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A Holistic View of ITS-Enhanced Charging Markets
Francesco Malandrino, Member, IEEE, Claudio Casetti, Member, IEEE, Carla-Fabiana

Chiasserini, Senior Member, IEEE

Abstract—We consider a network of electric vehicles (EVs)
and its components: vehicles, charging stations, and coalitions
of stations. For such a setting, we propose a model in which
individual stations, coalitions of stations and vehicles interact
in a market revolving around the energy for battery recharge.
We start by separately studying (i) how autonomously-operated
charging stations form coalitions; (ii) the price policy enacted
by such coalitions; (iii) how vehicles select the charging station
to use, pursuing a time/price tradeoff. Our main goal is to
investigate how equilibrium in such a market can be reached.
We also address the issue of computational complexity, showing
that, through our model, equilibria can be found in polynomial
time.

We evaluate our model in a realistic scenario, focusing on
its ability to capture the advantages of the availability of
an Intelligent Transportation System (ITS) supporting the EV
drivers. The model also mimics the anticompetitive behavior that
charging stations are likely to follow, and it highlights the effect
of possible countermeasures to such a behavior.

Index Terms—ITS, charging station selection, game theory.

I. INTRODUCTION

It is now an established tenet of transportation technology

that Electric Vehicles (EVs) will, at some point in the future,

replace vehicles propelled by fossil fuel. Environmentally-

friendly by definition, EVs enjoy favorable attention by in-

dustry and governments alike. Indeed, the mass production

and widespread adoption of EVs seem around the corner if

some concerns are overcome, such as short driving range, lack

of recharging infrastructure and long charging time. The latter

two issues will likely determine the gradual phasing-out of old-

fashioned gas pumps in favor of public charging stations. It is

thus to be expected that electric outlets will start cropping up at

the curbside, in parking lots as well as in cab stands. However,

the fact that someone will deploy and operate such charging

stations is often taken for granted. In this work, we take a

closer look at this issue, arguing that charging stations will be

deployed and operated only if their owners find it profitable

for themselves. Similarly, the drivers of electric vehicles will

select the charging station to use pursuing their own benefit:

a shorter trip time, a cheaper price, or both. Note that the trip

time includes the detour time from the vehicle original route

to a charging station and back, the wait time there, and the

service time.

We present a model that captures the behavior of the

two main actors involved in such a dynamic energy market,

namely:
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• the electric vehicles, i.e., their drivers;

• the charging stations, i.e., their owners.

Additionally, our model accounts for coalitions that charging

stations may form, and their commercial strategies. Each of

these actors pursues different, potentially conflicting, objec-

tives. And, each of them is likely to change its behavior

as a consequence of the actions the others take – or are

expected to take. By exploiting game theory, we then describe

a polynomial-complex algorithm to find an operational point

for such a model, which turns out to be a Nash equilibrium [1].

Our model represents a novel contribution in two ways. For

starters, it is the first to jointly address the behavior of charging

stations and vehicles, as well as the interaction between buy

and sell energy prices. Furthermore, we specifically address

the issue of the computational cost of finding an equilibrium,

and attain a complexity that is polynomial in the number

of charging stations (note that finding a Nash equilibrium

is, in general [1], NP-hard). Such an issue is traditionally

disregarded by economists, who tend to focus on proving

that an equilibrium exists rather than designing a way to

compute it. In engineering applications, instead, it is crucial

that large-scale scenarios are analyzed quickly, if not in real-

time. Furthermore, it is important to stress that the main

focus of our model is to study the steady-state equilibrium,

as opposed to the dynamics of the transient. This is justified

by the features of the scenario we deal with, e.g., the slow

pace at which prices change.

The rest of the paper is organized as follows. We review

previous work in Section II, while we describe the system

model in Section III. In Section IV, we discuss the players,

moves and payoffs of the related game, whose computational

issues are dealt with in Section V. We test our model in

the scenario described in Section VI, obtaining the results

described in Section VII. Finally, Section VIII concludes the

paper.

II. RELATED WORK

Recently, both the academic and industrial communities

have devoted a great deal of interest to EVs and charging

station deployment.

As an example, in [2] Ferreira et al. consider the case

where the behavior of EV drivers, i.e., whether they drive to

the closest or the cheapest charging station, depends on their

profile (age or gender). Similarly, [3] describes an intelligent

transportation system (ITS) to support drivers in the selection

of the charging station, accounting for the fact that they will act

selfishly, and providing strategy-compatible suggestions. The

work in [4], instead, accounts for real-time charging prices and

envisions a centralized control of the EV’s charging schedule
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so as to minimize user costs. An analytic model for the study

of the EVs trip time is presented in [5]. The road topology

is modeled as a graph whose edges are associated with a

fixed waiting time, and a lower bound to the charging time

is derived. With respect to our work, however, the study in [5]

does not account for the strategic behavior of vehicles.

