). Even a power-law exponent of 2.9 can reduce the
threshold associated to a G(n, p) graph by more than one order
of magnitude, still considering uniformly distributed seeds. A
reduction of another order of magnitude is gained by selecting

5The three graphs are fixed, but randomness is present in the identity of the
initial seeds and within the algorithms themselves.
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all seeds in the initial slice of DDM. Very interestingly, the
position of the threshold is more or less the same in the Chung-
Lu graph and in the real Facebook snapshot, meaning that
taking into account the power-law exponent alone allows us
to predict the performance of graph matching algorithms in a
real social network quite well.

Note that, using the Facebook snapshot, the total number
of matched nodes does not go beyond 33K. This is due to
the fact that a large fraction of nodes in this graph have
degree smaller than 4, hence they cannot be matched in any
case6. At last, we report some figures for the fraction of
bad pairs matched by our algorithm in the above experiment
(negligible errors were produced by PGM in the Erdös-Rényi
graph). We consider only the fraction of bad pairs at the
phase transition point, because here the error is known to be
maximum [4]. We observed about 0.001 (0.0002) fraction of
bad pairs using the Chung-Lu graph, respectively with uniform
and selected seeds. The Facebook snapshot produced slightly
more matching errors, 0.05 and 0.02, respectively. However,
we do not consider these errors really significant, as they could
be reduced by a more careful selection of threshold r, without
affecting the scaling-order performance gains of our algorithm.

In our second experiment, we used a much larger Youtube
graph with 3.2M nodes and β = 2.2. Results of this experi-
ment, similar to those in Fig. 1, are reported in [8].

VI. CONCLUSIONS

We analytically investigated the de-anonymization problem
in social networks represented by scale-free graphs, by ex-
ploiting bootstrap percolation results and a novel graph slicing
technique. Our main finding is that, to successfully identify
most of the nodes, the seed set can be as small as nǫ (for any
ǫ > 0) when seeds are properly selected, and of the order of

n
1
2+ǫ when they are uniformly distributed among the nodes.

Our asymptotic results, experimentally validated by simulation
experiments with real social networks, suggest that taking into
account the power-law degree distribution alone effectively
allows us to predict the surprising performance achievable by
graph matching algorithms in realistic social networks.

APPENDIX

In Sec. IV we assumed that the pairs graph P(GT) is
directly sliced into subgraphs Pk. In practice, only G1 and G2

(and the corresponding pairs graph) can be sliced according
to the observed degree of the nodes. Here, we show that the
impact of such imperfect knowledge can be made negligible.

As a first step, we observe that the original vertex weight
in G can be simply estimated from the observed degree in G1

(or G2). Indeed, given a vertex i1 in G1 with degree Di
1, the

estimated weight associated to it is just ŵ1
i = Di

1/s. By slicing
G1 (or G2) on the basis of such estimate, it is clear that any
slice may include vertices with different weights than those
expected. We now show how to build an imperfect slice P ′

k
with estimated weights in the range [αk+1, αk], such that the
following three conditions are satisfied: 1) only pairs formed
by vertices whose actual weight is in the interval [αk+1, αk]

6This does not occur with the Chung-Lu graph, in which low-degree nodes
are almost not present, since we decided to reproduce just the tail behavior
(power-law exponent) of the Facebook degree distribution.

are included in P ′
k; 2) only a finite fraction of good pairs of

Pk is not included in P ′
k; 3) the following event occurs with

negligible probability: a bad pair [i1, j2] is included in the
slice, while at the same time neither of pairs [i1, i2] or [j1, j2]
is included. The third condition ensures that every bad pair in
P ′
k conflicts with at least one good pair in P ′

k, thus it cannot be
matched by the DDM algorithm when it (eventually) reaches
the threshold.

To guarantee that the above conditions hold, we build P ′
k

as follows. We partition the interval [αk+1, αk], into two sub-
intervals: [αk+1(1+ ǫ), αk(1− ǫ)], with 0 < ǫ ≤ 1/4, is called
inner region, while the remaining range of values is called
outer region. The idea is to include in P ′

k pairs of vertices
whose weights fall either in the inner or in the outer region,
adding the extra constraint that only pairs for which at least
one vertex falls in the inner region are included in P ′

k. This
implies that [i1, j2] is included in P ′

k only if i1 (j2) falls in the
inner region and i2 (j1) falls in the inner plus outer region.

Then, by applying standard concentration results, we can
easily show that, as long as αk+1 > 65

ǫ2 logn, for sufficiently
large n the above conditions 1), 2) and 3) are satisfied with
probability greater than 1− n−1.

Theorem 2 can then be extended to show that our DDM
algorithm correctly percolates within slice P ′

1 (a detailed
proof is reported in [8]). Similarly, it can be shown (by
slightly generalizing and strengthening Theorems 3-6) that the
cascading process through slices successfully takes place when
slices are imperfect. The only requirement is that the seed set
at every stage of the algorithm is properly adjusted so as to
ensure that conditions 1), 2) and 3) are met (see [8] for a
detailed explanation).
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