Such an issue is addressed in [6], which presents a set of

decentralized policies assigning vehicles to charging stations

and yielding socially optimal equilibria. A multi-objective

decision-making model is also presented in [7], where the

gas station selection depends on the driver personalized re-

quirements and the gasoline price, and it aims at minimizing

the travel distance and the refueling cost. In these works,

however, individual EV routing and charging are optimized

through standard techniques, and the effect of such decisions

on each other is not taken into account.

Several works, e.g., [8]–[16], are mostly concerned with

the impact of EVs on the power grid. In particular, the study

in [10] assumes the presence of a central controller that

predicts the EVs mobility and advises each EV about which

charging station to use and when, so as to even the power

demand over time. The work in [10], however, assumes that

vehicles always follow the central controller’s suggestions.

Similarly, the goal of [12] is to ensure that EVs can obtain the

energy they need to recharge their batteries without impairing

the stability of the power grid. The study in [12] accounts

for the behavior of EV drivers and aims at influencing it by

means of monetary incentives. The work in [13] envisions that

smart grids shall distinguish regular and EV-induced loads, and

optimize the way such loads are served. In a similar setting, the

authors of [14] propose a queue-based model for smart grids

serving EVs, and use it to find the optimal size of local energy

stores at charging stations. In [15], a centralized optimization

problem and a low-complexity heuristic are presented with the

aim to adjust EV charging to real-time prices and the power

grid load.

The study in [16] is closer to our approach, indeed it

accounts for both charging time and energy costs. With an

emphasis on charging stations (as opposed to vehicle drivers),

the authors present an optimal way to handle the EV load on

the power grid, as well as a greedy heuristics.

As mentioned, to our knowledge, our work is the first

that jointly investigates the behavior of charging stations and

vehicles, as well as the interaction between buy and sell energy

prices while taking into account its complexity.

III. SYSTEM MODEL

We aim at modeling a realistic scenario featuring electric

vehicles travelling on an urban road topology where several

charging stations are available for battery refill. Our model

captures both vehicle and station viewpoints in a dynamic

energy market setting. When its battery is depleted, a vehicle

stops at one of the charging stations. The choice of the

station must weigh the monetary service cost and the expected

incurred delay (detour, waiting and service time). All stations

can sell energy at a price of their own choice, accounting for

demand and expected revenue, but they have to buy energy at

market prices. Stations may also have the option of forming

coalitions, aiming at lowering the buying price and at driving

selling prices up to increase their revenues.

Our model hinges upon two kinds of agents: vehicles v ∈ V
and charging stations c ∈ C. Their behavior is detailed in III-A

and III-B, respectively. Notice that set V only contains those

vehicles that are interested in changing their battery during

their trip. The other vehicles do not take part in the market

and simply contribute to the road traffic, just like ordinary,

fossil-fueled vehicles do. Such an effect is accounted for in

the computation of the trip time, as detailed later in the paper.

We assume that batteries are replaced, not charged. This

is due to the exceedingly long charging times of current

and (likely) future technologies, and is consistent with early

deployments [17]. As a consequence, charging stations can

express buy and sell energy prices, bc and sc, respectively,

in dollars per battery replacement instead of, for example,

dollars per kilojoule. We focus on a given time period of the

day characterized by uniform battery replacement demand and

vehicular traffic conditions, and we consider that prices are

kept constant during such period.

A. Vehicles

Vehicles are associated to an origin and a destination point

on the road topology. During their trip, they stop at exactly one

charging station among the possible ones, in order to replace

their battery.

Let αv, ωv and ηv be, respectively, the points on the road

topology marking the origin of trip of vehicle v, its destination

and the point where its driver becomes aware that a battery

replacement is needed. Also, let λc be the location of charging

station c. Then, each vehicle v will select a charging station

pursuing a tradeoff between cost and expected incurred delay.

Specifically, EVs will try to optimize the following objective:

min
c∈C

{sc +K · [t(αv, ηv) + t(ηv, λc) + wc + t(λc, ωv)]} (1)

where:

• sc is the battery replacement cost at station c;
• t(x1, x2) is the travel time between locations x1 and x2,

with x1 = αv, ηv, λc and x2 = ηv, λc, ωv;

• wc is the waiting plus service time at station c;
• K is a coefficient used to convert time into cost. Indeed,

while sc is a cost, all other terms represent time periods.

In particular, note that the sum of terms multiplied by K
represents the total time it will take to the vehicle to go from its

origin to its destination, including the detour to and from the

charging stating, the waiting time there and the service time.

Thus, K can be read as the value of time as perceived by the

drivers: if K = 10 EUR/h, drivers will be willing to spend one

more hour reaching a farther charging station and/or waiting

at a more crowded one if they can save at least 10 EUR on

their replacement price. In other words, very high values of K
mean that drivers are willing to pay any price to shorten their

trip. Low values mean that they prefer the cheapest station, no

matter how far away or crowded it may be. Also, we stress that

time wc depends on the number of service stalls at the station,

the service time, and the number of customers that a vehicle
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finds upon arriving at the station. A closed-form expression of

wc is provided in the Appendix.

Vehicles with no ITS support: Most of the parameters in

(1) are static or only change occasionally (e.g., the energy

prices for the tagged time period may change once a day).

To correctly account for such values while optimizing their

objectives, vehicles do not need information from ITS. As an

example, the up-to-date energy prices could be downloaded

from the Internet upon starting the trip.

Conversely, the waiting times wc’s cannot be estimated a

priori, as they depend on the decisions of all the other players.

Therefore, vehicles with no ITS support will have to make

their decisions, i.e., optimizing objective (1), without taking

the waiting times into account. Without loss of generality, in

the following we consider that such vehicles assume1 wc =
0, ∀c.

B. Charging stations

Each charging station c buys energy at a price bc per

replacement, and sells it at a price sc. Additionally, stations

have to pay a fixed cost fc, i.e., a lump sum accounting

for taxes, maintenance and labor costs. Unless coalitions are

formed, as explained below, each station is free to decide its

charging price. A station can thus increase the price in order

to have a higher revenue, or decrease it in order to attract more

costumers. Demand, i.e., the number of vehicles on the road

topology that need to replace their battery, is a major factor

determining the prices. As we focus on a given time period

of the day, our model does not explicitly account for time-

varying prices. However, as shown in Section VII, the model

can be used to study different demand conditions.

Stations may form coalitions, for the purpose of obtaining

a bulk rate from energy suppliers on their buy price bc, and to

enforce a common pricing strategy. We denote by K the set

of coalitions that are formed and by kc the coalition to which

station c belongs. Also, Ac and Akc
indicate the attendance

(i.e., the number of vehicles headed to it) of station c and of

its coalition, respectively. At the outset, kc ≡ c for all stations,

i.e., each station belongs to a coalition formed by itself only

(and, clearly, Akc
= Ac). Stations cannot belong to more than

one coalition at the same time.

Joining a coalition has two effects: on the one hand, the

price bc that station c is charged when buying energy may be

lowered, as explained in III-C. On the other hand, station c
forfeits its freedom to decide the selling price sc. Indeed, the

price policy within each coalition κ is determined so as to

maximize the coalition revenue, i.e., to optimize the following

objective:

max
∑

c∈C:kc=κ

scAc. (2)

We indicate with k0 the virtual coalition formed by those

stations that do not participate in the market, i.e., that are “not

operating”. Stations in k0 have attendance Ac = 0, and do not

pay the fixed cost fc.

1Note that assuming any other constant value for wc would be equivalent.

C. Energy price

We do not make any specific assumption on the presence

of one or more energy suppliers. However, we do assume

that the buy price bc charged to a station c depends on the

amount of energy bought by its coalition, i.e., on the coalition-

wise attendance Akc
, through a buy price function p(·), such

that bc = p(Akc
). The exact dependence, i.e., the shape of

p(Akc
), is crucial in determining whether joining a coalition

is a sensible move or not. As an example, p(Akc
) = b0

means that there is no incentive at all to form coalitions. On

the other hand, functions such as p(Akc
) = b0 − logAkc

,

p(Akc
) = b0−A2

kc

, p(x) = b0− expAkc
provide increasingly

strong incentives.

Recall that a charging station joining a coalition forfeits its

freedom to decide the sell price sc. Hence, stations will not

join a coalition if the incentive represented by the reduction

in buy price bc is not high enough.

We also assume that selling prices are chosen from a finite-

sized set P . This assumption simplifies our discussion but, as

we will see in Sec. V, has no impact on the overall level of

realism of the model.

IV. THE MARKET GAME

Game theory [1] studies the interaction among rational

agents, called players. Players can choose among a set of

moves and aim at maximizing their payoff. The payoff obtained

by each player depends not only on its move, but also upon the

other players’ moves. This makes game theory a particularly

powerful and convenient tool to study cooperation and conflict

mechanisms, such as the EV charging model we have outlined

above. We thus define the charging market game as follows.

Players: We have two categories of players:

• the vehicles in V ;

• the charging stations in C.

Payoffs: Vehicles aim at optimizing the time-price trade-

off in (1), which represents the cost they incur2. As for

charging stations, their payoff is represented by the following

monetary gain:

1[c/∈k0] [Ac(sc − bc)− fc] . (3)

Notice that, from (3), it follows that equilibrium payoffs for

charging stations are never negative.

Moves: Vehicles have to select a charging station, thus

the set of their possible moves corresponds to the set C of

charging stations. Charging stations, on the other hand, can

decide to:

• form a new coalition formed by themselves alone;

• exit the market, i.e., joining coalition k0;

• leave their current coalition and join one of the existing

ones.

Recall that the game players are vehicles and charging

stations, not coalitions, which therefore do not make any move.

Indeed, the coalition prices are completely determined by the

composition of the existing coalitions and by the behavior of

vehicles.

2Recall that vehicles with no ITS support will still optimize (1), but
accounting for an incorrect value of wc.
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Equilibrium: A strategy profile is a mapping of vehicles

onto charging stations and of charging stations onto coalitions.

In this work, we use the standard definition of Nash equilib-

rium: a strategy profile from which no player has interest to

unilaterally deviate, i.e., when no vehicle selects a different

station and no station changes coalition.

V. COMPLEXITY ISSUES

The model we have described so far is characterized by sev-

eral variables, accounting for both topological and economic

aspects. Among the former, our model lists:

• a set of charging stations c ∈ C, with their locations λc;

• a set of vehicles v ∈ V , with their origin, destination, and

points at which they become aware of their low battery,

i.e., αv , ωv , and ηv);

• the distances t(x1, x2) between any two points (x1, x2)
in the road topology.

As for the economic aspects, our model comprises:

• the fixed costs to be paid by charging stations fc, c ∈ C;

• the buy price bc, c ∈ C, through function p(·);
• the set P of possible sell prices.

In order to find an equilibrium, our task is to identify:

• a mapping of vehicles in V onto stations in C;

• a mapping of stations in C onto coalitions in K;

• a mapping of stations in C onto sell prices in P ;

such that no vehicle or station would deviate from them. In

other words, each step of the game requires the identification

of (i) all possible coalitions formed by the |C| charging

stations; (ii) for each coalition, the |P| prices a station c ∈ C
can choose from; (iii) for each coalition-price combination,

(up to) |C| possible charging stations, among which the |V|
vehicles can choose.

The possible number of ways the stations in C can form

coalitions corresponds to the number of combinations of |C|
elements, i.e., 2|C|−1. It follows that the number of solutions

to examine is:

2|C|−1 · (|P|+ 1)
|C| · |C||V| = O

(

|C||V|+|C|
)

. (4)

The number in (4) is clearly overwhelming, even for unreal-

istically small instances of the scenario.

We therefore try to reduce the overwhelming complexity of

finding an equilibrium by means of some simplifying assump-

tions, and check that such assumptions do not jeopardize the

realism of our model.

A. Vehicles book their battery replacement

A first assumption we can make is that vehicles can book,

e.g., via an existing ITS, their battery replacement, as soon as

they realize that their charge level is low. Such an approach is

used, among others, by the Pod Point project [18]. This does

not mean that they will not wait in line if they arrive at the

station earlier than the allotted time. However, it has a very

important consequence:

Proposition 5.1: The trip time of each vehicle depends

solely on the moves of the vehicles booking before it.

This, in turn, yields the following important result.

Theorem 5.2: The strategy obtained under the assumption

that each vehicle books a station when it needs to replace its

battery is a Nash equilibrium.

Proof: The vehicle booking first will not deviate from the

strategy. The payoff of the second one will only be affected

by the decision of the first vehicle, so the second vehicle will

not deviate from the strategy either. By induction, no other

vehicle will deviate.

Theorem 5.2 yields a huge reduction of the complexity,

indeed we can replace the third term in (4) with 1, obtaining:

2|C|−1 · (|P|+ 1)
|C|

= O
(

|P||C|
)

. (5)

Importantly, in (5) we have no dependence upon the num-

ber |V| of vehicles. Therefore, we can easily take into account

realistic scenarios with heavy traffic levels and/or high pene-

tration rates.

B. Deciding the prices

Let us assume that the coalitions are given and, hence, the

buying prices bc are known. Recall that P is the finite set of

price levels, and that we impose sc ∈ P , ∀c ∈ C.

The prices of all charging stations start at the minimum

level, i.e., sc = minP , ∀c ∈ C. Then, coalitions take turns

incrementing the price of at most one of their stations, by at

most one level, until no coalition wants to increase any price

anymore. Such a situation is not necessarily an equilibrium, as

some coalitions may want to decrease their prices. Therefore,

coalitions take turns reducing the price of at most one of

their stations, by at most one level, until no coalition wants to

decrease any price anymore.

Let us now consider the maximum number of solutions

evaluated in this way. In the worst case, the price of each

station goes from minP to maxP , and then goes back

to minP . Therefore, the complexity of an “up-and-down”

round is bounded by:

2 · |C| · |P| = O(|C| · |P|).

Clearly, we are not guaranteed that after one “up-and-down”

round we reach an equilibrium, i.e., that now no coalition

would like to increase their prices again. The process may go

on indefinitely. This is a consequence of the so-called “perfect

rationality” assumption which is commonly made in game

theory: each player is perfectly able to predict the opponents’

moves, and to change her own accordingly. However, such an

assumption is unrealistic in most practical cases, and is often

dropped in favor of the notion of bounded rationality: each

player will be able to reconstruct in her mind only the next r ∈
N moves of her opponents. Practical experiments [19], [20]

show that players significantly underestimate their opponents’

rationality, and suggest a value of r below 5.

Assuming bounded rationality, the complexity of the price

decision is bounded by 2r · |C| · |P|, and the total complexity

(5) becomes:

2|C|−1 · 2r|C||P| = O
(

2|C|
)

. (6)

Adding parameter r allows us to study how the coalition

revenue depends on the level of rationality employed in
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defining their price policy, i.e., if “more clever” coalitions have

a competitive advantage.

C. Forming the coalitions

We follow a similar approach in determining how the

coalitions are formed.

Each charging station starts by forming its own coalition,

i.e., kc = c, ∀c ∈ C, and k0 = ∅. Then, charging stations

take turns in deciding which coalitions to join. Each charging

station can choose among at most |C|+1 coalitions, including

the current one and k0. Thus, a “coalition forming” round

includes exactly |C| turns, during which at most |C| + 1
alternatives are examined. It follows that the complexity of

each round is bounded by |C|2.

Again, we assume that players have bounded rationality r,

i.e., at most r “coalition forming” rounds are performed. We

can thus update the overall complexity (6) to:

r|C|2 · 2r|C||P| = 2r2|C|2 · |C||P| = O(|C|3). (7)

D. Summary and discussion

We have been able to move from the worse-than-exponential

complexity in (4) to the cubic complexity in (7), by subse-

quently addressing the following three stages:

• vehicles choosing the charging station to use;

• coalitions deciding their price policy;

• charging stations joining a coalition.

If dealt with naivety, each of these stages would have expo-

nential complexity. However, we have shown that if vehicles

can book their charging station, the complexity of the first

stage reduces to a constant. Furthermore, the complexity of

the latter two stages becomes polynomial as a consequence of

the fact that players have bounded rationality.

Interestingly, none of the assumptions we made impairs

the realism of our model. Specifically, vehicles do book their

replacement [18] and players, including businesses, do have

bounded rationality [19], [20].

We can therefore be quite satisfied with the final complexity

reached in (7), for a variety of reasons.

First and foremost, cubic is better than exponential. Roughly

speaking, it means that we can tackle realistically-sized sce-

narios with a complexity comparable to that of linear pro-

gramming problems. Furthermore, the dominant term in the

expression of the complexity only depends on the number

of charging stations we have. In other words, the number of

price levels in P and the rationality r do have an impact on

the computation time, however as the values of the involved

parameters grow very large, it is |C| that dominates. This

means that we will be able to increase r and |P| as much as

needed, without incurring in an exceedingly high complexity.

VI. SCENARIO AND SETTINGS

We now apply our model to a realistic scenario, so as to get

some insight in the way the decisions of individual charging

stations, coalitions of stations and vehicles interact.

We consider the road topology in Figure 1, depicting a

10 × 10 km2 section of the urban area of Ingolstadt, Germany.

Fig. 1. Road topology used for our experiments.

There are |V| = 300 vehicles traveling on the topology,

each needing to stop at one of |C| = 14 charging stations.

Charging stations are located at major intersections throughout

the topology. For each station, we set the number of service

stalls to 6 and the service time, i.e., the time to replace a

vehicle battery, to 60 s. Travel times within the topology are

obtained through SUMO [21] simulations, tabulated and input

to our model. As detailed in the Appendix, the waiting time at

a charging station, i.e., the time a vehicle waits in line there,

varies depending on the number of vehicles it finds already

waiting at the charging station.

Unless otherwise specified, the fixed cost is fc = 50 for each

station, the possible sell prices are P = {9, 10, . . . , 17, 18} and

the buy prices are determined as follows:

bc = 3− L log10 Akc
. (8)

In (8), the parameter L ∈ R expresses how strong the incentive

to create a coalition is; we set its default value to L = 1.

As a consequence, in the default settings, the buy prices

approximately range between 0.5 and 3. Finally, we set the

rationality parameter to r = 20.

VII. RESULTS

For each case study, we let the value of the coefficient K
vary between 5 and 50, with the latter depicting very impatient

drivers, and the former representing the lowest value drivers

could give to their time (at least in popular culture [22]).

Also, for each case study, we compare the cases in which

an ITS system is available, i.e., vehicles can correctly esti-

mate wc, and in which vehicles have no ITS support, i.e., will

always assume wc = 0.

We start from the baseline scenario described in Sec. VI,

and investigate the prices paid by the vehicles and the coali-

tions formed by charging stations. Then, we look at how

anti-cooperative behaviors from the charging stations can be

countered by acting on the number and size of the coalitions

(Sec. VII-B) and on the coalition incentive L (Sec. VII-C).

For each of these anti-trust strategies, we are also interested
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Fig. 3. Baseline scenario with ITS support. Breakdown of trip times for the 10% vehicles with longest trip time (a), the average (b) and the 10% vehicles
with shortest trip time (c).

 0

 2

 4

 6

 8

 10

 12

 14

 5  10  15  20  25  30  35  40  45  50

N
o.

 o
f s

ta
tio

ns

K [EUR/hour]

Coalition 1
Coalition 2
Not operating
with ITS
no ITS

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5  10  15  20  25  30  35  40  45  50

P
ric

e 
[E

U
R

]

K [EUR/hour]

Vehicles’ buy price
Stations’ sell price
Stations’ buy price
with ITS
no ITS

(b)

 0

 10

 20

 30

 40

 50

 60

 5  10  15  20  25  30  35  40  45  50

T
rip

 ti
m

e 
[m

in
]

K [EUR/hour]

10th percentile
Average
90th percentile
with ITS
no ITS

(c)

Fig. 4. Peak-time scenario: coalitions size (a), prices (b), vehicle trip time (c), with and without ITS support.

to check whether the availability of ITS support has any impact

on its effectiveness.

Fig. 2 depicts the behavior of the system under our baseline

scenario. The first aspect of interest is the way coalitions are

formed, shown in Fig. 2(a). We can see that the incentive to

form coalitions given by L = 1 is quite effective. There are

never more than two coalitions. More interestingly, when the

vehicles give to their time a very high or a very low value,

there is only one coalition, attaining the lowest possible buy

price bc. Thanks to the large number of vehicles existing in

the topology, no charging station decides not to operate, i.e.,

to join coalition k0, except when K ≤ 10.

Such a behavior, highlighted by Fig. 2(a), can be explained

by looking at the prices portrayed in Fig. 2(b). When K is low,

vehicles tend to select the cheapest station, (almost) regardless

of its distance. Therefore, stations will react by selecting the

lowest possible price and forming a single coalition so as

to enjoy the lowest buy price bc. Then, since all stations

have the same price, vehicles will optimize their objective, as

in (1), by selecting their closest station. It follows that stations

in disadvantageous locations will go out of business, being

unable to further reduce their prices to attract more vehicles.

In other words, they will join coalition k0.

As the value of time K increases, we can see another

interesting effect: two coalitions are formed, as shown in

Fig. 2(a), and the average sell and buy prices tend to remain

6



constant (red and gray curves in Fig. 2(b)). Indeed, in these

cases, vehicles always select the closest charging station and

the prices tend to reach their maximum value.

Also, by comparing red and gray curves in Fig. 2(b),

we observe that the average price paid by vehicles3,

i.e., 1
|V|

∑

v∈V sv, can be lower than the average price charged

by stations, i.e., 1
|C|

∑

c∈C sc. Clearly, stations charging a

cheaper price attract more vehicles.

As K further increases, we enter a regime where vehicles

have a strong tendency to select the closest station, no matter

which price they have to pay. Stations react by charging the

maximum possible prices (Fig. 2(b)), and again forming a

single coalition (Fig. 2(a)) to minimize the buy price bc and,

thus, maximize their profit.

Finally, let us look at the trip times portrayed in Fig. 2(c).

The plot shows the average, as well as the 10th and the 90th

percentiles, of vehicle trip times. This includes:

• detour time from the original route to the charging station

and back;

• waiting time in line at the charging station;

• service time, i.e., the time required for battery replace-

ment.

In spite of the variability due to the differences in the routes,

the trend is clear. As K grows to 25, the trip times decrease.

For higher values of K , stations always charge the highest

possible price, and vehicles always select the closest station,

3We abuse the notation, indicating by sv the price paid by vehicle v, i.e.,
the sell price sc charged by station c selected by vehicle v.

thus attaining the lowest possible trip time.

The role of ITS: In all the above cases, we can see that the

availability of ITS support for vehicles consistently implies

lower prices and shorter trip times. While the fact that ITS

support shortens trip times is quite obvious, the impact of

such a support on prices is not.

The intuition is that when vehicles underestimate their

waiting times, they are more likely to select a more expensive

charging station, as their value of objective (1) is still low.

Surprisingly enough, if vehicles with no ITS support always

assume that waiting times are very long, prices are still higher

than in the case with ITS support. The reason is as follows:

vehicles select more expensive charging stations in order to

avoid further increasing their objective values. Therefore, any

incorrect estimation of waiting times yields higher trip times

and higher prices – that knowledge is power has long been

known in fields other than networking or game theory.

In Fig. 3, we focus on the case with ITS and we seek to

understand the relevance of each of the trip time components,

for vehicles with short, average, and long total trip times.

First, we recall that the service time is constant and quite

short; this is due to the fact that batteries are replaced and not

recharged. Also, the detour time varies little as K increases.

Indeed, waiting times are a very important part of the total

trip time, and they represent the most significant difference

between vehicles with short and long trip times. Finally, lower

values of K correspond to longer waiting times.

As mentioned, our model can account for those scenarios

in which batteries are charged on the spot instead of being

 0

 2

 4

 6

 8

 10

 12

 14

 5  10  15  20  25  30  35  40  45  50

N
o.

 o
f s

ta
tio

ns

K [EUR/hour]

Coalition 1
Coalition 2
Not operating
with ITS
no ITS

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5  10  15  20  25  30  35  40  45  50

P
ric

e 
[E

U
R

]

K [EUR/hour]

Vehicles buy
Stations sell
Stations buy
with ITS
no ITS

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5  10  15  20  25  30  35  40  45  50

T
rip

 ti
m

e 
[m

in
]

K [EUR/hour]

10th percentile
Average
90th percentile
with ITS
no ITS

(c)

Fig. 5. At least three coalitions enforced: coalitions size (a), prices (b), vehicle trip time (c), with and without ITS support.
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Fig. 6. At most five members per coalitions permitted: coalitions size (a), prices (b), vehicle trip time (c), with and without ITS support.
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replaced. In that case, service times (the black area in Fig. 3)

would be longer and, more importantly, not uniform as they

would depend on factors like the charge level of each vehicle.

A. Peak-time scenario

We all know that prices are formed through the balance of

demand and offer. In the following, we explore what happens

if such a balance is changed, e.g., during peak traffic hours.

Specifically, we increase the number of vehicles that need to

replace their battery to |V| = 500.

The effect, shown in Fig. 4, is quite clear. Firstly, a single,

giant coalition forms sooner, i.e., for lower values of K . Sec-

ondly, costs and trip times both increase (notice the different

scale in Fig. 4(c)). Thirdly, the impact of the presence of ITS is

less significant. Intuitively, in this scenario there are so many

vehicles that charging stations can enforce whatever pricing

policy they see fit, and still have customers. Finally, looking

at Fig. 4(b), we note that there is a wider spread between sell

and buy prices.

B. Countering trusts: number and size of coalitions

As we have seen from Fig. 2(a), the system naturally drifts

towards very few, big coalitions, which can easily maximize

their profit by increasing the prices. Many countries deter such

aggressive cartels through anti-trust regulations, forbidding

large aggregations of subjects operating in the same market.

We model these regulations by mandating that at least three

coalitions (not including k0) be formed, for all values of K .

The results are summarized in Fig. 5.

The first thing Fig. 5(a) highlights is that the third coalition

rarely includes more than one station: charging stations behave

as if they were trying to elude anti-trust regulations – no

surprise there. Nonetheless, the presence of the extra coalition

has a significant impact on prices: as shown in Fig. 5(b),

the regime in which all stations charge the maximum price

is reached only for K ≥ 40.

As far as trip times are concerned, Fig. 5(c) shows that they

tend to be slightly lower, and to decrease more steadily, than

in the baseline case (Fig. 2(c)).

Even better results are obtained, as we can see from Fig. 6, if

at most five members per coalition are permitted. In this case,

the average of the sell prices sc, hence the average prices

at which vehicles buy, is lower (see Fig. 6(b)). Such price

reduction leads to no degradation in terms of trip time (see

Fig. 6(c)). Furthermore, looking at Fig. 6(a), we observe that

we always have two coalitions for any value of K .

Finally, it is important to note that none of the above settings

reduces the penalty – in terms of energy prices – that vehicles

incur if no ITS system is available.

C. Countering trusts: removing and reversing the coalition

incentive

In some cases, it may prove difficult to directly enforce

a minimum number of coalitions, or a maximum size of

the coalitions. Thus, here we try to act upon the coalition

incentive L with the goal of obtaining lower prices for end

users. We start by setting L = 0, i.e., we remove any incentive

for charging stations to form big coalitions.

A first, unexpected result can be seen from Fig. 7(a):

even if the incentive represented by a positive value of L is

removed, coalitions are still formed. This is due to a secondary

effect of belonging to a coalition, i.e., the fact that prices are

decided coalition-wise. It follows that two charging stations

that would otherwise be competing against each other can

agree on a common price policy. Note, however, that the curves

in Fig. 7(a) do not sum up to |C| = 14, as the composition

of several small coalitions that originate is not reported in

the plot. Also, from Fig. 7(a) we observe that now there is a

high number of non-operating charging stations. Indeed, due

to the higher buy prices bc (and the lower sell prices sc),

these stations cannot make a profit, especially when K is low

(Fig. 7(b)).

By looking at Fig. 7(b) and Fig. 2(b), we can see that sell

prices sc are comparatively lower. Indeed, there are always

some stations belonging to minor coalitions (see Fig. 7(a)) that

compete with larger coalitions by lowering their sell prices.

Finally, observe from Fig. 7(c) that trip times tend to be

longer than in the previous cases, especially for low values

of K , as a consequence of the lower number of operating

stations.

These results motivate us to ask a further question: what if

we reverse the coalition incentive, i.e., set L to a negative

value? Such a scenario could model those cases in which

a high energy consumption is discouraged rather than en-

couraged, e.g., due to environmental concerns. Indeed, this

is exactly the way residential consumers are currently billed

by electric companies. The results are summarized in Fig. 8.

We can see the direct effect of having L < 0 by looking

at Fig. 8(b): prices are remarkably higher than in the previous

scenarios. Surprisingly, in spite of this effect, Fig. 8(a) shows

that a sizable coalition, as big as 10 stations for some values

of K , is nonetheless formed . Similarly to the case L = 0, this

is due to stations that find forming a coalition more profitable

than competing against each other. Indeed, our model proves to

be remarkably good at capturing the anti-competitive behavior

that charging stations are likely to mutuate from traditional

ones. Also notice, from Fig. 8(a), that there is a higher number

of charging stations that do not find it convenient to operate

when K is small, essentially due to the higher energy costs

to offset. Consistently, trip times (Fig. 8(c)) tend to be longer

than in the other cases.

Again, no matter the anti-trust mechanism in place, ITS

support is always associated to lower prices.

D. Rationality

At last, we look at the number of rounds that, as described

in Section V, are needed to reach an equilibrium. Recall

that we have limited their number through the rationality

parameter r = 20.

Table I shows that the number of iterations is always

significantly smaller than the limit represented by r. This

has two important consequences. First, assuming a bounded

rationality has no impact on the results for the scenario under
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Fig. 7. Scenario with L = 0: coalitions size (a), prices (b), vehicle trip time (c), with and without ITS support.
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Fig. 8. Scenario with L = −0.5: coalitions size (a), prices (b), vehicle trip time (c), with and without ITS support.

study, i.e., keeping the traditional assumption of unbounded

rationality would have yielded the same results.

More importantly, these figures show that, through our

model, we manage to find an equilibrium for a realistic

scenario with a limited number of iterations, hence in a short

time. This achievement is important in light of an on-line usage

of the system.

Also notice that extreme values of K typically yield a

smaller number of iterations. This is due to vehicle behavior

being less likely to change as a consequence of price or

coalition-related decisions, which are in turn less likely to be

reverted.

VIII. CONCLUSION

We presented a comprehensive model for networks of elec-

tric vehicles, accounting for the most relevant players (electric

vehicles, charging stations and the coalitions they form). We

also accounted for the way players’ actions influence each

other and for the possible intervention of anti-trust regulators.

We described an algorithm to find a Nash equilibrium for

TABLE I
NUMBER OF ITERATIONS NEEDED TO REACH AN EQUILIBRIUM

Scenario K = 5 K = 25 K = 50

Baseline 2 7 1

L = 0 2 10 2

L = −0.5 3 13 5

Anti-trust 2 12 9

our model, and discussed its complexity. Finally, we applied

our model to a set of realistic scenarios, highlighting some

non-obvious aspects of the behavior that can be expected

from charging station owners. The value assigned by vehicle

drivers to their time proved to be a fundamental parameter of

the system, which has a relevant impact not only on vehicle

trip times but also on the prices charged by stations and the

way the latter group into coalitions. Finally, equilibria have

been reached with quite a small number of iterations, always

smaller than the rationality limit r. Due to its flexibility, our

model can be adapted with trivial modifications to virtually any

market situation. For instance, future research could further

investigate interventions by market regulators (e.g., city or

local authorities) on anticompetitive behaviors of charging

stations. Also, the case in which fixed costs depend upon the

coalition size can be examined.

The first aspect we looked at was the impact on the

availability of ITS on the prices paid by the vehicles and

the coalitions formed by the charging stations. We found

that when no ITS support is available, charging stations

have an incentive to increase their prices. Another interesting

observation concerns coalitions: they exhibit a clear tendency

to form coalitions, with one of such coalitions aggregating

most of the active stations. This happens even if energy prices

are determined in order to discourage such a behavior. Indeed,

the main advantage that charging stations obtain from forming

a coalition is not represented by lower energy prices, but by the

possibility of enacting a common price policy – i.e., to form

a trust. In all cases, the availability of ITS support invariably
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results not only in shorter trip and waiting times for vehicles,

but also in lower prices.
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APPENDIX

THE WAITING AND SERVICE TIME wc

In the following, we give a closed-form expression of the

waiting/service time wc.

Let us consider a generic vehicle arriving at station c, which

is equipped with σ replacement stalls. Let τ be the replacement

time, and n be the number of vehicles already waiting at the

charging station before the tagged vehicle. The waiting and

service time wc is given by:

wc =







τ if n < σ
τ

2
+ τ

n− σ

σ
+ τ otherwise.

(9)

The first line of (9) applies when the arriving vehicle finds a

free stall; in this case, its battery is immediately replaced in

time τ . If all stalls are busy, instead, the vehicle has to wait

in line. It will have to wait for the vehicles being served to

finish (τ/2 on average), then for the full service time τ of

the (n − σ)/σ other vehicles currently in line. Finally, the

tagged vehicle will be served in time τ .

It is very important to stress that the expression in (9) also

holds if batteries are recharged on the spot, and not replaced

– the only difference being a higher, and possibly vehicle-

specific, value of τ .
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